1
|
Sanders KM, Santana LF, Baker SA. Interstitial cells of Cajal - pacemakers of the gastrointestinal tract. J Physiol 2023. [PMID: 37997170 DOI: 10.1113/jp284745] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Gastrointestinal (GI) organs display spontaneous, non-neurogenic electrical, and mechanical rhythmicity that underlies fundamental motility patterns, such as peristalsis and segmentation. Electrical rhythmicity (aka slow waves) results from pacemaker activity generated by interstitial cells of Cajal (ICC). ICC express a unique set of ionic conductances and Ca2+ handling mechanisms that generate and actively propagate slow waves. GI smooth muscle cells lack these conductances. Slow waves propagate actively within ICC networks and conduct electrotonically to smooth muscle cells via gap junctions. Slow waves depolarize smooth muscle cells and activate voltage-dependent Ca2+ channels (predominantly CaV1.2), causing Ca2+ influx and excitation-contraction coupling. The main conductances responsible for pacemaker activity in ICC are ANO1, a Ca2+ -activated Cl- conductance, and CaV3.2. The pacemaker cycle, as currently understood, begins with spontaneous, localized Ca2+ release events in ICC that activate spontaneous transient inward currents due to activation of ANO1 channels. Depolarization activates CaV 3.2 channels, causing the upstroke depolarization phase of slow waves. The upstroke is transient and followed by a long-duration plateau phase that can last for several seconds. The plateau phase results from Ca2+ -induced Ca2+ release and a temporal cluster of localized Ca2+ transients in ICC that sustains activation of ANO1 channels and clamps membrane potential near the equilibrium potential for Cl- ions. The plateau phase ends, and repolarization occurs, when Ca2+ stores are depleted, Ca2+ release ceases and ANO1 channels deactivate. This review summarizes key mechanisms responsible for electrical rhythmicity in gastrointestinal organs.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, USA
| | - L Fernando Santana
- Department of Physiology and Membrane Biology, University of California, Davis, CA, USA
| | - Salah A Baker
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, USA
| |
Collapse
|
2
|
Liang P, Wan YCS, Yu K, Hartzell HC, Yang H. Niclosamide potentiates TMEM16A and induces vasoconstriction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551400. [PMID: 37577682 PMCID: PMC10418162 DOI: 10.1101/2023.07.31.551400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The TMEM16A calcium-activated chloride channel is a promising therapeutic target for various diseases. Niclosamide, an anthelmintic medication, has been considered as a TMEM16A inhibitor for treating asthma and chronic obstructive pulmonary disease, but was recently found to possess broad-spectrum off-target effects. Here we show that, under physiological conditions, niclosamide acutely potentiates TMEM16A without having any inhibitory effect. Our computational and functional characterizations pinpoint a putative niclosamide binding site on the extracellular side of TMEM16A. Mutations in this site attenuate the potentiation. Moreover, niclosamide potentiates endogenous TMEM16A in vascular smooth muscle cells, triggers intracellular calcium increase, and constricts the murine mesenteric artery. Our findings advise caution when considering niclosamide as a TMEM16A inhibitor to treat diseases such as asthma, COPD, and hypertension. The identification of the putative niclosamide binding site provides insights into the mechanism of TMEM16A pharmacological modulation, shining light on developing specific TMEM16A modulators to treat human diseases.
Collapse
Affiliation(s)
- Pengfei Liang
- Department of Biochemistry, Duke University School of Medicine, NC 27710, USA
| | - Yui Chun S. Wan
- Department of Biochemistry, Duke University School of Medicine, NC 27710, USA
| | - Kuai Yu
- Department of Cell Biology, Emory University School of Medicine, GA 30322, USA
| | - H. Criss Hartzell
- Department of Cell Biology, Emory University School of Medicine, GA 30322, USA
| | - Huanghe Yang
- Department of Biochemistry, Duke University School of Medicine, NC 27710, USA
- Department of Neurobiology, Duke University School of Medicine, NC 27710, USA
| |
Collapse
|
3
|
Jimenez C, Hawn MB, Akin E, Leblanc N. Translational potential of targeting Anoctamin-1-Encoded Calcium-Activated chloride channels in hypertension. Biochem Pharmacol 2022; 206:115320. [PMID: 36279919 DOI: 10.1016/j.bcp.2022.115320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
Calcium-activated chloride channels (CaCC) provide a depolarizing stimulus to a variety of tissues through chloride efflux in response to a rise in internal Ca2+ and voltage. One of these channels, Anoctamin-1 (ANO1 or TMEM16A) is now recognized to play a central role in promoting smooth muscle tone in various types of blood vessels. Its role in hypertension, and thus the therapeutic promise of targeting ANO1, is less straightforward. This review gives an overview of our current knowledge about the potential role ANO1 may play in hypertension within the systemic, portal, and pulmonary vascular systems and the importance of this information when pursuing potential treatment strategies. While the role of ANO1 is well-established in several forms of pulmonary hypertension, its contributions to both the generation of vascular tone and its role in hypertension within the systemic and portal systems are much less clear. This, combined with ANO1's various roles throughout a multitude of tissues throughout the body, command caution when targeting ANO1 as a therapeutic target and may require tissue-selective strategies.
Collapse
Affiliation(s)
- Connor Jimenez
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, Nevada 89557, USA
| | - Matthew B Hawn
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, Nevada 89557, USA
| | - Elizabeth Akin
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, Nevada 89557, USA
| | - Normand Leblanc
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, Nevada 89557, USA.
| |
Collapse
|
4
|
Hawn MB, Akin E, Hartzell H, Greenwood IA, Leblanc N. Molecular mechanisms of activation and regulation of ANO1-Encoded Ca 2+-Activated Cl - channels. Channels (Austin) 2021; 15:569-603. [PMID: 34488544 PMCID: PMC8480199 DOI: 10.1080/19336950.2021.1975411] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/29/2021] [Indexed: 01/13/2023] Open
Abstract
Ca2+-activated Cl- channels (CaCCs) perform a multitude of functions including the control of cell excitability, regulation of cell volume and ionic homeostasis, exocrine and endocrine secretion, fertilization, amplification of olfactory sensory function, and control of smooth muscle cell contractility. CaCCs are the translated products of two members (ANO1 and ANO2, also known as TMEM16A and TMEM16B) of the Anoctamin family of genes comprising ten paralogs. This review focuses on recent progress in understanding the molecular mechanisms involved in the regulation of ANO1 by cytoplasmic Ca2+, post-translational modifications, and how the channel protein interacts with membrane lipids and protein partners. After first reviewing the basic properties of native CaCCs, we then present a brief historical perspective highlighting controversies about their molecular identity in native cells. This is followed by a summary of the fundamental biophysical and structural properties of ANO1. We specifically address whether the channel is directly activated by internal Ca2+ or indirectly through the intervention of the Ca2+-binding protein Calmodulin (CaM), and the structural domains responsible for Ca2+- and voltage-dependent gating. We then review the regulation of ANO1 by internal ATP, Calmodulin-dependent protein kinase II-(CaMKII)-mediated phosphorylation and phosphatase activity, membrane lipids such as the phospholipid phosphatidyl-(4,5)-bisphosphate (PIP2), free fatty acids and cholesterol, and the cytoskeleton. The article ends with a survey of physical and functional interactions of ANO1 with other membrane proteins such as CLCA1/2, inositol trisphosphate and ryanodine receptors in the endoplasmic reticulum, several members of the TRP channel family, and the ancillary Κ+ channel β subunits KCNE1/5.
Collapse
Affiliation(s)
- M. B. Hawn
- Department of Pharmacology and Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| | - E. Akin
- Department of Pharmacology and Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| | - H.C. Hartzell
- Department of Cell Biology, Emory University School of Medicine, USA
| | - I. A. Greenwood
- Department of Vascular Pharmacology, St. George’s University of London, UK
| | - N. Leblanc
- Department of Pharmacology and Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| |
Collapse
|
5
|
Henckels KA, Fong D, Phillips JE. Development of a QPatch-Automated Electrophysiology Assay for Identifying TMEM16A Small-Molecule Inhibitors. Assay Drug Dev Technol 2021; 18:134-147. [PMID: 32319819 PMCID: PMC7268545 DOI: 10.1089/adt.2019.962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The calcium-activated chloride channel, TMEM16A, is involved in airway hydration and bronchoconstriction and is a promising target for respiratory disease. Drug development efforts around channels require an electrophysiology-based assay for identifying inhibitors or activators. TMEM16A has proven to be a difficult channel to record on automated electrophysiology platforms due to its propensity for rundown. We developed an automated, whole-cell, electrophysiology assay on the QPatch-48 to evaluate small-molecule inhibitors of TMEM16A. In this assay, currents remained stable for a duration of roughly 11 min, allowing for the cumulative addition of five concentrations of compounds and resulted in reproducible IC50s. The absence of rundown was likely due to a low internal free-calcium level of 250 nM, which was high enough to produce large currents, but also maintained the voltage dependence of the channel. Current amplitude averaged 6 nA using the single-hole QPlate and the channel maintained outward rectification throughout the recording. Known TMEM16A inhibitors were tested and their IC50s aligned with those reported in the literature using manual patch-clamp. Once established, this assay was used to validate novel TMEM16A inhibitors that were identified in our high-throughput fluorescent-based assay, as well as to assist in structure–activity relationship efforts by the chemists. Overall, we demonstrate an easy to operate, reproducible, automated electrophysiology assay using the QPatch-48 for TMEM16A drug development efforts.
