1
|
Zhang W, Zhang L, Yao H, Wang Y, Zhang X, Shang L, Chen X, Zeng J. Long-chain dicarboxylic acids play a critical role in inducing peroxisomal β-oxidation and hepatic triacylglycerol accumulation. J Biol Chem 2023; 299:105174. [PMID: 37599002 PMCID: PMC10494467 DOI: 10.1016/j.jbc.2023.105174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023] Open
Abstract
Recent studies provide evidence that peroxisomal β-oxidation negatively regulates mitochondrial fatty acid oxidation, and induction of peroxisomal β-oxidation causes hepatic lipid accumulation. However, whether there exists a triggering mechanism inducing peroxisomal β-oxidation is not clear. Long-chain dicarboxylic acids (LCDAs) are the product of mono fatty acids subjected to ω-oxidation, and both fatty acid ω-oxidation and peroxisomal β-oxidation are induced under ketogenic conditions, indicating there might be a crosstalk between. Here, we revealed that administration of LCDAs strongly induces peroxisomal fatty acid β-oxidation and causes hepatic steatosis in mice through the metabolites acetyl-CoA and hydrogen peroxide. Under ketogenic conditions, upregulation of fatty acid ω-oxidation resulted in increased generation of LCDAs and induction of peroxisomal β-oxidation, which causes hepatic accumulation of lipid droplets in animals. Inhibition of fatty acid ω-oxidation reduced LCDA formation and significantly lowered peroxisomal β-oxidation and improved hepatic steatosis. Our results suggest that endogenous LCDAs act as triggering molecules inducing peroxisomal β-oxidation and hepatic triacylglycerol deposition. Targeting fatty acid ω-oxidation might be an effective pathway in treating fatty liver and related metabolic diseases through regulating peroxisomal β-oxidation.
Collapse
Affiliation(s)
- Wei Zhang
- School of Life Science, Hunan University of Science and Technology, Xiangtan, Hunan, P. R. China
| | - Lina Zhang
- School of Life Science, Hunan University of Science and Technology, Xiangtan, Hunan, P. R. China
| | - Haoya Yao
- School of Life Science, Hunan University of Science and Technology, Xiangtan, Hunan, P. R. China
| | - Yaoqing Wang
- School of Life Science, Hunan University of Science and Technology, Xiangtan, Hunan, P. R. China
| | - Xiao Zhang
- School of Life Science, Hunan University of Science and Technology, Xiangtan, Hunan, P. R. China
| | - Lin Shang
- School of Life Science, Hunan University of Science and Technology, Xiangtan, Hunan, P. R. China
| | - Xiaocui Chen
- School of Life Science, Hunan University of Science and Technology, Xiangtan, Hunan, P. R. China
| | - Jia Zeng
- School of Life Science, Hunan University of Science and Technology, Xiangtan, Hunan, P. R. China.
| |
Collapse
|
2
|
Skowyra ML, Rapoport TA. Cell-free reconstitution of peroxisomal matrix protein import using Xenopus egg extract. STAR Protoc 2023; 4:102111. [PMID: 36853666 PMCID: PMC9947420 DOI: 10.1016/j.xpro.2023.102111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/08/2022] [Accepted: 01/20/2023] [Indexed: 02/13/2023] Open
Abstract
Peroxisomes are vital metabolic organelles whose matrix enzymes are imported from the cytosol in a folded state by the soluble receptor PEX5. The import mechanism has been challenging to decipher because of the lack of suitable in vitro systems. Here, we present a protocol for reconstituting matrix protein import using Xenopus egg extract. We describe how extract is prepared, how to replace endogenous PEX5 with recombinant versions, and how to perform and interpret a peroxisomal import reaction using a fluorescent cargo. For complete details on the use and execution of this protocol, please refer to Skowyra and Rapoport (2022).1.
Collapse
Affiliation(s)
- Michael L Skowyra
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| | - Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Manner A, Islinger M. Isolation of Mammalian Peroxisomes by Density Gradient Centrifugation. Methods Mol Biol 2023; 2643:1-12. [PMID: 36952174 DOI: 10.1007/978-1-0716-3048-8_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Sophisticated organelle fractionation strategies were the workhorse of early peroxisome research and led to the characterization of the principal functions of the organelle. However, even in the era of molecular biology and "omics" technologies, they are still of importance to unravel peroxisome-specific proteomes, confirm the localization of still uncharacterized proteins, analyze peroxisome metabolism or lipid composition, or study their protein import mechanism. To isolate and analyze peroxisomes for these purposes, density gradient centrifugation still represents a highly reliable and reproducible technique. This article describes two protocols to purify peroxisomes from either liver tissue or the HepG2 hepatoma cell line. The protocol for liver enables purification of peroxisome fractions with high purity (95%) and is therefore suitable to study low-abundant peroxisomal proteins or analyze their lipid composition, for example. The protocol presented for HepG2 cells is not suitable to gain highly pure peroxisomal fractions but is intended to be used for gradient profiling experiments and allows easier manipulation of the peroxisomal compartment, e.g., by gene knockdown or protein overexpression for functional studies. Both purification methods therefore represent complementary tools to be used to analyze different aspects of peroxisome physiology. Please note that this is an updated version of a protocol, which has been published in a former volume of Methods in Molecular Biology.
Collapse
Affiliation(s)
- Andreas Manner
- Institute of Neuroanatomy, Medical Faculty Mannheim, Mannheim Centre for Translational Neuroscience, Mannheim, Germany
| | - Markus Islinger
- Institute of Neuroanatomy, Medical Faculty Mannheim, Mannheim Centre for Translational Neuroscience, Mannheim, Germany.
| |
Collapse
|
4
|
Yao H, Wang Y, Zhang X, Li P, Shang L, Chen X, Zeng J. Targeting peroxisomal fatty acid oxidation improves hepatic steatosis and insulin resistance in obese mice. J Biol Chem 2022; 299:102845. [PMID: 36586435 PMCID: PMC9898756 DOI: 10.1016/j.jbc.2022.102845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Obesity and diabetes normally cause mitochondrial dysfunction and hepatic lipid accumulation, while fatty acid synthesis is suppressed and malonyl-CoA is depleted in the liver of severe obese or diabetic animals. Therefore, a negative regulatory mechanism might work for the control of mitochondrial fatty acid metabolism that is independent of malonyl-CoA in the diabetic animals. As mitochondrial β-oxidation is controlled by the acetyl-CoA/CoA ratio, and the acetyl-CoA generated in peroxisomal β-oxidation could be transported into mitochondria via carnitine shuttles, we hypothesize that peroxisomal β-oxidation might play a role in regulating mitochondrial fatty acid oxidation and inducing hepatic steatosis under the condition of obesity or diabetes. This study reveals a novel mechanism by which peroxisomal β-oxidation controls mitochondrial fatty acid oxidation in diabetic animals. We determined that excessive oxidation of fatty acids by peroxisomes generates considerable acetyl-carnitine in the liver of diabetic mice, which significantly elevates the mitochondrial acetyl-CoA/CoA ratio and causes feedback suppression of mitochondrial β-oxidation. Additionally, we found that specific suppression of peroxisomal β-oxidation enhances mitochondrial fatty acid oxidation by reducing acetyl-carnitine formation in the liver of obese mice. In conclusion, we suggest that induction of peroxisomal fatty acid oxidation serves as a mechanism for diabetes-induced hepatic lipid accumulation. Targeting peroxisomal β-oxidation might be a promising pathway in improving hepatic steatosis and insulin resistance as induced by obesity or diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jia Zeng
- School of Life Science, Hunan University of Science and Technology, Xiangtan, Hunan, PR China.
| |
Collapse
|
5
|
Vickers SD, Shumar SA, Saporito DC, Kunovac A, Hathaway QA, Mintmier B, King JA, King RD, Rajendran VM, Infante AM, Hollander JM, Leonardi R. NUDT7 regulates total hepatic CoA levels and the composition of the intestinal bile acid pool in male mice fed a Western diet. J Biol Chem 2022; 299:102745. [PMID: 36436558 PMCID: PMC9792899 DOI: 10.1016/j.jbc.2022.102745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/25/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
Nudix hydrolase 7 (NUDT7) is an enzyme that hydrolyzes CoA species, is highly expressed in the liver, and resides in the peroxisomes. Peroxisomes are organelles where the preferential oxidation of dicarboxylic fatty acids occurs and where the hepatic synthesis of the primary bile acids cholic acid and chenodeoxycholic acid is completed. We previously showed that liver-specific overexpression of NUDT7 affects peroxisomal lipid metabolism but does not prevent the increase in total liver CoA levels that occurs during fasting. We generated Nudt7-/- mice to further characterize the role that peroxisomal (acyl-)CoA degradation plays in the modulation of the size and composition of the acyl-CoA pool and in the regulation of hepatic lipid metabolism. Here, we show that deletion of Nudt7 alters the composition of the hepatic acyl-CoA pool in mice fed a low-fat diet, but only in males fed a Western diet does the lack of NUDT7 activity increase total liver CoA levels. This effect is driven by the male-specific accumulation of medium-chain dicarboxylic acyl-CoAs, which are produced from the β-oxidation of dicarboxylic fatty acids. We also show that, under conditions of elevated synthesis of chenodeoxycholic acid derivatives, Nudt7 deletion promotes the production of tauromuricholic acid, decreasing the hydrophobicity index of the intestinal bile acid pool and increasing fecal cholesterol excretion in male mice. These findings reveal that NUDT7-mediated hydrolysis of acyl-CoA pathway intermediates in liver peroxisomes contributes to the regulation of dicarboxylic fatty acid metabolism and the composition of the bile acid pool.
