1
|
Lei YR, He JY, Fu XM, Huang CF, Lin YX, Dai LL, Chen ZA, Zhang ZP, Liu FM, Qin QW, Sun HY. Epinephelus coioides Sec3 promotes Singapore grouper iridovirus infection by negatively regulates immune response. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109784. [PMID: 39067495 DOI: 10.1016/j.fsi.2024.109784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/19/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Exocyst, a protein complex, plays a crucial role in various cellular functions, including cell polarization, migration, invasion, cytokinesis, and autophagy. Sec3, known as Exoc1, is a key subunit of the Exocyst complex and can be involved in cell survival and apoptosis. In this study, two subtypes of Sec3 were isolated from Epinephelus coioides, an important marine fish in China. The role of E. coioides Sec3 was explored during Singapore grouper iridovirus (SGIV) infection, an important pathogen of marine fish which could induce 90 % mortality. E. coioides Sec3 sequences showed a high similarity with that from other species, indicating the presence of a conserved Sec3 superfamily domain. E. coioides Sec3 mRNA could be detected in all examined tissues, albeit at varying expression levels. SGIV infection could upregulate E. coioides Sec3 mRNA. Upregulated Sec3 significantly promoted SGIV-induced CPE, and the expressions of viral key genes. E. coioides Sec3 could inhibit the activation of NF-κB and AP-1, as well as SGIV-induced cell apoptosis. The results illustrated that E. coioides Sec3 promotes SGIV infection by regulating the innate immune response.
Collapse
Affiliation(s)
- Yu-Rong Lei
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Jia-Yang He
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Xue-Mei Fu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Cui-Fen Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Yun-Xiang Lin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Li-Ling Dai
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Zi-An Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Ze-Peng Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Fu-Min Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Qi-Wei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China.
| | - Hong-Yan Sun
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China.
| |
Collapse
|
2
|
Wu H, Nguyen H, Hashim PH, Fogelgren B, Duncan FE, Ward WS. Oocyte-specific EXOC5 expression is required for mouse oogenesis and folliculogenesis. Mol Hum Reprod 2024; 30:gaae026. [PMID: 39037927 PMCID: PMC11299862 DOI: 10.1093/molehr/gaae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/11/2024] [Indexed: 07/24/2024] Open
Abstract
EXOC5 is a crucial component of a large multi-subunit tethering complex, the exocyst complex, that is required for fusion of secretory vesicles with the plasma membrane. Exoc5 deleted mice die as early embryos. Therefore, to determine the role of EXOC5 in follicular and oocyte development, it was necessary to produce a conditional knockout (cKO), Zp3-Exoc5-cKO, in which Exoc5 was deleted only in oocytes. The first wave of folliculogenesis appeared histologically normal and progressed to the antral stage. However, after IVF with normal sperm, oocytes collected from the first wave (superovulated 21-day-old cKO mice) were shown to be developmentally incompetent. Adult follicular waves did not progress beyond the secondary follicle stage where they underwent apoptosis. Female cKO mice were infertile. Overall, these data suggest that the first wave of folliculogenesis is less sensitive to oocyte-specific loss of Exoc5, but the resulting gametes have reduced developmental competence. In contrast, subsequent waves of folliculogenesis require oocyte-specific Exoc5 for development past the preantral follicle stage. The Zp3-Exoc5-cKO mouse provides a model for disrupting folliculogenesis that also enables the separation between the first and subsequent waves of folliculogenesis.
