1
|
Nie J, Chen H, Zhao X. Advancement and Potential Applications of Epididymal Organoids. Biomolecules 2024; 14:1026. [PMID: 39199413 PMCID: PMC11352229 DOI: 10.3390/biom14081026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
The epididymis, a key reproductive organ, is crucial for sperm concentration, maturation, and storage. Despite a comprehensive understanding of many of its functions, several aspects of the complex processes within the epididymis remain obscure. Dysfunction in this organ is intricately connected to the formation of the microenvironment, disruptions in sperm maturation, and the progression of male infertility. Thus, elucidating the functional mechanisms of the epididymal epithelium is imperative. Given the variety of cell types present within the epididymal epithelium, utilizing a three-dimensional (3D) in vitro model provides a holistic and practical framework for exploring the multifaceted roles of the epididymis. Organoid cell culture, involving the co-cultivation of pluripotent or adult stem cells with growth factors on artificial matrix scaffolds, effectively recreates the in vivo cell growth microenvironment, thereby offering a promising avenue for studying the epididymis. The field of epididymal organoids is relatively new, with few studies focusing on their formation and even fewer detailing the generation of organoids that exhibit epididymis-specific structures and functions. Ongoing challenges in both clinical applications and mechanistic studies underscore the importance of this research. This review summarizes the established methodologies for inducing the in vitro cultivation of epididymal cells, outlines the various approaches for the development of epididymal organoids, and explores their potential applications in the field of male reproductive biology.
Collapse
Affiliation(s)
| | | | - Xiuling Zhao
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China; (J.N.)
| |
Collapse
|
2
|
Cao H, Li L, Liu S, Wang Y, Liu X, Yang F, Dong W. The multifaceted role of extracellular ATP in sperm function: From spermatogenesis to fertilization. Theriogenology 2024; 214:98-106. [PMID: 37865020 DOI: 10.1016/j.theriogenology.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 10/23/2023]
Abstract
Extracellular adenosine 5'-triphosphate (ATP) is a vital signaling molecule involved in various physiological processes within the body. In recent years, studies have revealed its significant role in male reproduction, particularly in sperm function. This review explores the multifaceted role of extracellular ATP in sperm function, from spermatogenesis to fertilization. We discuss the impact of extracellular ATP on spermatogenesis, sperm maturation and sperm-egg fusion, highlighting the complex regulatory mechanisms and potential clinical applications in the context of male infertility. By examining the latest research, we emphasize the crucial role of extracellular ATP in sperm function and propose future research directions to further.
Collapse
Affiliation(s)
- Heran Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Long Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shujuan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xianglin Liu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fangxia Yang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
3
|
Cyr DG, Pinel L. Emerging organoid models to study the epididymis in male reproductive toxicology. Reprod Toxicol 2022; 112:88-99. [PMID: 35810924 DOI: 10.1016/j.reprotox.2022.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/13/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
The importance of the epididymis on sperm maturation and consequently male fertility has been well documented. The pseudostratified epithelium of the epididymis is comprised of multiple cell types, including principal cells, which are the most abundant, and basal cells. The role of basal cells has been unclear and has been a source of discussion in the literature. However, the recent demonstration that these cells are multipotent or adult stem cells has opened new areas of research in epididymal biology. One such avenue is to understand the regulation of these stem cells, and to exploit their properties to develop tools for toxicological studies to elucidate the effects of chemicals on cell differentiation and epididymal function in vitro. Studies in both rat and mouse have shown that purified single epididymal basal cells cultured under 3D conditions can proliferate and differentiate to form organoids, or mini organs. Furthermore, these epididymal basal stem cells can self-renew and differentiate into other epididymal cell types. It is known that during epididymal development, basal cells are derived from undifferentiated columnar cells, which have been reported to share common properties to stem cells. Like basal cells, these undifferentiated columnar cells can also form organoids under 3D culture conditions and can differentiate into basal, principal and clear cells. Organoids derived from either basal cells or columnar cells offer unique models for toxicology studies and represent an exciting and emerging approach to understand the epididymis.
Collapse
Affiliation(s)
- Daniel G Cyr
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada; Department of Obstetrics, Gynecology, and Reproduction, Laval University, Québec, QC, Canada.
| | - Laurie Pinel
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
| |
Collapse
|
4
|
Kim B, Breton S. The MAPK/ERK signaling pathway regulates the expression and localization of Cx43 in mouse proximal epididymis†. Biol Reprod 2022; 106:919-927. [PMID: 35156117 PMCID: PMC9113436 DOI: 10.1093/biolre/ioac034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/17/2022] [Accepted: 02/09/2022] [Indexed: 01/25/2023] Open
Abstract
This study aimed to clarify the functional role of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK1/2)-signaling pathway in the expression and localization of connexin 43 (Cx43). Mice were treated with the mitogen-activated protein kinase kinase (MEK1/2) inhibitor, PD325901, which induced a progressive decrease in ERK1/2 phosphorylation (pERK) in the proximal epididymis of the mice, without affecting total ERK level. Cx43 staining with punctuated reactive sites was observed in the basolateral membranes in the initial segment (IS) of mouse epididymis. However, PD325901 induced a significant decrease in Cx43 labeling in the basolateral membranes. Interestingly, Cx43, which was undetectable in the apical region of epididymis under control conditions, showed a significant increase in the apical region after PD 325901 treatment. To confirm whether Cx43 was present in tight junctions (TJs) after PD 325901 treatment, PD325901-treated epididymis samples were double-labeled with Cx43 and zonula occludens (ZO)-1 (a TJ protein marker). Thereafter, confocal microscopy showed the colocalization of Cx43 and ZO-1 in the epididymis after PD325901 treatment. Collectively, our results indicated that PD325901 treatment induced a significant increase in Cx43 localization on TJs, where it was colocalized with ZO-1. Therefore, the study suggested that ERK phosphorylation is essential for the proper expression and localization of the gap junction (GJ) protein, and that the relationship between GJs and TJs could play an important role in establishing and maintaining microenvironmental homeostasis for sperm maturation in the IS of mouse epididymis.
Collapse
Affiliation(s)
- Bongki Kim
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Animal Resources Science, Kongju National University, Yesan, Chungcheongnam-do, Republic of Korea
| | - Sylvie Breton
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Pinel L, Cyr DG. Self-renewal and differentiation of rat Epididymal basal cells using a novel in vitro organoid model. Biol Reprod 2021; 105:987-1001. [PMID: 34104939 DOI: 10.1093/biolre/ioab113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/29/2020] [Accepted: 05/29/2021] [Indexed: 12/14/2022] Open
Abstract
The epididymis is composed of a pseudostratified epithelium comprised of various cell types. Studies have shown that rat basal cells share common properties with adult stem cells and begin to differentiate in vitro in response to fibroblast growth factor and 5α-dihydrotestosterone. The characterization of rat basal cells is therefore necessary to fully understand the role of these cells. The objectives of this study were to assess the ability of single basal cells to develop organoids and to assess their ability to self-renew and differentiate in vitro. We isolated basal cells from the rat epididymis and established 3-dimensional cell cultures from the basal and non-basal cell fractions. Organoids were formed by single adult epididymal basal cells. Organoids were dissociated into single basal cells which were able to reform new organoids, and were maintained over 10 generations. Long-term culture of organoids revealed that these cells could differentiated into cells expressing the principal cell markers aquaporin 9 and cystic fibrosis transmembrane conductance regulator. Electron microscopy demonstrated that organoids were comprised of several polarized cell types displaying microvilli and the ability to form tight junctions. Additionally, organoids could be formed by basal cells from either the proximal or distal region of the epididymis, and are able to secrete clusterin, a protein implicated in the maturation of spermatozoa. These data indicate that rat basal cells can be used to derive epididymal organoids, and further supports that notion that these may represent a stem cell population in the epididymis.
Collapse
Affiliation(s)
- Laurie Pinel
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, University of Quebec, 531 boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Daniel G Cyr
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, University of Quebec, 531 boul. des Prairies, Laval, QC, H7V 1B7, Canada
| |
Collapse
|
6
|
Gregory M, Cyr DG. Effects of prostaglandin E2 on gap junction protein alpha 1 in the rat epididymis. Biol Reprod 2020; 100:123-132. [PMID: 30060123 DOI: 10.1093/biolre/ioy171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
Gap junctions are responsible for intercellular communication. In the adult mammalian epididymis, gap junction protein alpha 1 (GJA1) is localized between basal and either principal or clear cells. GJA1 levels and localization change during the differentiation of basal cells. The present objective was to determine the role of basal cells and prostaglandin E2 (PGE2) on GJA1 in the rat epididymis. Prior to basal cell differentiation, GJA1 is colocalized with TJP1 at the apical lateral margins between adjacent epithelial cells. When basal cells are present, GJA1 becomes associated between basal and principal cells, where it is primarily immunolocalized until adulthood. Basal cells express TP63, differentiate from epithelial cells, and produce prostaglandin-endoperoxide synthase 1 by 21 days of age. Prior to day 21, GJA1and TP63 are not strongly associated at the apical region. However, by day 28, TP63-positive basal cells migrate to the base of the epithelium, and also express GJA1. To assess effects of PGE2 on GJA1, rat caput epididymal (RCE) cells were exposed to PGE2 (50 μM) for 3 h. PGE2 increased levels of Gja1 mRNA in RCE cells, while levels of Gjb1, Gjb2, Gjb4, and GjB5 were unaltered. Furthermore, PGE2 increased protein levels of GJA1, phospho-GJA1, phospho-AKT, CTNNB1, and phospho-CTNNB1. Total AKT and the tight junction protein claudin1 were also not altered by PGE2. Data suggest that development of the epididymal epithelium and differentiation of epididymal basal cells regulate the targeting of GJA1, and that this appears to be mediated by PGE2.