Collapse
Affiliation(s)
- Schuyler D Vickers
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Stephanie A Shumar
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Dominique C Saporito
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Amina Kunovac
- Division of Exercise Physiology, West Virginia University, Morgantown, West Virginia, USA
| | - Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University, Morgantown, West Virginia, USA
| | - Breeanna Mintmier
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Judy A King
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, Shreveport, Louisiana, USA
| | - Rachel D King
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Vazhaikkurichi M Rajendran
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Aniello M Infante
- Genomics Core Facility, West Virginia University, Morgantown, West Virginia, USA
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University, Morgantown, West Virginia, USA
| | - Roberta Leonardi
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA.
| |
Collapse
|
6
|
Wang Y, Zhang X, Yao H, Chen X, Shang L, Li P, Cui X, Zeng J. Peroxisome-generated succinate induces lipid accumulation and oxidative stress in the kidneys of diabetic mice. J Biol Chem 2022; 298:101660. [PMID: 35124006 PMCID: PMC8881667 DOI: 10.1016/j.jbc.2022.101660] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 01/13/2023] Open
Abstract
Diabetes normally causes lipid accumulation and oxidative stress in the kidneys, which plays a critical role in the onset of diabetic nephropathy; however, the mechanism by which dysregulated fatty acid metabolism increases lipid and reactive oxygen species (ROS) formation in the diabetic kidney is not clear. As succinate is remarkably increased in the diabetic kidney, and accumulation of succinate suppresses mitochondrial fatty acid oxidation and increases ROS formation, we hypothesized that succinate might play a role in inducing lipid and ROS accumulation in the diabetic kidney. Here we demonstrate a novel mechanism by which diabetes induces lipid and ROS accumulation in the kidney of diabetic animals. We show that enhanced oxidation of dicarboxylic acids by peroxisomes leads to lipid and ROS accumulation in the kidney of diabetic mice via the metabolite succinate. Furthermore, specific suppression of peroxisomal β-oxidation improved diabetes-induced nephropathy by reducing succinate generation and attenuating lipid and ROS accumulation in the kidneys of the diabetic mice. We suggest that peroxisome-generated succinate acts as a pathological molecule inducing lipid and ROS accumulation in kidney, and that specifically targeting peroxisomal β-oxidation might be an effective strategy in treating diabetic nephropathy and related metabolic disorders.
Collapse
|
7
|
Zhang X, Wang Y, Yao H, Deng S, Gao T, Shang L, Chen X, Cui X, Zeng J. Peroxisomal β-oxidation stimulates cholesterol biosynthesis in the liver in diabetic mice. J Biol Chem 2022; 298:101572. [PMID: 35007532 PMCID: PMC8819034 DOI: 10.1016/j.jbc.2022.101572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/05/2022] [Indexed: 11/29/2022] Open
Abstract
Although diabetes normally causes an elevation of cholesterol biosynthesis and induces hypercholesterolemia in animals and human, the mechanism linking diabetes to the dysregulation of cholesterol biosynthesis in the liver is not fully understood. As liver peroxisomal β-oxidation is induced in the diabetic state and peroxisomal oxidation of fatty acids generates free acetate, we hypothesized that peroxisomal β-oxidation might play a role in liver cholesterol biosynthesis in diabetes. Here, we used erucic acid, a specific substrate for peroxisomal β-oxidation, and 10,12-tricosadiynoic acid, a specific inhibitor for peroxisomal β-oxidation, to specifically induce and suppress peroxisomal β-oxidation. Our results suggested that induction of peroxisomal β-oxidation increased liver cholesterol biosynthesis in streptozotocin-induced diabetic mice. We found that excessive oxidation of fatty acids by peroxisomes generated considerable free acetate in the liver, which was used as a precursor for cholesterol biosynthesis. In addition, we show that specific inhibition of peroxisomal β-oxidation decreased cholesterol biosynthesis by reducing acetate formation in the liver in diabetic mice, demonstrating a crosstalk between peroxisomal β-oxidation and cholesterol biosynthesis. Based on these results, we propose that induction of peroxisomal β-oxidation serves as a mechanism for a fatty acid-induced upregulation in cholesterol biosynthesis and also plays a role in diabetes-induced hypercholesterolemia.
Collapse
Affiliation(s)
- Xiao Zhang
- School of Life Science, Hunan University of Science and Technology, Xiangtan, Hunan, China
| | - Yaoqing Wang
- School of Life Science, Hunan University of Science and Technology, Xiangtan, Hunan, China
| | - Haoya Yao
- School of Life Science, Hunan University of Science and Technology, Xiangtan, Hunan, China
| | - Senwen Deng
- School of Life Science, Hunan University of Science and Technology, Xiangtan, Hunan, China
| | - Ting Gao
- School of Life Science, Hunan University of Science and Technology, Xiangtan, Hunan, China
| | - Lin Shang
- School of Life Science, Hunan University of Science and Technology, Xiangtan, Hunan, China
| | - Xiaocui Chen
- School of Life Science, Hunan University of Science and Technology, Xiangtan, Hunan, China
| | - Xiaojuan Cui
- School of Life Science, Hunan University of Science and Technology, Xiangtan, Hunan, China
| | - Jia Zeng
- School of Life Science, Hunan University of Science and Technology, Xiangtan, Hunan, China.
| |
Collapse
|
8
|
Ray GJ, Boydston EA, Shortt E, Wyant GA, Lourido S, Chen WW, Sabatini DM. A PEROXO-Tag Enables Rapid Isolation of Peroxisomes from Human Cells. iScience 2020; 23:101109. [PMID: 32417403 PMCID: PMC7254474 DOI: 10.1016/j.isci.2020.101109] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/08/2020] [Accepted: 04/22/2020] [Indexed: 11/26/2022] Open
Abstract
Peroxisomes are metabolic organelles that perform a diverse array of critical functions in human physiology. Traditional isolation methods for peroxisomes can take more than 1 h to complete and can be laborious to implement. To address this, we have now extended our prior work on rapid organellar isolation to peroxisomes via the development of a peroxisomally localized 3XHA epitope tag ("PEROXO-Tag") and associated immunoprecipitation ("PEROXO-IP") workflow. Our PEROXO-IP workflow has excellent reproducibility, is easy to implement, and achieves highly rapid (~10 min post homogenization) and specific isolation of human peroxisomes, which we characterize here via proteomic profiling. By offering speed, specificity, reproducibility, and ease of use, the PEROXO-IP workflow should facilitate studies on the biology of peroxisomes.
Collapse
Affiliation(s)
- G Jordan Ray
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Department of Biology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA 02142, USA
| | - Elizabeth A Boydston
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Emily Shortt
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Gregory A Wyant
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Department of Biology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA 02142, USA
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Walter W Chen
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Department of Biology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA 02142, USA.
| | - David M Sabatini
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Department of Biology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA 02142, USA.
| |
Collapse
|
9
|
Kerr EW, Shumar SA, Leonardi R. Nudt8 is a novel CoA diphosphohydrolase that resides in the mitochondria. FEBS Lett 2019; 593:1133-1143. [PMID: 31004344 DOI: 10.1002/1873-3468.13392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/17/2022]
Abstract
CoA regulates energy metabolism and exists in separate pools in the cytosol, peroxisomes, and mitochondria. At the whole tissue level, the concentration of CoA changes with the nutritional state by balancing synthesis and degradation; however, it is currently unclear how individual subcellular CoA pools are regulated. Liver and kidney peroxisomes contain Nudt7 and Nudt19, respectively, enzymes that catalyze CoA degradation. We report that Nudt8 is a novel CoA-degrading enzyme that resides in the mitochondria. Nudt8 has a distinctive preference for manganese ions and exhibits a broader tissue distribution than Nudt7 and Nudt19. The existence of CoA-degrading enzymes in both peroxisomes and mitochondria suggests that degradation may be a key regulatory mechanism for modulating the intracellular CoA pools.
