1
|
Gerunova LK, Gerunov TV, P'yanova LG, Lavrenov AV, Sedanova AV, Delyagina MS, Fedorov YN, Kornienko NV, Kryuchek YO, Tarasenko AA. Butyric acid and prospects for creation of new medicines based on its derivatives: a literature review. J Vet Sci 2024; 25:e23. [PMID: 38568825 PMCID: PMC10990906 DOI: 10.4142/jvs.23230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 04/05/2024] Open
Abstract
The widespread use of antimicrobials causes antibiotic resistance in bacteria. The use of butyric acid and its derivatives is an alternative tactic. This review summarizes the literature on the role of butyric acid in the body and provides further prospects for the clinical use of its derivatives and delivery methods to the animal body. Thus far, there is evidence confirming the vital role of butyric acid in the body and the effectiveness of its derivatives when used as animal medicines and growth stimulants. Butyric acid salts stimulate immunomodulatory activity by reducing microbial colonization of the intestine and suppressing inflammation. Extraintestinal effects occur against the background of hemoglobinopathy, hypercholesterolemia, insulin resistance, and cerebral ischemia. Butyric acid derivatives inhibit histone deacetylase. Aberrant histone deacetylase activity is associated with the development of certain types of cancer in humans. Feed additives containing butyric acid salts or tributyrin are used widely in animal husbandry. They improve the functional status of the intestine and accelerate animal growth and development. On the other hand, high concentrations of butyric acid stimulate the apoptosis of epithelial cells and disrupt the intestinal barrier function. This review highlights the biological activity and the mechanism of action of butyric acid, its salts, and esters, revealing their role in the treatment of various animal and human diseases. This paper also discussed the possibility of using butyric acid and its derivatives as surface modifiers of enterosorbents to obtain new drugs with bifunctional action.
Collapse
Affiliation(s)
- Lyudmila K Gerunova
- Department of Pharmacology and Toxicology, Omsk State Agrarian University named after P. A. Stolypin, Omsk 644008, Russian Federation
| | - Taras V Gerunov
- Department of Pharmacology and Toxicology, Omsk State Agrarian University named after P. A. Stolypin, Omsk 644008, Russian Federation
| | - Lydia G P'yanova
- Department of Materials Science and Physicochemical Research Methods, Center of New Chemical Technologies BIC, Omsk 644040, Russian Federation
| | - Alexander V Lavrenov
- Department of Materials Science and Physicochemical Research Methods, Center of New Chemical Technologies BIC, Omsk 644040, Russian Federation
| | - Anna V Sedanova
- Department of Materials Science and Physicochemical Research Methods, Center of New Chemical Technologies BIC, Omsk 644040, Russian Federation
| | - Maria S Delyagina
- Department of Materials Science and Physicochemical Research Methods, Center of New Chemical Technologies BIC, Omsk 644040, Russian Federation.
| | - Yuri N Fedorov
- Laboratory of Immunology, All-Russian Research and Technological Institute of Biological Industry, pos. Biokombinata, Shchelkovskii Region, Moscow Province 141142, Russian Federation
| | - Natalia V Kornienko
- Department of Materials Science and Physicochemical Research Methods, Center of New Chemical Technologies BIC, Omsk 644040, Russian Federation
| | - Yana O Kryuchek
- Department of Pharmacology and Toxicology, Omsk State Agrarian University named after P. A. Stolypin, Omsk 644008, Russian Federation
| | - Anna A Tarasenko
- Department of Pharmacology and Toxicology, Omsk State Agrarian University named after P. A. Stolypin, Omsk 644008, Russian Federation
| |
Collapse
|
2
|
Liu M, Shen J, Zhu X, Ju T, Willing BP, Wu X, Lu Q, Liu R. Peanut skin procyanidins reduce intestinal glucose transport protein expression, regulate serum metabolites and ameliorate hyperglycemia in diabetic mice. Food Res Int 2023; 173:113471. [PMID: 37803795 DOI: 10.1016/j.foodres.2023.113471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 10/08/2023]
Abstract
One of diabetic characteristics is the postprandial hyperglycemia. Inhibiting glucose uptake may be beneficial for controlling postprandial blood glucose levels and regulating the glucose metabolism Peanut skin procyanidins (PSP) have shown a potential for lowering blood glucose; however, the underlying mechanism through which PSP regulate glucose metabolism remains unknown. In the current study, we investigated the effect of PSP on intestinal glucose transporters and serum metabolites using a mouse model of diabetic mice. Results showed that PSP improved glucose tolerance and systemic insulin sensitivity, which coincided with decreased expression of sodium-glucose cotransporter 1 and glucose transporter 2 in the intestinal epithelium induced by an activation of the phospholipase C β2/protein kinase C signaling pathway. Moreover, untargeted metabolomic analysis of serum samples revealed that PSP altered arachidonic acid, sphingolipid, glycerophospholipid, bile acids, and arginine metabolic pathways. The study provides new insight into the anti-diabetic mechanism of PSP and a basis for further research.
Collapse
Affiliation(s)
- Min Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430000, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430000, China
| | - Jinxin Shen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430000, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430000, China
| | - Xiaoling Zhu
- Hubei Provincial Institute for Food Supervision and Test, Wuhan 430070, China
| | - Tingting Ju
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Benjamin P Willing
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Xin Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430000, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430000, China
| | - Qun Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430000, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430000, China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430000, China
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430000, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430000, China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430000, China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
3
|
Haus ES, Drengstig T, Thorsen K. Structural identifiability of biomolecular controller motifs with and without flow measurements as model output. PLoS Comput Biol 2023; 19:e1011398. [PMID: 37639454 PMCID: PMC10491402 DOI: 10.1371/journal.pcbi.1011398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 09/08/2023] [Accepted: 07/28/2023] [Indexed: 08/31/2023] Open
Abstract
Controller motifs are simple biomolecular reaction networks with negative feedback. They can explain how regulatory function is achieved and are often used as building blocks in mathematical models of biological systems. In this paper we perform an extensive investigation into structural identifiability of controller motifs, specifically the so-called basic and antithetic controller motifs. Structural identifiability analysis is a useful tool in the creation and evaluation of mathematical models: it can be used to ensure that model parameters can be determined uniquely and to examine which measurements are necessary for this purpose. This is especially useful for biological models where parameter estimation can be difficult due to limited availability of measureable outputs. Our aim with this work is to investigate how structural identifiability is affected by controller motif complexity and choice of measurements. To increase the number of potential outputs we propose two methods for including flow measurements and show how this affects structural identifiability in combination with, or in the absence of, concentration measurements. In our investigation, we analyze 128 different controller motif structures using a combination of flow and/or concentration measurements, giving a total of 3648 instances. Among all instances, 34% of the measurement combinations provided structural identifiability. Our main findings for the controller motifs include: i) a single measurement is insufficient for structural identifiability, ii) measurements related to different chemical species are necessary for structural identifiability. Applying these findings result in a reduced subset of 1568 instances, where 80% are structurally identifiable, and more complex/interconnected motifs appear easier to structurally identify. The model structures we have investigated are commonly used in models of biological systems, and our results demonstrate how different model structures and measurement combinations affect structural identifiability of controller motifs.
