1
|
Lucu Č, Turner LM. Ionic regulatory strategies of crabs: the transition from water to land. Front Physiol 2024; 15:1399194. [PMID: 39397859 PMCID: PMC11467477 DOI: 10.3389/fphys.2024.1399194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/25/2024] [Indexed: 10/15/2024] Open
Abstract
Terrestrial crabs (brachyurans and anomurans) have invaded land following a variety of pathways from marine and/or via freshwater environments. This transition from water to land requires physiological, ecological, and behavioral adaptations to allow the exploitation of these new environmental conditions. Arguably, the management of salt and water balance (e.g., osmoregulation) is integral for their survival and success in an environment where predominantly low-salinity aquatic (e.g., freshwater) water sources are found, sometimes in only minimal amounts. This requires a suite of morphological and biochemical modifications, especially at the branchial chamber of semi-terrestrial and terrestrial crabs to allow reprocessing of urine to maximize ion uptake. Using knowledge gained from electrophysiology, biochemistry, and more recent molecular biology techniques, we present summarized updated models for ion transport for all major taxonomic groups of terrestrial crabs. This is an exciting and fast-moving field of research, and we hope that this review will stimulate further study. Terrestrial crabs retain their crown as the ideal model group for studying the evolutionary pathways that facilitated terrestrial invasion.
Collapse
Affiliation(s)
- Čedomil Lucu
- Croatian Academy of Sciences and Arts, Department of Natural Sciences, Zagreb, Croatia
| | - Lucy M. Turner
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
2
|
Silva P, Evans DH. The Rectal Gland of the Shark: The Road to Understanding the Mechanism and Regulation of Transepithelial Chloride Transport. KIDNEY360 2024; 5:471-480. [PMID: 38433340 PMCID: PMC11000733 DOI: 10.34067/kid.0000000000000388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
Pictured, described, and speculated on, for close to 400 years, the function of the rectal gland of elasmobranchs remained unknown. In the late 1950s, Burger discovered that the rectal gland of Squalus acanthias secreted an almost pure solution of sodium chloride, isosmotic with blood, which could be stimulated by volume expansion of the fish. Twenty five years later, Stoff discovered that the secretion of the gland was mediated by adenyl cyclase. Studies since then have shown that vasoactive intestinal peptide (VIP) is the neurotransmitter responsible for activating adenyl cyclase; however, the amount of circulating VIP does not change in response to volume expansion. The humoral factor involved in activating the secretion of the gland is C-type natriuretic peptide, secreted from the heart in response to volume expansion. C-type natriuretic peptide circulates to the gland where it stimulates the release of VIP from nerves within the gland, but it also has a direct effect, independent of VIP. Sodium, potassium, and chloride are required for the gland to secrete, and the secretion of the gland is inhibited by ouabain or furosemide. The current model for the secretion of chloride was developed from this information. Basolateral NaKATPase maintains a low intracellular concentration of sodium, which establishes the large electrochemical gradient for sodium directed into the cell. Sodium moves from the blood into the cell (together with potassium and chloride) down this electrochemical gradient, through a coupled sodium, potassium, and two chloride cotransporter (NKCC1). On activation, chloride moves from the cell into the gland lumen, down its electrical gradient through apical cystic fibrosis transmembrane regulator. The fall in intracellular chloride leads to the phosphorylation and activation of NKCC1 that allows more chloride into the cell. Transepithelial sodium secretion into the lumen is driven by an electrical gradient through a paracellular pathway. The aim of this review was to examine the history of the origin of this model for the transport of chloride and suggest that it is applicable to many epithelia that transport chloride, both in resorptive and secretory directions.
Collapse
Affiliation(s)
- Patricio Silva
- Temple University School of Medicine, Philadelphia, Pennsylvania
- Mount Desert Island Biological Laboratory, Bar Harbor, Maine
| | - David H. Evans
- Mount Desert Island Biological Laboratory, Bar Harbor, Maine
- Department of Biology, University of Florida, Gainesville, Florida
| |
Collapse
|
3
|
Lee SH, Yousafzai MS, Mohler K, Yadav V, Amiri S, Szuszkiewicz J, Levchenko A, Rinehart J, Murrell M. SPAK-dependent cotransporter activity mediates capillary adhesion and pressure during glioblastoma migration in confined spaces. Mol Biol Cell 2023; 34:ar122. [PMID: 37672340 PMCID: PMC10846615 DOI: 10.1091/mbc.e23-03-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023] Open
Abstract
The invasive potential of glioblastoma cells is attributed to large changes in pressure and volume, driven by diverse elements, including the cytoskeleton and ion cotransporters. However, how the cell actuates changes in pressure and volume in confinement, and how these changes contribute to invasive motion is unclear. Here, we inhibited SPAK activity, with known impacts on the cytoskeleton and cotransporter activity and explored its role on the migration of glioblastoma cells in confining microchannels to model invasive spread through brain tissue. First, we found that confinement altered cell shape, inducing a transition in morphology that resembled droplet interactions with a capillary vessel, from "wetting" (more adherent) at low confinement, to "nonwetting" (less adherent) at high confinement. This transition was marked by a change from negative to positive pressure by the cells to the confining walls, and an increase in migration speed. Second, we found that the SPAK pathway impacted the migration speed in different ways dependent upon the extent of wetting. For nonwetting cells, SPAK inhibition increased cell-surface tension and cotransporter activity. By contrast, for wetting cells, it also reduced myosin II and YAP phosphorylation. In both cases, membrane-to-cortex attachment is dramatically reduced. Thus, our results suggest that SPAK inhibition differentially coordinates cotransporter and cytoskeleton-induced forces, to impact glioblastoma migration depending on the extent of confinement.
Collapse
Affiliation(s)
- Sung Hoon Lee
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511
- Systems Biology Institute, Yale University, West Haven, CT 06516
| | - Muhammad Sulaiman Yousafzai
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511
- Systems Biology Institute, Yale University, West Haven, CT 06516
| | - Kyle Mohler
- Systems Biology Institute, Yale University, West Haven, CT 06516
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06510
| | - Vikrant Yadav
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511
- Systems Biology Institute, Yale University, West Haven, CT 06516
| | - Sorosh Amiri
- Systems Biology Institute, Yale University, West Haven, CT 06516
- Department of Mechanical Engineering, Yale University, New Haven, CT 06520
| | - Joanna Szuszkiewicz
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511
- Systems Biology Institute, Yale University, West Haven, CT 06516
| | - Andre Levchenko
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511
- Systems Biology Institute, Yale University, West Haven, CT 06516
| | - Jesse Rinehart
- Systems Biology Institute, Yale University, West Haven, CT 06516
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06510
| | - Michael Murrell
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511
- Department of Physics, Yale University, New Haven, CT 06511
- Systems Biology Institute, Yale University, West Haven, CT 06516
| |
Collapse
|
4
|
Trejo F, Elizalde S, Mercado A, Gamba G, de losHeros P. SLC12A cryo-EM: analysis of relevant ion binding sites, structural domains, and amino acids. Am J Physiol Cell Physiol 2023; 325:C921-C939. [PMID: 37545407 DOI: 10.1152/ajpcell.00089.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023]
Abstract
The solute carrier family 12A (SLC12A) superfamily of membrane transporters modulates the movement of cations coupled with chloride across the membrane. In doing so, these cotransporters are involved in numerous aspects of human physiology: cell volume regulation, ion homeostasis, blood pressure regulation, and neurological action potential via intracellular chloride concentration modulation. Their physiological characterization has been largely studied; however, understanding the mechanics of their function and the relevance of structural domains or specific amino acids has been a pending task. In recent years, single-particle cryogenic electron microscopy (cryo-EM) has been successfully applied to members of the SLC12A family including all K+:Cl- cotransporters (KCCs), Na+:K+:2Cl- cotransporter NKCC1, and recently Na+:Cl- cotransporter (NCC); revealing structural elements that play key roles in their function. The present review analyzes the data provided by these cryo-EM reports focusing on structural domains and specific amino acids involved in ion binding, domain interactions, and other important SCL12A structural elements. A comparison of cryo-EM data from NKCC1 and KCCs is presented in the light of the two recent NCC cryo-EM studies, to propose insight into structural elements that might also be found in NCC and are necessary for its proper function. In the final sections, the importance of key coordination residues for substrate specificity and their implication on various pathophysiological conditions and genetic disorders is reviewed, as this could provide the basis to correlate structural elements with the development of novel and selective treatments, as well as mechanistic insight into the function and regulation of cation-coupled chloride cotransporters (CCCs).
Collapse
Affiliation(s)
- Fátima Trejo
- Unidad de Investigación UNAM-INC, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Stephanie Elizalde
- Departamento de Nefrología y Metabolismo Mineral, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Adriana Mercado
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Gerardo Gamba
- Departamento de Nefrología y Metabolismo Mineral, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Paola de losHeros
- Unidad de Investigación UNAM-INC, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
5
|
Abstract
The with no lysine (K) (WNK) kinases are an evolutionarily ancient group of kinases with atypical placement of the catalytic lysine and diverse physiological roles. Recent studies have shown that WNKs are directly regulated by chloride, potassium, and osmotic pressure. Here, we review the discovery of WNKs as chloride-sensitive kinases and discuss physiological contexts in which chloride regulation of WNKs has been demonstrated. These include the kidney, pancreatic duct, neurons, and inflammatory cells. We discuss the interdependent relationship of osmotic pressure and intracellular chloride in cell volume regulation. We review the recent demonstration of potassium regulation of WNKs and speculate on possible physiological roles. Finally, structural and mechanistic aspects of intracellular ion and osmotic pressure regulation of WNKs are discussed.