Collapse
Affiliation(s)
- Mary Gregory
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, University of Quebec, Laval, Quebec, Canada
| | - Daniel G Cyr
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, University of Quebec, Laval, Quebec, Canada
| |
Collapse
|
7
|
Özbek M, Hitit M, Ergün E, Ergün L, Beyaz F, Erhan F, Yıldırım N, Kandil B, Özgenç Ö, Memili E. Expression profile of Toll-like receptor 4 in rat testis and epididymis throughout postnatal development. Andrologia 2020; 52:e13518. [PMID: 32003057 DOI: 10.1111/and.13518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/04/2019] [Accepted: 12/28/2019] [Indexed: 12/24/2022] Open
Abstract
Toll-like receptors (TLRs) belonging to pattern recognition receptors are involved in maintaining testicular and epididymal immune homeostasis. The purpose of the current study was to investigate TLR4 expression in rat testis and epididymis throughout postnatal development. Weak staining was detected in peritubular myoid cells and immature Sertoli cells while no staining was observed in gonocytes during prepubertal period. However, TLR4 expression began to appear in spermatocytes in pubertal period and gradually increased in spermatids. An intense staining was observed in steps 5-19 spermatids in post pubertal and mature periods. Similarly, TLR4 expression in the testes steadily increased from pubertal period to mature period. Puberty also caused a significant increase in TLR4 expression in epididymis. TLR4 expression in cauda epididymis was lower as compared to those of other epididymal segments. The majority of epididymal epithelial cells exhibited apical TLR4 expression, whereas basal cells showed intense intracytoplasmic immunoreaction. We detected an intense staining in epididymal smooth muscle cells. The expression levels of TLR4 showed dynamic changes in both spermatogenic cells, and entire testicular and epididymal tissues during postnatal development. These results suggest that TLR4 expression contributes not only to inflammation but also to the development of spermatogenic cells.
Collapse
Affiliation(s)
- Mehmet Özbek
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Mustafa Hitit
- Department of Genetics, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - Emel Ergün
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Levent Ergün
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Feyzullah Beyaz
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Füsun Erhan
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Nuh Yıldırım
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Banu Kandil
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Özge Özgenç
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Erdoğan Memili
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
| |
Collapse
|
8
|
Ibrahim D, Abdel-Maksoud FM. Immunohistochemical and Ultrastructural Features of the Seasonal Changes in the Epididymal Epithelium of Camel ( Camelus dromedarius). MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2019; 25:1273-1282. [PMID: 31547896 DOI: 10.1017/s1431927619014843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In order to evaluate the influence of reproductive activity on the functional role of the epididymal epithelium in the Egyptian dromedary camel, Connexin-43 (Cx-43), vascular endothelial growth factor (VEGF), and androgen receptor (AR) immunoreactivity in the epididymal epithelium and the fine structure of the principal, dark, basal, apical, and halo cells were investigated. The secretory activity of the principal cells was amplified in the breeding season, while its endocytotic function became more active in the nonbreeding season. This was evidenced by punctate strong immunoreactive signals for Cx-43, which appeared to be more intense in the apical region of these epithelial cells, and the extremely long slender stereocilia (microvilli) with multiple junctional complexes. The nonbreeding principal cells revealed granular immunoreactive signals for VEGF scattered in the apical and basal cytoplasm. Ultrastructurally, both extreme vacuolation and several multivesicular inclusion bodies were observed in their cytoplasm. Dark cell size greatly diminished in the nonbreeding season and their nuclear morphology greatly changed from oval to lobulated shape. The plasma membrane of the apical cells expressed several infoldings (microvilli) in the breeding season. However, it was almost smooth in the nonbreeding season except for a small microvillus that appeared as a bleb-like projection. In some regions, a strong dense immunoreactivity for VEGF could be recognized in the cytoplasm of the apical cells and some basal ones. Halo cells with numerous multivesicular inclusions occupying most of the cytoplasm and a lobulated eccentric nucleus were detected in the nonbreeding season. In conclusion, these findings indicate that the reproductive activity has a significant impact on the immunohistochemical and ultrastructural profiles of the epithelial cells lining the Egyptian dromedary camel epididymis.
Collapse
Affiliation(s)
- Dalia Ibrahim
- Department of Histology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Fatma M Abdel-Maksoud
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assuit University, Assuit, Egypt
| |
Collapse
|
9
|
Kempinas WG, Borges CS, Leite GAA, Figueiredo TM, Gregory M, Cyr DG. Prenatal exposure to betamethasone causes intergenerational impairment of epididymal development in the rat. Andrology 2019; 7:719-729. [PMID: 31250541 DOI: 10.1111/andr.12657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/30/2019] [Accepted: 05/05/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Studies on epididymal toxicology are scarce. Betamethasone (BM) is a glucocorticoid used in clinical practice for antenatal therapy. We previously reported changes to testicular morphology, altered sperm quality, and fertility in adult rats following intrauterine administration of BM. OBJECTIVES Given that high levels of corticosteroids during gestation lead to fetal androgen depletion, and the essential role of testosterone during epididymal development, here we investigated epididymal morphology and physiology in the F1 and F2 male offspring of female rats treated with BM during gestation. MATERIALS AND METHODS Pregnant rats were randomly divided into two experimental groups: control (saline vehicle, n = 11) and BM-treated group (0.1 mg/kg betamethasone 21-phosphate disodium, n = 13). Rats received an intramuscular injection of vehicle or BM on gestational days 12, 13, 18, and 19. This encompasses the beginning of the critical window of male rat reproductive tract development. A subset of three males from each litter (n = 5 litters/group) was used: One rat per litter was euthanized at puberty, one was euthanized at adulthood, while the others were mated with a non-treated female to obtain the F2 generation. The same protocol described for the F1 was applied for F2, except for the mating protocol. RESULTS In both F1 and F2 generations, prenatal BM exposure resulted in delayed differentiation of the cauda epididymal epithelium, characterized by increased cribriform appearance on PND 45, and displayed weaker or non-detectable Cx43 immunostaining. Furthermore, in the F1 generation only, immunostaining of TP63, a transcription factor expressed in basal cells, appeared more intense with a greater number of TP63-positive cells observed in the cauda epididymis. In adults, the epithelial area was reduced in the F1 BM rats. The contractile activity of isolated epididymal ducts was comparable between groups. DISCUSSION AND CONCLUSION Prenatal BM exposure leads to intergenerational impairment in the development and structure of the rat epididymis.
Collapse
Affiliation(s)
- W G Kempinas
- Laboratory of Reproductive and Developmental Biology and Toxicology, Morphology Department, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - C S Borges
- Laboratory of Reproductive and Developmental Biology and Toxicology, Morphology Department, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - G A A Leite
- Laboratory of Reproductive and Developmental Biology and Toxicology, Morphology Department, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - T M Figueiredo
- Laboratory of Reproductive and Developmental Biology and Toxicology, Morphology Department, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - M Gregory
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, University of Quebec, Laval, QC, Canada
| | - D G Cyr
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, University of Quebec, Laval, QC, Canada
| |
Collapse
|
10
|
Histological study of the possible protective effect of pomegranate juice on bisphenol-A induced changes of the caput epididymal epithelium and sperms of adult albino rats. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2011.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
11
|
Pinel L, Mandon M, Cyr DG. Tissue regeneration and the epididymal stem cell. Andrology 2019; 7:618-630. [PMID: 31033244 DOI: 10.1111/andr.12635] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/24/2019] [Accepted: 03/30/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND In most pseudostratified epithelia, basal cells represent a multipotent adult stem cell population. These cells generally remain in a quiescent state, until they are stimulated to respond to tissue damage by initiating epithelial regeneration. In the epididymis, cell proliferation occurs at a relatively slow rate under normal physiological conditions. Epididymal basal cells have been shown to share common properties with multipotent adult stem cells. The development of organoids from stem cells represents a novel approach for understanding cellular differentiation and characterization of stem cells. OBJECTIVE To review the literature on tissue regeneration in the epididymis and demonstrate the presence of an epididymal stem cell population. METHODS PubMed database was searched for studies reporting on cell proliferation, regeneration, and stem cells in the epididymis. Three-dimensional cell culture of epididymal cells was used to determine whether these can develop into organoids in a similar fashion to stem cells from other tissues. RESULTS The epididymal epithelium can rapidly regenerate following orchidectomy or efferent duct ligation, in order to maintain epithelial integrity. Studies have isolated a highly purified fraction of rat epididymal basal cells and reported that these cells displayed properties similar to those of multipotent adult stem cells. In two-dimensional cell culture conditions, these cells differentiated into cells which expressed connexin 26, a marker of columnar cells, and cytokeratin 8. Furthermore, three-dimensional cell culture of epididymal cells resulted in the formation of organoids, a phenomenon associated with the proliferation and differentiation of stem cells in vitro. CONCLUSIONS The rapid proliferation and tissue regeneration of the epididymal epithelium to preserve its integrity following tissue damage as well as the ability of cells to differentiate into organoids in vitro support the notion of a resident progenitor/stem cell population in the adult epididymis.
Collapse
Affiliation(s)
- L Pinel
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, Université du Québec, Laval, QC, Canada
| | - M Mandon
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, Université du Québec, Laval, QC, Canada
| | - D G Cyr
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, Université du Québec, Laval, QC, Canada
| |
Collapse
|
12
|
Cyr DG, Dufresne J, Gregory M. Cellular junctions in the epididymis, a critical parameter for understanding male reproductive toxicology. Reprod Toxicol 2018; 81:207-219. [PMID: 30130578 DOI: 10.1016/j.reprotox.2018.08.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 12/28/2022]
Abstract
Epididymal sperm maturation is a critical aspect of male reproduction in which sperm acquire motility and the ability to fertilize an ovum. Sperm maturation is dependent on the creation of a specific environment that changes along the epididymis and which enables the maturation process. The blood-epididymis barrier creates a unique luminal micro-environment, different from blood, by limiting paracellular transport and forcing receptor-mediated transport of macromolecules across the epididymal epithelium. Direct cellular communication between cells allows coordinated function of the epithelium. A limited number of studies have directly examined the effects of toxicants on junctional proteins and barrier function in the epididymis. Effects on the integrity of the blood-epididymis barrier have resulted in decreased fertility and, in some cases, the development of sperm granulomas. Studies have shown that in addition to tight junctions, proteins implicated in the maintenance of adherens junctions and gap junctions alter epididymal functions. This review will provide an overview of the types and roles of cellular junctions in the epididymis, and how these are targeted by different toxicants.