Collapse
Affiliation(s)
- Eivind S. Haus
- Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway
| | - Tormod Drengstig
- Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway
| | - Kristian Thorsen
- Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway
| |
Collapse
|
4
|
Lama Tamang R, Juritsch AF, Ahmad R, Salomon JD, Dhawan P, Ramer-Tait AE, Singh AB. The diet-microbiota axis: a key regulator of intestinal permeability in human health and disease. Tissue Barriers 2023; 11:2077069. [PMID: 35603609 PMCID: PMC10161950 DOI: 10.1080/21688370.2022.2077069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/07/2022] [Indexed: 01/21/2023] Open
Abstract
The intestinal barrier orchestrates selective permeability to nutrients and metabolites while excluding noxious stimuli. Recent scientific advances establishing a causal role for the gut microbiota in human health outcomes have generated a resurgent interest toward intestinal permeability. Considering the well-established role of the gut barrier in protection against foreign antigens, there is mounting evidence for a causal link between gut permeability and the microbiome in regulating human health. However, an understanding of the dynamic host-microbiota interactions that govern intestinal barrier functions remains poorly defined. Furthermore, the system-level mechanisms by which microbiome-targeted therapies, such as probiotics and prebiotics, simultaneously promote intestinal barrier function and host health remain an area of active investigation. This review summarizes the recent advances in understanding the dynamics of intestinal permeability in human health and its integration with gut microbiota. We further summarize mechanisms by which probiotics/prebiotics influence the gut microbiota and intestinal barrier functions.
Collapse
Affiliation(s)
- Raju Lama Tamang
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Anthony F. Juritsch
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Rizwan Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jeffrey D. Salomon
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| | - Amanda E. Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Amar B. Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| |
Collapse
|
5
|
Aria H, Rezaei M. Immunogenic cell death inducer peptides: A new approach for cancer therapy, current status and future perspectives. Biomed Pharmacother 2023; 161:114503. [PMID: 36921539 DOI: 10.1016/j.biopha.2023.114503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Immunogenic Cell Death (ICD) is a type of cell death that kills tumor cells by stimulating the adaptive immune response against other tumor cells. ICD depends on the endoplasmic reticulum (ER) stress and the secretion of Damage-Associated Molecular Patterns (DAMP) by the dying tumor cell. DAMPs recruit innate immune cells such as Dendritic Cells (DC), triggering a cancer-specific immune response such as cytotoxic T lymphocytes (CTLs) to eliminate remaining cancer cells. ICD is accompanied by several hallmarks in dying cells, such as surface translocation of ER chaperones, calreticulin (CALR), and extracellular secretion of DAMPs such as high mobility group protein B1 (HMGB1) and adenosine triphosphate (ATP). Therapeutic peptides can kill bacteria and tumor cells thus affecting the immune system. They have high specificity and affinity for their targets, small size, appropriate cell membrane penetration, short half-life, and simple production processes. Peptides are interesting agents for immunomodulation since they may overcome the limitations of other therapeutics. Thus, the development of peptides affecting the TME and active antitumoral immunity has been actively pursued. On the other hand, several peptides have been recently identified to trigger ICD and anti-cancer responses. In the present review, we review previous studies on peptide-induced ICD, their mechanism, their targets, and markers. They include anti-microbial peptides (AMPs), cationic or mitochondrial targeting, checkpoint inhibitors, antiapoptotic inhibitors, and "don't eat me" inhibitor peptides. Also, peptides will be investigated potentially inducing ICD that is divided into ER stressors, ATPase inhibitors, and anti-microbial peptides.
Collapse
Affiliation(s)
- Hamid Aria
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marzieh Rezaei
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
6
|
Martinez NP, Pinch M, Kandel Y, Hansen IA. Knockdown of the Sodium/Potassium ATPase Subunit Beta 2 Reduces Egg Production in the Dengue Vector, Aedes aegypti. INSECTS 2023; 14:50. [PMID: 36661978 PMCID: PMC9862990 DOI: 10.3390/insects14010050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/26/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
The Na+/K+ ATPase (NKA) is present in the cellular membrane of most eukaryotic cells. It utilizes energy released by ATP hydrolysis to pump sodium ions out of the cell and potassium ions into the cell, which establishes and controls ion gradients. Functional NKA pumps consist of three subunits, alpha, beta, and FXYD. The alpha subunit serves as the catalytic subunit while the beta and FXYD subunits regulate the proper folding and localization, and ion affinity of the alpha subunit, respectively. Here we demonstrate that knockdown of NKA beta subunit 2 mRNA (nkaβ2) reduces fecundity in female Ae. aegypti. We determined the expression pattern of nkaβ2 in several adult mosquito organs using qRT-PCR. We performed RNAi-mediated knockdown of nkaβ2 and assayed for lethality, and effects on female fecundity. Tissue expression levels of nkaβ2 mRNA were highest in the ovaries with the fat body, midgut and thorax having similar expression levels, while Malpighian tubules had significantly lower expression. Survival curves recorded post dsRNA injection showed a non-significant decrease in survival of nkaβ2 dsRNA-injected mosquitoes compared to GFP dsRNA-injected mosquitoes. We observed a significant reduction in the number of eggs laid by nkaβ2 dsRNA-injected mosquitoes compared to control mosquitoes. These results, coupled with the tissue expression profile of nkaβ2, indicate that this subunit plays a role in normal female Ae. aegypti fecundity. Additional research needs to be conducted to determine the exact role played by NKAβ2 in mosquito post-blood meal nutrient sensing, transport, yolk precursor protein (YPP) synthesis and yolk deposition.
Collapse
Affiliation(s)
- Nathan P. Martinez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | | | | | | |
Collapse
|
7
|
Dang DX, Zhou H, Lou Y, Li D. Effects of in ovo feeding of methionine and/or disaccharide on post-hatching breast development, glycogen reserves, nutrients absorption parameters, and jejunum antioxidant indices in geese. Front Vet Sci 2022; 9:944063. [PMID: 36072396 PMCID: PMC9441801 DOI: 10.3389/fvets.2022.944063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
We investigated the effects of in ovo injection of methionine (Met) and/or disaccharide (DS) on breast muscle and small intestine development, and the aspect of the glycogen contents, digestive enzymes activities, and jejunal antioxidant parameters in geese after incubation. A total of 600 fertilized eggs were used in this study to be employed in a 2 × 2 factorial experiment. Eggs were randomly assigned to 4 groups, 6 replicates per group, and 25 eggs per replicate. Factors in four groups included non-injection, Met injection (5 g/L Met dissolved in 7.5 g/L NaCl), DS injection (25 g/L maltose and 25 g/L sucrose dissolved in 7.5 g/L NaCl), and DS plus Met injection (25 g/L maltose, 25 g/L sucrose, and 5 g/L Met dissolved in 7.5 g/L NaCl). As a result, birth weight, relative weight of breast muscle, diameter of myofiber, glycogen contents, jejunal villus and surface area, and jejunal digestive enzymes activities improved, while liver glucose-6-phosphatase activity decreased, by DS injection. Additionally, DS administration upregulated the expression of myogenic factor-5 (Myf-5) from breast muscle and sodium/glucose cotransporter protein-1 (SGLT-1) from jejunum. In ovo delivery of DS has long-term effects on the improvement of jejunal glucose transporter-2 (GLUT-2) and sucrase-isomaltase expression. In ovo feeding of Met improved the relative weight of breast muscle and small intestine, diameter of myofiber, length of small intestine, jejunal villus width, jejunal sucrase, Na+/K+ATPase and alkaline phosphatase activities, and jejunal glutathione (GSH) concentration, and decreased the jejunal glutathione disulfide (GSSH) and the ratio of GSSG to GSH, in early-life post-hatching. The breast muscle Myf-5 and myostatin expression, jejunal villus height and surface area, jejunal glutathione peroxidase concentration, and the expression of GLUT-2 in jejunum long-term improved by in ovo delivery of Met. Moreover, in ovo feeding of DS plus Met mixture synergistically improved the diameter of myofiber, jejunal villus height and width, jejunal sucrase, and alkaline phosphatase activities in early-life post-hatching, but long-term upregulated the expression of jejunal GLUT-2. Therefore, we concluded that in ovo injection of Met plus DS is an effective way to improve the development of gosling during post-hatching stages.