Collapse
Affiliation(s)
- Kathryn A Henckels
- Department of Process Development, Amgen, Inc., Thousand Oaks, California, USA
| | - David Fong
- Department of Inflammation Discovery Research, Amgen, Inc., Thousand Oaks, California, USA
| | - Jonathan E Phillips
- Department of Inflammation Discovery Research, Amgen, Inc., Thousand Oaks, California, USA
| |
Collapse
|
6
|
Liu Y, Liu Z, Wang K. The Ca 2+-activated chloride channel ANO1/TMEM16A: An emerging therapeutic target for epithelium-originated diseases? Acta Pharm Sin B 2021; 11:1412-1433. [PMID: 34221860 PMCID: PMC8245819 DOI: 10.1016/j.apsb.2020.12.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/19/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Anoctamin 1 (ANO1) or TMEM16A gene encodes a member of Ca2+ activated Cl– channels (CaCCs) that are critical for physiological functions, such as epithelial secretion, smooth muscle contraction and sensory signal transduction. The attraction and interest in ANO1/TMEM16A arise from a decade long investigations that abnormal expression or dysfunction of ANO1 is involved in many pathological phenotypes and diseases, including asthma, neuropathic pain, hypertension and cancer. However, the lack of specific modulators of ANO1 has impeded the efforts to validate ANO1 as a therapeutic target. This review focuses on the recent progress made in understanding of the pathophysiological functions of CaCC ANO1 and the current modulators used as pharmacological tools, hopefully illustrating a broad spectrum of ANO1 channelopathy and a path forward for this target validation.
Collapse
Key Words
- ANO1
- ANO1, anoctamin-1
- ASM, airway smooth muscle
- Ang II, angiotensin II
- BBB, blood–brain barrier
- CAMK, Ca2+/calmodulin-dependent protein kinase
- CF, cystic fibrosis
- CFTR, cystic fibrosis transmembrane conductance regulator
- Ca2+-activated Cl– channels (CaCCs)
- CaCCinh-A01
- CaCCs, Ca2+ activated chloride channels
- Cancer
- Cystic fibrosis
- DRG, dorsal root ganglion
- Drug target
- EGFR, epidermal growth factor receptor
- ENaC, epithelial sodium channels
- ER, endoplasmic reticulum
- ESCC, esophageal squamous cell carcinoma
- FRT, fisher rat thyroid
- GI, gastrointestinal
- GIST, gastrointestinal stromal tumor
- GPCR, G-protein coupled receptor
- HNSCC, head and neck squamous cell carcinoma
- HTS, high-throughput screening
- ICC, interstitial cells of Cajal
- IPAH, idiopathic pulmonary arterial hypertension
- MAPK, mitogen-activated protein kinase
- NF-κB, nuclear factor κB
- PAH, pulmonary arterial hypertension
- PAR2, protease activated receptor 2
- PASMC, pulmonary artery smooth muscle cells
- PIP2, phosphatidylinositol 4,5-bisphosphate
- PKD, polycystic kidney disease
- T16Ainh-A01
- TGF-β, transforming growth factor-β
- TMEM16A
- VGCC, voltage gated calcium channel
- VRAC, volume regulated anion channel
- VSMC, vascular smooth muscle cells
- YFP, yellow fluorescent protein
Collapse
Affiliation(s)
- Yani Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, Qingdao 266021, China
| | - Zongtao Liu
- Department of Clinical Laboratory, Qingdao Third People's Hospital, Qingdao 266041, China
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, Qingdao 266021, China
- Corresponding authors.
| |
Collapse
|
7
|
Yoshimoto S, Matsuda M, Kato K, Jimi E, Takeuchi H, Nakano S, Kajioka S, Matsuzaki E, Hirofuji T, Inoue R, Hirata M, Morita H. Volume-regulated chloride channel regulates cell proliferation and is involved in the possible interaction between TMEM16A and LRRC8A in human metastatic oral squamous cell carcinoma cells. Eur J Pharmacol 2021; 895:173881. [PMID: 33476655 DOI: 10.1016/j.ejphar.2021.173881] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 12/29/2020] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Volume-regulated anion channels (VRACs), expressed in various cells, play an important role in cell volume regulation. Despite being physiologically defined almost half a century ago, only the molecular candidates of VRAC, TMEM16A, LRRC8A, and bestrophin-1 (BEST1), are known. Here, we aimed to explore the functional significance of VRAC in, HST-1, an oral squamous cell carcinoma (OSCC) cell line. METHODS Cell proliferation assays, RT-PCR, Western blot, and flow cytometry were used to estimate changes in gene expression and cell proliferation. Ion channel activity was recorded using the patch-clamp technique. Specific genes were knocked-down by siRNA assays. RESULTS VRAC, identified as a hypotonicity-induced current, was highly functional and associated with the proliferation of HST-1 cells but not of HaCaT (a normal keratinocyte) cells. The pharmacological profile of VRAC in HST-1 was similar to that reported previously. DCPIB, a specific VRAC inhibitor, completely inhibited VRAC and proliferation of HST-1 cells, eventually leading to apoptosis. VRAC in HST-1 was attenuated by the knockdown of TMEM16A and LRRC8A, while knockdown of BEST1 affected cell proliferation. In situ proximity ligation assay showed that TMEM16A and LRRC8A co-localized under isotonic conditions (300 mOsM) but were separated under hypotonic conditions (250 mOsM) on the plasma membrane. CONCLUSIONS We have found that VRAC acts to regulate the proliferation of human metastatic OSCC cells and the composition of VRAC may involve in the interactions between TMEM16A and LRRC8A in HST-1 cells.
Collapse
Affiliation(s)
- Shohei Yoshimoto
- Section of Pathology, Department of Morphological Biology, Fukuoka Dental College, Fukuoka 8140193, Japan; Oral Medicine Research Center, Fukuoka Dental College, Fukuoka 8140193, Japan
| | - Miho Matsuda
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 8128582, Japan
| | - Kenichi Kato
- Department of Nursing, Fukuoka School of Health Sciences, Fukuoka 8140005, Japan
| | - Eijiro Jimi
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 8128582, Japan; Oral Health/Brain Health/Total Health Research Center, Graduate School of Dental Science, Kyushu University, Fukuoka 8128582, Japan
| | - Hiroshi Takeuchi
- Department of Applied Pharmacology, Graduate School of Dentistry, Kyushu Dental University, Fukuoka 8038580, Japan
| | - Shuji Nakano
- Graduate School of Health and Nutritional Sciences, Nakamura Gakuen University, Fukuoka 8140198, Japan
| | - Shunichi Kajioka
- Department of Pharmacy in Fukuoka, International University of Health and Welfare, Fukuoka 8318501, Japan
| | - Etsuko Matsuzaki
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka 8140193, Japan; Operative Dentistry and Endodontology, Department of Odontology, Fukuoka Dental College, Fukuoka 8140193, Japan
| | - Takao Hirofuji
- Section of General Dentistry, Department of General Dentistry, Fukuoka Dental College, Fukuoka 8140193, Japan
| | - Ryuji Inoue
- Department of Physiology, Graduate School of Medical Science, Fukuoka University, Fukuoka 8140180, Japan
| | - Masato Hirata
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka 8140193, Japan
| | - Hiromitsu Morita
- The Center for Visiting Dental Service, Department of General Dentistry, Fukuoka Dental College, Fukuoka 8140193, Japan.
| |
Collapse
|
8
|
Ko W, Jung SR, Kim KW, Yeon JH, Park CG, Nam JH, Hille B, Suh BC. Allosteric modulation of alternatively spliced Ca 2+-activated Cl - channels TMEM16A by PI(4,5)P 2 and CaMKII. Proc Natl Acad Sci U S A 2020; 117:30787-30798. [PMID: 33199590 PMCID: PMC7720229 DOI: 10.1073/pnas.2014520117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transmembrane 16A (TMEM16A, anoctamin1), 1 of 10 TMEM16 family proteins, is a Cl- channel activated by intracellular Ca2+ and membrane voltage. This channel is also regulated by the membrane phospholipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. We find that two splice variants of TMEM16A show different sensitivity to endogenous PI(4,5)P2 degradation, where TMEM16A(ac) displays higher channel activity and more current inhibition by PI(4,5)P2 depletion than TMEM16A(a). These two channel isoforms differ in the alternative splicing of the c-segment (exon 13). The current amplitude and PI(4,5)P2 sensitivity of both TMEM16A(ac) and (a) are significantly strengthened by decreased free cytosolic ATP and by conditions that decrease phosphorylation by Ca2+/calmodulin-dependent protein kinase II (CaMKII). Noise analysis suggests that the augmentation of currents is due to a rise of single-channel current (i), but not of channel number (N) or open probability (PO). Mutagenesis points to arginine 486 in the first intracellular loop as a putative binding site for PI(4,5)P2, and to serine 673 in the third intracellular loop as a site for regulatory channel phosphorylation that modulates the action of PI(4,5)P2 In silico simulation suggests how phosphorylation of S673 allosterically and differently changes the structure of the distant PI(4,5)P2-binding site between channel splice variants with and without the c-segment exon. In sum, our study reveals the following: differential regulation of alternatively spliced TMEM16A(ac) and (a) by plasma membrane PI(4,5)P2, modification of these effects by channel phosphorylation, identification of the molecular sites, and mechanistic explanation by in silico simulation.