Collapse
Affiliation(s)
- Hongwen Wu
- Department of Anatomy, Biochemistry & Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
- Department of Obstetrics, Gynecology & Women’s Health, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Hieu Nguyen
- Department of Anatomy, Biochemistry & Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
- Department of Obstetrics, Gynecology & Women’s Health, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Prianka H Hashim
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ben Fogelgren
- Department of Anatomy, Biochemistry & Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
- Department of Obstetrics, Gynecology & Women’s Health, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - W Steven Ward
- Department of Anatomy, Biochemistry & Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
- Department of Obstetrics, Gynecology & Women’s Health, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
3
|
Zuo X, Winkler B, Lerner K, Ilatovskaya DV, Zamaro AS, Dang Y, Su Y, Deng P, Fitzgibbon W, Hartman J, Park KM, Lipschutz JH. Cilia-deficient renal tubule cells are primed for injury with mitochondrial defects and aberrant tryptophan metabolism. Am J Physiol Renal Physiol 2024; 327:F61-F76. [PMID: 38721661 PMCID: PMC11390130 DOI: 10.1152/ajprenal.00225.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/11/2024] [Accepted: 04/24/2024] [Indexed: 06/21/2024] Open
Abstract
The exocyst and Ift88 are necessary for primary ciliogenesis. Overexpression of Exoc5 (OE), a central exocyst component, resulted in longer cilia and enhanced injury recovery. Mitochondria are involved in acute kidney injury (AKI). To investigate cilia and mitochondria, basal respiration and mitochondrial maximal and spare respiratory capacity were measured in Exoc5 OE, Exoc5 knockdown (KD), Exoc5 ciliary targeting sequence mutant (CTS-mut), control Madin-Darby canine kidney (MDCK), Ift88 knockout (KO), and Ift88 rescue cells. In Exoc5 KD, Exoc5 CTS-mut, and Ift88 KO cells, these parameters were decreased. In Exoc5 OE and Ift88 rescue cells they were increased. Reactive oxygen species were higher in Exoc5 KD, Exoc5 CTS-mut, and Ift88 KO cells compared with Exoc5 OE, control, and Ift88 rescue cells. By electron microscopy, mitochondria appeared abnormal in Exoc5 KD, Exoc5 CTS-mut, and Ift88 KO cells. A metabolomics screen of control, Exoc5 KD, Exoc5 CTS-mut, Exoc5 OE, Ift88 KO, and Ift88 rescue cells showed a marked increase in tryptophan levels in Exoc5 CTS-mut (113-fold) and Exoc5 KD (58-fold) compared with control cells. A 21% increase was seen in Ift88 KO compared with rescue cells. In Exoc5 OE compared with control cells, tryptophan was decreased 59%. To determine the effects of ciliary loss on AKI, we generated proximal tubule-specific Exoc5 and Ift88 KO mice. These mice had loss of primary cilia, decreased mitochondrial ATP synthase, and increased tryptophan in proximal tubules with greater injury following ischemia-reperfusion. These data indicate that cilia-deficient renal tubule cells are primed for injury with mitochondrial defects in tryptophan metabolism.NEW & NOTEWORTHY Mitochondria are centrally involved in acute kidney injury (AKI). Here, we show that cilia-deficient renal tubule cells both in vitro in cell culture and in vivo in mice are primed for injury with mitochondrial defects and aberrant tryptophan metabolism. These data suggest therapeutic strategies such as enhancing ciliogenesis or improving mitochondrial function to protect patients at risk for AKI.
Collapse
Affiliation(s)
- Xiaofeng Zuo
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Brennan Winkler
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Kasey Lerner
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Daria V Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Aleksandra S Zamaro
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Yujing Dang
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Yanhui Su
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Peifeng Deng
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Wayne Fitzgibbon
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Jessica Hartman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Kwon Moo Park
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Joshua H Lipschutz
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
- Department of Medicine, Ralph H. Johnson Veterans Affairs Health Care System, Charleston, South Carolina, United States
| |
Collapse
|
4
|
Niedziółka SM, Datta S, Uśpieński T, Baran B, Skarżyńska W, Humke EW, Rohatgi R, Niewiadomski P. The exocyst complex and intracellular vesicles mediate soluble protein trafficking to the primary cilium. Commun Biol 2024; 7:213. [PMID: 38378792 PMCID: PMC10879184 DOI: 10.1038/s42003-024-05817-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 01/15/2024] [Indexed: 02/22/2024] Open
Abstract
The efficient transport of proteins into the primary cilium is a crucial step for many signaling pathways. Dysfunction of this process can lead to the disruption of signaling cascades or cilium assembly, resulting in developmental disorders and cancer. Previous studies on the protein delivery to the cilium were mostly focused on the membrane-embedded receptors. In contrast, how soluble proteins are delivered into the cilium is poorly understood. In our work, we identify the exocyst complex as a key player in the ciliary trafficking of soluble Gli transcription factors. In line with the known function of the exocyst in intracellular vesicle transport, we demonstrate that soluble proteins, including Gli2/3 and Lkb1, can use the endosome recycling machinery for their delivery to the primary cilium. Finally, we identify GTPases: Rab14, Rab18, Rab23, and Arf4 that are involved in vesicle-mediated Gli protein ciliary trafficking. Our data pave the way for a better understanding of ciliary transport and uncover transport mechanisms inside the cell.