Collapse
Affiliation(s)
- Daniel G Cyr
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, Université du Québec, 531 boul. des Prairies, Laval, Québec, H7V 1B7, Canada.
| | - Julie Dufresne
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, Université du Québec, 531 boul. des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Mary Gregory
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, Université du Québec, 531 boul. des Prairies, Laval, Québec, H7V 1B7, Canada
| |
Collapse
|
13
|
Hejmej A, Bilinska B. The effects of flutamide on cell-cell junctions in the testis, epididymis, and prostate. Reprod Toxicol 2018; 81:1-16. [PMID: 29958919 DOI: 10.1016/j.reprotox.2018.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 12/12/2022]
Abstract
In this review, we summarize recent findings on the effect of the anti-androgen flutamide on cell-cell junctions in the male reproductive system. We outline developmental aspects of flutamide action on the testis, epididymis, and prostate, and describe changes in junction protein expression and organization of junctional complexes in the adult boar following prenatal and postnatal exposure. We also discuss findings on the mechanisms by which flutamide induces alterations in cell-cell junctions in reproductive tissues of adult males, with special emphasis on cytoplasmic effects. Based on the results from in vivo and in vitro studies in the rat, we propose that flutamide affects the expression of junction proteins and junction complex structure not only by inhibiting androgen receptor activity, but equally important by modulating protein kinase-dependent signaling in testicular cells. Additionally, results from studies on prostate cancer cell lines point to a role for the cellular molecular outfit in response to flutamide.
Collapse
Affiliation(s)
- Anna Hejmej
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Barbara Bilinska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
14
|
Fang F, Ni K, Cai Y, Zhao Q, Shang J, Zhang X, Shen S, Xiong C. Busulfan administration produces toxic effects on epididymal morphology and inhibits the expression of ZO-1 and vimentin in the mouse epididymis. Biosci Rep 2017; 37:BSR20171059. [PMID: 29101242 PMCID: PMC5725615 DOI: 10.1042/bsr20171059] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 01/12/2023] Open
Abstract
Busulfan is an alkane sulphonate currently used as an anticancer drug and to prepare azoospermic animal models, because it selectively destroys differentiated spermatogonia in the testes. However, few studies have focussed on the exact effects of busulfan treatment on the epididymis currently. The present study assessed the effect of busulfan on epididymal morphology and the blood-epididymis barrier in mice. We treated mice with a single injection of busulfan and detected the effect at different time points. We showed that busulfan was toxic to the morphological structure and function of the epididymis. Furthermore, busulfan treatment down-regulated the epididymal expression of vimentin and zonula occludens-1 (ZO-1) at the mRNA and protein levels. In addition, there was an increase in total androgen receptor (AR) levels, whereas the estrogen receptor-α (ER-α) levels were reduced, both in the caput and cauda regions after busulfan treatment, which may be secondary to the testicular damage. In conclusion, our study describes the effects of busulfan administration on the mouse epididymis and also provides a potential understanding of male infertility arising from chemotherapy-related defects in the epididymis.
Collapse
Affiliation(s)
- Fang Fang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Ni
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiting Cai
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Zhao
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Shang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoke Zhang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiliang Shen
- Department of Pathology, Zhong Shen Bioscience Inc., Wuhan, China
| | - Chengliang Xiong
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center of Reproductive Medicine, Wuhan Tongji Reproductive Medicine Hospital, Wuhan, China
| |
Collapse
|
15
|
Lee KH. Expressional Changes of Connexin Isoform Genes in the Rat Caput Epididymis Exposed to Flutamide or Estradiol Benzoate at the Early Postnatal Age. Dev Reprod 2017; 21:317-325. [PMID: 29082347 PMCID: PMC5651698 DOI: 10.12717/dr.2017.21.3.317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 09/24/2017] [Accepted: 09/26/2017] [Indexed: 01/30/2023]
Abstract
Direct communication between neighboring cells through connexin
(Cx)-based gap junction is a crucial biolo–gical manner to
regulate functions of a tissue consisting of multi-cell types. The present
research evaluated expressional changes of Cx isoforms in the
caput epididymis of adult rat exposed to estradiol benzoate (EB) or flutamide
(Flu) at the early postnatal age. A single subcutaneous administration of EB at
a low-dose [0.015 µg /kg body weight (BW)] or a high-dose (1.5 µg/kg BW) or Flu
at a low-dose (500 µg/kg BW) or a high-dose (5 mg/kg BW) was performed to an
animal at 1 week of age. Quantitative real-time PCR analysis was employed to
determine expressional changes of Cx isoforms. The transcript
levels of Cxs30.3 and 37 were decreased by a low-dose EB
treatment, while decreases of Cxs31, 31.1, 32, 40, and 45
transcript levels were observed with a low-dose EB treatment. The treatment of a
high-dose EB resulted in expressional reduction of Cxs30.3, 31,
31.1, 37, 40, 43, and 45. The Flu treatment at a low dose caused increases of
Cxs26, 37, and 40 transcript levels but decreases of
Cxs31.1, 43, and 45 transcript levels. Increases of
Cxs30.3, 31, 37, and 40 mRNA amounts were induced by a
high-dose Flu treatment. However, exposure to a high-dose Flu produced
expressional decreases of Cxs31.1, 32, and 43 in the adult
caput epididymis. These observations suggest that exposure to EB or Flu at the
neonatal period could lead to aberrant expression of Cx
isoforms in the adult caput epididymis.
Collapse
Affiliation(s)
- Ki-Ho Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, Eulji University, Daejeon 301-746, Korea
| |
Collapse
|
16
|
Lee KH. Changes in Expression of Connexin Isoforms in the Caudal Epididymis of Adult Sprague-Dawley Rats exposed to Estradiol Benzoate or Flutamide at the Neonatal Age. Dev Reprod 2016; 20:237-245. [PMID: 27796005 PMCID: PMC5078149 DOI: 10.12717/dr.2016.20.3.237] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Direct communication between neighboring cells via gap junction in tissue is important for maintenance and regulation of its physiological functions. Each epididymal region has different composition of cell types. It is well recognized that the epididymis is a steroid hormone-responsive tissue. The present study was designed to determine the effect of estradiol benzoate (EB) or flutamide exposured at the early postnatal age on the expression of connexin (Cx) isoforms in the caudal epididymis. The EB or flutamide was subcutaneously administrated to male Spragure Dawley rat at 7 days of age, and expressional changes of Cx isoforms in the adult corpus epididymis were determined by quantitative real-time PCR. The treatment of low-dose EB resulted in decreases of Cx30.3, Cx31.1, Cx37, and Cx45 expression but caused an increase of Cx32 expression. Exposure to high-dose EB led into expressional increases of Cx31, Cx31.1, Cx32, Cx40, and Cx43, even though a decrease of Cx37 expression was found with a high-dose EB treatment. A low-dose flutamide induced increases of Cx31, Cx31.1, Cx32, and Cx43 expression but a decrease of Cx37 expression. Expression of most Cx genes were significantly increased by a high-dose flutamide, while no expressional change of Cx26 and Cx40 was detected by a high-dose flutamide. These results indicate that expression of Cx isoforms in the caudal epididymis is altered by exposure to steroidal compounds at the prepubertal age. It is suggested that a contact with environmental exogenous materials during the early postnatal period would lead to alteration of epididymal functions at the adult.
Collapse
Affiliation(s)
- Ki-Ho Lee
- Dept. of Biochemistry and Molecular Biology, College of Medicine, Eulji University, Daejeon 301-746, Korea
| |
Collapse
|
17
|
Oliveira RL, Parent A, Cyr DG, Gregory M, Mandato CA, Smith CE, Hermo L. Implications of caveolae in testicular and epididymal myoid cells to sperm motility. Mol Reprod Dev 2016; 83:526-40. [PMID: 27088550 DOI: 10.1002/mrd.22649] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/08/2016] [Indexed: 12/25/2022]
Abstract
Seminiferous tubules of the testis and epididymal tubules in adult rodents are enveloped by contractile myoid cells, which move sperm and fluids along the male reproductive tract. Myoid cells in the testis influence Sertoli cells by paracrine signaling, but their role in the epididymis is unknown. Electron microscopy revealed that elongated myoid cells formed several concentric layers arranged in a loose configuration. The edges of some myoid cells in a given layer closely approximated one another, and extended small foot-like processes to cells of overlying layers. Gap junction proteins, connexins 32 and 43, were detected within the myoid cell layers by immunohistochemistry. These myoid cells also had caveolae that contained caveolin-1 and cavin-1 (also known as PTRF). The number of caveolae per unit area of plasma membrane was significantly reduced in caveolin-1-deficient mice (Cav1(-/-) ). Morphometric analyses of Cav1-null testes revealed an enlargement in whole-tubule and epithelial profile areas, whereas these parameters were slightly reduced in the epididymis. Although sperm are non-motile as they pass through the proximal epididymis, statistical analyses of cauda epididymidis sperm concentrations revealed no significant differences between wild-type and Cav1(-/-) mice. Motility analyses, however, indicated that sperm velocity parameters were reduced while beat cross frequency was higher in gametes of Cav1(-/-) mice. Thus while caveolae and their associated proteins are not necessary for myoid cell contractility, they appear to be crucial for signaling with the epididymal epithelium to regulate the proper acquisition of sperm motility. Mol. Reprod. Dev. 83: 526-540, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Regiana L Oliveira
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Adam Parent
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Daniel G Cyr
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
- INRS-Institut Armand Frappier, Université du Québec, Laval, Quebec, Canada
| | - Mary Gregory
- INRS-Institut Armand Frappier, Université du Québec, Laval, Quebec, Canada
| | - Craig A Mandato
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Charles E Smith
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Louis Hermo
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| |
Collapse
|
18
|
Adam C, Cyr DG. Role of Specificity Protein-1 and Activating Protein-2 Transcription Factors in the Regulation of the Gap Junction Protein Beta-2 Gene in the Epididymis of the Rat. Biol Reprod 2016; 94:120. [PMID: 27053364 PMCID: PMC6702783 DOI: 10.1095/biolreprod.115.133702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 04/04/2016] [Indexed: 12/02/2022] Open
Abstract
In prepubertal rats, connexin 26 (GJB2) is expressed between adjacent columnar cells of the epididymis. At 28 days of age, when columnar cells differentiate into adult epithelial cell types, Gjb2 mRNA levels decrease to barely detectable levels. There is no information on the regulation of GJB2 in the epididymis. The present study characterized regulation of the Gjb2 gene promoter in the epididymis. A single transcription start site at position −3829 bp relative to the ATG was identified. Computational analysis revealed several TFAP2A, SP1, and KLF4 putative binding sites. A 1.5-kb fragment of the Gjb2 promoter was cloned into a vector containing a luciferase reporter gene. Transfection of the construct into immortalized rat caput epididymal (RCE-1) cells indicated that the promoter contained sufficient information to drive expression of the reporter gene. Deletion constructs showed that the basal activity of the promoter resides in the first −230 bp of the transcriptional start site. Two response elements necessary for GJB2 expression were identified: an overlapping TFAP2A/SP1 site (−136 to −126 bp) and an SP1 site (−50 bp). Chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assays confirmed that SP1 and TFAP2A were bound to the promoter. ChIP analysis of chromatin from young and pubertal rats indicated that TFAP2A and SP1 binding decreased with age. SP1 and TFAP2A knockdown indicated that SP1 is necessary for Gjb2 expression. DNA methylation did not appear to be involved in the regulation of Gjb2 expression. Results indicate that SP1 and TFAP2A regulate Gjb2 promoter activity during epididymal differentiation in rat.