Collapse
Affiliation(s)
- De Xin Dang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
- Department of Animal Resources Science, Dankook University, Cheonan, South Korea
| | - Haizhu Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yujie Lou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Desheng Li
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
- *Correspondence: Desheng Li
| |
Collapse
|
8
|
Tang X, Xiong K. Epidermal growth factor activates EGFR/AMPK signalling to up-regulate the expression of SGLT1 and GLUT2 to promote intestinal glucose absorption in lipopolysaccharide challenged IPEC-J2 cells and piglets. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2073832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Kangning Xiong
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| |
Collapse
|
9
|
Dextrose 10% drink is superior to sodium-dextrose drink in increasing blood glucose and sprint speed in soccer players: A double-blinded randomized crossover trial study. Sci Sports 2022. [DOI: 10.1016/j.scispo.2020.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Afshar N, Safaei S, Nickerson DP, Hunter PJ, Suresh V. Computational Modelling of Glucose Uptake by SGLT1 and Apical GLUT2 in the Enterocyte. Front Physiol 2021; 12:699152. [PMID: 34950044 PMCID: PMC8688934 DOI: 10.3389/fphys.2021.699152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/04/2021] [Indexed: 11/18/2022] Open
Abstract
It has been suggested that glucose absorption in the small intestine depends on both constitutively expressed SGLT1 and translocated GLUT2 in the brush border membrane, especially in the presence of high levels of luminal glucose. Here, we present a computational model of non-isotonic glucose uptake by small intestinal epithelial cells. The model incorporates apical uptake via SGLT1 and GLUT2, basolateral efflux into the blood via GLUT2, and cellular volume changes in response to non-isotonic conditions. The dependence of glucose absorption on luminal glucose, blood flow rate, and inlet blood glucose concentration is studied. Uptake via apical GLUT2 is found to be sensitive to all these factors. Under a range of conditions, the maximum apical GLUT2 flux is about half of the SGLT1 flux and is achieved at high luminal glucose (> 50 mM), high blood flow rates, and low inlet blood concentrations. In contrast, SGLT1 flux is less sensitive to these factors. When luminal glucose concentration is less than 10 mM, apical GLUT2 serves as an efflux pathway for glucose to move from the blood to the lumen. The model results indicate that translocation of GLUT2 from the basolateral to the apical membrane increases glucose uptake into the cell; however, the reduction of efflux capacity results in a decrease in net absorption. Recruitment of GLUT2 from a cytosolic pool elicits a 10–20% increase in absorption for luminal glucose levels in the a 20–100 mM range. Increased SGLT1 activity also leads to a roughly 20% increase in absorption. A concomitant increase in blood supply results in a larger increase in absorption. Increases in apical glucose transporter activity help to minimise cell volume changes by reducing the osmotic gradient between the cell and the lumen.
Collapse
Affiliation(s)
- Nima Afshar
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Soroush Safaei
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - David P Nickerson
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peter J Hunter
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Vinod Suresh
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Engineering Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
da Silva TBV, Castilho PA, Sá-Nakanishi ABD, Seixas FAV, Dias MI, Barros L, Ferreira ICFR, Bracht A, Peralta RM. The inhibitory action of purple tea on in vivo starch digestion compared to other Camellia sinensis teas. Food Res Int 2021; 150:110781. [PMID: 34865796 DOI: 10.1016/j.foodres.2021.110781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/01/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022]
Abstract
In order to contribute to improve knowledge about the actions of Camellia sinensis extracts on starch digestion, several varieties were compared. The latter were green, oolong, white, black, and purple teas. The results are hoped to contribute to our understanding of the mode of action and potency of the various tea preparations as possible adjuvants in the control of post-prandial glycemia. The extracts were prepared in way similar to their form of consumption. All extracts decreased starch digestion, but the purple tea extract was the strongest inhibitor, their inhibitory tendency started at the dose of 50 mg/kg and was already maximal with 250 mg/kg. Maltose tolerance was not significantly affected by the extracts. Glucose tolerance was not affected by purple tea, but black tea clearly diminished it; green tea presented the same tendency. Purple tea was also the strongest inhibitor of pancreatic α-amylase, followed by black tea. The green tea, oolong tea, and white tea extracts tended to stimulate the pancreatic α-amylase at low concentrations, a phenomenon that could be counterbalancing its inhibitory effect on starch digestion. Based on chemical analyses and molecular docking simulations it was concluded that for both purple and black tea extracts the most abundant active component, epigallocatechin gallate, seems also to be the main responsible for the inhibition of the pancreatic α-amylase and starch digestion. In the case of purple tea, the inhibitory activity is likely to be complemented by its content in deoxyhexoside-hexoside-containing polyphenolics, especially the kaempferol and myricetin derivatives. Polysaccharides are also contributing to some extent. Cyanidins, the compounds giving to purple tea its characteristic color, seem not to be the main responsible for its effects on starch digestion. It can be concluded that in terms of postprandial anti-hyperglycemic action purple tea presents the best perspectives among all the tea varieties tested in the present study.