Collapse
Affiliation(s)
- S M Niedziółka
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - S Datta
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - T Uśpieński
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - B Baran
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - W Skarżyńska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - E W Humke
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- IGM Biosciences, Inc, Mountain View, CA, USA
| | - R Rohatgi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - P Niewiadomski
- Centre of New Technologies, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
5
|
Bai S, Hou W, Yao Y, Meng J, Wei Y, Hu F, Hu X, Wu J, Zhang N, Xu R, Tian F, Wang B, Liao H, Du Y, Fang H, He W, Liu Y, Shen B, Du J. Exocyst controls exosome biogenesis via Rab11a. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:535-546. [PMID: 35036064 PMCID: PMC8739877 DOI: 10.1016/j.omtn.2021.12.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/15/2021] [Indexed: 12/24/2022]
Abstract
Tumor cells actively release large quantities of exosomes, which pivotally participate in the regulation of cancer biology, including head and neck cancer (HNC). Exosome biogenesis and release are complex and elaborate processes that are considered to be similar to the process of exocyst-mediated vesicle delivery. By analyzing the expression of exocyst subunits and their role in patients with HNC, we aimed to identify exocyst and its functions in exosome biogenesis and investigate the molecular mechanisms underlying the regulation of exosome transport in HNC cells. We observed that exocysts were highly expressed in HNC cells and could promote exosome secretion in these cells. In addition, downregulation of exocyst expression inhibited HN4 cell proliferation by reducing exosome secretion. Interestingly, immunofluorescence and electron microscopy revealed the accumulation of multivesicular bodies (MVBs) after the knockdown of exocyst. Autophagy, the major pathway of exosome degradation, is not activated by this intracellular accumulation of MVBs, but these MVBs are consumed when autophagy is activated under the condition of cell starvation. Rab11a, a small GTPase that is involved in MVB fusion, also interacted with the exocyst. These findings suggest that the exocyst can regulate exosome biogenesis and participate in the malignant behavior of tumor cells.
Collapse
Affiliation(s)
- Suwen Bai
- Longgang District People’s Hospital of Shenzhen & The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China
| | - Wenxuan Hou
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yanheng Yao
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Yuan Wei
- Longgang District People’s Hospital of Shenzhen & The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China
| | - Fangfang Hu
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xianyu Hu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022 Anhui, China
| | - Jing Wu
- Department of Otolaryngology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Ning Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022 Anhui, China
| | - Ruihuan Xu
- Longgang District People’s Hospital of Shenzhen & The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Faqing Tian
- Longgang District People’s Hospital of Shenzhen & The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Benguo Wang
- Longgang District People’s Hospital of Shenzhen & The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Hailan Liao
- Longgang District People’s Hospital of Shenzhen & The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Yinan Du
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China
| | - Haoshu Fang
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China
| | - Wei He
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yehai Liu
- Department of Otolaryngology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China
| | - Juan Du
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
6
|
Wei YY, Liang S, Zhang YR, Lu JP, Lin FC, Liu XH. MoSec61β, the beta subunit of Sec61, is involved in fungal development and pathogenicity, plant immunity, and ER-phagy in Magnaporthe oryzae. Virulence 2020; 11:1685-1700. [PMID: 33200669 PMCID: PMC7714445 DOI: 10.1080/21505594.2020.1848983] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The process of protein translocation into the endoplasmic reticulum (ER) is the initial and decisive step in the biosynthesis of all secretory proteins and many soluble organelle proteins. In this process, the Sec61 complex is the protein-conducting channel for transport. In this study, we identified and characterized the β subunit of the Sec61 complex in Magnaporthe oryzae (MoSec61β). Compared with the wild-type strain Guy11, the ΔMosec61β mutant exhibited highly branched mycelial morphology, reduced conidiation, high sensitivity to cell wall integrity stress, severely reduced virulence to rice and barley, and restricted biotrophic invasion. The turgor pressure of ΔMosec61β was notably reduced, which affected the function of appressoria. Moreover, ΔMosec61β was also sensitive to oxidative stress and exhibited a reduced ability to overcome plant immunity. Further examination demonstrated that MoSec61β affected the normal secretion of the apoplastic effectors Bas4 and Slp1. In addition, ΔMosec61β upregulated the level of ER-phagy. In conclusion, our results demonstrate the importance of the roles played by MoSec61β in the fungal development and pathogenesis of M. oryzae.