Collapse
Affiliation(s)
- Cécile Adam
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
| | - Daniel G Cyr
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
| |
Collapse
|
19
|
Lee SK, Lee KH. Aberrant Expression of Connexin Isoforms in the Corpus Epididymis of the Adult Rat by Exposure to Estradiol Benzoate or Flutamide at the Weaning Age. Dev Reprod 2016; 19:217-26. [PMID: 26973973 PMCID: PMC4786483 DOI: 10.12717/dr.2015.19.4.217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A proper development of the epididymis during the early postnatal development is required for successful fertility in the adult male. Direct cell-cell communication via connexin (Cx) molecules is a common way of cellular interactions to achieve normal development of a given tissue consisting of different cell types. The present research was attempted to determine the effect of exogenous exposure to estrogenic agonist or antiandrogen at the weaning age on expression of Cx isoforms in the adult corpus epididymis. Male rats were subcutaneously administrated with estradiol benzoate (EB) or flutamide (Flu) at the weaning age. The tissue was collected at 4 months of age. Expressional levels of Cx isoforms were determined by a quantitative real-time PCR. Statistical comparison showed significant increases of Cxs31, 32, 37, 40, and 43 transcript amounts by a treatment of 0.015 mg of EB /kg body weight (BW). A treatment of 1.5 μg of EB /kg BW caused a significant decrease of Cx43 gene expression but increases of Cxs26, 31, 32, 37, and 40 transcript levels. Exposure to 500 mg of Flu/kg BW induced an increase of Cx37 expression but significant decreases of Cxs43 and 45 mRNA levels. Expression of Cx37 was increased by a treatment of 5 mg of Flu/kg BW, while transcript levels of Cxs26, 30.3, 31, 31.1, 32, and 43 were significantly decreased by same treatment. These results demonstrate that exposure to steroidal compounds at the early developmental age alters expression of Cx isoforms in the adult corpus epididymis.
Collapse
Affiliation(s)
- Seong-Kyu Lee
- Dept. of Biochemistry and Molecular Biology, College of Medicine, Eulji University, Daejeon 301-746, Korea
| | - Ki-Ho Lee
- Dept. of Biochemistry and Molecular Biology, College of Medicine, Eulji University, Daejeon 301-746, Korea
| |
Collapse
|
20
|
Kidder GM, Cyr DG. Roles of connexins in testis development and spermatogenesis. Semin Cell Dev Biol 2016; 50:22-30. [PMID: 26780117 DOI: 10.1016/j.semcdb.2015.12.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 02/06/2023]
Abstract
The development and differentiation of cells involved in spermatogenesis requires highly regulated and coordinated interactions between cells. Intercellular communication, particularly via connexin43 (Cx43) gap junctions, plays a critical role in the development of germ cells during fetal development and during spermatogenesis in the adult. Loss of Cx43 in the fetus results in a decreased number of germ cells, while the loss of Cx43 in the adult Sertoli cells results in complete inhibition of spermatogenesis. Connexins 26, 32, 33, 36, 45, 46 and 50 have also been localized to specific compartments of the testis in various mammals. Loss of Cx46 is associated with an increase in germ cell apoptosis and loss of the integrity of the blood-testis barrier, while loss of other connexins appears to have more subtle effects within the seminiferous tubule. Outside the seminiferous tubule, the interstitial Leydig cells express connexins 36 and 45 along with Cx43; deletion of the latter connexin did not reveal it to be crucial for steroidogenesis or for the development and differentiation of Leydig cells. In contrast, loss of Cx43 from Sertoli cells results in Leydig cell hyperplasia, suggesting important cross-talk between Sertoli and Leydig cells. In the epididymis connexins 26, 30.3, Cx31.1, 32, and 43 have been identified and differentiation of the epithelium is associated with dramatic changes in their expression. Decreased expression of Cx43 results in decreased sperm motility, a function acquired by spermatozoa during epididymal transit. Clearly, intercellular gap junctional communication within the testis and epididymis represents a critical aspect of male reproductive function and fertility. The implications of this mode of intercellular communication for male fertility remains a poorly understood but important facet of male reproduction.
Collapse
Affiliation(s)
- Gerald M Kidder
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada.
| | - Daniel G Cyr
- INRS-Institut Armand-Frappier, University of Québec, 531 boul. des Prairies, Laval, Québec H7V 1B7, Canada
| |
Collapse
|
21
|
Mandon M, Hermo L, Cyr DG. Isolated Rat Epididymal Basal Cells Share Common Properties with Adult Stem Cells. Biol Reprod 2015; 93:115. [PMID: 26400399 DOI: 10.1095/biolreprod.115.133967] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/15/2015] [Indexed: 01/05/2023] Open
Abstract
There is little information on the function of epididymal basal cells. These cells secrete prostaglandins, can metabolize radical oxygen species, and have apical projections that are components of the blood-epididymis barrier. The objective of this study was to develop a reproducible protocol to isolate rat epididymal basal cells and to characterize their function by gene expression profiling. Integrin-alpha6 was used to isolate a highly purified population of basal cells. Microarray analysis indicated that expression levels of 552 genes were enriched in basal cells relative to other cell types. Among these genes, 45 were expressed at levels of 5-fold or greater. These highly expressed genes coded for proteins implicated in cell adhesion, cytoskeletal function, ion transport, cellular signaling, and epidermal function, and included proteases and antiproteases, signal transduction, and transcription factors. Several highly expressed genes have been reported in adult stem cells, suggesting that basal cells may represent an epididymal stem cell population. A basal cell culture was established that showed that these basal cells can differentiate in vitro from keratin (KRT) 5-positive cells to cells that express KRT8 and connexin 26, a marker of columnar cells. These data provide novel information on epididymal basal cell gene expression and suggest that these cells can act as adult stem cells.
Collapse
Affiliation(s)
- Marion Mandon
- Laboratory for Reproductive Toxicology, Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Quebec, Canada
| | - Louis Hermo
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Daniel G Cyr
- Laboratory for Reproductive Toxicology, Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Quebec, Canada Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Kibschull M, Gellhaus A, Carette D, Segretain D, Pointis G, Gilleron J. Physiological roles of connexins and pannexins in reproductive organs. Cell Mol Life Sci 2015; 72:2879-98. [PMID: 26100514 PMCID: PMC11114083 DOI: 10.1007/s00018-015-1965-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/11/2015] [Indexed: 12/15/2022]
Abstract
Reproductive organs are complex and well-structured tissues essential to perpetuate the species. In mammals, the male and female reproductive organs vary on their organization, morphology and function. Connectivity between cells in such tissues plays pivotal roles in organogenesis and tissue functions through the regulation of cellular proliferation, migration, differentiation and apoptosis. Connexins and pannexins can be seen as major regulators of these physiological processes. In the present review, we assembled several lines of evidence demonstrating that these two families of proteins are essential for male and female reproduction.
Collapse
Affiliation(s)
- Mark Kibschull
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 25 Orde Street, Toronto, M5T 3H7 Canada
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Diane Carette
- UMR S1147, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France
- University of Versailles, 78035 Saint Quentin, France
- INSERM U 1065, University of Nice Sophia-Antipolis, 151 Route Saint-Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex 3, France
| | - Dominique Segretain
- UMR S1147, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France
- University of Versailles, 78035 Saint Quentin, France
| | - Georges Pointis
- INSERM U 1065, University of Nice Sophia-Antipolis, 151 Route Saint-Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex 3, France
| | - Jerome Gilleron
- INSERM U 1065, University of Nice Sophia-Antipolis, 151 Route Saint-Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex 3, France
| |
Collapse
|
23
|
Lee KH. Exogenous exposure to estradiol benzoate or flutamide at the weaning age alters expression of connexin isoforms in the initial segment of male rat. Dev Reprod 2015; 19:43-51. [PMID: 25949209 DOI: 10.12717/devrep.2015.19.1.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 02/23/2015] [Accepted: 03/10/2015] [Indexed: 11/17/2022]
Abstract
Connexin (Cx) is a complex which allows direct communication between neighboring cells via exchange of signaling molecules and eventually leads to functional harmony of cells in a tissue. The initial segment (IS) is an excurrent duct of male reproductive tract and expression of numerous genes in the IS are controlled by andevrepogens and estrogens. The effects of these steroid hormones on gene expression in the IS during postnatal development have not extensively examined. The present research investigated expressional modulation of Cx isoforms in the IS by exogenous exposure to estrogen agonist, estradiol benzoate (EB), or andevrepogen antagonist, flutamide (Flu), at weaning age. Two different doses of EB or Flu were subcutaneously administrated in 21-day old of male rats, and expressional changes of Cx isoforms in the adult IS were analyzed by quantitative real-time PCR. Treatment of a low-dose EB (0.015 μg/kg body weight) resulted in an increased expression of Cx31 gene and a decreased expression of Cx37 gene. A high-dose EB (1.5 μg/kg body weight) treatment caused an increase of Cx31 gene expression. Increased levels of Cx30.3 and Cx40 transcripts were observed with a low-dose Flu (500 μg/kg body weight) treatment. Treatment of high-dose Flu (50 mg/kg body weight) led to expressional increases of Cx30.3, 40, and 43 genes. Our previous and present findings suggest differential responsiveness on gene expression of Cx isoforms in the IS by andevrepogens and estrogens at different postnatal ages.