Collapse
Affiliation(s)
- Woori Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Seung-Ryoung Jung
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Kwon-Woo Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Jun-Hee Yeon
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Cheon-Gyu Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Joo Hyun Nam
- Department of Physiology, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
- Ion Channel Disease Research Center, College of Medicine, Dongguk University, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Bertil Hille
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Byung-Chang Suh
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea;
| |
Collapse
|
9
|
Dulin NO. Calcium-Activated Chloride Channel ANO1/TMEM16A: Regulation of Expression and Signaling. Front Physiol 2020; 11:590262. [PMID: 33250781 PMCID: PMC7674831 DOI: 10.3389/fphys.2020.590262] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/13/2020] [Indexed: 01/11/2023] Open
Abstract
Anoctamin-1 (ANO1), also known as TMEM16A, is the most studied member of anoctamin family of calcium-activated chloride channels with diverse cellular functions. ANO1 controls multiple cell functions including cell proliferation, survival, migration, contraction, secretion, and neuronal excitation. This review summarizes the current knowledge of the cellular mechanisms governing the regulation of ANO1 expression and of ANO1-mediated intracellular signaling. This includes the stimuli and mechanisms controlling ANO1 expression, agonists and processes that activate ANO1, and signal transduction mediated by ANO1. The major conclusion is that this field is poorly understood, remains highly controversial, and requires extensive and rigorous further investigation.
Collapse
Affiliation(s)
- Nickolai O Dulin
- Department of Medicine, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
10
|
Zheng H, Drumm BT, Zhu MH, Xie Y, O'Driscoll KE, Baker SA, Perrino BA, Koh SD, Sanders KM. Na +/Ca 2 + Exchange and Pacemaker Activity of Interstitial Cells of Cajal. Front Physiol 2020; 11:230. [PMID: 32256387 PMCID: PMC7093646 DOI: 10.3389/fphys.2020.00230] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/27/2020] [Indexed: 01/30/2023] Open
Abstract
Interstitial cells of Cajal (ICC) are pacemaker cells that generate electrical slow waves in gastrointestinal (GI) smooth muscles. Slow waves organize basic motor patterns, such as peristalsis and segmentation in the GI tract. Slow waves depend upon activation of Ca2+-activated Cl– channels (CaCC) encoded by Ano1. Slow waves consist of an upstroke depolarization and a sustained plateau potential that is the main factor leading to excitation-contraction coupling. The plateau phase can last for seconds in some regions of the GI tract. How elevated Ca2+ is maintained throughout the duration of slow waves, which is necessary for sustained activation of CaCC, is unknown. Modeling has suggested a role for Na+/Ca2+ exchanger (NCX) in regulating CaCC currents in ICC, so we tested this idea on murine intestinal ICC. ICC of small and large intestine express NCX isoforms. NCX3 is closely associated with ANO1 in ICC, as shown by immunoprecipitation and proximity ligation assays (PLA). KB-R7943, an inhibitor of NCX, increased CaCC current in ICC, suggesting that NCX, acting in Ca2+ exit mode, helps to regulate basal [Ca2+]i in these cells. Shifting NCX into Ca2+ entry mode by replacing extracellular Na+ with Li+ increased spontaneous transient inward currents (STICs), due to activation of CaCC. Stepping ICC from −80 to −40 mV activated slow wave currents that were reduced in amplitude and duration by NCX inhibitors, KB-R7943 and SN-6, and enhanced by increasing the NCX driving force. SN-6 reduced the duration of clustered Ca2+ transients that underlie the activation of CaCC and the plateau phase of slow waves. Our results suggest that NCX participates in slow waves as modeling has predicted. Dynamic changes in membrane potential and ionic gradients during slow waves appear to flip the directionality of NCX, facilitating removal of Ca2+ during the inter-slow wave interval and providing Ca2+ for sustained activation of ANO1 during the slow wave plateau phase.
Collapse
Affiliation(s)
- Haifeng Zheng
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, United States
| | - Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, United States
| | - Mei Hong Zhu
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, United States
| | - Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, United States
| | - Kate E O'Driscoll
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, United States
| | - Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, United States
| | - Brian A Perrino
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, United States
| | - Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, United States
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, United States
| |
Collapse
|
11
|
Hyuga S, Danielsson J, Vink J, Fu XW, Wapner R, Gallos G. Functional comparison of anoctamin 1 antagonists on human uterine smooth muscle contractility and excitability. J Smooth Muscle Res 2019; 54:28-42. [PMID: 29937453 PMCID: PMC6013749 DOI: 10.1540/jsmr.54.28] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: Pre-term birth is a major health care challenge
throughout the world, and preterm labor represents a potentially reversible
component of this problem. Current tocolytics do not improve preterm labor
beyond 48 h. We have previously shown that anoctamin 1 (ANO1) channel blockade
results in relaxation of pre-contracted human uterine smooth muscle (USM). Three
drug classes with reported medicinal effects in humans also have members with
ANO1 antagonism. In this study, we compared the ability of representatives from
these 3 classes to reduce human USM contractility and excitability.
Objective: This study sought to examine the comparative potency
of 3 ANO1 antagonists on pregnant human USM relaxation, contraction frequency
reduction, inhibition of intracellular calcium release and membrane
hyperpolarization. Methods: Experiments were performed using: 1)
Ex vivo organ bath (human pregnant tissue), 2)
Oxytocin-induced calcium flux (in vitro human USM cells) and 3)
Membrane potential assay (in vitro human USM cells).
Results: Benzbromarone (BB) demonstrated the greatest potency
among the compounds tested with respect to force, frequency inhibition, reducing
calcium elevation and depolarizing membrane potential. Conclusion:
While all 3 ANO1 antagonists attenuate pregnant human uterine tissue
contractility and excitability, BB is the most potent tocolytic drug. Our
findings may serve as a foundation for future structure-function analyses for
novel tocolytic drug development.
Collapse
Affiliation(s)
- Shunsuke Hyuga
- Department of Anesthesiology, Columbia University College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
| | - Jennifer Danielsson
- Department of Anesthesiology, Columbia University College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
| | - Joy Vink
- Department of Obstetrics & Gynecology, Columbia University College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
| | - Xiao Wen Fu
- Department of Anesthesiology, Columbia University College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
| | - Ronald Wapner
- Department of Obstetrics & Gynecology, Columbia University College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
| | - George Gallos
- Department of Anesthesiology, Columbia University College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
| |
Collapse
|
12
|
Ayon RJ, Hawn MB, Aoun J, Wiwchar M, Forrest AS, Cunningham F, Singer CA, Valencik ML, Greenwood IA, Leblanc N. Molecular mechanism of TMEM16A regulation: role of CaMKII and PP1/PP2A. Am J Physiol Cell Physiol 2019; 317:C1093-C1106. [PMID: 31461344 DOI: 10.1152/ajpcell.00059.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study explored the mechanism by which Ca2+-activated Cl- channels (CaCCs) encoded by the Tmem16a gene are regulated by calmodulin-dependent protein kinase II (CaMKII) and protein phosphatases 1 (PP1) and 2A (PP2A). Ca2+-activated Cl- currents (IClCa) were recorded from HEK-293 cells expressing mouse TMEM16A. IClCa were evoked using a pipette solution in which free Ca2+ concentration was clamped to 500 nM, in the presence (5 mM) or absence of ATP. With 5 mM ATP, IClCa decayed to <50% of the initial current magnitude within 10 min after seal rupture. IClCa rundown seen with ATP-containing pipette solution was greatly diminished by omitting ATP. IClCa recorded after 20 min of cell dialysis with 0 ATP were more than twofold larger than those recorded with 5 mM ATP. Intracellular application of autocamtide-2-related inhibitory peptide (5 µM) or KN-93 (10 µM), two specific CaMKII inhibitors, produced a similar attenuation of TMEM16A rundown. In contrast, internal application of okadaic acid (30 nM) or cantharidin (100 nM), two nonselective PP1 and PP2A blockers, promoted the rundown of TMEM16A in cells dialyzed with 0 ATP. Mutating serine 528 of TMEM16A to an alanine led to a similar inhibition of TMEM16A rundown to that exerted by either one of the two CaMKII inhibitors tested, which was not observed for three putative CaMKII consensus sites for phosphorylation (T273, T622, and S730). Our results suggest that TMEM16A-mediated CaCCs are regulated by CaMKII and PP1/PP2A. Our data also suggest that serine 528 of TMEM16A is an important contributor to the regulation of IClCa by CaMKII.