Collapse
Affiliation(s)
- Evan W Kerr
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Stephanie A Shumar
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Roberta Leonardi
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
10
|
Islinger M, Manner A, Völkl A. The Craft of Peroxisome Purification-A Technical Survey Through the Decades. Subcell Biochem 2018; 89:85-122. [PMID: 30378020 DOI: 10.1007/978-981-13-2233-4_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Purification technologies are one of the working horses in organelle proteomics studies as they guarantee the separation of organelle-specific proteins from the background contamination by other subcellular compartments. The development of methods for the separation of organelles was a major prerequisite for the initial detection and characterization of peroxisome as a discrete entity of the cell. Since then, isolated peroxisomes fractions have been used in numerous studies in order to characterize organelle-specific enzyme functions, to allocate the peroxisome-specific proteome or to unravel the organellar membrane composition. This review will give an overview of the fractionation methods used for the isolation of peroxisomes from animals, plants and fungi. In addition to "classic" centrifugation-based isolation methods, relying on the different densities of individual organelles, the review will also summarize work on alternative technologies like free-flow-electrophoresis or flow field fractionation which are based on distinct physicochemical parameters. A final chapter will further describe how different separation methods and quantitative mass spectrometry have been used in proteomics studies to assign the proteome of PO.
Collapse
Affiliation(s)
- Markus Islinger
- Institute for Neuroanatomy, Centre for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
| | - Andreas Manner
- Institute for Neuroanatomy, Centre for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Alfred Völkl
- Department of Medical Cell Biology, Institute of Anatomy, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
11
|
Isolation of Peroxisomes from Rat Liver and Cultured Hepatoma Cells by Density Gradient Centrifugation. Methods Mol Biol 2017; 1595:1-11. [PMID: 28409446 DOI: 10.1007/978-1-4939-6937-1_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Subcellular fractionation is still a valuable technique to unravel organelle-specific proteomes, validate the location of uncharacterized proteins, or to functionally analyze import and metabolism in individual subcellular compartments. In this respect, density gradient centrifugation still represents a very classic, indispensable technique to isolate and analyze peroxisomes. Here, we present two independent protocols for the purification of peroxisomes from either liver tissue or the HepG2 hepatoma cell line. While the former permits the isolation of highly pure peroxisomes suitable for, e.g., subcellular proteomics experiments, the latter protocol yields peroxisomal fractions from considerably less purity but allows to easily modify metabolic conditions in the culture medium or to genetically manipulate the peroxisomal compartment. In this respect, both purification methods represent alternative tools to be applied in experiments investigating peroxisome physiology.
Collapse
|
12
|
Haanstra JR, Bakker BM, Michels PA. In or out? On the tightness of glycosomal compartmentalization of metabolites and enzymes in Trypanosoma brucei. Mol Biochem Parasitol 2014; 198:18-28. [DOI: 10.1016/j.molbiopara.2014.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/10/2014] [Accepted: 11/20/2014] [Indexed: 11/16/2022]
|
13
|
Isolation of nuclei in media containing an inert polymer to mimic the crowded cytoplasm. Methods Mol Biol 2014. [PMID: 25311119 DOI: 10.1007/978-1-4939-1680-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Within cells, the nucleus is surrounded by the cytoplasm which contains diffusible macromolecules at a high concentration (>100 mg/ml). When cells are broken to isolate nuclei by current methods these macromolecules are dispersed, and to reproduce the environment of nuclei in vivo more closely we have developed a method to isolate them in a medium where cytoplasmic macromolecules are replaced by an inert, volume-occupying polymer and which is essentially cation-free. Nuclei isolated by this method resemble closely those prepared by conventional procedures as seen by optical and electron microscopy, and their internal compartments (nucleoli, PML and Cajal bodies, transcription centers, and splicing speckles) and transcriptional activity are conserved. This procedure is efficient for mammalian cells that normally grow in suspension and do not have an extensive cytoskeleton, and requires ~30 min.
Collapse
|
14
|
Vapola MH, Rokka A, Sormunen RT, Alhonen L, Schmitz W, Conzelmann E, Wärri A, Grunau S, Antonenkov VD, Hiltunen JK. Peroxisomal membrane channel Pxmp2 in the mammary fat pad is essential for stromal lipid homeostasis and for development of mammary gland epithelium in mice. Dev Biol 2014; 391:66-80. [PMID: 24726525 DOI: 10.1016/j.ydbio.2014.03.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 12/28/2022]
Abstract
To understand the functional role of the peroxisomal membrane channel Pxmp2, mice with a targeted disruption of the Pxmp2 gene were generated. These mice were viable, grew and bred normally. However, Pxmp2(-/-) female mice were unable to nurse their pups. Lactating mammary gland epithelium displayed secretory lipid droplets and milk proteins, but the size of the ductal system was greatly reduced. Examination of mammary gland development revealed that retarded mammary ductal outgrowth was due to reduced proliferation of epithelial cells during puberty. Transplantation experiments established the Pxmp2(-/-) mammary stroma as a tissue responsible for suppression of epithelial growth. Morphological and biochemical examination confirmed the presence of peroxisomes in the mammary fat pad adipocytes, and functional Pxmp2 was detected in the stroma of wild-type mammary glands. Deletion of Pxmp2 led to an elevation in the expression of peroxisomal proteins in the mammary fat pad but not in liver or kidney of transgenic mice. Lipidomics of Pxmp2(-/-)mammary fat pad showed a decrease in the content of myristic acid (C14), a principal substrate for protein myristoylation and a potential peroxisomal β-oxidation product. Analysis of complex lipids revealed a reduced concentration of a variety of diacylglycerols and phospholipids containing mostly polyunsaturated fatty acids that may be caused by activation of lipid peroxidation. However, an antioxidant-containing diet did not stimulate mammary epithelial proliferation in Pxmp2(-/-) mice. The results point to disturbances of lipid metabolism in the mammary fat pad that in turn may result in abnormal epithelial growth. The work reveals impaired mammary gland development as a new category of peroxisomal disorders.
Collapse
Affiliation(s)
- Miia H Vapola
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O Box 3000, FI-90014 Oulu, Finland
| | - Aare Rokka
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O Box 3000, FI-90014 Oulu, Finland
| | - Raija T Sormunen
- Department of Pathology and Biocenter Oulu, University of Oulu, FI-90014 Oulu, Finland
| | - Leena Alhonen
- A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, FI-70211 Kuopio, Finland
| | - Werner Schmitz
- Theodor-Boveri-Institut fȕr Biowissenschaften (Biocentrum) der Universität Wurzburg, D-97074 Wurzburg, Germany
| | - Ernst Conzelmann
- Theodor-Boveri-Institut fȕr Biowissenschaften (Biocentrum) der Universität Wurzburg, D-97074 Wurzburg, Germany
| | - Anni Wärri
- Georgetown University Medical Center, Department of Oncology, Washington, DC 20057, USA
| | - Silke Grunau
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O Box 3000, FI-90014 Oulu, Finland
| | - Vasily D Antonenkov
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O Box 3000, FI-90014 Oulu, Finland.
| | - J Kalervo Hiltunen
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O Box 3000, FI-90014 Oulu, Finland.
| |
Collapse
|
15
|
Di Cesare Mannelli L, Zanardelli M, Micheli L, Ghelardini C. PPAR- γ impairment alters peroxisome functionality in primary astrocyte cell cultures. BIOMED RESEARCH INTERNATIONAL 2014; 2014:546453. [PMID: 24729976 PMCID: PMC3960521 DOI: 10.1155/2014/546453] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/04/2014] [Accepted: 01/07/2014] [Indexed: 12/18/2022]
Abstract
Peroxisomes provide glial cells with protective functions against the harmful effects of H2O2 on neurons and peroxisome impairment results in nervous lesions. Agonists of the γ -subtype of the Peroxisome-Proliferator-Activated-Receptors (PPAR) have been proposed as neuroprotective agents in neurodegenerative disorders. Nevertheless, the role of PPAR- γ alterations in pathophysiological mechanisms and the relevance of peroxisome functions in the PPAR- γ effects are not yet clear. In a primary cell culture of rat astrocytes, the irreversible PPAR- γ antagonist GW9662 concentration-dependently decreased the activity of catalase, the most important antioxidant defense enzyme in peroxisomes. Catalase functionality recovered in a few days and the PPAR- γ agonist rosiglitazone promoted reversal of enzymatic damage. The reversible antagonist G3335 reduced both the activity and expression of catalase in a rosiglitazone-prevented manner. G3335 reduced also the glutathione reductase expression, indicating that enzyme involved in glutathione regeneration was compromised. Neither the PPAR- α target gene Acyl-Coenzyme-A-oxidase-1 nor the mitochondrial detoxifying enzyme NADH:ubiquinone-oxidoreductase (NDFUS3) was altered by PPAR- γ inhibition. In conclusion, PPAR- γ inhibition induced impairment of catalase in astrocytes. A general decrease of the antioxidant defenses of the cell suggests that a PPAR- γ hypofunction could participate in neurodegenerative mechanisms through peroxisomal damage. This series of experiments could be a useful model for studying compounds able to restore peroxisome functionality.