Collapse
Affiliation(s)
| | - Pâmela Alves Castilho
- Post-Graduate Program in Food Sciences, State University of Maringa, 87015-900 Maringá, Paraná, Brazil
| | - Anacharis Babeto de Sá-Nakanishi
- Post-Graduate Program in Food Sciences, State University of Maringa, 87015-900 Maringá, Paraná, Brazil; Department of Biochemistry, State University of Maringá, 87015-900 Maringá, PR, Brazil; Post-Graduate Program in Biochemistry, State University of Maringá, 87015-900 Maringá, PR, Brazil
| | - Flávio Augusto Vicente Seixas
- Department of Technology, and Post-graduate Program of Molecular and Cell Biology, State University of Maringá, 87015-900 Maringá, PR, Brazil
| | - Maria Inês Dias
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Isabel C F R Ferreira
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Adelar Bracht
- Post-Graduate Program in Food Sciences, State University of Maringa, 87015-900 Maringá, Paraná, Brazil; Department of Biochemistry, State University of Maringá, 87015-900 Maringá, PR, Brazil; Post-Graduate Program in Biochemistry, State University of Maringá, 87015-900 Maringá, PR, Brazil
| | - Rosane Marina Peralta
- Post-Graduate Program in Food Sciences, State University of Maringa, 87015-900 Maringá, Paraná, Brazil; Department of Biochemistry, State University of Maringá, 87015-900 Maringá, PR, Brazil; Post-Graduate Program in Biochemistry, State University of Maringá, 87015-900 Maringá, PR, Brazil.
| |
Collapse
|
12
|
Liu S, Ai Z, Meng Y, Chen Y, Ni D. Comparative studies on the physicochemical profile and potential hypoglycemic activity of different tea extracts: Effect on sucrase-isomaltase activity and glucose transport in Caco-2 cells. Food Res Int 2021; 148:110604. [PMID: 34507748 DOI: 10.1016/j.foodres.2021.110604] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/03/2021] [Accepted: 07/11/2021] [Indexed: 10/20/2022]
Abstract
Tea is one of the most popular beverages in the world and is believed to be beneficial for health. The main components in tea change greatly depending on different processes, and thus, the effects of different teas on human health may differ. In this study, we compared the effect of green, oolong, black, and dark tea extracts on sucrase-isomaltase (SI) activity and glucose transport, which are two intervention options for postprandial blood glucose control, using Caco-2 cells as a model. Theaflavin-rich black tea extracts showed the highest inhibition of SI activity and retardation of the hydrolysis of sucrose, maltose, and isomaltose, with IC50 values of 8.34 μg/mL, 16.10 μg/mL, and 21.63 μg/mL, respectively. All four kinds of tea extracts caused a dose-dependent inhibition of glucose transport, which were closely related to the catechin content. Green tea extracts showed the highest inhibition of glucose transport and was more effective against sodium-dependent glucose cotransporter 1 (SGLT1) than glucose transporter 2 (GLUT2) in the management of glucose transport. Black tea extracts also inhibited glucose transport despite low level of catechins. The reason could partly lie in the suppression of Na+/K+-ATPase, which reduced the energy needed for SGLT1 to actively transport glucose. Furthermore, the mRNA level of SI, SGLT1, GLUT2, and Na+/K+-ATPase in Caco-2 cells were significantly reduced after treatment with tea extracts for 2 h. These in vitro studies suggested that tea could be used as a functional food in the diet to modulate postprandial hyperglycaemia for diabetic patients.
Collapse
Affiliation(s)
- Shuyuan Liu
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zeyi Ai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yang Meng
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yuqiong Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Dejiang Ni
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
13
|
Husain N, Hasan S, Khan AA, Mahmood R. Copper chloride inhibits brush border membrane enzymes, alters antioxidant and metabolic status and damages DNA in rat intestine: a dose-dependent study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43711-43724. [PMID: 33837945 DOI: 10.1007/s11356-021-13804-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Copper (Cu) is an extensively used heavy metal and an indispensible micronutrient for living beings. However, Cu is also toxic and exerts multiple adverse health effects when humans are exposed to high levels of this metal. We have examined the effect of single acute oral dose of copper chloride (CuCl2) on parameters of oxidative stress, cellular metabolism, membrane and DNA damage in rat intestine. Adult male Wistar rats were divided into four groups and separately administered a single oral dose of 5, 15, 30 and 40 mg CuCl2/kg body weight. Rats not administered CuCl2 served as the control. Oral administration of CuCl2 led to significant alterations in the activities of metabolic and membrane-bound enzymes; brush border enzymes were inhibited by 45-75% relative to the control set. Inhibition of antioxidant enzymes diminished the metal-reducing and free radical quenching ability of the cells. Oxidative damage caused cellular oxidation of thiols, proteins and lipids. Diphenylamine and comet assays showed that CuCl2 treatment enhanced DNA damage while DNA-protein crosslinking was also increased in the intestinal cells. Examination of stained sections showed that CuCl2 treatment led to marked histological changes in the intestine. All the changes seen were in a CuCl2 dose-dependent manner with more prominent alterations at higher doses of CuCl2. These results clearly show that oral administration of CuCl2 results in oxidative damage to the intestine which can impair its digestive and absorptive functions.
Collapse
Affiliation(s)
- Nazim Husain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Samra Hasan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Aijaz Ahmed Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, 202002, India.
| |
Collapse
|
14
|
Ramadan Q, Fardous RS, Hazaymeh R, Alshmmari S, Zourob M. Pharmacokinetics-On-a-Chip: In Vitro Microphysiological Models for Emulating of Drugs ADME. Adv Biol (Weinh) 2021; 5:e2100775. [PMID: 34323392 DOI: 10.1002/adbi.202100775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/08/2021] [Indexed: 12/15/2022]
Abstract
Despite many ongoing efforts across the full spectrum of pharmaceutical and biotech industries, drug development is still a costly undertaking that involves a high risk of failure during clinical trials. Animal models played vital roles in understanding the mechanism of human diseases. However, the use of these models has been a subject of heated debate, particularly due to ethical matters and the inevitable pathophysiological differences between animals and humans. Current in vitro models lack the sufficient functionality and predictivity of human pharmacokinetics and toxicity, therefore, are not capable to fully replace animal models. The recent development of micro-physiological systems has shown great potential as indispensable tools for recapitulating key physiological parameters of humans and providing in vitro methods for predicting the pharmacokinetics and pharmacodynamics in humans. Integration of Absorption, Distribution, Metabolism, and Excretion (ADME) processes within one close in vitro system is a paramount development that would meet important unmet pharmaceutical industry needs. In this review paper, synthesis of the ADME-centered organ-on-a-chip technology is systemically presented from what is achieved to what needs to be done, emphasizing the requirements of in vitro models that meet industrial needs in terms of the structure and functions.