Collapse
Affiliation(s)
- Ki-Ho Lee
- Dept. of Biochemistry and Molecular Biology, College of Medicine, Eulji University, Daejeon 301-746, Korea
| |
Collapse
|
24
|
Lee KH. Exogenous exposure to estradiol benzoate or flutamide at the weaning age alters expression of connexin isoforms in the initial segment of male rat. Dev Reprod 2015. [PMID: 25949209 PMCID: PMC4415663 DOI: 10.12717/dr.2015.19.1.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Connexin (Cx) is a complex which allows direct communication between neighboring cells via exchange of signaling molecules and eventually leads to functional harmony of cells in a tissue. The initial segment (IS) is an excurrent duct of male reproductive tract and expression of numerous genes in the IS are controlled by androgens and estrogens. The effects of these steroid hormones on gene expression in the IS during postnatal development have not extensively examined. The present research investigated expressional modulation of Cx isoforms in the IS by exogenous exposure to estrogen agonist, estradiol benzoate (EB), or androgen antagonist, flutamide (Flu), at weaning age. Two different doses of EB or Flu were subcutaneously administrated in 21-day old of male rats, and expressional changes of Cx isoforms in the adult IS were analyzed by quantitative real-time PCR. Treatment of a low-dose EB (0.015 μg/kg body weight) resulted in an increased expression of Cx31 gene and a decreased expression of Cx37 gene. A high-dose EB (1.5 μg/kg body weight) treatment caused an increase of Cx31 gene expression. Increased levels of Cx30.3 and Cx40 transcripts were observed with a low-dose Flu (500 μg/kg body weight) treatment. Treatment of high-dose Flu (50 mg/kg body weight) led to expressional increases of Cx30.3, 40, and 43 genes. Our previous and present findings suggest differential responsiveness on gene expression of Cx isoforms in the IS by androgens and estrogens at different postnatal ages.
Collapse
Affiliation(s)
- Ki-Ho Lee
- Dept. of Biochemistry and Molecular Biology, College of Medicine, Eulji University, Daejeon 301-746, Korea
| |
Collapse
|
25
|
Lee KH. Expressional Modulation of Connexin Isoforms in the Initial Segment of Male Rat treated with Estradiol Benzoate or Flutamide. Dev Reprod 2015. [PMID: 25949200 PMCID: PMC4415647 DOI: 10.12717/dr.2014.18.4.293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Direct cell-cell communication through connexin (Cx) complexes is a way to achieve functional accordance of cells within a tissue or an organ. The initial segment (IS), a part of the epididymis, plays important roles in sperm maturation. Steroid hormones influence on expression of a number of genes in the IS of adult animals. However, developmental effect of sex hormones on the gene expression in the IS has not been examined. In this study, estradiol benzoate (EB, an estrogen agonist) or flutamide (Flu, an andevrepogen antagonist) was exogenously administrated at 1 week of postnatal age, and expressional changes of Cx genes in the IS were determined at 4 months of age by a quantitative real-time PCR analysis. Treatment of EB at 0.015 μg/kg body weight (BW) increased expression of Cx30.3, 31.1, and 43 genes. However, treatment of 1.5 μg EB/kg BW resulted in expressional decreases of Cx31, 32, and 45 genes and caused increases of Cx30.3 and 43 gene expression. Significant decreases of Cx31, 31.1, 32, 37, and 45 gene expression were detected with a treatment of 500 μg Flu/kg BW, while expression of Cx43 gene was significantly increased with a treatment of 500 μg Flu/kg BW. A treatment of 50 mg Flu/kg BW led to significant increases of Cx30.3, 32, 37, 40, and 43 gene expression. These findings imply that exogenous exposure of steroidal hormones during the early developmental period would result in aberrant expression of Cx genes in the adult IS.
Collapse
Affiliation(s)
- Ki-Ho Lee
- Dept. of Biochemistry and Molecular Biology, College of Medicine, Eulji University, Daejeon 301-746, Korea
| |
Collapse
|
26
|
Lee KH. Expressional Modulation of Connexin Isoforms in the Initial Segment of Male Rat treated with Estradiol Benzoate or Flutamide. Dev Reprod 2015; 18:293-300. [PMID: 25949200 DOI: 10.12717/devrep.2014.18.4.293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 11/17/2022]
Abstract
Direct cell-cell communication through connexin (Cx) complexes is a way to achieve functional accordance of cells within a tissue or an organ. The initial segment (IS), a part of the epididymis, plays important roles in sperm maturation. Steroid hormones influence on expression of a number of genes in the IS of adult animals. However, developmental effect of sex hormones on the gene expression in the IS has not been examined. In this study, estradiol benzoate (EB, an estrogen agonist) or flutamide (Flu, an andevrepogen antagonist) was exogenously administrated at 1 week of postnatal age, and expressional changes of Cx genes in the IS were determined at 4 months of age by a quantitative real-time PCR analysis. Treatment of EB at 0.015 μg/kg body weight (BW) increased expression of Cx30.3, 31.1, and 43 genes. However, treatment of 1.5 μg EB/kg BW resulted in expressional decreases of Cx31, 32, and 45 genes and caused increases of Cx30.3 and 43 gene expression. Significant decreases of Cx31, 31.1, 32, 37, and 45 gene expression were detected with a treatment of 500 μg Flu/kg BW, while expression of Cx43 gene was significantly increased with a treatment of 500 μg Flu/kg BW. A treatment of 50 mg Flu/kg BW led to significant increases of Cx30.3, 32, 37, 40, and 43 gene expression. These findings imply that exogenous exposure of steroidal hormones during the early developmental period would result in aberrant expression of Cx genes in the adult IS.
Collapse
Affiliation(s)
- Ki-Ho Lee
- Dept. of Biochemistry and Molecular Biology, College of Medicine, Eulji University, Daejeon 301-746, Korea
| |
Collapse
|
27
|
Effect of cyclosporine A on the structure of adult albino rat testis and the role of lycopene supplementation. ACTA ACUST UNITED AC 2014. [DOI: 10.1097/01.ehx.0000446585.19443.d3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Arrighi S. Are the basal cells of the mammalian epididymis still an enigma? Reprod Fertil Dev 2014; 26:1061-71. [DOI: 10.1071/rd13301] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 09/16/2013] [Indexed: 12/18/2022] Open
Abstract
Basal cells are present in the columnar pseudostratified epithelium covering the epididymis of all mammalian species, which regulates the microenvironment where the functionally incompetent germ cells produced by the testis are matured and stored. Striking novelties have come from investigations on epididymal basal cells in the past 30–40 years. In addition to an earlier hypothesised scavenger role for basal cells, linked to their proven extratubular origin and the expression of macrophage antigens, basal cells have been shown to be involved in cell–cell cross-talk, as well as functioning as luminal sensors to regulate the activity of principal and clear cells. Involvement of basal cells in the regulation of electrolyte and water transport by principal cells was hypothesised. This control is suggested to be mediated by the local formation of prostaglandins. Members of the aquaporin (AQP) and/or aquaglyceroporin family (AQP3, AQP7 and AQP8) are also specifically expressed in the rat epididymal basal cells. Transport of glycerol and glycerylphosphorylcholine from the epithelium of the epididymis to the lumen in relation to sperm maturation may be mediated by AQP. Most probably basal cells collaborate to the building up of the blood–epididymis barrier through cell adhesion molecules, implying an involvement in immune control exerted towards sperm cells, which are foreigners in the environment in which they were produced.