Collapse
Affiliation(s)
- Elizabeth J Goldsmith
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Aylin R Rodan
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA; .,Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.,Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA.,Medical Service, Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, Utah, USA
| |
Collapse
|
6
|
LRRC8A reduces intracellular chloride to permit WNK activation in response to hypertonic stress. Proc Natl Acad Sci U S A 2021; 118:2109432118. [PMID: 34353915 DOI: 10.1073/pnas.2109432118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
7
|
Zhang J, Cordshagen A, Medina I, Nothwang HG, Wisniewski JR, Winklhofer M, Hartmann AM. Staurosporine and NEM mainly impair WNK-SPAK/OSR1 mediated phosphorylation of KCC2 and NKCC1. PLoS One 2020; 15:e0232967. [PMID: 32413057 PMCID: PMC7228128 DOI: 10.1371/journal.pone.0232967] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/24/2020] [Indexed: 02/05/2023] Open
Abstract
The pivotal role of KCC2 and NKCC1 in development and maintenance of fast inhibitory neurotransmission and their implication in severe human diseases arouse interest in posttranscriptional regulatory mechanisms such as (de)phosphorylation. Staurosporine (broad kinase inhibitor) and N-ethylmalemide (NEM) that modulate kinase and phosphatase activities enhance KCC2 and decrease NKCC1 activity. Here, we investigated the regulatory mechanism for this reciprocal regulation by mass spectrometry and immunoblot analyses using phospho-specific antibodies. Our analyses revealed that application of staurosporine or NEM dephosphorylates Thr1007 of KCC2, and Thr203, Thr207 and Thr212 of NKCC1. Dephosphorylation of Thr1007 of KCC2, and Thr207 and Thr212 of NKCC1 were previously demonstrated to activate KCC2 and to inactivate NKCC1. In addition, application of the two agents resulted in dephosphorylation of the T-loop and S-loop phosphorylation sites Thr233 and Ser373 of SPAK, a critical kinase in the WNK-SPAK/OSR1 signaling module mediating phosphorylation of KCC2 and NKCC1. Taken together, these results suggest that reciprocal regulation of KCC2 and NKCC1 via staurosporine and NEM is based on WNK-SPAK/OSR1 signaling. The key regulatory phospho-site Ser940 of KCC2 is not critically involved in the enhanced activation of KCC2 upon staurosporine and NEM treatment, as both agents have opposite effects on its phosphorylation status. Finally, NEM acts in a tissue-specific manner on Ser940, as shown by comparative analysis in HEK293 cells and immature cultured hippocampal neurons. In summary, our analyses identified phospho-sites that are responsive to staurosporine or NEM application. This provides important information towards a better understanding of the cooperative interactions of different phospho-sites.
Collapse
Affiliation(s)
- Jinwei Zhang
- Hatherly Laboratories, Medical School, College of Medicine and Health, Institute of Biomedical and Clinical Sciences, University of Exeter, Exeter, United Kingdom
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Antje Cordshagen
- Division of Neurogenetics, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Igor Medina
- INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, INMED (Institut de Neurobiologie de la Méditerranée), Aix-Marseille University UMR 1249, Marseille, France
| | - Hans Gerd Nothwang
- Division of Neurogenetics, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Center of Excellence Hearing4all, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Jacek R. Wisniewski
- Department of Proteomics and Signal Transduction, Biochemical Proteomics Group, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Michael Winklhofer
- Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Institute for Biology and Environmental Sciences IBU, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Anna-Maria Hartmann
- Division of Neurogenetics, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
8
|
Auer T, Schreppel P, Erker T, Schwarzer C. Impaired chloride homeostasis in epilepsy: Molecular basis, impact on treatment, and current treatment approaches. Pharmacol Ther 2020; 205:107422. [DOI: 10.1016/j.pharmthera.2019.107422] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022]
|
9
|
Tyrosine phosphorylation modulates cell surface expression of chloride cotransporters NKCC2 and KCC3. Arch Biochem Biophys 2019; 669:61-70. [PMID: 31145900 DOI: 10.1016/j.abb.2019.05.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 11/22/2022]
Abstract
Cellular chloride transport has a fundamental role in cell volume regulation and renal salt handling. Cellular chloride entry or exit are mediated at the plasma membrane by cotransporter proteins of the solute carrier 12 family. For example, NKCC2 resorbs chloride with sodium and potassium ions at the apical membrane of epithelial cells in the kidney, whereas KCC3 releases chloride with potassium ions at the basolateral membrane. Their ion transport activity is regulated by protein phosphorylation in response to signaling pathways. An additional regulatory mechanism concerns the amount of cotransporter molecules inserted into the plasma membrane. Here we describe that tyrosine phosphorylation of NKCC2 and KCC3 regulates their plasma membrane expression levels. We identified that spleen tyrosine kinase (SYK) phosphorylates a specific N-terminal tyrosine residue in each cotransporter. Experimental depletion of endogenous SYK or pharmacological inhibition of its kinase activity increased the abundance of NKCC2 at the plasma membrane of human embryonic kidney cells. In contrast, overexpression of a constitutively active SYK mutant decreased NKCC2 membrane abundance. Intriguingly, the same experimental approaches revealed the opposite effect on KCC3 abundance at the plasma membrane, compatible with the known antagonistic roles of NKCC and KCC cotransporters in cell volume regulation. Thus, we identified a novel pathway modulating the cell surface expression of NKCC2 and KCC3 and show that this same pathway has opposite functional outcomes for these two cotransporters. The findings have several biomedical implications considering the role of these cotransporters in regulating blood pressure and cell volume.
Collapse
|
10
|
Gregoriades JMC, Madaris A, Alvarez FJ, Alvarez-Leefmans FJ. Genetic and pharmacological inactivation of apical Na +-K +-2Cl - cotransporter 1 in choroid plexus epithelial cells reveals the physiological function of the cotransporter. Am J Physiol Cell Physiol 2019; 316:C525-C544. [PMID: 30576237 PMCID: PMC6482671 DOI: 10.1152/ajpcell.00026.2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 01/08/2023]
Abstract
Choroid plexus epithelial cells (CPECs) secrete cerebrospinal fluid (CSF). They express Na+-K+-ATPase and Na+-K+-2Cl- cotransporter 1 (NKCC1) on their apical membrane, deviating from typical basolateral membrane location in secretory epithelia. Given this peculiarity, the direction of basal net ion fluxes mediated by NKCC1 in CPECs is controversial, and cotransporter function is unclear. Determining the direction of basal NKCC1-mediated fluxes is critical to understanding the function of apical NKCC1. If NKCC1 works in the net efflux mode, it may be directly involved in CSF secretion. Conversely, if NKCC1 works in the net influx mode, it would have an absorptive function, contributing to intracellular Cl- concentration ([Cl-]i) and cell water volume (CWV) maintenance needed for CSF secretion. We resolve this long-standing debate by electron microscopy (EM), live-cell-imaging microscopy (LCIM), and intracellular Na+ and Cl- measurements in single CPECs of NKCC1+/+ and NKCC1-/- mouse. NKCC1-mediated ion and associated water fluxes are tightly linked, thus their direction is inferred by measuring CWV changes. Genetic or pharmacological NKCC1 inactivation produces CPEC shrinkage. EM of NKCC1-/- CPECs in situ shows they are shrunken, forming large dilations of their basolateral extracellular spaces, yet remaining attached by tight junctions. Normarski LCIM shows in vitro CPECs from NKCC1-/- are ~17% smaller than NKCC1+/+. CWV measurements in calcein-loaded CPECs show that bumetanide (10 μM) produces ~16% decrease in CWV in NKCC1+/+ but not in NKCC1-/- CPECs. Our findings suggest that under basal conditions apical NKCC1 is continuously active and works in the net inward flux mode maintaining [Cl-]i and CWV needed for CSF secretion.
Collapse
Affiliation(s)
- Jeannine M C Gregoriades
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University , Dayton, Ohio
| | - Aaron Madaris
- Department of Biomedical, Industrial, and Human Factors Engineering, College of Engineering and Computer Science, Wright State University , Dayton, Ohio
| | - Francisco J Alvarez
- Department of Neuroscience, Cell Biology and Physiology, Wright State University , Dayton, Ohio
| | | |
Collapse
|
11
|
Cordshagen A, Busch W, Winklhofer M, Nothwang HG, Hartmann AM. Phosphoregulation of the intracellular termini of K +-Cl - cotransporter 2 (KCC2) enables flexible control of its activity. J Biol Chem 2018; 293:16984-16993. [PMID: 30201606 DOI: 10.1074/jbc.ra118.004349] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/01/2018] [Indexed: 12/22/2022] Open
Abstract
The pivotal role of K+-Cl- cotransporter 2 (KCC2) in inhibitory neurotransmission and severe human diseases fosters interest in understanding posttranslational regulatory mechanisms such as (de)phosphorylation. Here, the regulatory role of the five bona fide phosphosites Ser31, Thr34, Ser932, Thr999, and Thr1008 was investigated by the use of alanine and aspartate mutants. Tl+-based flux analyses in HEK-293 cells demonstrated increased transport activity for S932D (mimicking phosphorylation) and T1008A (mimicking dephosphorylation), albeit to a different extent. Increased activity was due to changes in intrinsic activity, as it was not caused by increased cell-surface abundance. Substitutions of Ser31, Thr34, or Thr999 had no effect. Additionally, we show that the indirect actions of the known KCC2 activators staurosporine and N-ethylmaleimide (NEM) involved multiple phosphosites. S31D, T34A, S932A/D, T999A, or T1008A/D abrogated staurosporine mediated stimulation, and S31A, T34D, or S932D abolished NEM-mediated stimulation. This demonstrates for the first time differential effects of staurosporine and NEM on KCC2. In addition, the staurosporine-mediated effects involved both KCC2 phosphorylation and dephosphorylation with Ser932 and Thr1008 being bona fide target sites. In summary, our data reveal a complex phosphoregulation of KCC2 that provides the transporter with a toolbox for graded activity and integration of different signaling pathways.
Collapse
Affiliation(s)
- Antje Cordshagen
- From the Neurogenetics group, Center of Excellence Hearing4all, School of Medicine and Health Sciences
| | - Wiebke Busch
- From the Neurogenetics group, Center of Excellence Hearing4all, School of Medicine and Health Sciences
| | - Michael Winklhofer
- Institute for Biology and Environmental Sciences IBU, and.,Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Hans Gerd Nothwang
- From the Neurogenetics group, Center of Excellence Hearing4all, School of Medicine and Health Sciences.,Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Anna-Maria Hartmann
- From the Neurogenetics group, Center of Excellence Hearing4all, School of Medicine and Health Sciences, .,Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| |
Collapse
|
12
|
Koumangoye R, Omer S, Delpire E. Mistargeting of a truncated Na-K-2Cl cotransporter in epithelial cells. Am J Physiol Cell Physiol 2018; 315:C258-C276. [PMID: 29719172 DOI: 10.1152/ajpcell.00130.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We recently reported the case of a young patient with multisystem failure carrying a de novo mutation in SLC12A2, the gene encoding the Na-K-2Cl cotransporter-1 (NKCC1). Heterologous expression studies in nonepithelial cells failed to demonstrate dominant-negative effects. In this study, we examined expression of the mutant cotransporter in epithelial cells. Using Madin-Darby canine kidney (MDCK) cells grown on glass coverslips, permeabilized support, and Matrigel, we show that the fluorescently tagged mutant cotransporter is expressed in cytoplasm and at the apical membrane and affects epithelium integrity. Expression of the mutant transporter at the apical membrane also results in the mislocalization of some of the wild-type transporter to the apical membrane. This mistargeting is specific to NKCC1 as the Na+-K+-ATPase remains localized on the basolateral membrane. To assess transporter localization in vivo, we created a mouse model using CRISPR/cas9 that reproduces the 11 bp deletion in exon 22 of Slc12a2. Although the mice do not display an overt phenotype, we show that the colon and salivary gland expresses wild-type NKCC1 abundantly at the apical pole, confirming the data obtained in cultured epithelial cells. Enough cotransporter must remain, however, on the basolateral membrane to participate in saliva secretion, as no significant decrease in saliva production was observed in the mutant mice.