Collapse
Affiliation(s)
- Yun-Yun Wei
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University , Hangzhou, China
| | - Shuang Liang
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University , Hangzhou, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study , Hangzhou, China
| | - Yun-Ran Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University , Hangzhou, China
| | - Jian-Ping Lu
- College of Life Sciences, Zhejiang University , Hangzhou, China
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University , Hangzhou, China.,State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences , Hangzhou, China
| | - Xiao-Hong Liu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University , Hangzhou, China
| |
Collapse
|
7
|
Regulation of the Extracellular Matrix by Ciliary Machinery. Cells 2020; 9:cells9020278. [PMID: 31979260 PMCID: PMC7072529 DOI: 10.3390/cells9020278] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/13/2020] [Accepted: 01/19/2020] [Indexed: 12/14/2022] Open
Abstract
The primary cilium is an organelle involved in cellular signalling. Mutations affecting proteins involved in cilia assembly or function result in diseases known as ciliopathies, which cause a wide variety of phenotypes across multiple tissues. These mutations disrupt various cellular processes, including regulation of the extracellular matrix. The matrix is important for maintaining tissue homeostasis through influencing cell behaviour and providing structural support; therefore, the matrix changes observed in ciliopathies have been implicated in the pathogenesis of these diseases. Whilst many studies have associated the cilium with processes that regulate the matrix, exactly how these matrix changes arise is not well characterised. This review aims to bring together the direct and indirect evidence for ciliary regulation of matrix, in order to summarise the possible mechanisms by which the ciliary machinery could regulate the composition, secretion, remodelling and organisation of the matrix.
Collapse
|
8
|
Zuo X, Kwon SH, Janech MG, Dang Y, Lauzon SD, Fogelgren B, Polgar N, Lipschutz JH. Primary cilia and the exocyst are linked to urinary extracellular vesicle production and content. J Biol Chem 2019; 294:19099-19110. [PMID: 31694916 PMCID: PMC6916495 DOI: 10.1074/jbc.ra119.009297] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/29/2019] [Indexed: 12/13/2022] Open
Abstract
The recently proposed idea of "urocrine signaling" hypothesizes that small secreted extracellular vesicles (EVs) contain proteins that transmit signals to distant cells. However, the role of renal primary cilia in EV production and content is unclear. We previously showed that the exocyst, a highly conserved trafficking complex, is necessary for ciliogenesis; that it is present in human urinary EVs; that knockdown (KD) of exocyst complex component 5 (EXOC5), a central exocyst component, results in very short or absent cilia; and that human EXOC5 overexpression results in longer cilia. Here, we show that compared with control Madin-Darby canine kidney (MDCK) cells, EXOC5 overexpression increases and KD decreases EV numbers. Proteomic analyses of isolated EVs from EXOC5 control, KD, and EXOC5-overexpressing MDCK cells revealed significant alterations in protein composition. Using immunoblotting to specifically examine the expression levels of ADP-ribosylation factor 6 (ARF6) and EPS8-like 2 (EPS8L2) in EVs, we found that EXOC5 KD increases ARF6 levels and decreases EPS8L2 levels, and that EXOC5 overexpression increases EPS8L2. Knockout of intraflagellar transport 88 (IFT88) confirmed that the changes in EV number/content were due to cilia loss: similar to EXOC5, the IFT88 loss resulted in very short or absent cilia, decreased EV numbers, increased EV ARF6 levels, and decreased Eps8L2 levels compared with IFT88-rescued EVs. Compared with control animals, urine from proximal tubule-specific EXOC5-KO mice contained fewer EVs and had increased ARF6 levels. These results indicate that perturbations in exocyst and primary cilia affect EV number and protein content.