Collapse
|
29
|
Lee KH. Differential Expression of Multiple Connexins in Rat Corpus and Cauda Epididymis at Various Postnatal Stages. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2013. [DOI: 10.5187/jast.2013.55.6.521] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Han SY, Lee KH. The Expression Patterns of Connexin Isoforms in the Rat Caput Epididymis During Postnatal Development. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2013. [DOI: 10.5187/jast.2013.55.4.249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Dubé E, Dufresne J, Chan PTK, Cyr DG. Epidermal growth factor regulates connexin 43 in the human epididymis: role of gap junctions in azoospermia. Hum Reprod 2012; 27:2285-96. [PMID: 22611165 DOI: 10.1093/humrep/des164] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Gap junctions (GJs) allow for direct communication between adjacent cells. They are composed of connexons consisting of transmembrane proteins, connexins (Cxs). The objectives of this study were to determine if GJ proteins GJA1 (Cx43), GJB1 (Cx32) and GJB2 (Cx26) are present in the epididymis of men with a normal epididymis, to assess whether or not Cx expression and localization are altered in azoospermic patients, and to determine if epidermal growth factor (EGF) regulates GJA1 expression. METHODS Epididymides were obtained from men with localized testis cancer with active spermatogenesis and histologically normal epididymal tubule (group 1), men with non-obstructive azoospermia secondary to Sertoli-cell only syndrome (group 2) and from azoospermic men with normal spermatogenesis and epididymal obstruction (group 3). Epididymides were subdivided into three segments: caput, corpus and cauda. Quantitative real-time RT-PCR was performed to assess GJA1, GJB1, GJB2 and EGF receptor (EGFR) mRNA levels in epididymides from patients from each group (all n=3, except n=1 for caput blockage). A human caput epididymal cell line was then used to determine the role of EGFR signaling on the regulation of human epididymal GJA1. RESULTS Real-time RT-PCR analysis revealed that GJA1, GJB1, GJB2 and EGFR were expressed along the human epididymis. In the cauda epididymidis of group 2 and 3 men, we observed a significant decrease in GJA1 (P=0.0456 and P=0.0465, respectively) and GJB1 (P=0.0450 and P=0.0497, respectively) mRNA levels when compared with group 1 men. We also observed a decrease in EGFR mRNA levels (P=0.0358) in the cauda epididymidis of group 3 men when compared with group 1. Immunocytochemistry revealed that in the epididymis, GJA1 and EGFR were localized between basal and principal cells and between adjacent principal cells. In group 2 and 3 patients, however, we noted a dramatic increase in cytosolic immunostaining for both GJA1 and EGFR in both principal and basal cells. Using a human caput epididymal cell line derived from fertile men, we demonstrated that changes in GJA1 phosphorylation could be regulated by EGF (P=0.015) and the extracellular regulated kinase 1/2 signaling pathway (P=0.03). Furthermore, while the phosphoinositide-3-kinase (PI3K)/AKT signaling pathway did not alter GJA1 phosphorylation, treatment with PI3K/AKT inhibitor LY294002 significantly (P=0.024) inhibited the EGF-stimulated increase in GJA1 total protein levels at 24 h. Immunolocalization indicated that loss of PI3K/AKT signaling was associated with increased cytosolic localization of Cx43 in this cell line. CONCLUSIONS Together, these data suggest that in azoospermic men decreased expression of EGFR may be responsible for decreasing GJA1 levels and increasing its cytosolic localization via the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Evemie Dubé
- INRS-Institut Armand Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, QC, Canada H7V 1B7
| | | | | | | |
Collapse
|
32
|
Yeung CH, Wang K, Cooper TG. Why are epididymal tumours so rare? Asian J Androl 2012; 14:465-75. [PMID: 22522502 DOI: 10.1038/aja.2012.20] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epididymal tumour incidence is at most 0.03% of all male cancers. It is an enigma why the human epididymis does not often succumb to cancer, when it expresses markers of stem and cancer cells, and constitutively expresses oncogenes, pro-proliferative and pro-angiogenic factors that allow tumour cells to escape immunosurveillance in cancer-prone tissues. The privileged position of the human epididymis in evading tumourigenicity is reflected in transgenic mouse models in which induction of tumours in other organs is not accompanied by epididymal neoplasia. The epididymis appears to: (i) prevent tumour initiation (it probably lacks stem cells and has strong anti-oxidative mechanisms, active tumour suppressors and inactive oncogene products); (ii) foster tumour monitoring and destruction (by strong immuno-surveillance and -eradication, and cellular senescence); (iii) avert proliferation and angiogenesis (with persistent tight junctions, the presence of anti-angiogenic factors and misplaced pro-angiogenic factors), which together (iv) promote dormancy and restrict dividing cells to hyperplasia. Epididymal cells may be rendered non-responsive to oncogenic stimuli by the constitutive expression of factors generally inducible in tumours, and resistant to the normal epididymal environment, which mimics that of a tumour niche promoting tumour growth. The threshold for tumour initiation may thus be higher in the epididymis than in other organs. Several anti-tumour mechanisms are those that maintain spermatozoa quiescent and immunologically silent, so the low incidence of cancer in the epididymis may be a consequence of its role in sperm maturation and storage. Understanding these mechanisms may throw light on cancer prevention and therapy in general.
Collapse
Affiliation(s)
- Ching-Hei Yeung
- Shandong Stem Cell Engineering and Technology Research Centre, YuHuangDing Hospital, Yantai, China
| | | | | |
Collapse
|
33
|
Alkafafy M, Rashed R, Emara S, Nada M, Helal A. Histological and immunohistochemical studies on the epididymal duct in the dromedary camel (Camelus dromedarius). Anat Cell Biol 2011; 44:284-94. [PMID: 22254157 PMCID: PMC3254882 DOI: 10.5115/acb.2011.44.4.284] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 09/21/2011] [Accepted: 09/27/2011] [Indexed: 11/27/2022] Open
Abstract
This study was conducted to underscore the spatial distribution of some biologically active proteins within the epididymal duct in the dromedary camel. Paraffin-embedded sections from different regions of epididymis were stained by conventional histological techniques and by immunohistochemistry. A battery of primary antibodies against six proteins (S100, alpha smooth muscle actin [α-SMA], connexin-43 [Cx43], galactosyltransferase [GalTase], angiotensin converting enzyme [ACE], and vascular endothelial growth factor [VEGF]) were used. The epididymal epithelium consisted of five cell populations: principal, basal, apical, dark, and halo cells. The histochemical findings indicated the absence of binding sites for VEGF and Cx43. The principal cells (PCs) showed variable immunoreactivity (IR) for ACE, S100, and GalTase throughout the whole length of the duct. The apical surfaces of most PCs (at the caput) and some PCs (at the corpus) exhibited intense ACE-IR, whereas those at the cauda displayed alternating negative and strong immunostaining. Similarly, moderate S100-IR was found in cytoplasm and nuclei of all PCs at the caput, few PCs at the corpus, and several PCs alternating with negative PCs at the cauda. In contrast, only some PCs showed weak to strong GalTase-IR in different regions. Apart from negative to weak positive S100-IR, basal cells failed to show IR for all other proteins. Apical cells displayed strong IR for ACE, S100, and GalTase with some regional differences. The peritubular and vascular smooth muscle cells revealed strong α-SMA-IR in all regions. In conclusion, the spatial distribution of different proteins in camel epididymis showed similarities and differences to other mammalian species. The region-specific topographic distribution of different proteins and cell types might indicate that the caput and cauda are metabolically more active than that of the corpus.
Collapse
Affiliation(s)
- Mohamed Alkafafy
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Minufiya University, Sadat City Branch, Sadat City, Minufiya, Egypt
| | | | | | | | | |
Collapse
|
34
|
Gregory M, Kahiri CN, Barr KJ, Smith CE, Hermo L, Cyr DG, Kidder GM. Male reproductive system defects and subfertility in a mutant mouse model of oculodentodigital dysplasia1. ACTA ACUST UNITED AC 2011; 34:e630-41. [DOI: 10.1111/j.1365-2605.2011.01224.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
35
|
Cyr DG. Connexins and pannexins: Coordinating cellular communication in the testis and epididymis. SPERMATOGENESIS 2011; 1:325-338. [PMID: 22332116 DOI: 10.4161/spmg.1.4.18948] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 10/21/2011] [Accepted: 11/07/2011] [Indexed: 12/15/2022]
Abstract
Gap junctions and connexins are critical for coordinating cellular functions in complex epithelia. In recent years there has been increased interest in understanding the regulation and function of gap junctions in both the testis and epididymis. Studies in transgenic mice in which connexin 43 (Cx43) is mutated or is knocked down only in Sertoli cells have demonstrated the essential role of Cx43 in spermatogenesis and differentiation of Sertoli cells. In the epididymis developmental studies have shown a role for numerous connexins in the differentiation of epithelial cells and communication between the basal cells and both principal and clear cells. In both tissues several factors, such thyroid hormones and androgens, are important in regulating expression and function of connexins. Pannexins, which form cellular channels but are structurally similar to gap junction proteins, have been identified in both testis and epididymis and, in the epididymis, are regulated by androgens. The objective of this review is to summarize the advances that have been made on the role and regulation of connexins and pannexins in the testis and epididymis and their implication in spermatogenesis and sperm maturation.
Collapse
Affiliation(s)
- Daniel G Cyr
- INRS-Institut Armand Frappier; University of Quebec; Laval, QC Canada
| |
Collapse
|
36
|
Lydka M, Kopera-Sobota I, Kotula-Balak M, Chojnacka K, Zak D, Bilinska B. Morphological and functional alterations in adult boar epididymis: Effects of prenatal and postnatal administration of flutamide. Acta Vet Scand 2011; 53:12. [PMID: 21342526 PMCID: PMC3050768 DOI: 10.1186/1751-0147-53-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 02/22/2011] [Indexed: 11/18/2022] Open
Abstract
Background The dynamic cross-talk between epididymal cells is hormonally regulated and, in part, through direct cell-to-cell interactions. To date, no information is available regarding possible impact of anti-androgens on the proteins involved in the gap junctional communication within the boar epididymis. Thus, a question arised whether prenatal or postnatal exposure to an anti-androgen flutamide alters the expression of gap junction protein - connexin43 (Cx43) and androgen receptor (AR) expression in the caput, corpus and cauda epididymis and leads to delayed effects on morphology and function of adult pig epididymis. Methods First two experimental groups received flutamide prenatally on gestational days 20-28 and 80-88 (GD20 and GD80) and further two groups were exposed to flutamide postanatally on days 2-10 and 90-98 after birth (PD2 and PD90). Epididymides were collected from adult boars. Routine histology was performed using hematoxylin-eosin staining. The expression of Cx43 and AR were analyzed using immunohistochemistry and Western blotting. Both analyses were supported by quantitative approaches to demonstrate the variations of the expression levels following the treatment. Apoptotic cells were identified using TUNEL assay. Results Histological examination revealed differences in epididymal morphology of flutamide-exposed boars when compared to controls. Scarce spermatic content were seen within the corpus and cauda lumina of GD20, PD2 and PD90 groups. Concomitantly, frequency of epididymal cell apoptosis was significantly higher (p < 0.05) after exposure to flutamide at GD20. Moreover, in GD20, PD2, and PD90 groups, significantly lower AR expression (p < 0.05) was found in the principal and basal cells of the corpus and cauda regions, while in the stromal cells AR expression was significantly reduced (p < 0.05) along the epididymal duct. Concomitantly, a decrease in Cx43 expression (p < 0.05) was noticed in the stromal cells of the cauda region of GD20 and PD2 groups. This indicates high sensitivity of the stromal cells to androgen withdrawal. Conclusions The region-specific alterations in the epididymis morphology and scarce spermatic content within the lumina of the corpus and cauda indicate that flutamide can induce delayed effects on the epididymal function of the adult boar by decrease in AR protein levels that results in altered androgen signaling. This may cause disturbances in androgen-dependent processes including Cx43 (de)regulation, however, we can not exclude the possibility that in response to flutamide decreased Cx43 expression may represent one mechanism responsible for functional disturbance of the boar epididymis.