Collapse
Affiliation(s)
- Rainelli Koumangoye
- Department of Anesthesiology, Vanderbilt University School of Medicine , Nashville, Tennessee
| | - Salma Omer
- Department of Anesthesiology, Vanderbilt University School of Medicine , Nashville, Tennessee
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine , Nashville, Tennessee
| |
Collapse
|
13
|
Flatt JF, Bruce LJ. The Molecular Basis for Altered Cation Permeability in Hereditary Stomatocytic Human Red Blood Cells. Front Physiol 2018; 9:367. [PMID: 29713289 PMCID: PMC5911802 DOI: 10.3389/fphys.2018.00367] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/27/2018] [Indexed: 11/20/2022] Open
Abstract
Normal human RBCs have a very low basal permeability (leak) to cations, which is continuously corrected by the Na,K-ATPase. The leak is temperature-dependent, and this temperature dependence has been evaluated in the presence of inhibitors to exclude the activity of the Na,K-ATPase and NaK2Cl transporter. The severity of the RBC cation leak is altered in various conditions, most notably the hereditary stomatocytosis group of conditions. Pedigrees within this group have been classified into distinct phenotypes according to various factors, including the severity and temperature-dependence of the cation leak. As recent breakthroughs have provided more information regarding the molecular basis of hereditary stomatocytosis, it has become clear that these phenotypes elegantly segregate with distinct genetic backgrounds. The cryohydrocytosis phenotype, including South-east Asian Ovalocytosis, results from mutations in SLC4A1, and the very rare condition, stomatin-deficient cryohydrocytosis, is caused by mutations in SLC2A1. Mutations in RHAG cause the very leaky condition over-hydrated stomatocytosis, and mutations in ABCB6 result in familial pseudohyperkalemia. All of the above are large multi-spanning membrane proteins and the mutations may either modify the structure of these proteins, resulting in formation of a cation pore, or otherwise disrupt the membrane to allow unregulated cation movement across the membrane. More recently mutations have been found in two RBC cation channels, PIEZO1 and KCNN4, which result in dehydrated stomatocytosis. These mutations alter the activation and deactivation kinetics of these channels, leading to increased opening and allowing greater cation fluxes than in wild type.
Collapse
Affiliation(s)
- Joanna F Flatt
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, United Kingdom
| | - Lesley J Bruce
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, United Kingdom
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Abundant evidence supports that the NaCl cotransporter (NCC) activity is tightly regulated by the with-no-lysine (WNK) kinases. Here, we summarize the data regarding NCC regulation by WNKs, with a particular emphasis on WNK4. RECENT FINDINGS Several studies involving in-vivo and in-vitro models have provided paradoxical data regarding WNK4 regulation of the NCC. Although some studies show that WNK4 can activate the NCC, other equally compelling studies show that WNK4 inhibits the NCC. Recent studies have shown that WNK4 is regulated by the intracellular chloride concentration ([Cl]i), which could account for these paradoxical results. In conditions of high [Cl]i, WNK4 could act as an inhibitor via heterodimer formation with other WNKs. In contrast, when [Cl]i is low, WNK4 can activate Ste20-related, proline-alanine-rich kinase (SPAK)/oxidative stress responsive kinase 1 (OSR1) and thus the NCC. Modulation of WNK4 by [Cl]i has been shown to account for the potassium-sensing properties of the distal convoluted tubule. Other regulators of WNK4 include hormones and ubiquitination. SUMMARY Modulation of WNK4 activity by [Cl]i can account for its dual role on the NCC, and this has important physiological implications regarding the regulation of extracellular potassium concentration. Defective regulation of WNKs by ubiquitination explains most cases of familial hyperkalemic hypertension.
Collapse
|
15
|
Frenette-Cotton R, Marcoux AA, Garneau AP, Noel M, Isenring P. Phosphoregulation of K + -Cl - cotransporters during cell swelling: Novel insights. J Cell Physiol 2018; 233:396-408. [PMID: 28276587 DOI: 10.1002/jcp.25899] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/06/2017] [Indexed: 01/21/2023]
Abstract
The K+ -Cl- cotransporters (KCCs) belong to the cation-Cl- cotransporter family and consist of four isoforms and many splice variants. Their main role is to promote electroneutral efflux of K+ and Cl- ions across the surface of many cell types and, thereby, to regulate intracellular ion concentration, cell volume, and epithelial salt movement. These transport systems are induced by an increase in cell volume and are less active at lower intracellular [Cl- ] (Cli ), but the mechanisms at play are still ill-defined. In this work, we have exploited the Xenopus laevis expression system to study the role of lysine-deficient protein kinases (WNKs), protein phosphatases 1 (PP1s), and SPS1-related proline/alanine-rich kinase (SPAK) in KCC4 regulation during cell swelling. We have found that WNK4 and PP1 regulate KCC4 activity as part of a common signaling module, but that they do not exert their effects through SPAK or carrier dephosphorylation. We have also found that the phosphatases at play include PP1α and PP1γ1, but that WNK4 acts directly on the PP1s instead of the opposite. Unexpectedly, however, both cell swelling and a T926A substitution in the C-terminus of full-length KCC4 led to higher levels of heterologous K+ -Cl- cotransport and overall carrier phosphorylation. These results imply that the response to cell swelling must also involve allosteric-sensitive kinase-dependent phosphoacceptor sites in KCC4. They are thus partially inconsistent with previous models of KCC regulation.
Collapse
Affiliation(s)
| | - Andrée-Anne Marcoux
- Nephrology Research Group, Department of Medicine, Laval University, Québec, Québec, Canada
| | - Alexandre P Garneau
- Nephrology Research Group, Department of Medicine, Laval University, Québec, Québec, Canada
| | - Micheline Noel
- Nephrology Research Group, Department of Medicine, Laval University, Québec, Québec, Canada
| | - Paul Isenring
- Nephrology Research Group, Department of Medicine, Laval University, Québec, Québec, Canada
| |
Collapse
|
16
|
OSR1 and SPAK cooperatively modulate Sertoli cell support of mouse spermatogenesis. Sci Rep 2016; 6:37205. [PMID: 27853306 PMCID: PMC5112561 DOI: 10.1038/srep37205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/06/2016] [Indexed: 02/06/2023] Open
Abstract
We investigated the role of oxidative stress-responsive kinase-1 (OSR1) and STE20 (sterile 20)/SPS1-related proline/alanine-rich kinase (SPAK), upstream regulators of the Na+-K+-2Cl− cotransporter (NKCC1)—essential for spermatogenesis—in mouse models of male fertility. Global OSR1+/− gene mutations, but not global SPAK−/− or Sertoli cell (SC)-specific OSR1 gene knockout (SC-OSR1−/−), cause subfertility with impaired sperm function and are associated with reduced abundance of phosphorylated (p)-NKCC1 but increased p-SPAK expression in testicular tissue and spermatozoa. To dissect further in a SC-specific manner the compensatory effect of OSR1 and SPAK in male fertility, we generated SC-OSR1−/− and SPAK−/− double knockout (DKO) male mice. These are infertile with defective spermatogenesis, presenting a SC-only-like syndrome. Disrupted meiotic progression and increased germ cell apoptosis occurred in the first wave of spermatogenesis. The abundance of total and p-NKCC1 was significantly decreased in the testicular tissues of DKO mice. These results indicate that OSR1 and SPAK cooperatively regulate NKCC1-dependent spermatogenesis in a SC-restricted manner.
Collapse
|
17
|
Bazúa-Valenti S, Castañeda-Bueno M, Gamba G. Physiological role of SLC12 family members in the kidney. Am J Physiol Renal Physiol 2016; 311:F131-44. [DOI: 10.1152/ajprenal.00071.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/12/2016] [Indexed: 12/30/2022] Open
Abstract
The solute carrier family 12, as numbered according to Human Genome Organisation (HUGO) nomenclature, encodes the electroneutral cation-coupled chloride cotransporters that are expressed in many cells and tissues; they play key roles in important physiological events, such as cell volume regulation, modulation of the intracellular chloride concentration, and transepithelial ion transport. Most of these family members are expressed in specific regions of the nephron. The Na-K-2Cl cotransporter NKCC2, which is located in the thick ascending limb, and the Na-Cl cotransporter, which is located in the distal convoluted tubule, play important roles in salt reabsorption and serve as the receptors for loop and thiazide diuretics, respectively (Thiazide diuretics are among the most commonly prescribed drugs in the world.). The activity of these transporters correlates with blood pressure levels; thus, their regulation has been a subject of intense research for more than a decade. The K-Cl cotransporters KCC1, KCC3, and KCC4 are expressed in several nephron segments, and their role in renal physiology is less understood but nevertheless important. Evidence suggests that they are involved in modulating proximal tubule glucose reabsorption, thick ascending limb salt reabsorption and collecting duct proton secretion. In this work, we present an overview of the physiological roles of these transporters in the kidney, with particular emphasis on the knowledge gained in the past few years.
Collapse
Affiliation(s)
- Silvana Bazúa-Valenti
- Molecular Physiology Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico
| | - María Castañeda-Bueno
- Molecular Physiology Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico
| | - Gerardo Gamba
- Molecular Physiology Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico
| |
Collapse
|
18
|
Coates TA, Woolnough O, Masters JM, Asadova G, Chandrakumar C, Baker MD. Acute temperature sensitivity in optic nerve axons explained by an electrogenic membrane potential. Pflugers Arch 2015; 467:2337-49. [DOI: 10.1007/s00424-015-1696-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 02/17/2015] [Accepted: 02/17/2015] [Indexed: 02/05/2023]
|
19
|
Orlov SN, Koltsova SV, Kapilevich LV, Dulin NO, Gusakova SV. Cation-chloride cotransporters: Regulation, physiological significance, and role in pathogenesis of arterial hypertension. BIOCHEMISTRY (MOSCOW) 2015; 79:1546-61. [DOI: 10.1134/s0006297914130070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Vorontsova I, Lam L, Delpire E, Lim J, Donaldson P. Identification of the WNK-SPAK/OSR1 signaling pathway in rodent and human lenses. Invest Ophthalmol Vis Sci 2014; 56:310-21. [PMID: 25515571 DOI: 10.1167/iovs.14-15911] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To identify whether the kinases that regulate the activity of cation chloride cotransporters (CCC) in other tissues are also expressed in rat and human lenses. METHODS The expression of with-no-lysine kinase (WNK 1, 3, 4), oxidative stress response kinase 1 (OSR1), and Ste20-like proline alanine rich kinase (SPAK) were determined at either the transcript or protein levels in the rat and human lenses by reverse-transcriptase PCR and/or Western blotting, respectively. Selected kinases were regionally and subcellularly characterized in rat and human lenses. The transparency, wet weight, and tissue morphology of lenses extracted from SPAK knock-out animals was compared with wild-type lenses. RESULTS WNK 1, 3, 4, SPAK, and OSR1 were identified at the transcript level in rat lenses and WNK1, 4, SPAK, and OSR1 expression confirmed at the protein level in both rat and human lenses. SPAK and OSR1 were found to associate with membranes as peripheral proteins and exhibited distinct subcellular and region-specific expression profiles throughout the lens. No significant difference in the wet weight of SPAK knock-out lenses was detected relative to wild-type lenses. However, SPAK knock-out lenses showed an increased susceptibility to opacification. CONCLUSIONS Our results show that the WNK 1, 3, 4, OSR1, and SPAK signaling system known to play a role in regulating the phosphorylation status, and hence activity of the CCCs in other tissues, is also present in the rat and human lenses. The increased susceptibility of SPAK lenses to opacification suggests that disruption of this signaling pathway may compromise the ability of the lens to control its volume, and its ability to maintain its transparency.