Collapse
Affiliation(s)
- Qasem Ramadan
- Alfaisal University, Riyadh, 11533, Kingdom of Saudi Arabia
| | - Roa Saleem Fardous
- Alfaisal University, Riyadh, 11533, Kingdom of Saudi Arabia.,Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow, G4 0RE, United Kingdom
| | - Rana Hazaymeh
- Almaarefa University, Riyadh, 13713, Kingdom of Saudi Arabia
| | - Sultan Alshmmari
- Saudi Food and Drug Authority, Riyadh, 13513-7148, Kingdom of Saudi Arabia
| | | |
Collapse
|
15
|
Cui Y, Chu F, Yin K, Chen X, Wan H, Luo G, Dong H, Xu F. Role of Serosal TRPV4-Constituted SOCE Mechanism in Secretagogues-Stimulated Intestinal Epithelial Anion Secretion. Front Pharmacol 2021; 12:684538. [PMID: 34335254 PMCID: PMC8317263 DOI: 10.3389/fphar.2021.684538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/24/2021] [Indexed: 12/05/2022] Open
Abstract
As little is known about the role of calcium (Ca2+) signaling mediating the small intestinal epithelial anion secretion, we aimed to study its regulatory role in secretagogue-stimulated duodenal anion secretion and the underlying molecular mechanisms. Therefore, intestinal anion secretion from native mouse duodenal epithelia was examined with Ussing chambers to monitor PGE2-, 5-HT-, and CCh-induced short-circuit currents (Isc). PGE2 (10 μM) and 5-HT (10 μM) induced mouse duodenal Isc, markedly attenuated by serosal Ca2+-free solution and selective blockers of store-operated Ca2+ channels on the serosal side of the duodenum. Furthermore, PGE2- and 5-HT-induced duodenal Isc was also inhibited by ER Ca2+ chelator TPEN. However, dantrolene, a selective blocker of ryanodine receptors, inhibited PGE2-induced duodenal Isc, while LiCl, an inhibitor of IP3 production, inhibited 5-HT-induced Isc. Moreover, duodenal Isc response to the serosal applications of both PGE2 and 5-HT was significantly attenuated in transient receptor potential vanilloid 4 (TRPV4) knockout mice. Finally, mucosal application of carbachol (100 μM) also induced duodenal Isc via selective activation of muscarinic receptors, which was significantly inhibited in serosal Ca2+-free solution but neither in mucosal Ca2+-free solution nor by nifedipine. Therefore, the serosal TRPV4-constituted SOCE mechanism is likely universal for the most common and important secretagogues-induced and Ca2+-dependent intestinal anion secretion. These findings will enhance our knowledge about gastrointestinal (G.I.) epithelial physiology and the associated G.I. diseases, such as diarrhea and constipation.
Collapse
Affiliation(s)
- Yinghui Cui
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Fenglan Chu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Kai Yin
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiongying Chen
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Hanxing Wan
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Gang Luo
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hui Dong
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China.,Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Feng Xu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
16
|
Bahadoran A, Bezavada L, Smallwood HS. Fueling influenza and the immune response: Implications for metabolic reprogramming during influenza infection and immunometabolism. Immunol Rev 2021; 295:140-166. [PMID: 32320072 DOI: 10.1111/imr.12851] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
Recent studies support the notion that glycolysis and oxidative phosphorylation are rheostats in immune cells whose bioenergetics have functional outputs in terms of their biology. Specific intrinsic and extrinsic molecular factors function as molecular potentiometers to adjust and control glycolytic to respiratory power output. In many cases, these potentiometers are used by influenza viruses and immune cells to support pathogenesis and the host immune response, respectively. Influenza virus infects the respiratory tract, providing a specific environmental niche, while immune cells encounter variable nutrient concentrations as they migrate in response to infection. Immune cell subsets have distinct metabolic programs that adjust to meet energetic and biosynthetic requirements to support effector functions, differentiation, and longevity in their ever-changing microenvironments. This review details how influenza coopts the host cell for metabolic reprogramming and describes the overlap of these regulatory controls in immune cells whose function and fate are dictated by metabolism. These details are contextualized with emerging evidence of the consequences of influenza-induced changes in metabolic homeostasis on disease progression.
Collapse
Affiliation(s)
- Azadeh Bahadoran
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lavanya Bezavada
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Heather S Smallwood
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
17
|
Pitchumoni CS. Gastrointestinal Physiology and Aging. GERIATRIC GASTROENTEROLOGY 2021:155-200. [DOI: 10.1007/978-3-030-30192-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
18
|
Graded Eimeria challenge linearly regulated growth performance, dynamic change of gastrointestinal permeability, apparent ileal digestibility, intestinal morphology, and tight junctions of broiler chickens. Poult Sci 2020; 99:4203-4216. [PMID: 32867964 PMCID: PMC7598010 DOI: 10.1016/j.psj.2020.04.031] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/05/2020] [Accepted: 04/22/2020] [Indexed: 01/18/2023] Open
Abstract
This study was conducted to evaluate graded Eimeria challenge on growth performance, apparent ileal digestibility, gastrointestinal permeability, intestinal morphology, gene expression of tight junction protein, and intestinal lesion scores in broiler chickens. There were 5 groups in this study, including a control and 4 different Eimeria treatment doses. A mixed Eimeria spp. solution with 50,000 Eimeria maxima, 50,000 Eimeria tenella, and 250,000 Eimeria acervulina per milliliter was prepared for the high-dose challenge treatment. The 2-fold serial dilution was used to make the medium-high (25,000 E. maxima; 25,000 E. tenella; 125,000 E. acervulina), the medium-low (12,500 E. maxima; 12,500 E. tenella; 62,500 E. acervulina), and the low challenge dose (6,250 E. maxima; 6,250 E. tenella; 31,250 E. acervulina). A total of three hundred sixty 13-day-old male broiler chickens were randomly allocated into 5 treatments with 6 replicated cages. Growth performance was calculated from 0 to 6 D postinfection (DPI). Intestine lesion was scored on 6 DPI. Gastrointestinal permeability was measured on 3, 5, 6, 7, and 9 DPI. The results indicated significant linear reduction in growth performance, intestinal villi height, and ileal nutrient digestibility in response to the increase of Eimeria challenge dose. Furthermore, gene expression of tight junction protein was linearly upregulated by the increasing challenge doses. Significant linear increases of gastrointestinal permeability were found on 5, 6, and 7 DPI (P < 0.01). On 9 DPI, the gastrointestinal permeability was recovered back to normal level in the challenge groups. In conclusion, the higher Eimeria doses birds received, the more severe intestine damage was observed in several gastrointestinal health parameters. The medium-low or medium-high levels of mixed Eimeria oocysts is suggested as an optimum Eimeria-challenge dose to establish a subclinical challenge model for future studies evaluating nutritional strategies. Moreover, it is recommended to measure gastrointestinal permeability on 5 DPI with higher oocysts doses and 6 DPI when using the lower oocysts doses.
Collapse
|
19
|
Ren Y, Ribas HT, Heath K, Wu S, Ren J, Shriwas P, Chen X, Johnson ME, Cheng X, Burdette JE, Kinghorn AD. Na +/K +-ATPase-Targeted Cytotoxicity of (+)-Digoxin and Several Semisynthetic Derivatives. JOURNAL OF NATURAL PRODUCTS 2020; 83:638-648. [PMID: 32096998 PMCID: PMC7243443 DOI: 10.1021/acs.jnatprod.9b01060] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
(+)-Digoxin (1) is a well-known cardiac glycoside long used to treat congestive heart failure and found more recently to show anticancer activity. Several known cardenolides (2-5) and two new analogues, (+)-8(9)-β-anhydrodigoxigenin (6) and (+)-17-epi-20,22-dihydro-21α-hydroxydigoxin (7), were synthesized from 1 and evaluated for their cytotoxicity toward a small panel of human cancer cell lines. A preliminary structure-activity relationship investigation conducted indicated that the C-12 and C-14 hydroxy groups and the C-17 unsaturated lactone unit are important for 1 to mediate its cytotoxicity toward human cancer cells, but the C-3 glycosyl residue seems to be less critical for such an effect. Molecular docking profiles showed that the cytotoxic 1 and the noncytotoxic derivative 7 bind differentially to Na+/K+-ATPase. The HO-12β, HO-14β, and HO-3'aα hydroxy groups of (+)-digoxin (1) may form hydrogen bonds with the side-chains of Asp121 and Asn122, Thr797, and Arg880 of Na+/K+-ATPase, respectively, but the altered lactone unit of 7 results in a rotation of its steroid core, which depotentiates the binding between this compound and Na+/K+-ATPase. Thus, 1 was found to inhibit Na+/K+-ATPase, but 7 did not. In addition, the cytotoxic 1 did not affect glucose uptake in human cancer cells, indicating that this cardiac glycoside mediates its cytotoxicity by targeting Na+/K+-ATPase but not by interacting with glucose transporters.