Collapse
Affiliation(s)
- Ramon J Ayon
- Division of Translational and Regenerative Medicine, Department of Medicine, College of Medicine, The University of Arizona College of Medicine, Arizona Health Sciences Center, Tucson, Arizona
| | - Matthew B Hawn
- Department of Pharmacology, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada.,The Center for Cardiovascular Research, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Joydeep Aoun
- Department of Pharmacology, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada.,The Center for Cardiovascular Research, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Michael Wiwchar
- Department of Pharmacology, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Abigail S Forrest
- Department of Pharmacology, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Fiona Cunningham
- Department of Pharmacology, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Cherie A Singer
- Department of Pharmacology, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Maria L Valencik
- Department of Pharmacology, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Iain A Greenwood
- Institute of Molecular and Clinical Sciences, St. George's University of London, London, United Kingdom
| | - Normand Leblanc
- Department of Pharmacology, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada.,The Center for Cardiovascular Research, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada
| |
Collapse
|
13
|
Youm JB, Zheng H, Koh SD, Sanders KM. Na-K-2Cl Cotransporter and Store-Operated Ca 2+ Entry in Pacemaking by Interstitial Cells of Cajal. Biophys J 2019; 117:767-779. [PMID: 31400920 DOI: 10.1016/j.bpj.2019.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/26/2019] [Accepted: 07/11/2019] [Indexed: 01/13/2023] Open
Abstract
Pacemaker depolarization in interstitial cells of Cajal (ICCs) is believed to be induced by Ca2+ transients and activation of anoctamin-1 (Ano1) channels in the plasma membrane. However, block of store-operated calcium entry (SOCE) or the Na-K-2Cl cotransporter (NKCC1) terminates pacemaker activity in ICC, indicating these transporters are involved in the initiation or maintenance of pacemaker activity. We hypothesized that SOCE contributes to pacemaker depolarization by maintaining [Ca2+] in the endoplasmic reticulum, which is the underlying source of Ca2+ transients for activation of Ano1. NKCC1 maintains the Cl- gradient supporting the driving force for inward current mediated by Ano1. Currently mechanisms sustaining release of Ca2+ and activation of Ano1 channels during the plateau phase of slow waves are unknown, but the reverse mode of the Na+/Ca2+ exchange may contribute. We generated a mathematical model of pacemaker activity based on current empirical observations from ICC of mouse small intestine that incorporates functions of SOCE and NKCC1. This model reproduces experimental findings, suggesting roles for SOCE and Ano1 channels: blocking of either NKCC1 or SOCE in our model terminates pacemaker activity. Direct contribution of NKCC1 to pacemaker activity in a beat-to-beat manner is not predicted by our model. Instead, NKCC1 plays a maintenance role supporting the driving force for Cl- efflux. Incorporation of SOCE allows the model to drive pacemaker activity without a diastolic depolarization, as observed in cardiac pacemaking. Further biological experiments are necessary to validate and further refine the roles of NKCC1, Na+/Ca2+ exchange, and Ano1 in the pacemaker mechanism of ICC.
Collapse
Affiliation(s)
- Jae Boum Youm
- Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - Haifeng Zheng
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada.
| |
Collapse
|
14
|
Hwang SJ, Pardo DM, Zheng H, Bayguinov Y, Blair PJ, Fortune‐Grant R, Cook RS, Hennig GW, Shonnard MC, Grainger N, Peri LE, Verma SD, Rock J, Sanders KM, Ward SM. Differential sensitivity of gastric and small intestinal muscles to inducible knockdown of anoctamin 1 and the effects on gastrointestinal motility. J Physiol 2019; 597:2337-2360. [PMID: 30843201 PMCID: PMC6487927 DOI: 10.1113/jp277335] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/22/2019] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Electrical pacemaking in gastrointestinal muscles is generated by specialized interstitial cells of Cajal that produce the patterns of contractions required for peristalsis and segmentation in the gut. The calcium-activated chloride conductance anoctamin-1 (Ano1) has been shown to be responsible for the generation of pacemaker activity in GI muscles, but this conclusion is established from studies of juvenile animals in which effects of reduced Ano1 on gastric emptying and motor patterns could not be evaluated. Knocking down Ano1 expression using Cre/LoxP technology caused dramatic changes in in gastric motor activity, with disrupted slow waves, abnormal phasic contractions and delayed gastric emptying; modest changes were noted in the small intestine. Comparison of the effects of Ano1 antagonists on muscles from juvenile and adult small intestinal muscles suggests that conductances in addition to Ano1 may develop with age and contribute to pacemaker activity. ABSTRACT Interstitial cells of Cajal (ICC) generate slow waves and transduce neurotransmitter signals in the gastrointestinal (GI) tract, facilitating normal motility patterns. ICC express a Ca2+ -activated Cl- conductance (CaCC), and constitutive knockout of the channel protein anoctamin-1 leads to loss of slow waves in gastric and intestinal muscles. These knockout experiments were performed on juvenile mice. However, additional experiments demonstrated significant differences in the sensitivity of gastric and intestinal muscles to antagonists of anoctamin-1 channels. Furthermore, the significance of anoctamin-1 and the electrical and mechanical behaviours facilitated by this conductance have not been evaluated on the motor behaviours of adult animals. Cre/loxP technology was used to generate cell-specific knockdowns of anoctamin-1 in ICC (KitCreERT2/+ ;Ano1tm2jrr/+ ) in GI muscles. The recombination efficiency of KitCreERT was evaluated with an eGFP reporter, molecular techniques and immunohistochemistry. Electrical and contractile experiments were used to examine the consequences of anoctamin-1 knockdown on pacemaker activity, mechanical responses, gastric motility patterns, gastric emptying and GI transit. Reduced anoctamin-1 caused loss of gastric, but not intestinal slow waves. Irregular spike complexes developed in gastric muscles, leading to uncoordinated antral contractions, delayed gastric emptying and increased total GI transit time. Slow waves in intestinal muscles of juvenile mice were more sensitive to anoctamin-1 antagonists than slow waves in adult muscles. The low susceptibility to anoctamin-1 knockdown and weak efficacy of anoctamin-1 antagonists in inhibiting slow waves in adult small intestinal muscles suggest that a conductance in addition to anoctamin-1 may develop in small intestinal ICC with ageing and contribute to pacemaker activity.
Collapse
Affiliation(s)
- Sung Jin Hwang
- Department of Physiology & Cell BiologyUniversity of NevadaReno School of MedicineRenoNV89557USA
| | - David M. Pardo
- Department of AnatomyUniversity of CaliforniaSan FranciscoSan FranciscoCA94143USA
| | - Haifeng Zheng
- Department of Physiology & Cell BiologyUniversity of NevadaReno School of MedicineRenoNV89557USA
| | - Yulia Bayguinov
- Department of Physiology & Cell BiologyUniversity of NevadaReno School of MedicineRenoNV89557USA
| | - Peter J. Blair
- Department of Physiology & Cell BiologyUniversity of NevadaReno School of MedicineRenoNV89557USA
| | - Rachael Fortune‐Grant
- Faculty of BiologyMedicine and HealthSchool of Biological SciencesUniversity of ManchesterUK
| | - Robert S. Cook
- School of Molecular and Cellular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Grant W. Hennig
- Department of PharmacologyThe University of VermontUVM College of MedicineBurlingtonVT05405USA
| | - Matthew C. Shonnard
- Department of Physiology & Cell BiologyUniversity of NevadaReno School of MedicineRenoNV89557USA
| | - Nathan Grainger
- Department of Physiology & Cell BiologyUniversity of NevadaReno School of MedicineRenoNV89557USA
| | - Lauren E. Peri
- Department of Physiology & Cell BiologyUniversity of NevadaReno School of MedicineRenoNV89557USA
| | - Sonali Deep Verma
- Department of AnatomyUniversity of CaliforniaSan FranciscoSan FranciscoCA94143USA
| | - Jason Rock
- Centre for Regenerative MedicineBoston University School of MedicineBostonMA02118USA
| | - Kenton M. Sanders
- Department of Physiology & Cell BiologyUniversity of NevadaReno School of MedicineRenoNV89557USA
| | - Sean M. Ward
- Department of Physiology & Cell BiologyUniversity of NevadaReno School of MedicineRenoNV89557USA
| |
Collapse
|
15
|
Zhang F, Wan H, Yang X, He J, Lu C, Yang S, Tuo B, Dong H. Molecular mechanisms of caffeine-mediated intestinal epithelial ion transports. Br J Pharmacol 2019; 176:1700-1716. [PMID: 30808064 DOI: 10.1111/bph.14640] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/10/2019] [Accepted: 01/31/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE As little is known about the effect of caffeine, one of the most widely consumed substances worldwide, on intestinal function, we aimed to study its action on intestinal anion secretion and the underlying molecular mechanisms. EXPERIMENTAL APPROACH Anion secretion and channel expression were examined in mouse duodenal epithelium by Ussing chambers and immunocytochemistry. Ca2+ imaging was also performed in intestinal epithelial cells (IECs). KEY RESULTS Caffeine (10 mM) markedly increased mouse duodenal short-circuit current (Isc ), which was attenuated by a removal of either Cl- or HCO3 - , Ca2+ -free serosal solutions and selective blockers of store-operated Ca2+ channels (SOC/Ca2+ release-activated Ca2+ channels), and knockdown of Orai1 channels on the serosal side of duodenal tissues. Caffeine induced SOC entry in IEC, which was inhibited by ruthenium red and selective blockers of SOC. Caffeine-stimulated duodenal Isc was inhibited by the endoplasmic reticulum Ca2+ chelator (N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine), selective blockers (ruthenium red and dantrolene) of ryanodine receptors (RyR), and of Ca2+ -activated Cl- channels (niflumic acid and T16A). There was synergism between cAMP and Ca2+ signalling, in which cAMP/PKA promoted caffeine/Ca2+ -mediated anion secretion. Expression of STIM1 and Orai1 was detected in mouse duodenal mucosa and human IECs. The Orai1 proteins were primarily co-located with the basolateral marker Na+ , K+ -ATPase. CONCLUSIONS AND IMPLICATIONS Caffeine stimulated intestinal anion secretion mainly through the RyR/Orai1/Ca2+ signalling pathway. There is synergism between cAMP/PKA and caffeine/Ca2+ -mediated anion secretion. Our findings suggest that a caffeine-mediated RyR/Orai1/Ca2+ pathway could provide novel potential drug targets to control intestinal anion secretion.