Collapse
Affiliation(s)
- Irene Vorontsova
- Department of Optometry and Vision Science, University of Auckland, New Zealand The New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Leo Lam
- Department of Optometry and Vision Science, University of Auckland, New Zealand The New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Julie Lim
- Department of Optometry and Vision Science, University of Auckland, New Zealand The New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Paul Donaldson
- Department of Optometry and Vision Science, University of Auckland, New Zealand The New Zealand National Eye Centre, University of Auckland, New Zealand School of Medical Sciences, University of Auckland, New Zealand
| |
Collapse
|
21
|
Weber M, Hartmann AM, Beyer T, Ripperger A, Nothwang HG. A novel regulatory locus of phosphorylation in the C terminus of the potassium chloride cotransporter KCC2 that interferes with N-ethylmaleimide or staurosporine-mediated activation. J Biol Chem 2014; 289:18668-79. [PMID: 24849604 PMCID: PMC4081912 DOI: 10.1074/jbc.m114.567834] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/15/2014] [Indexed: 11/06/2022] Open
Abstract
The neuron-specific cation chloride cotransporter KCC2 plays a crucial role in hyperpolarizing synaptic inhibition. Transporter dysfunction is associated with various neurological disorders, raising interest in regulatory mechanisms. Phosphorylation has been identified as a key regulatory process. Here, we retrieved experimentally observed phosphorylation sites of KCC2 from public databases and report on the systematic analysis of six phosphorylated serines, Ser(25), Ser(26), Ser(937), Ser(1022), Ser(1025), and Ser(1026). Alanine or aspartate substitutions of these residues were analyzed in HEK-293 cells. All mutants were expressed in a pattern similar to wild-type KCC2 (KCC2(WT)). Tl(+) flux measurements demonstrated unchanged transport activity for Ser(25), Ser(26), Ser(1022), Ser(1025), and Ser(1026) mutants. In contrast, KCC2(S937D), mimicking phosphorylation, resulted in a significant up-regulation of transport activity. Aspartate substitution of Thr(934), a neighboring putative phosphorylation site, resulted in a comparable increase in KCC2 transport activity. Both KCC2(T934D) and KCC2(S937D) mutants were inhibited by the kinase inhibitor staurosporine and by N-ethylmaleimide, whereas KCC2(WT), KCC2(T934A), and KCC2(S937A) were activated. The inverse staurosporine effect on aspartate versus alanine substitutions reveals a cross-talk between different phosphorylation sites of KCC2. Immunoblot and cell surface labeling experiments detected no alterations in total abundance or surface expression of KCC2(T934D) and KCC2(S937D) compared with KCC2(WT). These data reveal kinetic regulation of transport activity by these residues. In summary, our data identify a novel key regulatory phosphorylation site of KCC2 and a functional interaction between different conformation-changing post-translational modifications. The action of pharmacological agents aimed to modulate KCC2 activity for therapeutic benefit might therefore be highly context-specific.
Collapse
Affiliation(s)
- Maren Weber
- From the Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences
| | - Anna-Maria Hartmann
- From the Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Systematics and Evolutionary Biology Group, Institute for Biology and Environmental Sciences, and
| | - Timo Beyer
- From the Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences
| | - Anne Ripperger
- From the Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences
| | - Hans Gerd Nothwang
- From the Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, the Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| |
Collapse
|
22
|
Piala AT, Moon TM, Akella R, He H, Cobb MH, Goldsmith EJ. Chloride sensing by WNK1 involves inhibition of autophosphorylation. Sci Signal 2014; 7:ra41. [PMID: 24803536 DOI: 10.1126/scisignal.2005050] [Citation(s) in RCA: 283] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
WNK1 [with no lysine (K)] is a serine-threonine kinase associated with a form of familial hypertension. WNK1 is at the top of a kinase cascade, leading to phosphorylation of several cotransporters, in particular those transporting sodium, potassium, and chloride (NKCC), sodium and chloride (NCC), and potassium and chloride (KCC). The responsiveness of NKCC, NCC, and KCC to changes in extracellular chloride parallels their phosphorylation state, provoking the proposal that these transporters are controlled by a chloride-sensitive protein kinase. We found that chloride stabilizes the inactive conformation of WNK1, preventing kinase autophosphorylation and activation. Crystallographic studies of inactive WNK1 in the presence of chloride revealed that chloride binds directly to the catalytic site, providing a basis for the unique position of the catalytic lysine. Mutagenesis of the chloride-binding site rendered the kinase less sensitive to inhibition of autophosphorylation by chloride, validating the binding site. Thus, these data suggest that WNK1 functions as a chloride sensor through direct binding of a regulatory chloride ion to the active site, which inhibits autophosphorylation.
Collapse
Affiliation(s)
- Alexander T Piala
- 1Department of Biophysics, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|
23
|
Development of a functional cell-based HTS assay for identification of NKCC1-negative modulators. CHINESE SCIENCE BULLETIN-CHINESE 2014. [DOI: 10.1007/s11434-013-0083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Abstract
Vertebrates can sense and avoid noxious heat that evokes pain. Many thermoTRP channels are associated with temperature sensation. TRPV1 is a representative ion channel that is activated by noxious heat. Anoctamin 1 (ANO1) is a Cl- channel activated by calcium that is highly expressed in small sensory neurons, colocalized with markers for nociceptors, and most surprisingly, activated by noxious heat over 44oC. Although ANO1 is a Cl- channel, opening of this channel leads to depolarization of sensory neurons, suggesting a role in nociception. Indeed, the functional deletion of ANO1 in sensory neurons triggers the reduction in thermal pain sensation. Thus, it seems clear that ANO1 is a heat sensor in a nociceptive pathway. Since ANO1 modulators are developed for the purpose of treating chronic diseases such as cystic fibrosis, this finding is likely to predict unwanted effects and provide a guide for better developmental strategy
Collapse
Affiliation(s)
- Hawon Cho
- Sensory Research Center, CRI, College of Pharmacy, Seoul National University
| | - Uhtaek Oh
- Sensory Research Center, CRI, College of Pharmacy, Seoul National University, ; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
25
|
Abstract
This study extends permeability (P) data on chloride, urea and water in red blood cells (RBC), and concludes that the urea transporter (UT-B) does not transport water. P of chick, duck, Amphiuma means, dog and human RBC to (36)Cl(-), (14)C-urea and (3)H2O was determined under self-exchange conditions. At 25°C and pH 7.2-7.5, PCl is 0.94 × 10(-4)-2.15 × 10(-4) cm s(-1) for all RBC species at [Cl]=127-150 mmol l(-1). In chick and duck RBC, P(urea) is 0.84 × 10(-6) and 1.65 × 10(-6) cm s(-1), respectively, at [urea]=1-500 mmol l(-1). In Amphiuma, dog and human RBC, P(urea) is concentration dependent (1-1000 mmol l(-1), Michaelis-Menten-like kinetics; K1/2;=127, 173 and 345 mmol l(-1)), and values at [urea]=1 mmol l(-1) are 29.5 × 10(-6), 467 × 10(-6) and 260 × 10(-6) cm s(-1), respectively. Diffusional water permeability, Pd, was 0.84 × 10(-3) (chick), 5.95 × 10(-3) (duck), 0.39 × 10(-3) (Amphiuma), 3.13 × 10(-3) (dog) and 2.35 × 10(-3) cm s(-1) (human). DIDS, DNDS and phloretin inhibit PCl by >99% in all RBC species. PCMBS, PCMB and phloretin inhibit P(urea) by >99% in Amphiuma, dog and human RBC, but not in chick and duck RBC. PCMBS and PCMB inhibit Pd in duck, dog and human RBC, but not in chick and Amphiuma RBC. Temperature dependence, as measured by apparent activation energy, EA, of PCl is 117.8 (duck), 74.9 (Amphiuma) and 89.6 kJ mol(-1) (dog). The EA of P(urea) is 69.6 (duck) and 53.3 kJ mol(-1) (Amphiuma), and that of Pd is 34.9 (duck) and 32.1 kJ mol(-1) (Amphiuma). The present and previous RBC studies indicate that anion (AE1), urea (UT-B) and water (AQP1) transporters only transport chloride (all species), water (duck, dog, human) and urea (Amphiuma, dog, human), respectively. Water does not share UT-B with urea, and the solute transport is not coupled under physiological conditions.
Collapse
Affiliation(s)
- Jesper Brahm
- Department of Cellular and Molecular Medicine, The Faculty of Health, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
26
|
Arroyo JP, Kahle KT, Gamba G. The SLC12 family of electroneutral cation-coupled chloride cotransporters. Mol Aspects Med 2013; 34:288-98. [PMID: 23506871 DOI: 10.1016/j.mam.2012.05.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 04/09/2012] [Indexed: 11/21/2022]
Abstract
The SLC12 family encodes electroneutral cation-coupled chloride cotransporters that are critical for several physiological processes including cell volume regulation, modulation of intraneuronal chloride concentration, transepithelial ion movement, and blood pressure regulation. Members of this family are the targets of the most commonly used diuretic drugs, have been shown to be the causative genes for inherited disease such as Gitelman, Bartter and Andermann syndromes, and potentially play a role in polygenic complex diseases like arterial hypertension, epilepsy, osteoporosis, and cancer.