Collapse
Affiliation(s)
- Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Hennrique T. Ribas
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Kimberly Heath
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Sijin Wu
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Jinhong Ren
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Pratik Shriwas
- Department of Biological Sciences, Edison Biotechnology Institute, and Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, United States
| | - Xiaozhuo Chen
- Department of Biological Sciences, Edison Biotechnology Institute, Molecular and Cellular Biology Program, and Department of Biomedical Sciences, Ohio University, Athens, OH 45701, United States
| | - Michael E. Johnson
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Joanna E. Burdette
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | | |
Collapse
|
20
|
Cardelli L, Laurenti L, Csikasz-Nagy A. Coupled membrane transporters reduce noise. Phys Rev E 2020; 101:012414. [PMID: 32069604 DOI: 10.1103/physreve.101.012414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Indexed: 11/07/2022]
Abstract
Molecular systems are inherently probabilistic and operate in a noisy environment, yet, despite all these uncertainties, molecular functions are surprisingly reliable and robust. The principles used by natural systems to deal with noise are still not well understood, especially in a nonhomogeneous environment where molecules can diffuse across different compartments. In this paper we show that membrane transport mechanisms have very effective properties of noise reduction. In particular, we show that active transport mechanisms (those that can transport against a gradient of concentration by using energy or by means of the concentration gradient of other substances), such as symporters and antiporters, have surprising efficiency in noise reduction, which outperforms passive diffusion mechanisms and are well below Poisson levels. We link our results to the coupled transport of potassium, sodium, and glucose to show that the noise in internal glucose level can be greatly reduced. Our results show that compartmentalization can be a highly effective mechanism of noise reduction and suggests that membrane transport could give this extra benefit, contributing to the emergence of complex compartmentalization in eukaryotes.
Collapse
Affiliation(s)
- Luca Cardelli
- Department of Computer Science, University of Oxford, Oxford OX1 3QD, United Kingdom
| | - Luca Laurenti
- Department of Computer Science, University of Oxford, Oxford OX1 3QD, United Kingdom
| | - Attila Csikasz-Nagy
- Randall Division of Cell and Molecular Biophysics and Institute of Mathematical and Molecular Biomedicine, King's College London, London, United Kingdom and Pázmány Péter Catholic University, Faculty of Information Technology and Bionics Budapest, Hungary
| |
Collapse
|
21
|
Shibata M, Takahashi T, Kozakai T, Kakudo M, Kasuga S, Azuma Y, Kurose Y. Active transport of glucose across the jejunal epithelium decreases with age in broiler chickens. Poult Sci 2019; 98:2570-2576. [PMID: 30753716 DOI: 10.3382/ps/pez002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 02/04/2019] [Indexed: 11/20/2022] Open
Abstract
Intestinal glucose absorption varies with growth; however, the dynamics of these variations has not been yet fully elucidated in broiler chickens. The present study aimed to compare jejunal glucose uptake and maltose digestion in broilers of 2 different ages, i.e., 1- vs. 5 wk old. Oral D-maltose gavage, everted sac, and Ussing chamber experiments were carried out to investigate intestinal glucose absorption and mRNA expression of glucose-transport-related genes as well as jejunal maltase activity. Upon gavage, glucose concentrations peaked at 10 min post-administration in 1-wk-old chicks, while they peaked at 40 min in 5-wk-old chickens. Glucose concentrations at 10 min were significantly higher in the 1-wk-old chicks (P = 0.010). Using the everted sacs experimental setup, 5 intestinal regions i.e., duodenum, proximal jejunum, distal jejunum, proximal ileum, and distal ileum, were targeted to examine D-maltose digestion and glucose transport across the intestinal mucosa. In the distal and proximal ileum, glucose concentrations were found to be significantly higher in the serosal compartment of the 1-wk-old chicks upon incubation with D-maltose (25 mM) (P < 0.05), while in the mucosal compartment the levels were significantly higher in the 5-wk-old chickens (P < 0.05). An Ussing chamber setup was employed to measure glucose-induced short-circuit current (ΔIsc) in the mucosal epithelium of the jejunum. In response to the addition of D-maltose (10 mM) into the mucosal compartment, ΔIsc was significantly higher in the 1-wk-old chicks (P = 0.018). Furthermore, no variations in jejunal maltase activity were observed between the 2 age groups. While jejunal glucose absorption was lower in the 5-wk-old chickens, the mRNA expression levels of jejunal SGLT1, GLUT2, and Na+/K+-ATPase did not show any significant differences between the 2 age groups. Our results suggest that the active transport of glucose across the jejunal epithelium decreases upon growth in broiler chickens but is not accompanied by any variations in maltase activity or in the expression of glucose-absorption-related genes.