Collapse
Affiliation(s)
- Lorenzo Di Cesare Mannelli
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino-(Neurofarba)-Sezione di Farmacologia e Tossicologia, Università di Firenze, Viale Pieraccini 6, 50139 Florence, Italy
| | - Matteo Zanardelli
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino-(Neurofarba)-Sezione di Farmacologia e Tossicologia, Università di Firenze, Viale Pieraccini 6, 50139 Florence, Italy
| | - Laura Micheli
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino-(Neurofarba)-Sezione di Farmacologia e Tossicologia, Università di Firenze, Viale Pieraccini 6, 50139 Florence, Italy
| | - Carla Ghelardini
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino-(Neurofarba)-Sezione di Farmacologia e Tossicologia, Università di Firenze, Viale Pieraccini 6, 50139 Florence, Italy
| |
Collapse
|
16
|
Gualdrón-López M, Chevalier N, Van Der Smissen P, Courtoy PJ, Rigden DJ, Michels PAM. Ubiquitination of the glycosomal matrix protein receptor PEX5 in Trypanosoma brucei by PEX4 displays novel features. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3076-3092. [PMID: 23994617 DOI: 10.1016/j.bbamcr.2013.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/08/2013] [Accepted: 08/12/2013] [Indexed: 12/12/2022]
Abstract
Trypanosomatids contain peroxisome-like organelles called glycosomes. Peroxisomal biogenesis involves a cytosolic receptor, PEX5, which, after its insertion into the organellar membrane, delivers proteins to the matrix. In yeasts and mammalian cells, transient PEX5 monoubiquitination at the membrane serves as the signal for its retrieval from the organelle for re-use. When its recycling is impaired, PEX5 is polyubiquitinated for proteasomal degradation. Stably monoubiquitinated TbPEX5 was detected in cytosolic fractions of Trypanosoma brucei, indicative for its role as physiological intermediate in receptor recycling. This modification's resistance to dithiothreitol suggests ubiquitin conjugation of a lysine residue. T. brucei PEX4, the functional homologue of the ubiquitin-conjugating (UBC) enzyme responsible for PEX5 monoubiquitination in yeast, was identified. It is associated with the cytosolic face of the glycosomal membrane, probably anchored by an identified putative TbPEX22. The involvement of TbPEX4 in TbPEX5 ubiquitination was demonstrated using procyclic ∆PEX4 trypanosomes. Surprisingly, glycosomal matrix protein import was only mildly affected in this mutant. Since other UBC homologues were upregulated, it might be possible that these have partially rescued PEX4's function in PEX5 ubiquitination. In addition, the altered expression of UBCs, notably of candidates involved in cell-cycle control, could be responsible for observed morphological and motility defects of the ∆PEX4 mutant.
Collapse
Affiliation(s)
- Melisa Gualdrón-López
- Research Unit for Tropical Diseases, de Duve Institute, and Laboratory of Biochemistry, Université catholique de Louvain, Avenue Hippocrate 74, B-1200 Brussels, Belgium
| | - Nathalie Chevalier
- Research Unit for Tropical Diseases, de Duve Institute, and Laboratory of Biochemistry, Université catholique de Louvain, Avenue Hippocrate 74, B-1200 Brussels, Belgium
| | - Patrick Van Der Smissen
- Cell Biology Unit, de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, B-1200 Brussels, Belgium
| | - Pierre J Courtoy
- Cell Biology Unit, de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, B-1200 Brussels, Belgium
| | - Daniel J Rigden
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Paul A M Michels
- Research Unit for Tropical Diseases, de Duve Institute, and Laboratory of Biochemistry, Université catholique de Louvain, Avenue Hippocrate 74, B-1200 Brussels, Belgium.
| |
Collapse
|
17
|
Kunze M, Hartig A. Permeability of the peroxisomal membrane: lessons from the glyoxylate cycle. Front Physiol 2013; 4:204. [PMID: 23966945 PMCID: PMC3743077 DOI: 10.3389/fphys.2013.00204] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 07/19/2013] [Indexed: 01/09/2023] Open
Abstract
Glyoxylate serves as intermediate in various metabolic pathways, although high concentrations of this metabolite are toxic to the cell. In many organisms glyoxylate is fed into the glyoxylate cycle. Enzymes participating in this metabolism are located on both sides of the peroxisomal membrane. The permeability of this membrane for small metabolites paves the way for exchange of intermediates between proteins catalyzing consecutive reactions. A model, in which soluble enzymes accumulate in close proximity to both ends of pore-like structures forming a transmembrane metabolon could explain the rapid and targeted exchange of intermediates. The metabolites passing the membrane differ between the three model organisms Saccharomyces cerevisiae, Arabidopsis thaliana, and Candida albicans, which reflects the ease of evolutionary adaptation processes whenever specific transporter proteins are not involved. The atypical permeability properties of the peroxisomal membrane together with a flexible structural arrangement ensuring the swift and selective transport across the membrane might represent the molecular basis for the functional versatility of peroxisomes.
Collapse
Affiliation(s)
- Markus Kunze
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna Vienna, Austria
| | | |
Collapse
|
18
|
Gualdron-López M, Vapola MH, Miinalainen IJ, Hiltunen JK, Michels PAM, Antonenkov VD. Channel-forming activities in the glycosomal fraction from the bloodstream form of Trypanosoma brucei. PLoS One 2012; 7:e34530. [PMID: 22506025 PMCID: PMC3323538 DOI: 10.1371/journal.pone.0034530] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 03/01/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Glycosomes are a specialized form of peroxisomes (microbodies) present in unicellular eukaryotes that belong to the Kinetoplastea order, such as Trypanosoma and Leishmania species, parasitic protists causing severe diseases of livestock and humans in subtropical and tropical countries. The organelles harbour most enzymes of the glycolytic pathway that is responsible for substrate-level ATP production in the cell. Glycolysis is essential for bloodstream-form Trypanosoma brucei and enzymes comprising this pathway have been validated as drug targets. Glycosomes are surrounded by a single membrane. How glycolytic metabolites are transported across the glycosomal membrane is unclear. METHODS/PRINCIPAL FINDINGS We hypothesized that glycosomal membrane, similarly to membranes of yeast and mammalian peroxisomes, contains channel-forming proteins involved in the selective transfer of metabolites. To verify this prediction, we isolated a glycosomal fraction from bloodstream-form T. brucei and reconstituted solubilized membrane proteins into planar lipid bilayers. The electrophysiological characteristics of the channels were studied using multiple channel recording and single channel analysis. Three main channel-forming activities were detected with current amplitudes 70-80 pA, 20-25 pA, and 8-11 pA, respectively (holding potential +10 mV and 3.0 M KCl as an electrolyte). All channels were in fully open state in a range of voltages ±150 mV and showed no sub-conductance transitions. The channel with current amplitude 20-25 pA is anion-selective (P(K+)/P(Cl-)∼0.31), while the other two types of channels are slightly selective for cations (P(K+)/P(Cl-) ratios ∼1.15 and ∼1.27 for the high- and low-conductance channels, respectively). The anion-selective channel showed an intrinsic current rectification that may suggest a functional asymmetry of the channel's pore. CONCLUSIONS/SIGNIFICANCE These results indicate that the membrane of glycosomes apparently contains several types of pore-forming channels connecting the glycosomal lumen and the cytosol.
Collapse
Affiliation(s)
- Melisa Gualdron-López
- Research Unit for Tropical Diseases, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Miia H. Vapola
- Department of Biochemistry, Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | - J. Kalervo Hiltunen
- Department of Biochemistry, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Paul A. M. Michels
- Research Unit for Tropical Diseases, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | |
Collapse
|
19
|
Koch J, Brocard C. PEX11 proteins attract Mff and hFis1 to coordinate peroxisomal fission. J Cell Sci 2012; 125:3813-26. [DOI: 10.1242/jcs.102178] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fission of membrane-bound organelles requires membrane remodeling processes to enable and facilitate the assembly of the scission machinery. Proteins of the PEX11 family were shown to act as membrane elongation factors during peroxisome proliferation. Furthermore, through interaction with fission factors these proteins coordinate progression of membrane scission. Using a biochemical approach, we determined the membrane topology of PEX11γ, one of the three human PEX11 proteins. Analysis of mutated PEX11γ versions, which localize to peroxisomes revealed essential domains for membrane elongation including an amphipathic region and regulatory sequences thereof. Through pegylation assays and in vivo studies, we establish that the PEX11γ sequence encloses two membrane anchored domains, which dock an amphipathic region onto the peroxisomal membrane thereby regulating its elongation. The interaction profile of PEX11γ and mutated versions reveals a rearrangement between homo- and heterodimerization and association with fission factors. We also demonstrate the presence of the mitochondrial fission factor Mff on peroxisomes and its interaction with PEX11 proteins. Our data allow for assumptions on a molecular mechanism for the process of peroxisome proliferation in mammalian cells, that i) PEX11γ is required and acts in coordination with at least one of the other PEX11 proteins to protrude the peroxisomal membrane, ii) PEX11 proteins attract both Mff and hFis1 to their site of action and, iii) the concerted interaction of PEX11 proteins provides spatiotemporal control for growth and division of peroxisomes.