Collapse
Affiliation(s)
- Fenglian Zhang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Hanxing Wan
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xin Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jialin He
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Cheng Lu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, and Digestive Disease Institute of Guizhou Province, Zunyi, China
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Department of Medicine, School of Medicine, University of California, San Diego, California, USA
| |
Collapse
|
16
|
Tong JJ, Acharya P, Ebihara L. Calcium-Activated Chloride Channels in Newly Differentiating Mouse Lens Fiber Cells and Their Role in Volume Regulation. Invest Ophthalmol Vis Sci 2019; 60:1621-1629. [PMID: 30995319 PMCID: PMC6736345 DOI: 10.1167/iovs.19-26626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/14/2019] [Indexed: 11/24/2022] Open
Abstract
Purpose Chloride channels have been proposed to play an important role in the regulation of lens volume. Unfortunately, little information is available about the molecular identity of these channels or how they are regulated in the lens due to the difficulties in isolating mouse fiber cells. Recently, our laboratory has developed a new technique for isolating these cells by using transgenic mouse lenses that lack both Cx50 and Cx46. The purpose of this study was to test the hypothesis that newly differentiating mouse fiber cells express calcium-activated chloride channels (CaCCs) by using this technique. Methods Differentiating fiber cells were isolated from lenses of double knockout mice that lack both Cx50 and Cx46 by using collagenase. Membrane currents were studied using the whole-cell patch clamp technique. The molecular identity and distribution of CaCCs were investigated using RT-PCR and immunofluorescence. Results Our electrophysiologic experiments suggest that peripheral fiber cells express a calcium-activated chloride current. The voltage gating properties, calcium sensitivity, and pharmacologic properties of this current resembled those of TMEM16 CaCCs. RT-PCR analysis demonstrated the presence of TMEM16A and TMEM16B transcripts in wild-type and double knockout mouse lenses. Both TMEM16A and TMEM16B proteins were detected in the differentiating epithelial cells and newly elongating fiber cells near the equator of the lens by immunohistochemistry. Conclusions Our results demonstrate that membrane conductance of peripheral fiber cells contain CaCCs that can be attributed to TMEM16A and TMEM16B. Given their critical role in volume regulation in other tissues, we speculate that these channels play a similar role in the lens.
Collapse
Affiliation(s)
- Jun-Jie Tong
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, Chicago, Illinois, United States
| | - Pooja Acharya
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, Chicago, Illinois, United States
| | - Lisa Ebihara
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, Chicago, Illinois, United States
| |
Collapse
|
17
|
Zawieja SD, Castorena JA, Gui P, Li M, Bulley SA, Jaggar JH, Rock JR, Davis MJ. Ano1 mediates pressure-sensitive contraction frequency changes in mouse lymphatic collecting vessels. J Gen Physiol 2019; 151:532-554. [PMID: 30862712 PMCID: PMC6445586 DOI: 10.1085/jgp.201812294] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/06/2019] [Indexed: 12/16/2022] Open
Abstract
Lymphatic collecting vessels exhibit spontaneous contractions with a pressure-dependent contraction frequency. The initiation of contraction has been proposed to be mediated by the activity of a Ca2+-activated Cl- channel (CaCC). Here, we show that the canonical CaCC Anoctamin 1 (Ano1, TMEM16a) plays an important role in lymphatic smooth muscle pacemaking. We find that isolated murine lymphatic muscle cells express Ano1, and demonstrate functional CaCC currents that can be inhibited by the Ano1 inhibitor benzbromarone. These currents are absent in lymphatic muscle cells from Cre transgenic mouse lines targeted for Ano1 genetic deletion in smooth muscle. We additionally show that loss of functional Ano1 in murine inguinal-axillary lymphatic vessels, whether through genetic manipulation or pharmacological inhibition, results in an impairment of the pressure-frequency relationship that is attributable to a hyperpolarized resting membrane potential and a significantly depressed diastolic depolarization rate preceding each action potential. These changes are accompanied by alterations in action potential shape and duration, and a reduced duration but increased amplitude of the action potential-induced global "Ca2+ flashes" that precede lymphatic contractions. These findings suggest that an excitatory Cl- current provided by Ano1 is critical for mediating the pressure-sensitive contractile response and is a major component of the murine lymphatic action potential.
Collapse
Affiliation(s)
- Scott D Zawieja
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| | - Jorge A Castorena
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| | - Peichun Gui
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| | - Min Li
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| | - Simon A Bulley
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN
| | - Jonathan H Jaggar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN
| | - Jason R Rock
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| |
Collapse
|
18
|
Tonic inhibition of murine proximal colon is due to nitrergic suppression of Ca 2+ signaling in interstitial cells of Cajal. Sci Rep 2019; 9:4402. [PMID: 30867452 PMCID: PMC6416298 DOI: 10.1038/s41598-019-39729-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/30/2019] [Indexed: 12/18/2022] Open
Abstract
Spontaneous excitability and contractions of colonic smooth muscle cells (SMCs) are normally suppressed by inputs from inhibitory motor neurons, a behavior known as tonic inhibition. The post-junctional cell(s) mediating tonic inhibition have not been elucidated. We investigated the post-junctional cells mediating tonic inhibition in the proximal colon and whether tonic inhibition results from suppression of the activity of Ano1 channels, which are expressed exclusively in interstitial cells of Cajal (ICC). We found that tetrodotoxin (TTX), an inhibitor of nitric oxide (NO) synthesis, L-NNA, and an inhibitor of soluble guanylyl cyclase, ODQ, greatly enhanced colonic contractions. Ano1 antagonists, benzbromarone and Ani9 inhibited the effects of TTX, L-NNA and ODQ. Ano1 channels are activated by Ca2+ release from the endoplasmic reticulum (ER) in ICC, and blocking Ca2+ release with a SERCA inhibitor (thapsigargin) or a store-operated Ca2+ entry blocker (GSK 7975 A) reversed the effects of TTX, L-NNA and ODQ. Ca2+ imaging revealed that TTX, L-NNA and ODQ increased Ca2+ transient firing in colonic ICC. Our results suggest that tonic inhibition in the proximal colon occurs through suppression of Ca2+ release events in ICC. Suppression of Ca2+ release in ICC limits the open probability of Ano1 channels, reducing the excitability of electrically-coupled SMCs.