Collapse
|
37
|
Turmel P, Dufresne J, Hermo L, Smith CE, Penuela S, Laird DW, Cyr DG. Characterization of pannexin1 and pannexin3 and their regulation by androgens in the male reproductive tract of the adult rat. Mol Reprod Dev 2011; 78:124-38. [DOI: 10.1002/mrd.21280] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Alkafafy M, Elnasharty M, Sayed-Ahmed A, Abdrabou M. Immunohistochemical studies of the epididymal duct in Egyptian water buffalo (Bubalus bubalis). Acta Histochem 2011; 113:96-102. [PMID: 19836061 DOI: 10.1016/j.acthis.2009.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 08/16/2009] [Accepted: 08/17/2009] [Indexed: 10/20/2022]
Abstract
Using immunohistochemistry (IHC), this study aimed to evaluate the regional distribution pattern of some biologically active proteins in the epididymis of Egyptian water buffalo and to determine the structural-functional relationships of the different epididymal structures. Wax-embedded sections from different regions of the epididymal duct from adult, clinically healthy, buffalo bulls were used. Primary antibodies against angiotensin converting enzyme (ACE), S-100, galactosyltransferase (GalTase), alpha smooth muscle actin (α-SMA), connexin 43 (Cx43) and vascular endothelial growth factor (VEGF) were used for immunohistochemical studies. The results showed that, in addition to the well-known principal and basal cells, the epididymal epithelium, similar to that of other species, possessed apical cells and intraepithelial leukocytes. IHC showed that, with the exception of VEGF which reacted negatively, all antibodies used displayed variable reactivity in the different epididymal structures. Apical cells expressed a strong reaction with ACE along the entire length of the duct. The principal cells in the caput epididymis exhibited a distinct reactivity with S-100 and GalTase. The peritubular muscular coat displayed a marked immunostaining for α-SMA and for Cx43. In conclusion these findings showed a regional-specific distribution pattern, distinct from that in bovine bulls. Some potential functional capacities, especially absorptive and secretory ones, are discussed in relation to the different epididymal regions.
Collapse
|
39
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 5: intercellular junctions and contacts between germs cells and Sertoli cells and their regulatory interactions, testicular cholesterol, and genes/proteins associated with more than one germ cell generation. Microsc Res Tech 2010; 73:409-94. [PMID: 19941291 DOI: 10.1002/jemt.20786] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the testis, cell adhesion and junctional molecules permit specific interactions and intracellular communication between germ and Sertoli cells and apposed Sertoli cells. Among the many adhesion family of proteins, NCAM, nectin and nectin-like, catenins, and cadherens will be discussed, along with gap junctions between germ and Sertoli cells and the many members of the connexin family. The blood-testis barrier separates the haploid spermatids from blood borne elements. In the barrier, the intercellular junctions consist of many proteins such as occludin, tricellulin, and claudins. Changes in the expression of cell adhesion molecules are also an essential part of the mechanism that allows germ cells to move from the basal compartment of the seminiferous tubule to the adluminal compartment thus crossing the blood-testis barrier and well-defined proteins have been shown to assist in this process. Several structural components show interactions between germ cells to Sertoli cells such as the ectoplasmic specialization which are more closely related to Sertoli cells and tubulobulbar complexes that are processes of elongating spermatids embedded into Sertoli cells. Germ cells also modify several Sertoli functions and this also appears to be the case for residual bodies. Cholesterol plays a significant role during spermatogenesis and is essential for germ cell development. Lastly, we list genes/proteins that are expressed not only in any one specific generation of germ cells but across more than one generation.
Collapse
Affiliation(s)
- Louis Hermo
- Faculty of Medicine, Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 2B2.
| | | | | | | |
Collapse
|
40
|
Hejmej A, Kotula-Balak M, Sadowska J, Bilińska B. Expression of connexin 43 protein in testes, epididymides and prostates of stallions. Equine Vet J 2010; 39:122-7. [PMID: 17378440 DOI: 10.2746/042516407x169393] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
REASONS FOR PERFORMING STUDY Connexin 43 (Cx43) is a ubiquitously distributed gap junction protein in testes and other reproductive tissues. Adjacent cells share ions and small metabolites through intercellular channels, which are present in gap junctions. Previously, Cx43 has not been reported in testes, epididymides and prostates either in healthy stallions or cryptorchid horses. OBJECTIVES To demonstrate the expression pattern of Cx43 in the reproductive tissues of stallions and examine whether naturally occurring bilateral cryptorchidism has any influence on distribution and expression of Cx43. METHODS The expression and the presence of Cx43 protein were detected by means of immunohistochemistry and Western blot analysis using a polyclonal rabbit anti-Cx43 antibody. RESULTS In stallions, gap junctions appeared as structures localised to cell-cell contacts between adjacent cells. In testes, Cx43 expression was detected in the interstitial tissue and seminiferous tubules, between Leydig and Sertoli, as well as Sertoli and germ cells. In epididymides, Cx43 was localised between epithelial cells, whereas in prostates, between secretory cells of the glandular epithelium. In the cryptorchid, a clear reduction of Cx43 signal was observed in all reproductive tissues. CONCLUSIONS Coupling of Leydig cells via gap junctions may suggest that steroidogenic function of the testis is under the influence of these intercellular channels. Within seminiferous tubules, the expression was found to be stage-specific, pointing to its role in coordinating spermatogenesis. Differential distribution of Cx43 protein in the reproductive tract of normal and cryptorchid stallions indicates that expression is clearly dependent on the physiological status of the horse. POTENTIAL RELEVANCE Detection of Cx43 expression in equine testicular, epididymal, and prostatic cells is important for a better understanding of the role of intercellular membrane channels in direct cell communication within the reproductive tract of stallions.
Collapse
Affiliation(s)
- A Hejmej
- Department of Endocrinology and Tissue Culture, Institute of Zoology, Jagiellonian University, Ingardena 6, 30-060 Kraków, Poland
| | | | | | | |
Collapse
|
41
|
de Montgolfier B, Dufresne J, Letourneau M, Nagler JJ, Fournier A, Audet C, Cyr DG. The Expression of Multiple Connexins Throughout Spermatogenesis in the Rainbow Trout Testis Suggests a Role for Complex Intercellular Communication1. Biol Reprod 2007; 76:2-8. [PMID: 16971556 DOI: 10.1095/biolreprod.106.054288] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Certain fish, such as rainbow trout (Oncorhynchus mykiss), are seasonal breeders. Spermatogenesis in rainbow trout is synchronous; therefore, at any time point during this process, germ cells are predominantly at the same stage of development. As such, rainbow trout represent an excellent model in which to study spermatogenesis. Gap junctions are composed of connexons, which are themselves formed by six transmembrane proteins termed connexins (Cxs). The objectives of this study were to assess which Cxs are expressed in the rainbow trout testis, and if their expression was stage specific during gonadal maturation. Rainbow trout were killed at various stages of maturation, and total cellular RNA was isolated from the testes. RT-PCR using degenerate primers recognizing all vertebrate Cxs indicates that there are several different Cxs in trout testes. Amplicons were cloned and sequenced. Homology comparisons indicate that these were cx43, cx43.4, cx31, and cx30. Immunolocalization of these Cxs indicate that Cx43 was localized primarily to Sertoli cells, while Cx43.4 was localized along the lateral plasma membranes between adjacent spermatocytes. Cx30 was localized to the interstitial Leydig cells, and Cx31 was localized primarily to the endothelium of interstitial blood vessels. The expression of each Cx varied as a function of the stage of spermatogenesis, suggesting that the expression of these proteins is highly regulated. Together, these results indicate that intercellular communication in the testis is complex, involves several different Cxs, and is a highly regulated process.
Collapse
|
42
|
Pointis G, Fiorini C, Defamie N, Segretain D. Gap junctional communication in the male reproductive system. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1719:102-16. [PMID: 16259941 DOI: 10.1016/j.bbamem.2005.09.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 09/20/2005] [Accepted: 09/21/2005] [Indexed: 01/10/2023]
Abstract
Male fertility is a highly controlled process that allows proliferation, meiosis and differentiation of male germ cells in the testis, final maturation in the epididymis and also requires functional male accessory glands: seminal vesicles, prostate and corpus cavernosum. In addition to classical endocrine and paracrine controls, mainly by gonadotropins LH and FSH and steroids, there is now strong evidence that all these processes are dependent upon the presence of homocellular or heterocellular junctions, including gap junctions and their specific connexins (Cxs), between the different cell types that structure the male reproductive tract. The present review is focused on the identification of Cxs, their distribution in the testis and in different structures of the male genital tract (epididymis, seminal vesicle, prostate, corpus cavernosum), their crucial role in the control of spermatogenesis and their implication in the function of the male accessory glands, including functional smooth muscle tone. Their potential dysfunctions in some testis (spermatogenic arrest, seminoma) and prostate (benign hyperplasia, adenocarcinoma) diseases and in the physiopathology of the human erectile function are also discussed.
Collapse
Affiliation(s)
- Georges Pointis
- INSERM U 670, Faculté de Médecine, 28 avenue de Valombrose, 06107 Nice cedex 02, France.
| | | | | | | |
Collapse
|
43
|
Dufresne J, St-Pierre N, Viger RS, Hermo L, Cyr DG. Characterization of a novel rat epididymal cell line to study epididymal function. Endocrinology 2005; 146:4710-20. [PMID: 16099865 DOI: 10.1210/en.2004-1634] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The epididymis is an androgen-dependent organ that allows spermatozoa to become fully functional as they pass through this tissue. The specialized functions of the epididymis are mediated by interactions between epididymal epithelial cells and between epididymal cells and spermatozoa. Although the critical role of the epididymis in sperm maturation is well established, the mechanisms regulating cell-cell interactions remain poorly understood because of the lack of appropriate cell line models. We now report the characterization of a novel rat caput epididymal cell line (RCE) that was immortalized by transfecting primary cultures of rat epididymal cells with the simian virus 40 large T antigen. At the electron microscope level, the cell line was composed of epithelial principal cells with characteristics of in vivo cells; principal cells had well-developed Golgi apparatus, abundant endoplasmic reticulum cisternae, and few endosomes. RCE cells expressed the mRNAs coding for the androgen receptor, estrogen receptor alpha, and 4-ene-steroid-5-alpha-reductase types 1 and 2 as well as epididymal-specific markers Crisp-1 and epididymal retinoic acid binding protein. Epididymal retinoic acid binding protein expression was significantly induced with dihydrotestosterone, although this effect was not blocked by flutamide, suggesting that RCE cells are not androgen responsive. Neighboring cells formed tight and gap junctions characteristic of epididymal cells in vivo and expressed tight (occludin and claudin-1, -3, and -4) and gap junctional proteins (connexin-26, -30.3, -32, and -43). The RCE cell line displays many characteristics of epithelial principal cells, thus providing a model for studying epididymal cell functions.