Collapse
|
20
|
Antonenkov VD, Hiltunen JK. Transfer of metabolites across the peroxisomal membrane. Biochim Biophys Acta Mol Basis Dis 2011; 1822:1374-86. [PMID: 22206997 DOI: 10.1016/j.bbadis.2011.12.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/08/2011] [Accepted: 12/15/2011] [Indexed: 02/08/2023]
Abstract
Peroxisomes perform a large variety of metabolic functions that require a constant flow of metabolites across the membranes of these organelles. Over the last few years it has become clear that the transport machinery of the peroxisomal membrane is a unique biological entity since it includes nonselective channels conducting small solutes side by side with transporters for 'bulky' solutes such as ATP. Electrophysiological experiments revealed several channel-forming activities in preparations of plant, mammalian, and yeast peroxisomes and in glycosomes of Trypanosoma brucei. The properties of the first discovered peroxisomal membrane channel - mammalian Pxmp2 protein - have also been characterized. The channels are apparently involved in the formation of peroxisomal shuttle systems and in the transmembrane transfer of various water-soluble metabolites including products of peroxisomal β-oxidation. These products are processed by a large set of peroxisomal enzymes including carnitine acyltransferases, enzymes involved in the synthesis of ketone bodies, thioesterases, and others. This review discusses recent data pertaining to solute permeability and metabolite transport systems in peroxisomal membranes and also addresses mechanisms responsible for the transfer of ATP and cofactors such as an ATP transporter and nudix hydrolases.
Collapse
Affiliation(s)
- Vasily D Antonenkov
- Department of Biochemistry and Biocenter, University of Oulu, Oulu, Finland.
| | | |
Collapse
|
21
|
Wanders RJA, Komen J, Ferdinandusse S. Phytanic acid metabolism in health and disease. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:498-507. [PMID: 21683154 DOI: 10.1016/j.bbalip.2011.06.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/25/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
Abstract
Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a branched-chain fatty acid which cannot be beta-oxidized due to the presence of the first methyl group at the 3-position. Instead, phytanic acid undergoes alpha-oxidation to produce pristanic acid (2,6,10,14-tetramethylpentadecanoic acid) plus CO(2). Pristanic acid is a 2-methyl branched-chain fatty acid which can undergo beta-oxidation via sequential cycles of beta-oxidation in peroxisomes and mitochondria. The mechanism of alpha-oxidation has been resolved in recent years as reviewed in this paper, although some of the individual enzymatic steps remain to be identified. Furthermore, much has been learned in recent years about the permeability properties of the peroxisomal membrane with important consequences for the alpha-oxidation process. Finally, we present new data on the omega-oxidation of phytanic acid making use of a recently generated mouse model for Refsum disease in which the gene encoding phytanoyl-CoA 2-hydroxylase has been disrupted.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
22
|
Zipor G, Brocard C, Gerst JE. Isolation of mRNAs encoding peroxisomal proteins from yeast using a combined cell fractionation and affinity purification procedure. Methods Mol Biol 2011; 714:323-33. [PMID: 21431750 DOI: 10.1007/978-1-61779-005-8_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Targeted mRNA localization to distinct subcellular sites occurs throughout the eukaryotes and presumably allows for the localized translation of proteins near their site of function. Specific mRNAs have been localized in cells using a variety of reliable methods, such as fluorescence in situ hybridization with labeled RNA probes, mRNA tagging using RNA aptamers and fluorescent proteins that recognize these aptamers, and quenched fluorescent RNA probes that become activated upon binding to mRNAs. However, fluorescence-based RNA localization studies can be strengthened when coupled with cell fractionation and membrane isolation techniques in order to identify mRNAs associated with specific organelles or other subcellular structures. Here we describe a novel method to isolate mRNAs associated with peroxisomes in the yeast, Saccharomyces cerevisiae. This method employs a combination of density gradient centrifugation and affinity purification to yield a highly enriched peroxisome fraction suitable for RNA isolation and reverse transcription-polymerase chain reaction detection of mRNAs bound to peroxisome membranes. The method is presented for the analysis of peroxisome-associated mRNAs; however it is applicable to studies on other subcellular compartments.
Collapse
Affiliation(s)
- Gadi Zipor
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
23
|
Theodoulou FL, Zhang X, De Marcos Lousa C, Nyathi Y, Baker A. Peroxisomal Transport Systems: Roles in Signaling and Metabolism. SIGNALING AND COMMUNICATION IN PLANTS 2011. [DOI: 10.1007/978-3-642-14369-4_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Rembacz KP, Woudenberg J, Hoekstra M, Jonkers EZ, van den Heuvel FAJ, Buist-Homan M, Woudenberg-Vrenken TE, Rohacova J, Marin ML, Miranda MA, Moshage H, Stellaard F, Faber KN. Unconjugated bile salts shuttle through hepatocyte peroxisomes for taurine conjugation. Hepatology 2010; 52:2167-76. [PMID: 21049545 DOI: 10.1002/hep.23954] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 08/23/2010] [Indexed: 12/12/2022]
Abstract
UNLABELLED Bile acid-CoA:amino acid N-acyltransferase (BAAT) conjugates bile salts to glycine or taurine, which is the final step in bile salt biosynthesis. In addition, BAAT is required for reconjugation of bile salts in the enterohepatic circulation. Recently, we showed that BAAT is a peroxisomal protein, implying shuttling of bile salts through peroxisomes for reconjugation. However, the subcellular location of BAAT remains a topic of debate. The aim of this study was to obtain direct proof for reconjugation of bile salts in peroxisomes. Primary rat hepatocytes were incubated with deuterium-labeled cholic acid (D(4)CA). Over time, media and cells were collected and the levels of D(4)CA, D(4)-tauro-CA (D(4)TCA), and D(4)-glyco-CA (D(4)GCA) were quantified by liquid chromatography-tandem mass spectrometry (LC/MS/MS). Subcellular accumulation of D(4)-labeled bile salts was analyzed by digitonin permeabilization assays and subcellular fractionation experiments. Within 24 hours, cultured rat hepatocytes efficiently (>90%) converted and secreted 100 μM D(4)CA to D(4)TCA and D(4)GCA. The relative amounts of D(4)TCA and D(4)GCA produced were dependent on the presence of glycine or taurine in the medium. Treatment of D(4)CA-exposed hepatocytes with 30-150 μg/mL digitonin led to the complete release of D(4)CA, D(4)GCA, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (cytosolic marker). Full release of D(4)TCA, catalase, and BAAT was only observed at 500 μg/mL digitonin, indicating the presence of D(4)TCA in membrane-enclosed organelles. D(4)TCA was detected in fractions of purified peroxisomes, which did not contain D(4)CA and D(4)GCA. CONCLUSION We established a novel assay to study conjugation and intra- and transcellular transport of bile salts. Using this assay, we show that cholic acid shuttles through peroxisomes for taurine-conjugation.