Collapse
Affiliation(s)
- Xiaofeng Zuo
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Sang-Ho Kwon
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia 30912
| | - Michael G Janech
- Department of Biology, College of Charleston, Charleston, South Carolina 29424
| | - Yujing Dang
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Steven D Lauzon
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Ben Fogelgren
- Department of Anatomy, Biochemistry, and Physiology, University of Hawaii at Manoa, Honolulu, Hawaii 96813
| | - Noemi Polgar
- Department of Anatomy, Biochemistry, and Physiology, University of Hawaii at Manoa, Honolulu, Hawaii 96813
| | - Joshua H Lipschutz
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
- Department of Medicine, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29425
| |
Collapse
|
9
|
Fujimoto BA, Young M, Carter L, Pang APS, Corley MJ, Fogelgren B, Polgar N. The exocyst complex regulates insulin-stimulated glucose uptake of skeletal muscle cells. Am J Physiol Endocrinol Metab 2019; 317:E957-E972. [PMID: 31593505 PMCID: PMC6962504 DOI: 10.1152/ajpendo.00109.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/02/2019] [Accepted: 10/02/2019] [Indexed: 01/16/2023]
Abstract
Skeletal muscle handles ~80-90% of the insulin-induced glucose uptake. In skeletal muscle, insulin binding to its cell surface receptor triggers redistribution of intracellular glucose transporter GLUT4 protein to the cell surface, enabling facilitated glucose uptake. In adipocytes, the eight-protein exocyst complex is an indispensable constituent in insulin-induced glucose uptake, as it is responsible for the targeted trafficking and plasma membrane-delivery of GLUT4. However, the role of the exocyst in skeletal muscle glucose uptake has never been investigated. Here we demonstrate that the exocyst is a necessary factor in insulin-induced glucose uptake in skeletal muscle cells as well. The exocyst complex colocalizes with GLUT4 storage vesicles in L6-GLUT4myc myoblasts at a basal state and associates with these vesicles during their translocation to the plasma membrane after insulin signaling. Moreover, we show that the exocyst inhibitor endosidin-2 and a heterozygous knockout of Exoc5 in skeletal myoblast cells both lead to impaired GLUT4 trafficking to the plasma membrane and hinder glucose uptake in response to an insulin stimulus. Our research is the first to establish that the exocyst complex regulates insulin-induced GLUT4 exocytosis and glucose metabolism in muscle cells. A deeper knowledge of the role of the exocyst complex in skeletal muscle tissue may help our understanding of insulin resistance in type 2 diabetes.
Collapse
Affiliation(s)
- Brent A Fujimoto
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Madison Young
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Lamar Carter
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Alina P S Pang
- Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Michael J Corley
- Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Ben Fogelgren
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Noemi Polgar
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| |
Collapse
|
10
|
Lipschutz JH. The role of the exocyst in renal ciliogenesis, cystogenesis, tubulogenesis, and development. Kidney Res Clin Pract 2019; 38:260-266. [PMID: 31284362 PMCID: PMC6727897 DOI: 10.23876/j.krcp.19.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/13/2019] [Accepted: 05/20/2019] [Indexed: 12/23/2022] Open
Abstract
The exocyst is a highly conserved eight-subunit protein complex (EXOC1–8) involved in the targeting and docking of exocytic vesicles translocating from the trans-Golgi network to various sites in renal cells. EXOC5 is a central exocyst component because it connects EXOC6, bound to the vesicles exiting the trans-Golgi network via the small GTPase RAB8, to the rest of the exocyst complex at the plasma membrane. In the kidney, the exocyst complex is involved in primary ciliognesis, cystogenesis, and tubulogenesis. The exocyst, and its regulators, have also been found in urinary extracellular vesicles, and may be centrally involved in urocrine signaling and repair following acute kidney injury. The exocyst is centrally involved in the development of other organs, including the eye, ear, and heart. The exocyst is regulated by many different small GTPases of the RHO, RAL, RAB, and ARF families. The small GTPases, and their guanine nucleotide exchange factors and GTPase-activating proteins, likely give the exocyst specificity of function. The recent development of a floxed Exoc5 mouse line will aid researchers in studying the role of the exocyst in multiple cells and organ types by allowing for tissue-specific knockout, in conjunction with Cre-driver mouse lines.