Collapse
|
19
|
Sanders KM. Spontaneous Electrical Activity and Rhythmicity in Gastrointestinal Smooth Muscles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1124:3-46. [PMID: 31183821 PMCID: PMC7035145 DOI: 10.1007/978-981-13-5895-1_1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The gastrointestinal (GI) tract has multifold tasks of ingesting, processing, and assimilating nutrients and disposing of wastes at appropriate times. These tasks are facilitated by several stereotypical motor patterns that build upon the intrinsic rhythmicity of the smooth muscles that generate phasic contractions in many regions of the gut. Phasic contractions result from a cyclical depolarization/repolarization cycle, known as electrical slow waves, which result from intrinsic pacemaker activity. Interstitial cells of Cajal (ICC) are electrically coupled to smooth muscle cells (SMCs) and generate and propagate pacemaker activity and slow waves. The mechanism of slow waves is dependent upon specialized conductances expressed by pacemaker ICC. The primary conductances responsible for slow waves in mice are Ano1, Ca2+-activated Cl- channels (CaCCs), and CaV3.2, T-type, voltage-dependent Ca2+ channels. Release of Ca2+ from intracellular stores in ICC appears to be the initiator of pacemaker depolarizations, activation of T-type current provides voltage-dependent Ca2+ entry into ICC, as slow waves propagate through ICC networks, and Ca2+-induced Ca2+ release and activation of Ano1 in ICC amplifies slow wave depolarizations. Slow waves conduct to coupled SMCs, and depolarization elicited by these events enhances the open-probability of L-type voltage-dependent Ca2+ channels, promotes Ca2+ entry, and initiates contraction. Phasic contractions timed by the occurrence of slow waves provide the basis for motility patterns such as gastric peristalsis and segmentation. This chapter discusses the properties of ICC and proposed mechanism of electrical rhythmicity in GI muscles.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA.
| |
Collapse
|
20
|
Kamikawa A, Sakazaki J, Ichii O. Tissue-specific variation in 5'-terminal exons of mouse Anoctamin 1 transcript induces N-terminal variation of its protein via alternative translational start sites. Biochem Biophys Res Commun 2018; 503:1710-1715. [PMID: 30078682 DOI: 10.1016/j.bbrc.2018.07.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 10/28/2022]
Abstract
Anoctamin 1 (encoded by the Ano1 gene) is a Ca2+-activated Cl- channel critical to many physiological functions. It has been speculated that Ano1 expression is regulated in a tissue-dependent manner via alternative promoters. However, variation in the 5'-end sequence of mouse Ano1 (mAno1) and its tissue-dependent regulation are poorly understood. We identified a novel 5'-terminal exon (designated exon 1a) of mAno1 instead of the known 5'-terminal exon (exon 0) using 5'-rapid amplification of cDNA ends (RACE) analysis. Unexpectedly, the novel 5'-end variant mAno1Ex1a was abundantly expressed in many tissues including the salivary and mammary glands, rectum, lung, trachea and prostate. In contrast, the known variant mAno1Ex0 predominated only in male reproductive tissues such as the epididymis and testis. In a heterologous expression system, mAno1Ex0 encoded a longer protein than mAno1Ex1a, and this long isoform was abolished by a mutation in the exon 0 start codon. Moreover, the mAno1Ex0-specific N-terminal sequence was immunohistochemically detected in epididymis but not in salivary gland. Our data suggest that mAno1 expression is regulated via alternative promoters, and its transcriptional variation results in variation of the N-terminal sequence of the Ano1 protein due to the alternative translation initiation sites. These tissue-specific variations might contribute to the regulation of mAno1 expression and activity according to the physiological function of each tissue.
Collapse
Affiliation(s)
- Akihiro Kamikawa
- Section of Physiology and Pharmacology, Division of Veterinary Sciences, Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.
| | - Junpei Sakazaki
- Section of Physiology and Pharmacology, Division of Veterinary Sciences, Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Osamu Ichii
- Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
21
|
Zheng H, Drumm BT, Earley S, Sung TS, Koh SD, Sanders KM. SOCE mediated by STIM and Orai is essential for pacemaker activity in the interstitial cells of Cajal in the gastrointestinal tract. Sci Signal 2018; 11:eaaq0918. [PMID: 29895614 PMCID: PMC6310020 DOI: 10.1126/scisignal.aaq0918] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Electrical pacemaker activity generates phasic contractions and motility patterns such as segmentation and peristalsis in the gastrointestinal tract. Pacemaker currents are generated in interstitial cells of Cajal (ICC), which release Ca2+ from intracellular stores that stimulates Ca2+-activated Cl- channels (CaCCs) in the plasma membrane. Thus, Ca2+ stores must be maintained to sustain pacemaker activity. Store-operated Ca2+ entry (SOCE) facilitates the refilling of Ca2+ stores by a mechanism dependent upon interactions between STIM and Orai proteins. We investigated the role of SOCE in ICC pacemaker activity. Reintroduction of extracellular Ca2+ in store-depleted ICC resulted in CaCC activation. Blocking CaCCs revealed an inwardly rectifying current with properties of a Ca2+ release-activated current (ICRAC). An inhibitory peptide that interfered with the STIM-Orai interaction blocked ICRAC in HEK 293 cells expressing STIM1 and Orai1 and blocked spontaneous transient inward currents (STICs) and slow wave currents in ICC. STICs, which are fundamental pacemaker events in ICC, were blocked by an Orai antagonist. Imaging of Ca2+ transients linked to pacemaker activity in ICC in intact muscles showed that the Orai antagonist blocked Ca2+ transients in ICC. These data suggest that Ca2+ recovery through STIM-Orai interactions is necessary to maintain ICC pacemaker activity.
Collapse
Affiliation(s)
- Haifeng Zheng
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Tae Sik Sung
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA.
| |
Collapse
|
22
|
Drumm BT, Sung TS, Zheng H, Baker SA, Koh SD, Sanders KM. The effects of mitochondrial inhibitors on Ca 2+ signalling and electrical conductances required for pacemaking in interstitial cells of Cajal in the mouse small intestine. Cell Calcium 2018; 72:1-17. [PMID: 29748128 DOI: 10.1016/j.ceca.2018.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/26/2018] [Accepted: 01/27/2018] [Indexed: 01/16/2023]
Abstract
Interstitial cells of Cajal (ICC-MY) are pacemakers that generate and propagate electrical slow waves in gastrointestinal (GI) muscles. Slow waves appear to be generated by the release of Ca2+ from intracellular stores and activation of Ca2+-activated Cl- channels (Ano1). Conduction of slow waves to smooth muscle cells coordinates rhythmic contractions. Mitochondrial Ca2+ handling is currently thought to be critical for ICC pacemaking. Protonophores, inhibitors of the electron transport chain (FCCP, CCCP or antimycin) or mitochondrial Na+/Ca2+ exchange blockers inhibited slow waves in several GI muscles. Here we utilized Ca2+ imaging of ICC in small intestinal muscles in situ to determine the effects of mitochondrial drugs on Ca2+ transients in ICC. Muscles were obtained from mice expressing a genetically encoded Ca2+ indicator (GCaMP3) in ICC. FCCP, CCCP, antimycin, a uniporter blocker, Ru360, and a mitochondrial Na+/Ca2+ exchange inhibitor, CGP-37157 inhibited Ca2+ transients in ICC-MY. Effects were not due to depletion of ATP, as oligomycin did not affect Ca2+ transients. Patch-clamp experiments were performed to test the effects of the mitochondrial drugs on key pacemaker conductances, Ano1 and T-type Ca2+ (CaV3.2), in HEK293 cells. Antimycin blocked Ano1 and reduced CaV3.2 currents. CCCP blocked CaV3.2 current but did not affect Ano1 current. Ano1 and Cav3.2 currents were inhibited by CGP-37157. Inhibitory effects of mitochondrial drugs on slow waves and Ca2+ signalling in ICC can be explained by direct antagonism of key pacemaker conductances in ICC that generate and propagate slow waves. A direct obligatory role for mitochondria in pacemaker activity is therefore questionable.
Collapse
Affiliation(s)
- Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Tae S Sung
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Haifeng Zheng
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Sang D Koh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA.
| |
Collapse
|
23
|
Hannigan KI, Griffin CS, Large RJ, Sergeant GP, Hollywood MA, McHale NG, Thornbury KD. The role of Ca 2+-activated Cl - current in tone generation in the rabbit corpus cavernosum. Am J Physiol Cell Physiol 2017; 313:C475-C486. [PMID: 28835432 DOI: 10.1152/ajpcell.00025.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 08/03/2017] [Accepted: 08/09/2017] [Indexed: 11/22/2022]
Abstract
Rabbit corpus cavernosum smooth muscle (RCCSM) cells express ion channels that produce Ca2+-activated Cl- (IClCa) current, but low sensitivity to conventional antagonists has made its role in tone generation difficult to evaluate. We have reexamined this question using two new generation IClCa blockers, T16Ainh-A01 and CaCCinh-A01. Isolated RCCSM cells were studied using the perforated patch method. Current-voltage protocols revealed that both L-type Ca2+ current and IClCa T16Ainh-A01 and CaCCinh-A01 (10 μM) reduced IClCa by ~85%, while 30 μM abolished it. L-type Ca2+ current was unaffected by 10 μM CaCCinh-A01 but was reduced by 50% at 30 μM CaCCinh-A01, 46% at 10 μM T16Ainh-A01, and 78% at 30 μM T16Ainh-A01. Both drugs reduced spontaneous isometric tension in RCCSM strips, by 60-70% at 10 μM and >90% at 30 μM. Phenylephrine (PE)-enhanced tension was also reduced (ED50 = 3 μM, CaCCinh-A01; 14 μM, T16Ainh-A01). CaCCinh-A01 at 10 μM had little effect on 60 mM KCl contractures, though they were reduced by 30 μM CaCCinh-A01 and T16Ainh-A01 (10 μM and 30 μM) consistent with their effects on L-type Ca2+ current. Both drugs also reversed the stimulatory effect of PE on intracellular Ca2+ waves, studied with laser scanning confocal microscopy in isolated RCCSM cells. In conclusion, although both drugs were effective blockers of IClCa, the effect of T16Ainh-A01 on L-type Ca2+ current precludes its use for evaluating the role of IClCa in tone generation. However, 10 μM CaCCinh-A01 selectively blocked IClCa versus L-type Ca2+ current and reduced spontaneous and PE-induced tone, suggesting that IClCa is important in maintaining penile detumescence.