Collapse
Affiliation(s)
- Krzysztof P Rembacz
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Woudenberg J, Rembacz KP, van den Heuvel FAJ, Woudenberg-Vrenken TE, Buist-Homan M, Geuken M, Hoekstra M, Deelman LE, Enrich C, Henning RH, Moshage H, Faber KN. Caveolin-1 is enriched in the peroxisomal membrane of rat hepatocytes. Hepatology 2010; 51:1744-53. [PMID: 20146263 DOI: 10.1002/hep.23460] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED Caveolae are a subtype of cholesterol-enriched lipid microdomains/rafts that are routinely detected as vesicles pinching off from the plasma membrane. Caveolin-1 is an essential component of caveolae. Hepatic caveolin-1 plays an important role in liver regeneration and lipid metabolism. Expression of caveolin-1 in hepatocytes is relatively low, and it has been suggested to also reside at other subcellular locations than the plasma membrane. Recently, we found that the peroxisomal membrane contains lipid microdomains. Like caveolin-1, hepatic peroxisomes are involved in lipid metabolism. Here, we analyzed the subcellular location of caveolin-1 in rat hepatocytes. The subcellular location of rat hepatocyte caveolin-1 was analyzed by cell fractionation procedures, immunofluorescence, and immuno-electron microscopy. Green fluorescent protein (GFP)-tagged caveolin-1 was expressed in rat hepatocytes. Lipid rafts were characterized after Triton X-100 or Lubrol WX extraction of purified peroxisomes. Fenofibric acid-dependent regulation of caveolin-1 was analyzed. Peroxisome biogenesis was studied in rat hepatocytes after RNA interference-mediated silencing of caveolin-1 and caveolin-1 knockout mice. Cell fractionation and microscopic analyses reveal that caveolin-1 colocalizes with peroxisomal marker proteins (catalase, the 70 kDa peroxisomal membrane protein PMP70, the adrenoleukodystrophy protein ALDP, Pex14p, and the bile acid-coenzyme A:amino acid N-acyltransferase BAAT) in rat hepatocytes. Artificially expressed GFP-caveolin-1 accumulated in catalase-positive organelles. Peroxisomal caveolin-1 is associated with detergent-resistant microdomains. Caveolin-1 expression is strongly repressed by the peroxisome proliferator-activated receptor-alpha agonist fenofibric acid. Targeting of peroxisomal matrix proteins and peroxisome number and shape were not altered in rat hepatocytes with 70%-80% reduced caveolin-1 levels and in livers of caveolin-1 knockout mice. CONCLUSION Caveolin-1 is enriched in peroxisomes of hepatocytes. Caveolin-1 is not required for peroxisome biogenesis, but this unique subcellular location may determine its important role in hepatocyte proliferation and lipid metabolism.
Collapse
Affiliation(s)
- Jannes Woudenberg
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hancock R, Hadj-Sahraoui Y. Isolation of cell nuclei using inert macromolecules to mimic the crowded cytoplasm. PLoS One 2009; 4:e7560. [PMID: 19851505 PMCID: PMC2762040 DOI: 10.1371/journal.pone.0007560] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 08/08/2009] [Indexed: 11/19/2022] Open
Abstract
Cell nuclei are commonly isolated and studied in media which include millimolar concentrations of cations, which conserve the nuclear volume by screening the negative charges on chromatin and maintaining its compaction. However, two factors question if these ionic conditions correctly reproduce the environment of nuclei in vivo: the small-scale motion and conformation of chromatin in vivo are not reproduced in isolated nuclei, and experiments and theory suggest that small ions in the cytoplasm are not free in the soluble phase but are predominantly bound to macromolecules. We studied the possible role in maintaining the structure and functions of nuclei in vivo of a further but frequently overlooked property of the cytoplasm, the crowding or osmotic effects caused by diffusible macromolecules whose concentration, measured in several studies, is in the range of 130 mg/ml. Nuclei which conserved their volume in the cell and their ultrastructure seen by electron microscopy were released from K562 cells in media containing the inert polymer 70 kDa Ficoll (50% w/v) or 70 kDa dextran (35% w/v) to replace the diffusible cytoplasmic molecules which were dispersed on cell lysis with digitonin, with 100 microM K-Hepes buffer as the only source of ions. Immunofluorescence labelling and experiments using cells expressing GFP-fusion proteins showed that internal compartments (nucleoli, PML and coiled bodies, foci of RNA polymerase II) were conserved in these nuclei, and nascent RNA transcripts could be elongated. Our observations are consistent with the hypothesis that crowding by diffusible cytoplasmic macromolecules is a crucial but overlooked factor which supports the nucleus in vivo by equilibrating the opposing osmotic pressure cause by the high concentration of macromolecules in the nucleus, and suggest that crowded media provide more physiological conditions to study nuclear structure and functions. They may also help to resolve the long-standing paradox that the small-scale motion and irregular conformation of chromatin seen in vivo are not reproduced in nuclei isolated in conventional ionic media.
Collapse
Affiliation(s)
- Ronald Hancock
- Laval University Cancer Research Centre, Hôtel-Dieu Hospital, Québec, Québec, Canada.
| | | |
Collapse
|
27
|
Islinger M, Li KW, Loos M, Liebler S, Angermüller S, Eckerskorn C, Weber G, Abdolzade A, Völkl A. Peroxisomes from the Heavy Mitochondrial Fraction: Isolation by Zonal Free Flow Electrophoresis and Quantitative Mass Spectrometrical Characterization. J Proteome Res 2009; 9:113-24. [DOI: 10.1021/pr9004663] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Markus Islinger
- Department of Anatomy and Cell Biology, Ruprecht-Karl University, 69120 Heidelberg, Germany, Department of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands, and BD Diagnostics - Preanalytical Systems, 82152 Planegg/Martinsried, Germany
| | - Ka Wan Li
- Department of Anatomy and Cell Biology, Ruprecht-Karl University, 69120 Heidelberg, Germany, Department of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands, and BD Diagnostics - Preanalytical Systems, 82152 Planegg/Martinsried, Germany
| | - Maarten Loos
- Department of Anatomy and Cell Biology, Ruprecht-Karl University, 69120 Heidelberg, Germany, Department of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands, and BD Diagnostics - Preanalytical Systems, 82152 Planegg/Martinsried, Germany
| | - Sven Liebler
- Department of Anatomy and Cell Biology, Ruprecht-Karl University, 69120 Heidelberg, Germany, Department of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands, and BD Diagnostics - Preanalytical Systems, 82152 Planegg/Martinsried, Germany
| | - Sabine Angermüller
- Department of Anatomy and Cell Biology, Ruprecht-Karl University, 69120 Heidelberg, Germany, Department of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands, and BD Diagnostics - Preanalytical Systems, 82152 Planegg/Martinsried, Germany
| | - Christoph Eckerskorn
- Department of Anatomy and Cell Biology, Ruprecht-Karl University, 69120 Heidelberg, Germany, Department of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands, and BD Diagnostics - Preanalytical Systems, 82152 Planegg/Martinsried, Germany
| | - Gerhard Weber
- Department of Anatomy and Cell Biology, Ruprecht-Karl University, 69120 Heidelberg, Germany, Department of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands, and BD Diagnostics - Preanalytical Systems, 82152 Planegg/Martinsried, Germany
| | - Afsaneh Abdolzade
- Department of Anatomy and Cell Biology, Ruprecht-Karl University, 69120 Heidelberg, Germany, Department of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands, and BD Diagnostics - Preanalytical Systems, 82152 Planegg/Martinsried, Germany
| | - Alfred Völkl
- Department of Anatomy and Cell Biology, Ruprecht-Karl University, 69120 Heidelberg, Germany, Department of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands, and BD Diagnostics - Preanalytical Systems, 82152 Planegg/Martinsried, Germany
| |
Collapse
|
28
|
Rokka A, Antonenkov VD, Soininen R, Immonen HL, Pirilä PL, Bergmann U, Sormunen RT, Weckström M, Benz R, Hiltunen JK. Pxmp2 is a channel-forming protein in Mammalian peroxisomal membrane. PLoS One 2009; 4:e5090. [PMID: 19352492 PMCID: PMC2662417 DOI: 10.1371/journal.pone.0005090] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 02/22/2009] [Indexed: 11/19/2022] Open
Abstract
Background Peroxisomal metabolic machinery requires a continuous flow of organic and inorganic solutes across peroxisomal membrane. Concerning small solutes, the molecular nature of their traffic has remained an enigma. Methods/Principal Findings In this study, we show that disruption in mice of the Pxmp2 gene encoding Pxmp2, which belongs to a family of integral membrane proteins with unknown function, leads to partial restriction of peroxisomal membrane permeability to solutes in vitro and in vivo. Multiple-channel recording of liver peroxisomal preparations reveals that the channel-forming components with a conductance of 1.3 nS in 1.0 M KCl were lost in Pxmp2−/− mice. The channel-forming properties of Pxmp2 were confirmed with recombinant protein expressed in insect cells and with native Pxmp2 purified from mouse liver. The Pxmp2 channel, with an estimated diameter of 1.4 nm, shows weak cation selectivity and no voltage dependence. The long-lasting open states of the channel indicate its functional role as a protein forming a general diffusion pore in the membrane. Conclusions/Significance Pxmp2 is the first peroxisomal channel identified, and its existence leads to prediction that the mammalian peroxisomal membrane is permeable to small solutes while transfer of “bulky” metabolites, e.g., cofactors (NAD/H, NADP/H, and CoA) and ATP, requires specific transporters.