Collapse
Affiliation(s)
- Juan Pablo Arroyo
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico
| | | | | |
Collapse
|
27
|
Yu H, Zhang Z, Lis A, Penner R, Fleig A. TRPM7 is regulated by halides through its kinase domain. Cell Mol Life Sci 2013; 70:2757-71. [PMID: 23471296 DOI: 10.1007/s00018-013-1284-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/10/2013] [Accepted: 01/28/2013] [Indexed: 01/30/2023]
Abstract
Transient receptor potential melastatin 7 (TRPM7) is a divalent-selective cation channel fused to an atypical α-kinase. TRPM7 is a key regulator of cell growth and proliferation, processes accompanied by mandatory cell volume changes. Osmolarity-induced cell volume alterations regulate TRPM7 through molecular crowding of solutes that affect channel activity, including magnesium (Mg(2+)), Mg-nucleotides and a further unidentified factor. Here, we assess whether chloride and related halides can act as negative feedback regulators of TRPM7. We find that chloride and bromide inhibit heterologously expressed TRPM7 in synergy with intracellular Mg(2+) ([Mg(2+)]i) and this is facilitated through the ATP-binding site of the channel's kinase domain. The synergistic block of TRPM7 by chloride and Mg(2+) is not reversed during divalent-free or acidic conditions, indicating a change in protein conformation that leads to channel inactivation. Iodide has the strongest inhibitory effect on TRPM7 at physiological [Mg(2+)]i. Iodide also inhibits endogenous TRPM7-like currents as assessed in MCF-7 breast cancer cells, where upregulation of SLC5A5 sodium-iodide symporter enhances iodide uptake and inhibits cell proliferation. These results indicate that chloride could be an important factor in modulating TRPM7 during osmotic stress and implicate TRPM7 as a possible molecular mechanism contributing to the anti-proliferative characteristics of intracellular iodide accumulation in cancer cells.
Collapse
Affiliation(s)
- Haijie Yu
- Center for Biomedical Research, The Queen's Medical Center, 1301 Punchbowl St., Honolulu, HI 96813, USA
| | | | | | | | | |
Collapse
|
28
|
Cruz-Rangel S, Gamba G, Ramos-Mandujano G, Pasantes-Morales H. Influence of WNK3 on intracellular chloride concentration and volume regulation in HEK293 cells. Pflugers Arch 2012; 464:317-30. [PMID: 22864523 DOI: 10.1007/s00424-012-1137-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/06/2012] [Accepted: 07/07/2012] [Indexed: 01/17/2023]
Abstract
The involvement of WNK3 (with no lysine [K] kinase) in cell volume regulation evoked by anisotonic conditions was investigated in two modified stable lines of HEK293 cells: WNK3+, overexpressing WNK3 and WNK3-KD expressing a kinase inactive by a punctual mutation (D294A) at the catalytic site. This different WNK3 functional expression modified intracellular Cl(-) concentration with the following profile: WNK3+ > control > WNK3-KD cells. Stimulated with 15% hypotonic solutions, WNK3+ cells showed less efficient RVD (13.1%), lower Cl(-) efflux and decreased (94.5%) KCC activity. WNK3-KD cells showed 30.1% more efficient RVD, larger Cl(-) efflux and 5-fold higher KCC activity, increased since the isotonic condition. Volume-sensitive Cl(-) currents were similar in controls, WNK3+ cells, and WNK3-KD cells. Taurine efflux was not evoked at H15%. These results show a WNK3 influence on RVD in HEK293 cells via increasing KCC activity. Hypertonic medium induced cell shrinkage and RVI. In both WNK3+ and WNK3-KD cells, RVI and NKCC activity were increased, in WNK3+ cells presumably by enhanced NKCC phosphorylation, and in WNK3-KD cells via the [Cl(-)](i) reduction induced by the higher KCC activity in characteristic of these cells. These results support the role of WNK3 in modulation of intracellular Cl(-) concentration, in RVD, and indirectly on RVI, via its effects on KCC and NKCC activity. WNK3 in HEK293 cells is expressed as puncta at the intercellular junctions and diffusely at the cytosol, while the inactive kinase was found concentrated at the Golgi area. Cells with inactive WNK3 exhibited a marked change of cell phenotype.
Collapse
Affiliation(s)
- Silvia Cruz-Rangel
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, 04510, Mexico, DF, Mexico
| | | | | | | |
Collapse
|
29
|
Mizutani T, Morise M, Ito Y, Hibino Y, Matsuno T, Ito S, Hashimoto N, Sato M, Kondo M, Imaizumi K, Hasegawa Y. Nongenomic effects of fluticasone propionate and budesonide on human airway anion secretion. Am J Respir Cell Mol Biol 2012; 47:645-51. [PMID: 22798431 DOI: 10.1165/rcmb.2012-0076oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This study investigated the physiological effects of inhaled corticosteroids, which are used widely to treat asthma. The application of fluticasone propionate (FP, 100 μM) induced sustained increases in the short-circuit current (I(SC)) in human airway Calu-3 epithelial cells. The FP-induced I(SC) was prevented by the presence of H89 (10 μM, a protein kinase A inhibitor) and SQ22536 (100 μM, an adenylate cyclase inhibitor). The FP-induced responses involved bumetanide (a Na(+)-K(+)-2Cl(-) cotransporter inhibitor)-sensitive and 4,4'-dinitrostilbene-2,2'-disulfonic acid (an inhibitor of HCO(3)(-)-dependent anion transporters)-sensitive components, both of which reflect basolateral anion transport. Further, FP augmented apical membrane Cl(-) current (I(Cl)), reflecting cystic fibrosis transmembrane conductance regulator (CFTR)-mediated conductance, in the nystatin-permeabilized monolayer. In I(SC) and I(Cl) responses, FP failed to enhance the responses to forskolin (10 μM, an adenylate cyclase activator). Nevertheless, we found that FP synergistically increased cytosolic cAMP concentrations in combination with forskolin. All these effects of FP were reproduced with the use of budesonide. Collectively, inhaled corticosteroids such as FP and budesonide stimulate CFTR-mediated anion transport through adenylate cyclase-mediated mechanisms in a nongenomic fashion, thus sharing elements of a common pathway with forskolin. However, the corticosteroids cooperate with forskolin for synergistic cAMP production, suggesting that the corticosteroids and forskolin do not compete with each other to exert their effects on adenylate cyclase. Considering that such synergism was also observed in the FP/salmeterol combination, these nongenomic aspects may play therapeutic roles in mucus congestive airway diseases, in addition to genomic aspects that are generally recognized.
Collapse
Affiliation(s)
- Takefumi Mizutani
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Garzon-Muvdi T, Schiapparelli P, ap Rhys C, Guerrero-Cazares H, Smith C, Kim DH, Kone L, Farber H, Lee DY, An SS, Levchenko A, Quiñones-Hinojosa A. Regulation of brain tumor dispersal by NKCC1 through a novel role in focal adhesion regulation. PLoS Biol 2012; 10:e1001320. [PMID: 22570591 PMCID: PMC3341330 DOI: 10.1371/journal.pbio.1001320] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 03/21/2012] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GB) is a highly invasive and lethal brain tumor due to its universal recurrence. Although it has been suggested that the electroneutral Na(+)-K(+)-Cl(-) cotransporter 1 (NKCC1) can play a role in glioma cell migration, the precise mechanism by which this ion transporter contributes to GB aggressiveness remains poorly understood. Here, we focused on the role of NKCC1 in the invasion of human primary glioma cells in vitro and in vivo. NKCC1 expression levels were significantly higher in GB and anaplastic astrocytoma tissues than in grade II glioma and normal cortex. Pharmacological inhibition and shRNA-mediated knockdown of NKCC1 expression led to decreased cell migration and invasion in vitro and in vivo. Surprisingly, knockdown of NKCC1 in glioma cells resulted in the formation of significantly larger focal adhesions and cell traction forces that were approximately 40% lower than control cells. Epidermal growth factor (EGF), which promotes migration of glioma cells, increased the phosphorylation of NKCC1 through a PI3K-dependant mechanism. This finding is potentially related to WNK kinases. Taken together, our findings suggest that NKCC1 modulates migration of glioma cells by two distinct mechanisms: (1) through the regulation of focal adhesion dynamics and cell contractility and (2) through regulation of cell volume through ion transport. Due to the ubiquitous expression of NKCC1 in mammalian tissues, its regulation by WNK kinases may serve as new therapeutic targets for GB aggressiveness and can be exploited by other highly invasive neoplasms.
Collapse
Affiliation(s)
- Tomas Garzon-Muvdi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Paula Schiapparelli
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Colette ap Rhys
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Hugo Guerrero-Cazares
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Christopher Smith
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Deok-Ho Kim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Lyonell Kone
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Harrison Farber
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Danielle Y. Lee
- Department of Environmental Health Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Steven S. An
- Department of Environmental Health Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Physical Sciences in Oncology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Andre Levchenko
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Alfredo Quiñones-Hinojosa
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
31
|
Pacheco-Alvarez D, Vázquez N, Castañeda-Bueno M, de-Los-Heros P, Cortes-González C, Moreno E, Meade P, Bobadilla NA, Gamba G. WNK3-SPAK interaction is required for the modulation of NCC and other members of the SLC12 family. Cell Physiol Biochem 2012; 29:291-302. [PMID: 22415098 DOI: 10.1159/000337610] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2011] [Indexed: 11/19/2022] Open
Abstract
The serine/threonine with no lysine kinase 3 (WNK3) modulates the activity of the electroneutral cation-coupled chloride cotransporters (CCC) to promote Cl(-) influx and prevent Cl(-) efflux, thus fitting the profile for a putative "Cl(-)-sensing kinase". The Ste20-type kinases, SPAK/OSR1, become phosphorylated in response to reduction in intracellular chloride concentration and regulate the activity of NKCC1. Several studies have now shown that WNKs function upstream of SPAK/OSR1. This study was designed to analyze the role of WNK3-SPAK interaction in the regulation of CCCs with particular emphasis on NCC. In this study we used the functional expression system of Xenopus laevis oocytes to show that different SPAK binding sites in WNK3 ((241, 872, 1336)RFxV) are required for the kinase to have effects on CCCs. WNK3-F1337A no longer activated NKCC2, but the effects on NCC, NKCC1, and KCC4 were preserved. In contrast, the effects of WNK3 on these cotransporters were prevented in WNK3-F242A. The elimination of F873 had no consequence on WNK3 effects. WNK3 promoted NCC phosphorylation at threonine 58, even in the absence of the unique SPAK binding site of NCC, but this effect was abolished in the mutant WNK3-F242A. Thus, our data support the hypothesis that the effects of WNK3 upon NCC and other CCCs require the interaction and activation of the SPAK kinase. The effect is dependent on one of the three binding sites for SPAK that are present in WNK3, but not on the SPAK binding sites on the CCCs, which suggests that WNK3 is capable of binding both SPAK and CCCs to promote their phosphorylation.