Collapse
Affiliation(s)
- Karen I Hannigan
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Caoimhin S Griffin
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Roddy J Large
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Gerard P Sergeant
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Noel G McHale
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Keith D Thornbury
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| |
Collapse
|
24
|
Truong EC, Phuan PW, Reggi AL, Ferrera L, Galietta LJ, Levy SE, Moises AC, Cil O, Diez-Cecilia E, Lee S, Verkman AS, Anderson MO. Substituted 2-Acylaminocycloalkylthiophene-3-carboxylic Acid Arylamides as Inhibitors of the Calcium-Activated Chloride Channel Transmembrane Protein 16A (TMEM16A). J Med Chem 2017; 60:4626-4635. [PMID: 28493701 PMCID: PMC5516794 DOI: 10.1021/acs.jmedchem.7b00020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transmembrane protein 16A (TMEM16A), also called anoctamin 1 (ANO1), is a calcium-activated chloride channel expressed widely mammalian cells, including epithelia, vascular smooth muscle tissue, electrically excitable cells, and some tumors. TMEM16A inhibitors have been proposed for treatment of disorders of epithelial fluid and mucus secretion, hypertension, asthma, and possibly cancer. Herein we report, by screening, the discovery of 2-acylaminocycloalkylthiophene-3-carboxylic acid arylamides (AACTs) as inhibitors of TMEM16A and analysis of 48 synthesized analogs (10ab-10bw) of the original AACT compound (10aa). Structure-activity studies indicated the importance of benzene substituted as 2- or 4-methyl, or 4-fluoro, and defined the significance of thiophene substituents and size of the cycloalkylthiophene core. The most potent compound (10bm), which contains an unusual bromodifluoroacetamide at the thiophene 2-position, had IC50 of ∼30 nM, ∼3.6-fold more potent than the most potent previously reported TMEM16A inhibitor 4 (Ani9), and >10-fold improved metabolic stability. Direct and reversible inhibition of TMEM16A by 10bm was demonstrated by patch-clamp analysis. AACTs may be useful as pharmacological tools to study TMEM16A function and as potential drug development candidates.
Collapse
Affiliation(s)
- Eric C. Truong
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco CA, 94132-4136 USA
| | - Puay W. Phuan
- Departments of Medicine and Physiology, University of California, San Francisco CA, 94143-0521 USA
| | - Amanda L. Reggi
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco CA, 94132-4136 USA
| | - Loretta Ferrera
- U.O.C. Genetica Medica, Istituto Giannina Gaslini, Genova, ITALY
| | - Luis J.V. Galietta
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), ITALY
| | - Sarah E. Levy
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco CA, 94132-4136 USA
| | - Alannah C. Moises
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco CA, 94132-4136 USA
| | - Onur Cil
- Departments of Medicine and Physiology, University of California, San Francisco CA, 94143-0521 USA
| | - Elena Diez-Cecilia
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco CA, 94132-4136 USA
| | - Sujin Lee
- Departments of Medicine and Physiology, University of California, San Francisco CA, 94143-0521 USA
| | - Alan S. Verkman
- Departments of Medicine and Physiology, University of California, San Francisco CA, 94143-0521 USA
| | - Marc O. Anderson
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco CA, 94132-4136 USA
| |
Collapse
|
25
|
Strege PR, Gibbons SJ, Mazzone A, Bernard CE, Beyder A, Farrugia G. EAVK segment "c" sequence confers Ca 2+-dependent changes to the kinetics of full-length human Ano1. Am J Physiol Gastrointest Liver Physiol 2017; 312:G572-G579. [PMID: 28336549 PMCID: PMC5495914 DOI: 10.1152/ajpgi.00429.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/07/2017] [Accepted: 03/15/2017] [Indexed: 01/31/2023]
Abstract
Anoctamin1 (Ano1 and TMEM16A) is a calcium-activated chloride channel specifically expressed in the interstitial cells of Cajal (ICC) of the gastrointestinal tract muscularis propria. Ano1 is necessary for normal electrical slow waves and ICC proliferation. The full-length human Ano1 sequence includes an additional exon, exon "0," at the NH2 terminus. Ano1 with exon 0 [Ano1(0)] had a lower EC50 for intracellular calcium ([Ca2+]i) and faster chloride current (ICl) kinetics. The Ano1 alternative splice variant with segment "c" encoding exon 13 expresses on the first intracellular loop four additional amino acid residues, EAVK, which alter ICl at low [Ca2+]i Exon 13 is expressed in 75-100% of Ano1 transcripts in most human tissues but only 25% in the human stomach. Our aim was to determine the effect of EAVK deletion on Ano1(0)ICl parameters. By voltage-clamp electrophysiology, we examined ICl in HEK293 cells transiently expressing Ano1(0) with or without the EAVK sequence [Ano1(0)ΔEAVK]. The EC50 values of activating and deactivating ICl for [Ca2+]i were 438 ± 7 and 493 ± 9 nM for Ano1(0) but higher for Ano1(0)ΔEAVK at 746 ± 47 and 761 ± 26 nM, respectively. Meanwhile, the EC50 values for the ratio of instantaneous to steady-state ICl were not different between variants. Congruently, the time constant of activation was slower for Ano1(0)ΔEAVK than Ano1(0) currents at intermediate [Ca2+]i These results suggest that EAVK decreases the calcium sensitivity of Ano1(0) current activation and deactivation by slowing activation kinetics. Differential expression of EAVK in the human stomach may function as a switch to increase sensitivity to [Ca2+]i via faster gating of Ano1.NEW & NOTEWORTHY Calcium-activated chloride channel anoctamin1 (Ano1) is necessary for normal slow waves in the gastrointestinal interstitial cells of Cajal. Exon 0 encodes the NH2 terminus of full-length human Ano1 [Ano1(0)], while exon 13 encodes residues EAVK on its first intracellular loop. Splice variants lack EAVK more often in the stomach than other tissues. Ano1(0) without EAVK [Ano1(0)ΔEAVK] has reduced sensitivity for intracellular calcium, attributable to slower kinetics. Differential expression of EAVK may function as a calcium-sensitive switch in the human stomach.
Collapse
|
26
|
Hahn A, Faulhaber J, Srisawang L, Stortz A, Salomon JJ, Mall MA, Frings S, Möhrlen F. Cellular distribution and function of ion channels involved in transport processes in rat tracheal epithelium. Physiol Rep 2017; 5:e13290. [PMID: 28642338 PMCID: PMC5492199 DOI: 10.14814/phy2.13290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 01/17/2023] Open
Abstract
Transport of water and electrolytes in airway epithelia involves chloride-selective ion channels, which are controlled either by cytosolic Ca2+ or by cAMP The contributions of the two pathways to chloride transport differ among vertebrate species. Because rats are becoming more important as animal model for cystic fibrosis, we have examined how Ca2+- dependent and cAMP- dependent Cl- secretion is organized in the rat tracheal epithelium. We examined the expression of the Ca2+-gated Cl- channel anoctamin 1 (ANO1), the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel, the epithelial Na+ channel ENaC, and the water channel aquaporin 5 (AQP5) in rat tracheal epithelium. The contribution of ANO1 channels to nucleotide-stimulated Cl- secretion was determined using the channel blocker Ani9 in short-circuit current recordings obtained from primary cultures of rat tracheal epithelial cells in Ussing chambers. We found that ANO1, CFTR and AQP5 proteins were expressed in nonciliated cells of the tracheal epithelium, whereas ENaC was expressed in ciliated cells. Among nonciliated cells, ANO1 occurred together with CFTR and Muc5b and, in addition, in a different cell type without CFTR and Muc5b. Bioelectrical studies with the ANO1-blocker Ani9 indicated that ANO1 mediated the secretory response to the nucleotide uridine-5'-triphosphate. Our data demonstrate that, in rat tracheal epithelium, Cl- secretion and Na+ absorption are routed through different cell types, and that ANO1 channels form the molecular basis of Ca2+-dependent Cl- secretion in this tissue. These characteristic features of Cl--dependent secretion reveal similarities and distinct differences to secretory processes in human airways.