Collapse
Affiliation(s)
- Aare Rokka
- Department of Biochemistry, Biocenter Oulu, University of Oulu, Oulu, Finland
- Lehrstuhl fur Biotechnologie, Theodor-Boveri-Institut (Biozentrum) der Universität Wurzburg, Am Hubland, Wurzburg, Germany
| | - Vasily D. Antonenkov
- Department of Biochemistry, Biocenter Oulu, University of Oulu, Oulu, Finland
- Lehrstuhl fur Biotechnologie, Theodor-Boveri-Institut (Biozentrum) der Universität Wurzburg, Am Hubland, Wurzburg, Germany
- * E-mail: (VDA); (JKH)
| | - Raija Soininen
- Department of Medical Biochemistry and Molecular Biology, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Hanna L. Immonen
- Department of Biochemistry, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Päivi L. Pirilä
- Department of Biochemistry, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ulrich Bergmann
- Department of Biochemistry, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Raija T. Sormunen
- Department of Pathology, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Matti Weckström
- Department of Physical Sciences, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Roland Benz
- Lehrstuhl fur Biotechnologie, Theodor-Boveri-Institut (Biozentrum) der Universität Wurzburg, Am Hubland, Wurzburg, Germany
| | - J. Kalervo Hiltunen
- Department of Biochemistry, Biocenter Oulu, University of Oulu, Oulu, Finland
- * E-mail: (VDA); (JKH)
| |
Collapse
|
29
|
Grunau S, Mindthoff S, Rottensteiner H, Sormunen RT, Hiltunen JK, Erdmann R, Antonenkov VD. Channel-forming activities of peroxisomal membrane proteins from the yeast Saccharomyces cerevisiae. FEBS J 2009; 276:1698-708. [PMID: 19220856 DOI: 10.1111/j.1742-4658.2009.06903.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Highly-purified peroxisomes from the yeast Saccharomyces cerevisiae grown on oleic acid were investigated for the presence of channel (pore)-forming proteins in the membrane of these organelles. Solubilized membrane proteins were reconstituted in planar lipid bilayers and their pore-forming activity was studied by means of multiple-channel monitoring or single-channel analysis. Two abundant pore-forming activities were detected with an average conductance of 0.2 and 0.6 nS in 1.0 m KCl, respectively. The high-conductance pore (0.6 nS in 1.0 m KCl) is slightly selective to cations (P(K+)/P(Cl-) approximately 1.3) and showed an unusual flickering at elevated (> +/-40 mV) holding potentials directed upward relative to the open state of the channel. The data obtained for the properties of the low-conductance pore (0.2 nS in 1.0 m KCl) support the notion that the high-conductance channel represents a cluster of two low-conductance pores. The results lead to conclusion that the yeast peroxisomes contain membrane pore-forming proteins that may aid the transfer of small solutes between the peroxisomal lumen and cytoplasm.
Collapse
Affiliation(s)
- Silke Grunau
- Institut für Physiologische Chemie, Abt. Systembiochemie, Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Margittai E, Bánhegyi G. Isocitrate dehydrogenase: A NADPH-generating enzyme in the lumen of the endoplasmic reticulum. Arch Biochem Biophys 2008; 471:184-90. [PMID: 18201546 DOI: 10.1016/j.abb.2007.12.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 12/21/2007] [Accepted: 12/30/2007] [Indexed: 11/26/2022]
Abstract
The aim of the present study was the investigation of the occurrence of NADPH-generating pathways in the endoplasmic reticulum others then hexose-6-phosphate dehydrogenase. A significant isocitrate and a moderate malate-dependent NADP+ reduction were observed in endoplasmic reticulum-derived rat liver microsomes. The isocitrate-dependent activity was very likely attributable to the appearance of the cytosolic isocitrate dehydrogenase isozyme in the lumen. The isocitrate dehydrogenase activity of microsomes was present in the luminal fraction; it showed a strong preference towards NADP+ versus NAD+, and it was almost completely latent. Antibodies against the cytosolic isoform of isocitrate dehydrogenase immunorevealed a microsomal protein of identical molecular weight; the microsomal enzyme showed similar kinetic parameters and oxalomalate inhibition as the cytosolic one. Measurable luminal isocitrate dehydrogenase activity was also present in microsomes from rat epididymal fat. The results suggest that isocitrate dehydrogenase is an important NADPH-generating enzyme in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Eva Margittai
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Pathobiochemistry Research Group of The Hungarian Academy of Sciences, 1444 Budapest, P.O. Box 260, Budapest, Hungary
| | | |
Collapse
|
31
|
Noland RC, Woodlief TL, Whitfield BR, Manning SM, Evans JR, Dudek RW, Lust RM, Cortright RN. Peroxisomal-mitochondrial oxidation in a rodent model of obesity-associated insulin resistance. Am J Physiol Endocrinol Metab 2007; 293:E986-E1001. [PMID: 17638705 DOI: 10.1152/ajpendo.00399.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisomal oxidation yields metabolites that are more efficiently utilized by mitochondria. This is of potential clinical importance because reduced fatty acid oxidation is suspected to promote excess lipid accumulation in obesity-associated insulin resistance. Our purpose was to assess peroxisomal contributions to mitochondrial oxidation in mixed gastrocnemius (MG), liver, and left ventricle (LV) homogenates from lean and fatty (fa/fa) Zucker rats. Results indicate that complete mitochondrial oxidation (CO(2) production) using various lipid substrates was increased approximately twofold in MG, unaltered in LV, and diminished approximately 50% in liver of fa/fa rats. In isolated mitochondria, malonyl-CoA inhibited CO(2) production from palmitate 78%, whereas adding isolated peroxisomes reduced inhibition to 21%. These data demonstrate that peroxisomal products may enter mitochondria independently of CPT I, thus providing a route to maintain lipid disposal under conditions where malonyl-CoA levels are elevated, such as in insulin-resistant tissues. Peroxisomal metabolism of lignoceric acid in fa/fa rats was elevated in both liver and MG (LV unaltered), but peroxisomal product distribution varied. A threefold elevation in incomplete oxidation was solely responsible for increased hepatic peroxisomal oxidation (CO(2) unaltered). Alternatively, only CO(2) was detected in MG, indicating that peroxisomal products were exclusively partitioned to mitochondria for complete lipid disposal. These data suggest tissue-specific destinations for peroxisome-derived products and emphasize a potential role for peroxisomes in skeletal muscle lipid metabolism in the obese, insulin-resistant state.
Collapse
Affiliation(s)
- Robert C Noland
- Department of Physiology, East Carolina University, Greenville, NC 27858, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Antonenkov VD, Ohlmeier S, Sormunen RT, Hiltunen JK. UK114, a YjgF/Yer057p/UK114 family protein highly conserved from bacteria to mammals, is localized in rat liver peroxisomes. Biochem Biophys Res Commun 2007; 357:252-7. [PMID: 17416349 DOI: 10.1016/j.bbrc.2007.03.136] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 03/22/2007] [Indexed: 11/25/2022]
Abstract
Mammalian UK114 belongs to a highly conserved family of proteins with unknown functions. Although it is believed that UK114 is a cytosolic or mitochondrial protein there is no detailed study of its intracellular localization. Using analytical subcellular fractionation, electron microscopic colloidal gold technique, and two-dimensional gel electrophoresis of peroxisomal matrix proteins combined with mass spectrometric analysis we show here that a large portion of UK114 is present in rat liver peroxisomes. The peroxisomal UK114 is a soluble matrix protein and it is not inducible by the peroxisomal proliferator clofibrate. The data predict involvement of UK114 in peroxisomal metabolism.
Collapse
Affiliation(s)
- Vasily D Antonenkov
- Department of Biochemistry, Biocenter Oulu, University of Oulu, Linnanmaa, P.O. Box 3000, FIN-90014 Oulu, Finland.
| | | | | | | |
Collapse
|
33
|
Abstract
In this review, we describe the current state of knowledge about the biochemistry of mammalian peroxisomes, especially human peroxisomes. The identification and characterization of yeast mutants defective either in the biogenesis of peroxisomes or in one of its metabolic functions, notably fatty acid beta-oxidation, combined with the recognition of a group of genetic diseases in man, wherein these processes are also defective, have provided new insights in all aspects of peroxisomes. As a result of these and other studies, the indispensable role of peroxisomes in multiple metabolic pathways has been clarified, and many of the enzymes involved in these pathways have been characterized, purified, and cloned. One aspect of peroxisomes, which has remained ill defined, is the transport of metabolites across the peroxisomal membrane. Although it is clear that mammalian peroxisomes under in vivo conditions are closed structures, which require the active presence of metabolite transporter proteins, much remains to be learned about the permeability properties of mammalian peroxisomes and the role of the four half ATP-binding cassette (ABC) transporters therein.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Disease, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | | |
Collapse
|
34
|
Pellicoro A, van den Heuvel FAJ, Geuken M, Moshage H, Jansen PLM, Faber KN. Human and rat bile acid-CoA:amino acid N-acyltransferase are liver-specific peroxisomal enzymes: implications for intracellular bile salt transport. Hepatology 2007; 45:340-8. [PMID: 17256745 DOI: 10.1002/hep.21528] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
UNLABELLED Bile acid-coenzyme A:amino acid N-acyltransferase (BAAT) is the sole enzyme responsible for conjugation of primary and secondary bile acids to taurine and glycine. Previous studies indicate a peroxisomal location of BAAT in peroxisomes with variable amounts up to 95% detected in cytosolic fractions. The absence or presence of a cytosolic pool of BAAT has important implications for the intracellular transport of unconjugated/deconjugated bile salts. We used immunofluorescence microscopy and digitonin permeabilization assays to determine the subcellular location of endogenous BAAT in primary human and rat hepatocytes. In addition, green fluorescent protein (GFP)-tagged rat Baat (rBaat) and human BAAT (hBAAT) were transiently expressed in primary rat hepatocytes and human fibroblasts. Catalase and recombinant GFP-SKL and DsRed-SKL were used as peroxisomal markers. Endogenous hBAAT and rBaat were found to specifically localize to peroxisomes in human and rat hepatocytes, respectively. No significant cytosolic fraction was detected for either protein. GFP-tagged hBAAT and rBaat were efficiently sorted to peroxisomes of primary rat hepatocytes. Significant amounts of GFP-tagged hBAAT or rBaat were detected in the cytosol only when coexpressed with DsRed-SKL, suggesting that hBAAT/rBaat and DsRed-SKL compete for the same peroxisomal import machinery. When expressed in fibroblasts, GFP-tagged hBAAT localized to the cytosol, confirming earlier observations. CONCLUSION hBAAT and rBaat are peroxisomal enzymes present in undetectable amounts in the cytosol. Unconjugated or deconjugated bile salts returning to the liver need to shuttle through the peroxisome before reentering the enterohepatic circulation.