Collapse
|
32
|
Rinehart J, Vázquez N, Kahle KT, Hodson CA, Ring AM, Gulcicek EE, Louvi A, Bobadilla NA, Gamba G, Lifton RP. WNK2 kinase is a novel regulator of essential neuronal cation-chloride cotransporters. J Biol Chem 2011; 286:30171-80. [PMID: 21733846 PMCID: PMC3191056 DOI: 10.1074/jbc.m111.222893] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 07/04/2011] [Indexed: 11/06/2022] Open
Abstract
NKCC1 and KCC2, related cation-chloride cotransporters (CCC), regulate cell volume and γ-aminobutyric acid (GABA)-ergic neurotranmission by modulating the intracellular concentration of chloride [Cl(-)]. These CCCs are oppositely regulated by serine-threonine phosphorylation, which activates NKCC1 but inhibits KCC2. The kinase(s) that performs this function in the nervous system are not known with certainty. WNK1 and WNK4, members of the WNK (with no lysine [K]) kinase family, either directly or via the downstream SPAK/OSR1 Ste20-type kinases, regulate the furosemide-sensitive NKCC2 and the thiazide-sensitive NCC, kidney-specific CCCs. What role the novel WNK2 kinase plays in this regulatory cascade, if any, is unknown. Here, we show that WNK2, unlike other WNKs, is not expressed in kidney; rather, it is a neuron-enriched kinase primarily expressed in neocortical pyramidal cells, thalamic relay cells, and cerebellar granule and Purkinje cells in both the developing and adult brain. Bumetanide-sensitive and Cl(-)-dependent (86)Rb(+) uptake assays in Xenopus laevis oocytes revealed that WNK2 promotes Cl(-) accumulation by reciprocally activating NKCC1 and inhibiting KCC2 in a kinase-dependent manner, effectively bypassing normal tonicity requirements for cotransporter regulation. TiO(2) enrichment and tandem mass spectrometry studies demonstrate WNK2 forms a protein complex in the mammalian brain with SPAK, a known phosphoregulator of NKCC1. In this complex, SPAK is phosphorylated at Ser-383, a consensus WNK recognition site. These findings suggest a role for WNK2 in the regulation of CCCs in the mammalian brain, with implications for both cell volume regulation and/or GABAergic signaling.
Collapse
Affiliation(s)
- Jesse Rinehart
- From the Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Norma Vázquez
- the Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán and Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico City 14000, Mexico
| | - Kristopher T. Kahle
- the Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, and
| | - Caleb A. Hodson
- From the Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Aaron M. Ring
- From the Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Erol E. Gulcicek
- the Keck Biotechnology Resource Laboratory, Yale University, New Haven, Connecticut 06510
| | - Angeliki Louvi
- From the Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Norma A. Bobadilla
- the Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán and Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico City 14000, Mexico
| | - Gerardo Gamba
- the Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán and Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico City 14000, Mexico
| | - Richard P. Lifton
- From the Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510
| |
Collapse
|
33
|
Jourdain P, Pavillon N, Moratal C, Boss D, Rappaz B, Depeursinge C, Marquet P, Magistretti PJ. Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study. J Neurosci 2011; 31:11846-54. [PMID: 21849545 PMCID: PMC6623187 DOI: 10.1523/jneurosci.0286-11.2011] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 05/23/2011] [Accepted: 06/22/2011] [Indexed: 11/21/2022] Open
Abstract
Digital holographic microscopy (DHM) is a noninvasive optical imaging technique that provides quantitative phase images of living cells. In a recent study, we showed that the quantitative monitoring of the phase signal by DHM was a simple label-free method to study the effects of glutamate on neuronal optical responses (Pavillon et al., 2010). Here, we refine these observations and show that glutamate produces the following three distinct optical responses in mouse primary cortical neurons in culture, predominantly mediated by NMDA receptors: biphasic, reversible decrease (RD) and irreversible decrease (ID) responses. The shape and amplitude of the optical signal were not associated with a particular cellular phenotype but reflected the physiopathological status of neurons linked to the degree of NMDA activity. Thus, the biphasic, RD, and ID responses indicated, respectively, a low-level, a high-level, and an "excitotoxic" level of NMDA activation. Moreover, furosemide and bumetanide, two inhibitors of sodium-coupled and/or potassium-coupled chloride movement strongly modified the phase shift, suggesting an involvement of two neuronal cotransporters, NKCC1 (Na-K-Cl) and KCC2 (K-Cl) in the genesis of the optical signal. This observation is of particular interest since it shows that DHM is the first imaging technique able to monitor dynamically and in situ the activity of these cotransporters during physiological and/or pathological neuronal conditions.
Collapse
Affiliation(s)
| | - Nicolas Pavillon
- Advanced Photonics Laboratory, Microvision and Microdiagnostic Group, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland, and
| | | | | | | | - Christian Depeursinge
- Advanced Photonics Laboratory, Microvision and Microdiagnostic Group, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland, and
| | - Pierre Marquet
- Brain and Mind Institute, and
- Department of Psychiatry-University Hospital, Centre de Neurosciences Psychiatriques, 1008 Prilly-Lausanne, Switzerland
| | - Pierre J. Magistretti
- Brain and Mind Institute, and
- Department of Psychiatry-University Hospital, Centre de Neurosciences Psychiatriques, 1008 Prilly-Lausanne, Switzerland
| |
Collapse
|
34
|
Panickar KS, Anderson RA. Mechanisms underlying the protective effects of myricetin and quercetin following oxygen-glucose deprivation-induced cell swelling and the reduction in glutamate uptake in glial cells. Neuroscience 2011; 183:1-14. [PMID: 21496478 DOI: 10.1016/j.neuroscience.2011.03.064] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 03/24/2011] [Accepted: 03/29/2011] [Indexed: 01/28/2023]
Abstract
The protective effects of the flavonoid polyphenols, myricetin and quercetin, were investigated on key features of ischemic injury in cultures including cell swelling and the reduction in glutamate uptake. C6 glial cells were exposed to oxygen-glucose deprivation (OGD) for 5 h and cell swelling was determined 90 min after the end of OGD. OGD-induced swelling was significantly blocked by both quercetin and myricetin although higher concentrations were required for quercetin. OGD-induced free radical production, a contributing factor in cell swelling, was significantly reduced by both myricetin and quercetin. However, depolarization of the inner mitochondrial membrane potential (ΔΨ(m)), the blockade of which generally reduces swelling, was significantly diminished by myricetin, but not quercetin. This indicated that quercetin could reduce swelling despite its inability to prevent depolarization of ΔΨ(m) possibly through other signaling pathways. Increased intracellular calcium ([Ca²+](i)) is an important characteristic of ischemic injury and is implicated in swelling. Both myricetin and quercetin attenuated the increase in [Ca²+](i). Further, a reduction in [Ca²+](i), through the use of nifedipine, nimodipine, verapamil, dantrolene, or BAPTA-AM, significantly reduced OGD-induced cell swelling indicating that one possible mechanism by which such flavonoids attenuate cell swelling may be through regulating [Ca²+](i). OGD-induced decrease in glutamate uptake was attenuated by myricetin, but not quercetin. Cyclosporin A, a blocker of the mitochondrial permeability transition (mPT) pore, but not FK506 (that does not block the mPT), attenuated the decline in glutamate uptake after OGD, indicating the involvement of the mPT in glutamate uptake. Our results indicated that while blockade of ΔΨ(m) may be sufficient to reduce swelling, it may not be a necessary factor, and that flavonoids reduce cell swelling by regulating [Ca²+](i). The differential effects of myricetin and quercetin on OGD-induced reduction on glutamate uptake may be due to their differential effects on mitochondria.
Collapse
Affiliation(s)
- K S Panickar
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA.
| | | |
Collapse
|
35
|
Pacheco-Alvarez D, Gamba G. WNK3 is a Putative Chloride-sensing Kinase. Cell Physiol Biochem 2011; 28:1123-34. [DOI: 10.1159/000335848] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2011] [Indexed: 11/19/2022] Open
|
36
|
Cheng N, Liu F, Zhang L, Xu XH, Gorthala S, Bai Y. Enrichment of nuclear red blood cells by membrane KCC transporter with urea intervention. J Clin Lab Anal 2011; 25:1-7. [PMID: 21254235 PMCID: PMC6647654 DOI: 10.1002/jcla.20411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 07/20/2010] [Indexed: 11/09/2022] Open
Abstract
Intervention by membrane KCC transporter interfering selectively could promote about 5 times enrichment of nuclear red blood cells.
Collapse
Affiliation(s)
- Ning Cheng
- Center of Reproductive Health and Birth Defects, Lanzhou University, Lanzhou, Gansu Province, PR China.
| | | | | | | | | | | |
Collapse
|
37
|
Phosphoregulation of the Na-K-2Cl and K-Cl cotransporters by the WNK kinases. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1150-8. [PMID: 20637866 PMCID: PMC3529164 DOI: 10.1016/j.bbadis.2010.07.009] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Revised: 07/07/2010] [Accepted: 07/08/2010] [Indexed: 11/23/2022]
Abstract
Precise regulation of the intracellular concentration of chloride [Cl-]i is necessary for proper cell volume regulation, transepithelial transport, and GABA neurotransmission. The Na-K-2Cl (NKCCs) and K-Cl (KCCs) cotransporters, related SLC12A transporters mediating cellular chloride influx and efflux, respectively, are key determinants of [Cl-]i in numerous cell types, including red blood cells, epithelial cells, and neurons. A common "chloride/volume-sensitive kinase", or related system of kinases, has long been hypothesized to mediate the reciprocal but coordinated phosphoregulation of the NKCCs and the KCCs, but the identity of these kinase(s) has remained unknown. Recent evidence suggests that the WNK (with no lysine = K) serine-threonine kinases directly or indirectly via the downstream Ste20-type kinases SPAK/OSR1, are critical components of this signaling pathway. Hypertonic stress (cell shrinkage), and possibly decreased [Cl-]i, triggers the phosphorylation and activation of specific WNKs, promoting NKCC activation and KCC inhibition via net transporter phosphorylation. Silencing WNK kinase activity can promote NKCC inhibition and KCC activation via net transporter dephosphorylation, revealing a dynamic ability of the WNKs to modulate [Cl-]. This pathway is essential for the defense of cell volume during osmotic perturbation, coordination of epithelial transport, and gating of sensory information in the peripheral system. Commiserate with their importance in serving these critical roles in humans, mutations in WNKs underlie two different Mendelian diseases, pseudohypoaldosteronism type II (an inherited form of salt-sensitive hypertension), and hereditary sensory and autonomic neuropathy type 2. WNKs also regulate ion transport in lower multicellular organisms, including Caenorhabditis elegans, suggesting that their functions are evolutionarily-conserved. An increased understanding of how the WNKs regulate the Na-K-2Cl and K-Cl cotransporters may provide novel opportunities for the selective modulation of these transporters, with ramifications for common human diseases like hypertension, sickle cell disease, neuropathic pain, and epilepsy.