Collapse
Affiliation(s)
- M Shibata
- Laboratory of Animal Metabolism and Function, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - T Takahashi
- Laboratory of Animal Metabolism and Function, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - T Kozakai
- Faculty of Education, Art and Science, Yamagata University, Yamagata 990-8560, Japan
| | - M Kakudo
- Laboratory of Animal Metabolism and Function, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - S Kasuga
- Laboratory of Animal Metabolism and Function, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Y Azuma
- Laboratory of Animal and Human Nutritional Physiology, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Y Kurose
- Laboratory of Animal Metabolism and Function, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| |
Collapse
|
22
|
Qu F, Liu S, He C, Zhou J, Zhang S, Ai Z, Chen Y, Yu Z, Ni D. Comparison of the Effects of Green and Black Tea Extracts on Na
+
/K
+
‐ATPase Activity in Intestine of Type 1 and Type 2 Diabetic Mice. Mol Nutr Food Res 2019; 63:e1801039. [DOI: 10.1002/mnfr.201801039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 04/19/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Fengfeng Qu
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural University Wuhan 430070 China
| | - Shuyuan Liu
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural University Wuhan 430070 China
| | - Chang He
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural University Wuhan 430070 China
| | - Jingtao Zhou
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural University Wuhan 430070 China
| | - Shanming Zhang
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural University Wuhan 430070 China
| | - Zeyi Ai
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural University Wuhan 430070 China
| | - Yuqiong Chen
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural University Wuhan 430070 China
| | - Zhi Yu
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural University Wuhan 430070 China
| | - Dejiang Ni
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural University Wuhan 430070 China
| |
Collapse
|
23
|
Afshar N, Safaei S, Nickerson DP, Hunter PJ, Suresh V. Computational Modeling of Glucose Uptake in the Enterocyte. Front Physiol 2019; 10:380. [PMID: 31031632 PMCID: PMC6473069 DOI: 10.3389/fphys.2019.00380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/19/2019] [Indexed: 11/13/2022] Open
Abstract
Absorption of glucose across the epithelial cells of the small intestine is a key process in human nutrition and initiates signaling cascades that regulate metabolic homeostasis. Validated and predictive mathematical models of glucose transport in intestinal epithelial cells are essential for interpreting experimental data, generating hypotheses, and understanding the contributions of and interactions between transport pathways. Here we report on the development of such a model that, in contrast to existing models, incorporates mechanistic descriptions of all relevant transport proteins and is implemented in the CellML framework. The model is validated against experimental and simulation data from the literature. It is then used to elucidate the relative contributions of the sodium-glucose cotransporter (SGLT1) and the glucose transporter type 2 (GLUT2) proteins in published measurements of glucose absorption from human intestinal epithelial cell lines. The model predicts that the contribution of SGLT1 dominates at low extracellular glucose concentrations (<20 mM) and short exposure times (<60 s) while the GLUT2 contribution is more significant at high glucose concentrations and long durations. Implementation in CellML permitted a modular structure in which the model was composed by reusing existing models of the individual transporters. The final structure also permits transparent changes of the model components and parameter values in order to facilitate model reuse, extension, and customization (for example, to simplify, or add complexity to specific transporter/pathway models, or reuse the model as a component of a larger framework) and carry out parameter sensitivity studies.
Collapse
Affiliation(s)
- Nima Afshar
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Soroush Safaei
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - David P. Nickerson
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peter J. Hunter
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Vinod Suresh
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Engineering Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
24
|
Gauer JS, Tumova S, Lippiat JD, Kerimi A, Williamson G. Differential patterns of inhibition of the sugar transporters GLUT2, GLUT5 and GLUT7 by flavonoids. Biochem Pharmacol 2018; 152:11-20. [PMID: 29548810 DOI: 10.1016/j.bcp.2018.03.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/09/2018] [Indexed: 11/16/2022]
Abstract
Only limited data are available on the inhibition of the sugar transporter GLUT5 by flavonoids or other classes of bioactives. Intestinal GLUT7 is poorly characterised and no information exists concerning its inhibition. We aimed to study the expression of GLUT7 in Caco-2/TC7 intestinal cells, and evaluate inhibition of glucose transport by GLUT2 and GLUT7, and of fructose transport by GLUT2, GLUT5 and GLUT7, by flavonoids. Differentiated Caco-2/TC7 cell monolayers were used to investigate GLUT7 expression, as well as biotinylation and immunofluorescence to assess GLUT7 location. For mechanistic sugar transport studies, X. laevis oocytes were injected with individual mRNA, and GLUT protein expression on oocyte membranes was confirmed. Oocytes were incubated with D-[14C(U)]-glucose or D-[14C(U)]-fructose in the presence of flavonoids, and uptake was estimated by liquid scintilation counting. In differentiated Caco-2/TC7 cell monolayers, GLUT7 was mostly expressed apically. When applied apically, or to both compartments, sorbitol, galactose, L-glucose or sucrose did not affect GLUT7 mRNA expression. Fructose applied to both sides increased GLUT7 mRNA (13%, p ≤ 0.001) and total GLUT7 protein (2.7-fold, p ≤ 0.05), while the ratio between apical, basolateral and total GLUT7 protein was unchanged. In the X. laevis oocyte model, GLUT2-mediated glucose and fructose transport were inhibited by quercetin, (-)-epigallocatechin gallate (EGCG) and apigenin, GLUT5-mediated fructose transport was inhibited by apigenin and EGCG, but not by quercetin, and GLUT7-mediated uptake of both glucose and fructose was inhibited by apigenin, but not by quercetin nor EGCG. Expression of GLUT7 was increased by fructose, but only when applied to Caco-2/TC7 cells both apically and basolaterally. Since GLUT2, GLUT5 and GLUT7 show different patterns of inhibition by the tested flavonoids, we suggest that they have the potential to be used as investigational tools to distinguish sugar transporter activity in different biological settings.
Collapse
Affiliation(s)
- Julia S Gauer
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Sarka Tumova
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Jonathan D Lippiat
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Asimina Kerimi
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Gary Williamson
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
25
|
Amaral GP, Dobrachinski F, de Carvalho NR, Barcelos RP, da Silva MH, Lugokenski TH, Dias GRM, de Lima Portella R, Fachinetto R, Soares FAA. Multiple mechanistic action of Rosmarinus officinalis L. extract against ethanol effects in an acute model of intestinal damage. Biomed Pharmacother 2018; 98:454-459. [DOI: 10.1016/j.biopha.2017.12.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 01/24/2023] Open
|
26
|
Fjeld G, Thorsen K, Drengstig T, Ruoff P. Performance of Homeostatic Controller Motifs Dealing with Perturbations of Rapid Growth and Depletion. J Phys Chem B 2017; 121:6097-6107. [DOI: 10.1021/acs.jpcb.7b01989] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Gunhild Fjeld
- Centre
for Organelle Research and ‡Department of Electrical Engineering and Computer
Science, University of Stavanger, Stavanger 4036, Norway
| | - Kristian Thorsen
- Centre
for Organelle Research and ‡Department of Electrical Engineering and Computer
Science, University of Stavanger, Stavanger 4036, Norway
| | - Tormod Drengstig
- Centre
for Organelle Research and ‡Department of Electrical Engineering and Computer
Science, University of Stavanger, Stavanger 4036, Norway
| | - Peter Ruoff
- Centre
for Organelle Research and ‡Department of Electrical Engineering and Computer
Science, University of Stavanger, Stavanger 4036, Norway
| |
Collapse
|
27
|
Tang ZF, McMillen DR. Design principles for the analysis and construction of robustly homeostatic biological networks. J Theor Biol 2016; 408:274-289. [DOI: 10.1016/j.jtbi.2016.06.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 06/22/2016] [Accepted: 06/28/2016] [Indexed: 01/09/2023]
|
28
|
Chen L, Tuo B, Dong H. Regulation of Intestinal Glucose Absorption by Ion Channels and Transporters. Nutrients 2016; 8:nu8010043. [PMID: 26784222 PMCID: PMC4728656 DOI: 10.3390/nu8010043] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/18/2015] [Accepted: 01/06/2016] [Indexed: 12/14/2022] Open
Abstract
The absorption of glucose is electrogenic in the small intestinal epithelium. The major route for the transport of dietary glucose from intestinal lumen into enterocytes is the Na+/glucose cotransporter (SGLT1), although glucose transporter type 2 (GLUT2) may also play a role. The membrane potential of small intestinal epithelial cells (IEC) is important to regulate the activity of SGLT1. The maintenance of membrane potential mainly depends on the activities of cation channels and transporters. While the importance of SGLT1 in glucose absorption has been systemically studied in detail, little is currently known about the regulation of SGLT1 activity by cation channels and transporters. A growing line of evidence suggests that cytosolic calcium ([Ca2+]cyt) can regulate the absorption of glucose by adjusting GLUT2 and SGLT1. Moreover, the absorption of glucose and homeostasis of Ca2+ in IEC are regulated by cation channels and transporters, such as Ca2+ channels, K+ channels, Na+/Ca2+ exchangers, and Na+/H+ exchangers. In this review, we consider the involvement of these cation channels and transporters in the regulation of glucose uptake in the small intestine. Modulation of them may be a potential strategy for the management of obesity and diabetes.