Collapse
Affiliation(s)
- Joshua H Lipschutz
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA.,Department of Medicine, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| |
Collapse
|
11
|
Corkins ME, Krneta-Stankic V, Kloc M, McCrea PD, Gladden AB, Miller RK. Divergent roles of the Wnt/PCP Formin Daam1 in renal ciliogenesis. PLoS One 2019; 14:e0221698. [PMID: 31469868 PMCID: PMC6716777 DOI: 10.1371/journal.pone.0221698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 08/13/2019] [Indexed: 12/16/2022] Open
Abstract
Kidneys are composed of numerous ciliated epithelial tubules called nephrons. Each nephron functions to reabsorb nutrients and concentrate waste products into urine. Defects in primary cilia are associated with abnormal formation of nephrons and cyst formation in a wide range of kidney disorders. Previous work in Xenopus laevis and zebrafish embryos established that loss of components that make up the Wnt/PCP pathway, Daam1 and ArhGEF19 (wGEF) perturb kidney tubulogenesis. Dishevelled, which activates both the canonical and non-canonical Wnt/PCP pathway, affect cilia formation in multiciliated cells. In this study, we investigated the role of the noncanoncial Wnt/PCP components Daam1 and ArhGEF19 (wGEF) in renal ciliogenesis utilizing polarized mammalian kidney epithelia cells (MDCKII and IMCD3) and Xenopus laevis embryonic kidney. We demonstrate that knockdown of Daam1 and ArhGEF19 in MDCKII and IMCD3 cells leads to loss of cilia, and Daam1's effect on ciliogenesis is mediated by the formin-activity of Daam1. Moreover, Daam1 co-localizes with the ciliary transport protein Ift88 and is present in cilia. Interestingly, knocking down Daam1 in Xenopus kidney does not lead to loss of cilia. These data suggests a new role for Daam1 in the formation of primary cilia.
Collapse
Affiliation(s)
- Mark E. Corkins
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, Texas, United States of America
| | - Vanja Krneta-Stankic
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, Texas, United States of America
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genes and Development, Houston, Texas, United States of America
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics & Epigenetics, Houston, Texas, United States of America
| | - Malgorzata Kloc
- Houston Methodist, Research Institute, Houston, Texas, United States of America
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Pierre D. McCrea
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics & Epigenetics, Houston, Texas, United States of America
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Andrew B. Gladden
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics & Epigenetics, Houston, Texas, United States of America
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Rachel K. Miller
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, Texas, United States of America
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics & Epigenetics, Houston, Texas, United States of America
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Biochemistry & Cell Biology, Houston, Texas, United States of America
| |
Collapse
|
12
|
Exocyst Complex Member EXOC5 Is Required for Survival of Hair Cells and Spiral Ganglion Neurons and Maintenance of Hearing. Mol Neurobiol 2018; 55:6518-6532. [PMID: 29327200 PMCID: PMC6984595 DOI: 10.1007/s12035-017-0857-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/20/2017] [Indexed: 10/18/2022]
Abstract
The exocyst, an octameric protein complex consisting of Exoc1 through Exoc8, was first determined to regulate exocytosis by targeting vesicles to the plasma membrane in yeast to mice. In addition to this fundamental role, the exocyst complex has been implicated in other cellular processes. In this study, we investigated the role of the exocyst in cochlear development and hearing by targeting EXOC5, a central exocyst component. Deleting Exoc5 in the otic epithelium with widely used Cre lines resulted in early lethality. Thus, we generated two different inner ear-specific Exoc5 knockout models by crossing Gfi1Cre mice with Exoc5f/f mice for hair cell-specific deletion (Gfi1Cre/+;Exoc5f/f) and by in utero delivery of rAAV-iCre into the otocyst of embryonic day 12.5 for deletion throughout the otic epithelium (rAAV2/1-iCre;Exoc5f/f). Gfi1Cre/+;Exoc5f/f mice showed relatively normal hair cell morphology until postnatal day 20, after which hair cells underwent apoptosis accompanied by disorganization of stereociliary bundles, resulting in progressive hearing loss. rAAV2/1-iCre;Exoc5f/f mice exhibited abnormal neurite morphology, followed by apoptotic degeneration of spiral ganglion neurons (SGNs) and hair cells, which led to profound and early-onset hearing loss. These results demonstrate that Exoc5 is essential for the normal development and survival of cochlear hair cells and SGNs, as well as the functional maintenance of hearing.