Collapse
|
38
|
Delpire E, Austin TM. Kinase regulation of Na+-K+-2Cl- cotransport in primary afferent neurons. J Physiol 2010; 588:3365-73. [PMID: 20498230 DOI: 10.1113/jphysiol.2010.190769] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The Na(+)-K(+)-2Cl(-) cotransporter NKCC1 is expressed in sensory neurons where it accumulates intracellular Cl(-) and facilitates primary afferent depolarization. Depolarization of primary afferent fibre terminals interferes with the gating of incoming sensory signals to the spinal cord. The cotransporter belongs to a family of ion transporters which are sensitive to changes in cell volume. Cell shrinkage, through mechanisms that are still unknown, leads to the phosphorylation and activation of NKCC1. Similarly, axotomy results in increased NKCC1 phosphorylation in dorsal root ganglion (DRG) neurons. This review summarizes the work on the kinases that directly mediate NKCC1 activation. These are the sterile-20-like kinases SPAK and OSR1. Upon their activation through phosphorylation by upstream kinases, SPAK and OSR1 bind to specific peptides located in the cytosolic N-terminal tail of NKCC1, phosphorylate, and stimulate cotransport activity. Expression of SPAK and OSR1 varies from tissue to tissue, but in DRG neurons and in spinal cord, SPAK and OSR1 expression levels are similar. In DRG neurons, both kinases participate in the modulation of NKCC1, as the knockdown of one kinase only results in a partial decrease of NKCC1 function, while the knockdown of both kinases is additive. The identity of the kinases (e.g. WNK kinases) that possibly act upstream of SPAK and OSR1 is also discussed.
Collapse
Affiliation(s)
- Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | |
Collapse
|
39
|
|
40
|
Gusev GP, Agalakova NI. Regulation of K-Cl cotransport in erythrocytes of frog Rana temporaria by commonly used protein kinase and protein phosphatase inhibitors. J Comp Physiol B 2010; 180:385-91. [PMID: 19936761 DOI: 10.1007/s00360-009-0418-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 10/07/2009] [Accepted: 11/03/2009] [Indexed: 10/20/2022]
Abstract
Recently (Agalakova and Gusev in J Comp Physiol 179:443-450, 2009), we demonstrated that the activity of K-Cl cotransport (KCC) in frog red blood cells is inhibited under stimulation of protein kinase C (PKC) with phorbol ester PMA (12-myristate-13-acetate). Present work was performed to uncover possible implication of protein kinases and protein phosphatases (PPs) in the regulation of baseline and volume-dependent KCC activity in these cells. K+ influx was estimated as 86Rb uptake by the cells in isotonic or hypotonic media in the presence of ouabain, K+ efflux was determined as the difference between K+ loss by the cells incubated in parallel in isotonic or hypotonic K(+)-free Cl(-)- and NO(3)(-)-media. Swelling of the cells in hypotonic medium was accompanied by approximately 50% activation of Cl-dependent K+ influx and efflux. Protein tyrosine kinase (PTK) inhibitor genistein (0.1 mM) stably and considerably (up to 89%) suppressed both baseline and volume-dependent KCC activity in each direction. Other PTK blockers (tyrphostin 23 and quercetin) had no influence on KCC activity in frog erythrocytes. PKC inhibitor chelerythrine (20 microM) and both PP inhibitors, fluoride (5 mM) and okadaic acid (1 microM), reduced KCC activity by 25-70%. Neither basal nor swelling-activated KCC in frog erythrocytes was affected by PKC inhibitor staurosporine (1 microM). Based on the previous and present results, we can suggest that the main role in the maintenance of basal and volume-dependent KCC activity in frog erythrocytes belongs to PTKs and PPs, whereas PKC is a negative regulator of this ion system.
Collapse
Affiliation(s)
- Gennadii Petrovich Gusev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez pr. 44, 194223 St. Petersburg, Russia
| | | |
Collapse
|
41
|
Ortiz-Acevedo A, Rigor RR, Maldonado HM, Cala PM. Coordinated control of volume regulatory Na+/H+ and K+/H+ exchange pathways in Amphiuma red blood cells. Am J Physiol Cell Physiol 2009; 298:C510-20. [PMID: 19940069 DOI: 10.1152/ajpcell.00141.2009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Na(+)/H(+) and K(+)/H(+) exchange pathways of Amphiuma tridactylum red blood cells (RBCs) are quiescent at normal resting cell volume yet are selectively activated in response to cell shrinkage and swelling, respectively. These alkali metal/H(+) exchangers are activated by net kinase activity and deactivated by net phosphatase activity. We employed relaxation kinetic analyses to gain insight into the basis for coordinated control of these volume regulatory ion flux pathways. This approach enabled us to develop a model explaining how phosphorylation/dephosphorylation-dependent events control and coordinate the activity of the Na(+)/H(+) and K(+)/H(+) exchangers around the cell volume set point. We found that the transition between initial and final steady state for both activation and deactivation of the volume-induced Na(+)/H(+) and K(+)/H(+) exchange pathways in Amphiuma RBCs proceed as a single exponential function of time. The rate of Na(+)/H(+) exchange activation increases with cell shrinkage, whereas the rate of Na(+)/H(+) exchange deactivation increases as preshrunken cells are progressively swollen. Similarly, the rate of K(+)/H(+) exchange activation increases with cell swelling, whereas the rate of K(+)/H(+) exchange deactivation increases as preswollen cells are progressively shrunken. We propose a model in which the activities of the controlling kinases and phosphatases are volume sensitive and reciprocally regulated. Briefly, the activity of each kinase-phosphatase pair is reciprocally related, as a function of volume, and the volume sensitivities of kinases and phosphatases controlling K(+)/H(+) exchange are reciprocally related to those controlling Na(+)/H(+) exchange.
Collapse
|
42
|
Bergeron MJ, Frenette-Cotton R, Carpentier GA, Simard MG, Caron L, Isenring P. Phosphoregulation of K+-Cl−cotransporter 4 during changes in intracellular Cl−and cell volume. J Cell Physiol 2009; 219:787-96. [DOI: 10.1002/jcp.21725] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Wenz M, Hartmann AM, Friauf E, Nothwang HG. CIP1 is an activator of the K+-Cl- cotransporter KCC2. Biochem Biophys Res Commun 2009; 381:388-92. [PMID: 19232517 DOI: 10.1016/j.bbrc.2009.02.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 02/12/2009] [Indexed: 10/24/2022]
Abstract
In most neurons, efficient setting of the intracellular Cl(-)-concentration requires the coordinated regulation of the Cl(-)-inward transporter NKCC1 and the Cl(-)-outward transporter KCC2. Previously, the cation-chloride cotransporter interacting protein 1 (CIP1) was shown to inactivate NKCC1. Here, we investigated its role for KCC2 activity. After co-expression of CIP1 and KCC2 in HEK-293 cells, a physical and functional interaction was observed. CIP1 co-purified with KCC2 in pull-down experiments and significantly increased KCC2 transport activity, as determined by 86Rb+ flux measurements. RT-PCR analysis demonstrated a ubiquitous expression during postnatal development of the rat. Real-time PCR revealed a two-fold down-regulation of CIP1 during maturation of the rat brain. Taken together, our data identify CIP1 as a potent activator of KCC2. Furthermore, the results support previous data of heteromer formation among members of the cation-chloride cotransporter gene family.
Collapse
Affiliation(s)
- Meike Wenz
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Erwin-Schrödinger-Strasse 13, D-67633 Kaiserslautern, Germany
| | | | | | | |
Collapse
|
44
|
Regulation of lens volume: Implications for lens transparency. Exp Eye Res 2009; 88:144-50. [DOI: 10.1016/j.exer.2008.05.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 05/20/2008] [Accepted: 05/20/2008] [Indexed: 11/23/2022]
|
45
|
Chabwine JN, Talavera K, Verbert L, Eggermont J, Vanderwinden JM, De Smedt H, Van Den Bosch L, Robberecht W, Callewaert G. Differential contribution of the Na(+)-K(+)-2Cl(-) cotransporter NKCC1 to chloride handling in rat embryonic dorsal root ganglion neurons and motor neurons. FASEB J 2008; 23:1168-76. [PMID: 19103648 DOI: 10.1096/fj.08-116012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Plasma membrane chloride (Cl(-)) pathways play an important role in neuronal physiology. Here, we investigated the role of NKCC1 cotransporters (a secondary active Cl(-) uptake mechanism) in Cl(-) handling in cultured rat dorsal root ganglion neurons (DRGNs) and motor neurons (MNs) derived from fetal stage embryonic day 14. Gramicidin-perforated patch-clamp recordings revealed that DRGNs accumulate intracellular Cl(-) through a bumetanide- and Na(+)-sensitive mechanism, indicative of the functional expression of NKCC1. Western blotting confirmed the expression of NKCC1 in both DRGNs and MNs, but immunocytochemistry experiments showed a restricted expression in dendrites of MNs, which contrasts with a homogeneous expression in DRGNs. Both MNs and DRGNs could be readily loaded with or depleted of Cl(-) during GABA(A) receptor activation at depolarizing or hyperpolarizing membrane potentials. After loading, the rate of recovery to the resting Cl(-) concentration (i.e., [Cl(-)](i) decrease) was similar in both cell types and was unaffected by lowering the extracellular Na(+) concentration. In contrast, the recovery on depletion (i.e., [Cl(-)](i) increase) was significantly faster in DRGNs in control conditions but not in low extracellular Na(+). The experimental observations could be reproduced by a mathematical model for intracellular Cl(-) kinetics, in which DRGNs show higher NKCC1 activity and smaller Cl(-)-handling volume than MNs. On the basis of these results, we conclude that embryonic DRGNs show a higher somatic functional expression of NKCC1 than embryonic MNs. The high NKCC1 activity in DRGNs is important for maintaining high [Cl(-)](i), whereas lower NKCC1 activity in MNs allows large [Cl(-)](i) variations during neuronal activity.