Collapse
Affiliation(s)
- Lihong Chen
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, and Digestive Disease Institute of Guizhou Province, Zunyi 563003, China.
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, and Digestive Disease Institute of Guizhou Province, Zunyi 563003, China.
| | - Hui Dong
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, and Digestive Disease Institute of Guizhou Province, Zunyi 563003, China.
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| |
Collapse
|
29
|
Hansen UP, Rauh O, Schroeder I. A simple recipe for setting up the flux equations of cyclic and linear reaction schemes of ion transport with a high number of states: The arrow scheme. Channels (Austin) 2015; 10:119-38. [PMID: 26646356 DOI: 10.1080/19336950.2015.1120391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The calculation of flux equations or current-voltage relationships in reaction kinetic models with a high number of states can be very cumbersome. Here, a recipe based on an arrow scheme is presented, which yields a straightforward access to the minimum form of the flux equations and the occupation probability of the involved states in cyclic and linear reaction schemes. This is extremely simple for cyclic schemes without branches. If branches are involved, the effort of setting up the equations is a little bit higher. However, also here a straightforward recipe making use of so-called reserve factors is provided for implementing the branches into the cyclic scheme, thus enabling also a simple treatment of such cases.
Collapse
Affiliation(s)
- Ulf-Peter Hansen
- a Department of Structural Biology , University of Kiel , Kiel , Germany
| | - Oliver Rauh
- b Plant Membrane Biophysics , Technical University of Darmstadt , Darmstadt , Germany
| | - Indra Schroeder
- b Plant Membrane Biophysics , Technical University of Darmstadt , Darmstadt , Germany
| |
Collapse
|
30
|
Fan X, Chan O, Ding Y, Zhu W, Mastaitis J, Sherwin R. Reduction in SGLT1 mRNA Expression in the Ventromedial Hypothalamus Improves the Counterregulatory Responses to Hypoglycemia in Recurrently Hypoglycemic and Diabetic Rats. Diabetes 2015; 64:3564-72. [PMID: 26130763 PMCID: PMC4587643 DOI: 10.2337/db15-0022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 06/23/2015] [Indexed: 12/11/2022]
Abstract
The objective of this study was to determine whether the sodium-glucose transporter SGLT1 in the ventromedial hypothalamus (VMH) plays a role in glucose sensing and in regulating the counterregulatory response to hypoglycemia, and if so, whether knockdown of in the VMH can improve counterregulatory responses to hypoglycemia in diabetic rats or rats exposed to recurrent bouts of hypoglycemia (RH). Normal Sprague-Dawley rats as well as RH or streptozotocin (STZ)-diabetic rats received bilateral VMH microinjections of an adenoassociated viral vector containing either the SGLT1 short hairpin RNA (shRNA) or a scrambled RNA sequence. Subsequently, these rats underwent a hypoglycemic clamp to assess hormone responses. In a subgroup of rats, glucose kinetics was determined using tritiated glucose. The shRNA reduced VMH SGLT1 expression by 53% in nondiabetic rats, and this augmented glucagon and epinephrine responses and hepatic glucose production during hypoglycemia. Similarly, SGLT1 knockdown improved the glucagon and epinephrine responses in RH rats and restored the impaired epinephrine response to hypoglycemia in STZ-diabetic animals. These findings suggest that SGLT1 in the VMH plays a significant role in the detection and activation of counterregulatory responses to hypoglycemia. Inhibition of SGLT1 may offer a potential therapeutic target to diminish the risk of hypoglycemia in diabetes.
Collapse
Affiliation(s)
- Xiaoning Fan
- Department of Internal Medicine, Section of Endocrinology, Yale School of Medicine, New Haven, CT
| | - Owen Chan
- Department of Internal Medicine, Section of Endocrinology, Yale School of Medicine, New Haven, CT
| | - Yuyan Ding
- Department of Internal Medicine, Section of Endocrinology, Yale School of Medicine, New Haven, CT
| | - Wanling Zhu
- Department of Internal Medicine, Section of Endocrinology, Yale School of Medicine, New Haven, CT
| | - Jason Mastaitis
- Department of Internal Medicine, Section of Endocrinology, Yale School of Medicine, New Haven, CT
| | - Robert Sherwin
- Department of Internal Medicine, Section of Endocrinology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
31
|
Thorsen K, Agafonov O, Selstø CH, Jolma IW, Ni XY, Drengstig T, Ruoff P. Robust concentration and frequency control in oscillatory homeostats. PLoS One 2014; 9:e107766. [PMID: 25238410 PMCID: PMC4169565 DOI: 10.1371/journal.pone.0107766] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/11/2014] [Indexed: 12/31/2022] Open
Abstract
Homeostatic and adaptive control mechanisms are essential for keeping organisms structurally and functionally stable. Integral feedback is a control theoretic concept which has long been known to keep a controlled variable A robustly (i.e. perturbation-independent) at a given set-point A(set) by feeding the integrated error back into the process that generates A. The classical concept of homeostasis as robust regulation within narrow limits is often considered as unsatisfactory and even incompatible with many biological systems which show sustained oscillations, such as circadian rhythms and oscillatory calcium signaling. Nevertheless, there are many similarities between the biological processes which participate in oscillatory mechanisms and classical homeostatic (non-oscillatory) mechanisms. We have investigated whether biological oscillators can show robust homeostatic and adaptive behaviors, and this paper is an attempt to extend the homeostatic concept to include oscillatory conditions. Based on our previously published kinetic conditions on how to generate biochemical models with robust homeostasis we found two properties, which appear to be of general interest concerning oscillatory and homeostatic controlled biological systems. The first one is the ability of these oscillators ("oscillatory homeostats") to keep the average level of a controlled variable at a defined set-point by involving compensatory changes in frequency and/or amplitude. The second property is the ability to keep the period/frequency of the oscillator tuned within a certain well-defined range. In this paper we highlight mechanisms that lead to these two properties. The biological applications of these findings are discussed using three examples, the homeostatic aspects during oscillatory calcium and p53 signaling, and the involvement of circadian rhythms in homeostatic regulation.
Collapse
Affiliation(s)
- Kristian Thorsen
- Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway
| | - Oleg Agafonov
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway
| | | | - Ingunn W. Jolma
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway
| | - Xiao Y. Ni
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway
| | - Tormod Drengstig
- Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway
| | - Peter Ruoff
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway
| |
Collapse
|