Collapse
Affiliation(s)
- Anne Hahn
- Department of Animal Molecular Physiology, Centre of Organismal Studies University of Heidelberg, Heidelberg, Germany
| | - Johannes Faulhaber
- Department of Animal Molecular Physiology, Centre of Organismal Studies University of Heidelberg, Heidelberg, Germany
| | - Lalita Srisawang
- Department of Animal Molecular Physiology, Centre of Organismal Studies University of Heidelberg, Heidelberg, Germany
| | - Andreas Stortz
- Department of Animal Molecular Physiology, Centre of Organismal Studies University of Heidelberg, Heidelberg, Germany
| | - Johanna J Salomon
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC) German Center for Lung Research (DZL) University of Heidelberg, Heidelberg, Germany
| | - Marcus A Mall
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC) German Center for Lung Research (DZL) University of Heidelberg, Heidelberg, Germany
| | - Stephan Frings
- Department of Animal Molecular Physiology, Centre of Organismal Studies University of Heidelberg, Heidelberg, Germany
| | - Frank Möhrlen
- Department of Animal Molecular Physiology, Centre of Organismal Studies University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
27
|
Cobine CA, Hannah EE, Zhu MH, Lyle HE, Rock JR, Sanders KM, Ward SM, Keef KD. ANO1 in intramuscular interstitial cells of Cajal plays a key role in the generation of slow waves and tone in the internal anal sphincter. J Physiol 2017; 595:2021-2041. [PMID: 28054347 DOI: 10.1113/jp273618] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/16/2016] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS The internal anal sphincter develops tone important for maintaining high anal pressure and continence. Controversy exists regarding the mechanisms underlying tone development. We examined the hypothesis that tone depends upon electrical slow waves (SWs) initiated in intramuscular interstitial cells of Cajal (ICC-IM) by activation of Ca2+ -activated Cl- channels (ANO1, encoded by Ano1) and voltage-dependent L-type Ca2+ channels (CavL , encoded by Cacna1c). Measurement of membrane potential and contraction indicated that ANO1 and CavL have a central role in SW generation, phasic contractions and tone, independent of stretch. ANO1 expression was examined in wildtype and Ano1/+egfp mice with immunohistochemical techniques. Ano1 and Cacna1c expression levels were examined by quantitative PCR in fluorescence-activated cell sorting. ICC-IM were the predominant cell type expressing ANO1 and the most likely candidate for SW generation. SWs in ICC-IM are proposed to conduct to smooth muscle where Ca2+ entry via CavL results in phasic activity that sums to produce tone. ABSTRACT The mechanism underlying tone generation in the internal anal sphincter (IAS) is controversial. We examined the hypothesis that tone depends upon generation of electrical slow waves (SWs) initiated in intramuscular interstitial cells of Cajal (ICC-IM) by activation of Ca2+ -activated Cl- channels (encoded by Ano1) and voltage-dependent L-type Ca2+ channels (encoded by Cacna1c). Phasic contractions and tone in the IAS were nearly abolished by ANO1 and CavL antagonists. ANO1 antagonists also abolished SWs as well as transient depolarizations that persisted after addition of CavL antagonists. Tone development in the IAS did not require stretch of muscles, and the sensitivity of contraction to ANO1 antagonists was the same in stretched versus un-stretched muscles. ANO1 expression was examined in wildtype and Ano1/+egfp mice with immunohistochemical techniques. Dual labelling revealed that ANO1 expression could be resolved in ICC but not smooth muscle cells (SMCs) in the IAS and rectum. Ano1, Cacna1c and Kit gene expression were the same in extracts of IAS and rectum muscles. In IAS cells isolated with fluorescence-activated cell sorting, Ano1 expression was 26.5-fold greater in ICC than in SMCs while Cacna1c expression was only 2-fold greater in SMCs than in ICC. These data support a central role for ANO1 and CavL in the generation of SWs and tone in the IAS. ICC-IM are the probable cellular candidate for ANO1 currents and SW generation. We propose that ANO1 and CavL collaborate to generate SWs in ICC-IM followed by conduction to adjacent SMCs where phasic calcium entry through CavL sums to produce tone.
Collapse
Affiliation(s)
- C A Cobine
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - E E Hannah
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - M H Zhu
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - H E Lyle
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - J R Rock
- Department of Anatomy, UCSF School of Medicine, San Francisco, CA, 94143, USA
| | - K M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - S M Ward
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - K D Keef
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| |
Collapse
|
28
|
Cruz-Rangel S, De Jesús-Pérez JJ, Aréchiga-Figueroa IA, Rodríguez-Menchaca AA, Pérez-Cornejo P, Hartzell HC, Arreola J. Extracellular protons enable activation of the calcium-dependent chloride channel TMEM16A. J Physiol 2017; 595:1515-1531. [PMID: 27859335 DOI: 10.1113/jp273111] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/27/2016] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS The calcium-activated chloride channel TMEM16A provides a pathway for chloride ion movements that are key in preventing polyspermy, allowing fluid secretion, controlling blood pressure, and enabling gastrointestinal activity. TMEM16A is opened by voltage-dependent calcium binding and regulated by permeant anions and intracellular protons. Here we show that a low proton concentration reduces TMEM16A activity while maximum activation is obtained when the external proton concentration is high. In addition, protonation conditions determine the open probability of TMEM16A without changing its calcium sensitivity. External glutamic acid 623 (E623) is key for TMEM16A's ability to respond to external protons. At physiological pH, E623 is un-protonated and TMEM16A is activated when intracellular calcium increases; however, under acidic conditions E623 is partially protonated and works synergistically with intracellular calcium to activate the channel. These findings are critical for understanding physiological and pathological processes that involve changes in pH and chloride flux via TMEM16A. ABSTRACT Transmembrane protein 16A (TMEM16A), also known as ANO1, the pore-forming subunit of a Ca2+ -dependent Cl- channel (CaCC), is activated by direct, voltage-dependent, binding of intracellular Ca2+ . Endogenous CaCCs are regulated by extracellular protons; however, the molecular basis of such regulation remains unidentified. Here, we evaluated the effects of different extracellular proton concentrations ([H+ ]o ) on mouse TMEM16A expressed in HEK-293 cells using whole-cell and inside-out patch-clamp recordings. We found that increasing the [H+ ]o from 10-10 to 10-5.5 m caused a progressive increase in the chloride current (ICl ) that is described by titration of a protonatable site with pK = 7.3. Protons regulate TMEM16A in a voltage-independent manner, regardless of channel state (open or closed), and without altering its apparent Ca2+ sensitivity. Noise analysis showed that protons regulate TMEM16A by tuning its open probability without modifying the single channel current. We found a robust reduction of the proton effect at high [Ca2+ ]i . To identify protonation targets we mutated all extracellular glutamate and histidine residues and 4 of 11 aspartates. Most mutants were sensitive to protons. However, mutation that substituted glutamic acid (E) for glutamine (Q) at amino acid position 623 (E623Q) displayed a titration curve shifted to the left relative to wild type channels and the ICl was nearly insensitive to proton concentrations between 10-5.5 and 10-9.0 m. Additionally, ICl of the mutant containing an aspartic acid (D) to asparagine (N) substitution at position 405 (D405N) mutant was partially inhibited by a proton concentration of 10-5.5 m, but 10-9.0 m produced the same effect as in wild type. Based on our findings we propose that external protons titrate glutamic acid 623, which enables voltage activation of TMEM16A at non-saturating [Ca2+ ]i .
Collapse
Affiliation(s)
- Silvia Cruz-Rangel
- Physics Institute, Universidad Autónoma de San Luis Potosí, Ave. Dr. Manuel Nava #6, San Luis Potosí, SLP, 78290, México
| | - José J De Jesús-Pérez
- Physics Institute, Universidad Autónoma de San Luis Potosí, Ave. Dr. Manuel Nava #6, San Luis Potosí, SLP, 78290, México
| | - Iván A Aréchiga-Figueroa
- CONACYT-Universidad Autónoma de San Luis Potosí School of Medicine, Ave. V. Carranza 2405, San Luis Potosí, SLP, 78290, México
| | - Aldo A Rodríguez-Menchaca
- Department of Physiology and Biophysics, Universidad Autónoma de San Luis Potosí School of Medicine, Ave. V. Carranza 2405, San Luis Potosí, SLP, 78290, México
| | - Patricia Pérez-Cornejo
- Department of Physiology and Biophysics, Universidad Autónoma de San Luis Potosí School of Medicine, Ave. V. Carranza 2405, San Luis Potosí, SLP, 78290, México
| | - H Criss Hartzell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jorge Arreola
- Physics Institute, Universidad Autónoma de San Luis Potosí, Ave. Dr. Manuel Nava #6, San Luis Potosí, SLP, 78290, México
| |
Collapse
|