Collapse
Affiliation(s)
- J N Chabwine
- Department of Molecular and Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Jennings ML, Cui J. Chloride homeostasis in Saccharomyces cerevisiae: high affinity influx, V-ATPase-dependent sequestration, and identification of a candidate Cl- sensor. ACTA ACUST UNITED AC 2008; 131:379-91. [PMID: 18378800 PMCID: PMC2279172 DOI: 10.1085/jgp.200709905] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chloride homeostasis in Saccharomyces cerevisiae has been characterized with the goal of identifying new Cl− transport and regulatory pathways. Steady-state cellular Cl− contents (∼0.2 mEq/liter cell water) differ by less than threefold in yeast grown in media containing 0.003–5 mM Cl−. Therefore, yeast have a potent mechanism for maintaining constant cellular Cl− over a wide range of extracellular Cl−. The cell water:medium [Cl−] ratio is >20 in media containing 0.01 mM Cl− and results in part from sequestration of Cl− in organelles, as shown by the effect of deleting genes involved in vacuolar acidification. Organellar sequestration cannot account entirely for the Cl− accumulation, however, because the cell water:medium [Cl−] ratio in low Cl− medium is ∼10 at extracellular pH 4.0 even in vma1 yeast, which lack the vacuolar H+-ATPase. Cellular Cl− accumulation is ATP dependent in both wild type and vma1 strains. The initial 36Cl− influx is a saturable function of extracellular [36Cl−] with K1/2 of 0.02 mM at pH 4.0 and >0.2 mM at pH 7, indicating the presence of a high affinity Cl− transporter in the plasma membrane. The transporter can exchange 36Cl− for either Cl− or Br− far more rapidly than SO4=, phosphate, formate, HCO3−, or NO3−. High affinity Cl− influx is not affected by deletion of any of several genes for possible Cl− transporters. The high affinity Cl− transporter is activated over a period of ∼45 min after shifting cells from high-Cl− to low-Cl− media. Deletion of ORF YHL008c (formate-nitrite transporter family) strongly reduces the rate of activation of the flux. Therefore, Yhl008cp may be part of a Cl−-sensing mechanism that activates the high affinity transporter in a low Cl− medium. This is the first example of a biological system that can regulate cellular Cl− at concentrations far below 1 mM.
Collapse
Affiliation(s)
- Michael L Jennings
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | |
Collapse
|
47
|
Regulation of NKCC2 by a chloride-sensing mechanism involving the WNK3 and SPAK kinases. Proc Natl Acad Sci U S A 2008; 105:8458-63. [PMID: 18550832 DOI: 10.1073/pnas.0802966105] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Na(+):K(+):2Cl(-) cotransporter (NKCC2) is the target of loop diuretics and is mutated in Bartter's syndrome, a heterogeneous autosomal recessive disease that impairs salt reabsorption in the kidney's thick ascending limb (TAL). Despite the importance of this cation/chloride cotransporter (CCC), the mechanisms that underlie its regulation are largely unknown. Here, we show that intracellular chloride depletion in Xenopus laevis oocytes, achieved by either coexpression of the K-Cl cotransporter KCC2 or low-chloride hypotonic stress, activates NKCC2 by promoting the phosphorylation of three highly conserved threonines (96, 101, and 111) in the amino terminus. Elimination of these residues renders NKCC2 unresponsive to reductions of [Cl(-)](i). The chloride-sensitive activation of NKCC2 requires the interaction of two serine-threonine kinases, WNK3 (related to WNK1 and WNK4, genes mutated in a Mendelian form of hypertension) and SPAK (a Ste20-type kinase known to interact with and phosphorylate other CCCs). WNK3 is positioned upstream of SPAK and appears to be the chloride-sensitive kinase. Elimination of WNK3's unique SPAK-binding motif prevents its activation of NKCC2, as does the mutation of threonines 96, 101, and 111. A catalytically inactive WNK3 mutant also completely prevents NKCC2 activation by intracellular chloride depletion. Together these data reveal a chloride-sensing mechanism that regulates NKCC2 and provide insight into how increases in the level of intracellular chloride in TAL cells, as seen in certain pathological states, could drastically impair renal salt reabsorption.
Collapse
|
48
|
Lauf PK, Chimote AA, Adragna NC. Lithium fluxes indicate presence of Na-Cl cotransport (NCC) in human lens epithelial cells. Cell Physiol Biochem 2008; 21:335-46. [PMID: 18453742 DOI: 10.1159/000129627] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2008] [Indexed: 11/19/2022] Open
Abstract
During regulatory volume decrease (RVD) of human lens epithelial cells (hLECs) by clotrimazole (CTZ)-sensitive K fluxes, Na-K-2Cl cotransport (NKCC) remains active and K-Cl cotransport (KCC) inactive. To determine whether such an abnormal behavior was caused by RVD-induced cell shrinkage, NKCC was measured in the presence of either CTZ or in high K media to prevent RVD. NKCC transports RbCl + NaCl, and LiCl + KCl; thus ouabain-insensitive, bumetanide-sensitive (BS) or Cl-dependent (ClD) Rb and Li fluxes were determined in hyposmotic high NaCl media with CTZ, or in high KCl media alone, or with sulfamate (Sf) or nitrate as Cl replacement at varying Rb, Li or Cl mol fractions (MF). Unexpectedly, NKCC was inhibited by 80% with CTZ (IC(50) = 31 microM). In isosmotic (300 mOsM) K, Li influx was approximately 1/3 of Rb influx in Na, 50% lower in Sf, and bumetanide-insensitive (BI). In hypotonic (200 mOsM) K, only the ClD but not BS Li fluxes were detected. At Li MFs from 0.1-1, Li fluxes fitted a bell-shaped curve maxing at approximately 0.6 Li MF, with the BS fluxes equaling approximately 1/4 of the ClD-Li influx. The difference, i.e. the BI/ClD Li influx, saturated with increasing Li and Cl MFs, with K(ms) for Li of 11 with, and 7 mM without K, and of approximately 46 mM for Cl. Inhibition of this K-independent Li influx by thiazides was weak whilst furosemide (<100 microM) was ineffective. Reverse transcription polymerase chain reaction and Western blots verified presence of both NKCC1 and Na-Cl cotransport (NCC). In conclusion, in hyposmotic high K media, which prevents CTZ-sensitive K flux-mediated RVD in hLECs, NKCC1, though molecularly expressed, was functionally silent. However, a K-independent and moderately thiazide-sensitive ClD-Li flux, i.e. LiCC, likely occurring through NCC was detected operationally and molecularly.
Collapse
Affiliation(s)
- Peter K Lauf
- Cell Biophysics Group, Department of Pathology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA.
| | | | | |
Collapse
|
49
|
Rocha-González HI, Mao S, Alvarez-Leefmans FJ. Na+,K+,2Cl- cotransport and intracellular chloride regulation in rat primary sensory neurons: thermodynamic and kinetic aspects. J Neurophysiol 2008; 100:169-84. [PMID: 18385481 DOI: 10.1152/jn.01007.2007] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adult primary afferent neurons are depolarized by GABA throughout their entire surface, including their somata located in dorsal root ganglia (DRG). Primary afferent depolarization (PAD) mediated by GABA released from spinal interneurons determines presynaptic inhibition, a key mechanism in somatosensory processing. The depolarization is due to Cl(-) efflux through GABA(A) channels; the outward Cl(-) gradient is generated by a Na+,K+,2Cl(-) cotransporter (NKCC) as first established in amphibians. Using fluorescence imaging microscopy we measured [Cl(-)]i and cell water volume (CWV) in dissociated rat DRG cells (P0-P21) loaded with N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide and calcein, respectively. Basal [Cl(-)]i was 44.2 +/- 1.2 mM (mean +/- SE), Cl(-) equilibrium potential (E Cl) was -27.0 +/- 0.7 mV (n = 75). This [Cl(-)]i is about four times higher than electrochemical equilibrium. On isosmotic removal of external Cl(-), cells lost Cl(-) and shrank. On returning to control solution, cells reaccumulated Cl(-) and recovered CWV. Cl(-) reaccumulation had Na+-dependent (SDC) and Na+-independent (SIC) components. The SIC stabilized at [Cl(-)]i = 13.2 +/- 1.2 mM, suggesting that it was passive (E(Cl) = -60.5 +/- 3 mV). Bumetanide blocked CWV recovery and most (65%) of the SDC (IC50 = 5.7 microM), indicating that both were mediated by NKCC. Active Cl(-) uptake fell with increasing [Cl(-)]i and became negligible when [Cl(-)]i reached basal levels. The kinetics of active Cl(-) uptake suggests a negative feedback system in which intracellular Cl(-)regulates its own influx thereby keeping [Cl(-)]i constant, above electrochemical equilibrium but below the value that would attain if NKCC reached thermodynamic equilibrium.
Collapse
Affiliation(s)
- Héctor I Rocha-González
- Department of Pharmacology and Toxicology, Wright State University, Boonshoft School of Medicine, Dayton, Ohio 45435-0001, USA
| | | | | |
Collapse
|
50
|
Lauf PK, Misri S, Chimote AA, Adragna NC. Apparent intermediate K conductance channel hyposmotic activation in human lens epithelial cells. Am J Physiol Cell Physiol 2008; 294:C820-32. [PMID: 18184876 DOI: 10.1152/ajpcell.00375.2007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study explores the nature of K fluxes in human lens epithelial cells (LECs) in hyposmotic solutions. Total ion fluxes, Na-K pump, Cl-dependent Na-K-2Cl (NKCC), K-Cl (KCC) cotransport, and K channels were determined by 85Rb uptake and cell K (Kc) by atomic absorption spectrophotometry, and cell water gravimetrically after exposure to ouabain +/- bumetanide (Na-K pump and NKCC inhibitors), and ion channel inhibitors in varying osmolalities with Na, K, or methyl-d-glucamine and Cl, sulfamate, or nitrate. Reverse transcriptase polymerase chain reaction (RT-PCR), Western blot analyses, and immunochemistry were also performed. In isosmotic (300 mosM) media approximately 90% of the total Rb influx occurred through the Na-K pump and NKCC and approximately 10% through KCC and a residual leak. Hyposmotic media (150 mosM) decreased K(c) by a 16-fold higher K permeability and cell water, but failed to inactivate NKCC and activate KCC. Sucrose replacement or extracellular K to >57 mM, but not Rb or Cs, in hyposmotic media prevented Kc and water loss. Rb influx equaled Kc loss, both blocked by clotrimazole (IC50 approximately 25 microM) and partially by 1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole (TRAM-34) inhibitors of the IK channel KCa3.1 but not by other K channel or connexin hemichannel blockers. Of several anion channel blockers (dihydro-indenyl)oxy]alkanoic acid (DIOA), 4-2(butyl-6,7-dichloro-2-cyclopentylindan-1-on-5-yl)oxybutyric acid (DCPIB), and phloretin totally or partially inhibited Kc loss and Rb influx, respectively. RT-PCR and immunochemistry confirmed the presence of KCa3.1 channels, aside of the KCC1, KCC2, KCC3 and KCC4 isoforms. Apparently, IK channels, possibly in parallel with volume-sensitive outwardly rectifying Cl channels, effect regulatory volume decrease in LECs.
Collapse
Affiliation(s)
- Peter K Lauf
- Cell Biophysics Group, 054 Biological Sciences Bldg., Wright State Univ. Boonshoft School of Medicine, Dayton, OH 45435, USA.
| | | | | | | |
Collapse
|