Collapse
|
13
|
Polgar N, Fogelgren B. Regulation of Cell Polarity by Exocyst-Mediated Trafficking. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a031401. [PMID: 28264817 DOI: 10.1101/cshperspect.a031401] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
One requirement for establishing polarity within a cell is the asymmetric trafficking of intracellular vesicles to the plasma membrane. This tightly regulated process creates spatial and temporal differences in both plasma membrane composition and the membrane-associated proteome. Asymmetric membrane trafficking is also a critical mechanism to regulate cell differentiation, signaling, and physiology. Many eukaryotic cell types use the eight-protein exocyst complex to orchestrate polarized vesicle trafficking to certain membrane locales. Members of the exocyst were originally discovered in yeast while screening for proteins required for the delivery of secretory vesicles to the budding daughter cell. The same eight exocyst genes are conserved in mammals, in which the specifics of exocyst-mediated trafficking are highly cell-type-dependent. Some exocyst members bind to certain Rab GTPases on intracellular vesicles, whereas others localize to the plasma membrane at the site of exocytosis. Assembly of the exocyst holocomplex is responsible for tethering these vesicles to the plasma membrane before their soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated exocytosis. In this review, we will focus on the role and regulation of the exocyst complex in targeted vesicular trafficking as related to the establishment and maintenance of cellular polarity. We will contrast exocyst function in apicobasal epithelial polarity versus front-back mesenchymal polarity, and the dynamic regulation of exocyst-mediated trafficking during cell phenotype transitions.
Collapse
Affiliation(s)
- Noemi Polgar
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813
| | - Ben Fogelgren
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813
| |
Collapse
|
14
|
Bernabé-Rubio M, Alonso MA. Routes and machinery of primary cilium biogenesis. Cell Mol Life Sci 2017; 74:4077-4095. [PMID: 28624967 PMCID: PMC11107551 DOI: 10.1007/s00018-017-2570-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 02/06/2023]
Abstract
Primary cilia are solitary, microtubule-based protrusions of the cell surface that play fundamental roles as photosensors, mechanosensors and biochemical sensors. Primary cilia dysfunction results in a long list of developmental and degenerative disorders that combine to give rise to a large spectrum of human diseases affecting almost any major body organ. Depending on the cell type, primary ciliogenesis is initiated intracellularly, as in fibroblasts, or at the cell surface, as in renal polarized epithelial cells. In this review, we have focused on the routes of primary ciliogenesis placing particular emphasis on the recently described pathway in renal polarized epithelial cells by which the midbody remnant resulting from a previous cell division event enables the centrosome for initiation of primary cilium assembly. The protein machinery implicated in primary cilium formation in epithelial cells, including the machinery best known for its involvement in establishing cell polarity and polarized membrane trafficking, is also discussed.