Collapse
Affiliation(s)
- Julie Dufresne
- Institut National de la Recherche Scientifique-Institut Armand Frappier, Université du Québec, 245 Hymus Boulevard, Pointe Claire, Quebec, Canada H9R 1G6
| | | | | | | | | |
Collapse
|
44
|
Cheung KH, Leung GPH, Leung MCT, Shum WWC, Zhou WL, Wong PYD. Cell-cell interaction underlies formation of fluid in the male reproductive tract of the rat. J Gen Physiol 2005; 125:443-54. [PMID: 15851503 PMCID: PMC2217504 DOI: 10.1085/jgp.200409205] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Accepted: 03/24/2005] [Indexed: 11/30/2022] Open
Abstract
The epithelia lining the epididymides of many species consists of several cell types. We have provided evidence that the basal cells are essential to the integrated functions of the epithelium. Basal cells, but not principal cells, and other cells in the epididymis express TRPC3 and COX-1. We have isolated basal cells from intact rat epididymis using antibody-coated Dynabeads and subjected them to whole-cell patch-clamp measurement of nonselective cation channel activity, a feature of TRPC3 protein, and Fluo-3 fluorescence measurement of intracellular Ca2+ concentration. The results show that a nonselective cation current blockable by La3+ (0.1 mM), Gd3+ (0.1 mM), or SKF96365 (20 microM) could be activated by lysylbradykinin (200 nM). In cells loaded with Fluo-3, addition of lysylbradykinin (100 nM) caused a sustained increase of intracellular Ca2+. This effect was blocked by Gd3+ (0.1 mM) or SKF96365 (20 microM) and was not observed in Fluo-3-loaded principal cells. Stimulation of basal cell/principal cell cocultures with lysylbradykinin (200 nM) evoked in principal cells a current with CFTR-Cl- channel characteristics. Isolated principal cells in the absence of basal cells did not respond to lysylbradykinin but responded to PGE2 (100 nM) with activation of a CFTR-like current. Basal cells, but not principal cells, released prostaglandin E2 when stimulated with lysylbradykinin (100 nM). The release was blocked by SKF96365 (20 microM) and BAPTA-AM (0.05 or 0.1 mM). Confluent cell monolayers harvested from a mixture of disaggregated principal cells and basal cells responded to lysylbradykinin (100 nM) and PGE2 (500 nM) with an increase in electrogenic anion secretion. The former response was dependent on prostaglandin synthesis as piroxicam blocked the response. However, cell cultures obtained from principal cells alone responded to PGE2 but not to bradykinin. These results support the notion that basal cells regulate principal cells through a Ca2+ and COX signaling pathway.
Collapse
Affiliation(s)
- King-Ho Cheung
- Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
45
|
Looft-Wilson RC, Payne GW, Segal SS. Connexin expression and conducted vasodilation along arteriolar endothelium in mouse skeletal muscle. J Appl Physiol (1985) 2004; 97:1152-8. [PMID: 15169746 DOI: 10.1152/japplphysiol.00133.2004] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Functional hyperemia requires the coordination of smooth muscle cell relaxation along and between branches of the arteriolar network. Vasodilation is conducted from cell to cell along the arteriolar wall through gap junction channels composed of connexin protein subunits. Within skeletal muscle, it is unclear whether arteriolar endothelium, smooth muscle, or both cell layers provide the cellular pathway for conduction. Furthermore, the constitutive profile of connexin expression within the microcirculation is unknown. We tested the hypothesis that conducted vasodilation and connexin expression are intrinsic to the endothelium of arterioles (17 +/- 1 microm diameter) that supply the skeletal muscle fibers in the cremaster of anesthetized C57BL/6 mice. ACh delivered to an arteriole (500 ms, 1-microA pulse; 1-microm micropipette) produced local dilation of 17 +/- 1 microm; conducted vasodilation observed 1 mm upstream was 9 +/- 1 microm (n = 5). After light-dye treatment to selectively disrupt endothelium (250-microm segment centered 500 microm upstream, confirmed by loss of local response to ACh while constriction to phenylephrine and dilation to sodium nitroprusside remained intact), we found that conducted vasodilation was nearly abolished (2 +/- 1 microm; P < 0.05). Whole-mount immunohistochemistry for connexins revealed punctate labeling at borders of arteriolar endothelial cells, with connexin40 and connexin37 in all branches and connexin43 only in the largest branches. Immunoreactivity for connexins was not apparent in smooth muscle or in capillary or venular endothelium, despite robust immunolabeling for alpha-actin and platelet endothelial cell adhesion molecule-1, respectively. We conclude that vasodilation is conducted along the endothelium of mouse skeletal muscle arterioles and that connexin40 and connexin37 are the primary connexins forming gap junction channels between arteriolar endothelial cells.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Animals
- Arterioles/drug effects
- Arterioles/physiology
- Arterioles/radiation effects
- Blood Flow Velocity/physiology
- Blood Flow Velocity/radiation effects
- Connexins/metabolism
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- Endothelium, Vascular/radiation effects
- Gap Junctions/drug effects
- Gap Junctions/physiology
- Gap Junctions/radiation effects
- In Vitro Techniques
- Male
- Mice
- Mice, Inbred C57BL
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/physiology
- Muscle, Smooth, Vascular/blood supply
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Muscle, Smooth, Vascular/radiation effects
- Tissue Distribution
- Vasodilation/drug effects
- Vasodilation/physiology
- Vasodilation/radiation effects
Collapse
Affiliation(s)
- Robin C Looft-Wilson
- The John B. Pierce Laboratory, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| | | | | |
Collapse
|
46
|
King TJ, Lampe PD. Mice deficient for the gap junction protein Connexin32 exhibit increased radiation-induced tumorigenesis associated with elevated mitogen-activated protein kinase (p44/Erk1, p42/Erk2) activation. Carcinogenesis 2004; 25:669-80. [PMID: 14742325 DOI: 10.1093/carcin/bgh071] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Loss of connexin expression/gap junction intercellular communication (GJIC) has been correlated with decreased growth control and increased tumorigenesis. Studies utilizing Connexin32 (Cx32)-deficient knockout mice have demonstrated that loss of Cx32 increases susceptibility to chemically induced liver tumorigenesis. Here, in addition to dramatically increased liver tumorigenesis, we show that tumor induction utilizing X-ray radiation resulted in a statistically significant increase in overall tumor burden in Cx32-deficient mice compared with wild-type mice due to tumorigenesis in several other tissues (lung, adrenal, lymph and small intestine) even when excluding prevalent liver tumors. Irradiated Cx32-deficient mice were particularly sensitive to liver tumorigenesis (46% incidence compared with 18% in wild-type mice, P = 0.007) demonstrating that Cx32 functions as a hepatic tumor suppressor in response to radiation-associated mutation events. Cx32-deficient mice also exhibited increased lung tumorigenesis (bronchioloalveolar) with an increased progression to carcinoma when compared with wild-type mice. Two Cx32-deficient mice developed an uncommon, invasive medullary adrenal tumor type (pheochromocytoma) not observed in irradiated wild-type mice. Immunohistochemical analysis revealed increased levels of activated mitogen-activated protein kinase (MAPK) (p44/Erk1, p42/Erk2) in Cx32-deficient mouse liver tumors (P = 0.006), lung tumors (P = 0.056) and adrenal tumors (primary and metastases) compared with wild-type counterparts implicating elevated activation of MAPK-interacting pathways in Cx32-deficient tumorigenesis. Interestingly, lung tumors from Cx32-deficient mice also demonstrated decreased p27Kip1 levels compared with wild-type lung tumors (P = 0.05). This study demonstrates that loss of Cx32/GJIC plays a significant role in radiation-induced tumorigenesis of the liver and importantly that Cx32 may also play a role in tumor suppression and/or tumor progression in other tissue types such as lung and adrenal gland. Additionally, this mouse model suggests that MAPK-related pathways may be preferentially activated or conversely that tumors harboring activated MAPK pathways may selectively progress towards more advanced tumor states in the absence of Cx32-mediated GJIC.
Collapse
Affiliation(s)
- Timothy J King
- Cancer Prevention Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | | |
Collapse
|
47
|
St-Pierre N, Dufresne J, Rooney AA, Cyr DG. Neonatal hypothyroidism alters the localization of gap junctional protein connexin 43 in the testis and messenger RNA levels in the epididymis of the rat. Biol Reprod 2003; 68:1232-40. [PMID: 12606457 DOI: 10.1095/biolreprod.102.010504] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The objectives of this study were to determine the effects of propylthiouracil (PTU)-induced neonatal hypothyroidism on the gap junctional protein Cx43 in rat testis and epididymis. PTU (0.02%) was administered via lactation from birth to Day 30, and the rats were sampled at 14, 18, 22, 26, 30, and 91 days of age. Testicular Cx43 was localized along the plasma membranes and cytoplasm of Sertoli cells until Day 22. At Day 30, the immunostaining was localized exclusively along the plasma membrane of Sertoli cells. In PTU-treated rats, Cx43 did not localize to the plasma membrane and was still cytoplasmic at 30 days of age. Occludin was present in tubules of treated rats, but was not localized to the blood-testis barrier in 30-day-old rats, as in controls. There were no differences in Cx43 immunostaining in the adult testis. In the proximal epididymis (initial segment, caput, corpus), Cx43 mRNA levels were lower in PTU-treated rats at 14, 18, and 22 days of age, but no differences were observed in the distal (cauda) epididymis at these ages. In 22- and 30-day-old rats, Cx43 was localized along the plasma membrane between principal and basal cells throughout the epididymis. In PTU-treated rats, Cx43 was not detectable in initial segment, caput, or corpus epididymidis. In the cauda epididymidis, however, Cx43 immunostaining in PTU-treated rats was similar to controls. These data suggest that thyroid hormones regulate Cx43-dependent gap junctional communication in the testis and epididymis.
Collapse
Affiliation(s)
- Nancy St-Pierre
- INRS-Institut Armand-Frappier, Université du Québec, Montreal, Québec, Canada H9R 1G6
| | | | | | | |
Collapse
|