Collapse
Affiliation(s)
- Miguel Bernabé-Rubio
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Miguel A Alonso
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
15
|
Tanaka T, Goto K, Iino M. Diverse Functions and Signal Transduction of the Exocyst Complex in Tumor Cells. J Cell Physiol 2016; 232:939-957. [DOI: 10.1002/jcp.25619] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/23/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Toshiaki Tanaka
- Department of Anatomy and Cell Biology; School of Medicine; Yamagata University; Yamagata Japan
- Department of Dentistry, Oral and Maxillofacial Surgery; Plastic and Reconstructive Surgery; School of Medicine; Yamagata University; Yamagata Japan
| | - Kaoru Goto
- Department of Anatomy and Cell Biology; School of Medicine; Yamagata University; Yamagata Japan
| | - Mitsuyoshi Iino
- Department of Dentistry, Oral and Maxillofacial Surgery; Plastic and Reconstructive Surgery; School of Medicine; Yamagata University; Yamagata Japan
| |
Collapse
|
16
|
Toh WH, Gleeson PA. Emerging Insights into the Roles of Membrane Tethers from Analysis of Whole Organisms: The Tip of an Iceberg? Front Cell Dev Biol 2016; 4:12. [PMID: 26973835 PMCID: PMC4770024 DOI: 10.3389/fcell.2016.00012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 02/08/2016] [Indexed: 12/02/2022] Open
Abstract
Membrane tethers have been identified throughout different compartments of the endomembrane system. It is now well established that a number of membrane tethers mediate docking of membrane carriers in anterograde and retrograde transport and in regulating the organization of membrane compartments. Much of our information on membrane tethers have been obtained from the analysis of individual membrane tethers in cultured cells. In the future it will be important to better appreciate the network of interactions mediated by tethers and the potential co-ordination of their collective functions in vivo. There are now a number of studies which have analyzed membrane tethers in tissues and organisms which are providing new insights into the role of this class of membrane protein at the physiological level. Here we review recent advances in the understanding of the function of membrane tethers from knock outs (or knock downs) in whole organisms and from mutations in tethers associated with disease.
Collapse
Affiliation(s)
- Wei Hong Toh
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne Melbourne, VIC, Australia
| | - Paul A Gleeson
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne Melbourne, VIC, Australia
| |
Collapse
|
17
|
Seixas C, Choi SY, Polgar N, Umberger NL, East MP, Zuo X, Moreiras H, Ghossoub R, Benmerah A, Kahn RA, Fogelgren B, Caspary T, Lipschutz JH, Barral DC. Arl13b and the exocyst interact synergistically in ciliogenesis. Mol Biol Cell 2016; 27:308-20. [PMID: 26582389 PMCID: PMC4713133 DOI: 10.1091/mbc.e15-02-0061] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 10/29/2015] [Accepted: 11/12/2015] [Indexed: 12/22/2022] Open
Abstract
Arl13b belongs to the ADP-ribosylation factor family within the Ras superfamily of regulatory GTPases. Mutations in Arl13b cause Joubert syndrome, which is characterized by congenital cerebellar ataxia, hypotonia, oculomotor apraxia, and mental retardation. Arl13b is highly enriched in cilia and is required for ciliogenesis in multiple organs. Nevertheless, the precise role of Arl13b remains elusive. Here we report that the exocyst subunits Sec8, Exo70, and Sec5 bind preferentially to the GTP-bound form of Arl13b, consistent with the exocyst being an effector of Arl13b. Moreover, we show that Arl13b binds directly to Sec8 and Sec5. In zebrafish, depletion of arl13b or the exocyst subunit sec10 causes phenotypes characteristic of defective cilia, such as curly tail up, edema, and abnormal pronephric kidney development. We explored this further and found a synergistic genetic interaction between arl13b and sec10 morphants in cilia-dependent phenotypes. Through conditional deletion of Arl13b or Sec10 in mice, we found kidney cysts and decreased ciliogenesis in cells surrounding the cysts. Moreover, we observed a decrease in Arl13b expression in the kidneys from Sec10 conditional knockout mice. Taken together, our results indicate that Arl13b and the exocyst function together in the same pathway leading to functional cilia.
Collapse
Affiliation(s)
- Cecília Seixas
- CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| | - Soo Young Choi
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425
| | - Noemi Polgar
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813
| | - Nicole L Umberger
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30022
| | - Michael P East
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30022
| | - Xiaofeng Zuo
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425
| | - Hugo Moreiras
- CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| | - Rania Ghossoub
- Centre de Recherche en Cancérologie de Marseille, INSERM, UMR7258, 13009 Marseille, France
| | - Alexandre Benmerah
- INSERM UMR 1163, Laboratory of Inherited Kidney Diseases, 75015 Paris, France Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Richard A Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30022
| | - Ben Fogelgren
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30022
| | - Joshua H Lipschutz
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425 Department of Medicine, RHJ Veterans Affairs Medical Center, Charleston, SC 29425
| | - Duarte C Barral
- CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| |
Collapse
|