Collapse
Affiliation(s)
- Antonella Pellicoro
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
35
|
Kurochkin IV, Mizuno Y, Konagaya A, Sakaki Y, Schönbach C, Okazaki Y. Novel peroxisomal protease Tysnd1 processes PTS1- and PTS2-containing enzymes involved in beta-oxidation of fatty acids. EMBO J 2007; 26:835-45. [PMID: 17255948 PMCID: PMC1794383 DOI: 10.1038/sj.emboj.7601525] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 12/05/2006] [Indexed: 12/21/2022] Open
Abstract
Peroxisomes play an important role in beta-oxidation of fatty acids. All peroxisomal matrix proteins are synthesized in the cytosol and post-translationally sorted to the organelle. Two distinct peroxisomal signal targeting sequences (PTSs), the C-terminal PTS1 and the N-terminal PTS2, have been defined. Import of precursor PTS2 proteins into the peroxisomes is accompanied by a proteolytic removal of the N-terminal targeting sequence. Although the PTS1 signal is preserved upon translocation, many PTS1 proteins undergo a highly selective and limited cleavage. Here, we demonstrate that Tysnd1, a previously uncharacterized protein, is responsible both for the removal of the leader peptide from PTS2 proteins and for the specific processing of PTS1 proteins. All of the identified Tysnd1 substrates catalyze peroxisomal beta-oxidation. Tysnd1 itself undergoes processing through the removal of the presumably inhibitory N-terminal fragment. Tysnd1 expression is induced by the proliferator-activated receptor alpha agonist bezafibrate, along with the increase in its substrates. A model is proposed where the Tysnd1-mediated processing of the peroxisomal enzymes promotes their assembly into a supramolecular complex to enhance the rate of beta-oxidation.
Collapse
Affiliation(s)
- Igor V Kurochkin
- Immunoinformatics Team, Advanced Genome Information Group, RIKEN Genomic Sciences Center, Yokohama, Japan
- Present address: Genome Annotation and Comparative Analysis Team, Computational and Experimental Systems Biology Group, RIKEN Genomic Sciences Center, Yokohama 230-0045, Japan
- IV Kurochkin, Genome Annotation and Comparative Analysis Team, Computational and Experimental Systems Biology Group, RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. Tel.: +81 45 503 9111 (ext 8106); Fax: +81 45 503 9176; E-mail:
| | - Yumi Mizuno
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | | | - Yoshiyuki Sakaki
- Computational and Experimental Systems Biology Group, RIKEN Genomic Sciences Center, Yokohama, Japan
| | - Christian Schönbach
- Immunoinformatics Team, Advanced Genome Information Group, RIKEN Genomic Sciences Center, Yokohama, Japan
| | - Yasushi Okazaki
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-city, Saitama 350-1241, Japan. Tel.: +81 42 985 7319; Fax: +81 42 985 7329; E-mail:
| |
Collapse
|
36
|
Kovacs WJ, Tape KN, Shackelford JE, Duan X, Kasumov T, Kelleher JK, Brunengraber H, Krisans SK. Localization of the pre-squalene segment of the isoprenoid biosynthetic pathway in mammalian peroxisomes. Histochem Cell Biol 2006; 127:273-90. [PMID: 17180682 DOI: 10.1007/s00418-006-0254-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2006] [Indexed: 10/23/2022]
Abstract
Previous studies have indicated that the early steps in the isoprenoid/cholesterol biosynthetic pathway occur in peroxisomes. However, the role of peroxisomes in cholesterol biosynthesis has recently been questioned in several reports concluding that three of the peroxisomal cholesterol biosynthetic enzymes, namely mevalonate kinase, phosphomevalonate kinase, and mevalonate diphosphate decarboxylase, do not localize to peroxisomes in human cells even though they contain consensus peroxisomal targeting signals. We re-investigated the subcellular localization of the cholesterol biosynthetic enzymes of the pre-squalene segment in human cells by using new stable isotopic techniques and data computations with isotopomer spectral analysis, in combination with immunofluorescence and cell permeabilization techniques. Our present findings clearly show and confirm previous studies that the pre-squalene segment of the cholesterol biosynthetic pathway is localized to peroxisomes. In addition, our data are consistent with the hypothesis that acetyl-CoA derived from peroxisomal beta-oxidation of very long-chain fatty acids and medium-chain dicarboxylic acids is preferentially channeled to cholesterol synthesis inside the peroxisomes without mixing with the cytosolic acetyl-CoA pool.
Collapse
Affiliation(s)
- Werner J Kovacs
- Department of Biology, San Diego State University, San Diego, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Antonenkov VD, Hiltunen JK. Peroxisomal membrane permeability and solute transfer. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1763:1697-706. [PMID: 17045662 DOI: 10.1016/j.bbamcr.2006.08.044] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 08/16/2006] [Accepted: 08/18/2006] [Indexed: 10/24/2022]
Abstract
The review is dedicated to recent progress in the study of peroxisomal membrane permeability to solutes which has been a matter of debate for more than 40 years. Apparently, the mammalian peroxisomal membrane is freely permeable to small solute molecules owing to the presence of pore-forming channels. However, the membrane forms a permeability barrier for 'bulky' solutes including cofactors (NAD/H, NADP/H, CoA, and acetyl/acyl-CoA esters) and ATP. Therefore, peroxisomes need specific protein transporters to transfer these compounds across the membrane. Recent electrophysiological studies have revealed channel-forming activities in the mammalian peroxisomal membrane. The possible involvement of the channels in the transfer of small metabolites and in the formation of peroxisomal shuttle systems is described.
Collapse
Affiliation(s)
- Vasily D Antonenkov
- Department of Biochemistry and Biocenter Oulu, University of Oulu, P.O. Box 3000, FIN-90014 Oulu, Finland.
| | | |
Collapse
|
38
|
Visser WF, van Roermund CWT, Ijlst L, Hellingwerf KJ, Waterham HR, Wanders RJA. First identification of a 2-ketoglutarate/isocitrate transport system in mammalian peroxisomes and its characterization. Biochem Biophys Res Commun 2006; 348:1224-31. [PMID: 16919238 DOI: 10.1016/j.bbrc.2006.07.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 07/12/2006] [Indexed: 11/19/2022]
Abstract
Peroxisomes contain specific transporter proteins required for the translocation of various metabolites across its membrane. The presence of several members of the ATP-binding cassette (ABC) transporter family is well established, and the characterization of transporters for adenine nucleotides and (pyro)phosphate in the peroxisomal membrane has been described recently. Previously published data strongly suggest the presence of additional transporters that facilitate the translocation of reducing equivalents and acetyl-units across the peroxisomal membrane. In this paper, we demonstrate the presence of transporter activity for 2-ketoglutarate and isocitrate in the peroxisomal membrane, by functional reconstitution of bovine kidney peroxisomal membrane protein in proteoliposomes. This transporter activity is assumed to be required to sustain the activity of intraperoxisomal isocitrate-dehydrogenase, which is involved in the regeneration of NADPH in the peroxisomal matrix.
Collapse
Affiliation(s)
- Wouter F Visser
- University of Amsterdam, Academic Medical Centre, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
39
|
Antonenkov V, Sormunen R, Ohlmeier S, Amery L, Fransen M, Mannaerts G, Hiltunen J. Localization of a portion of the liver isoform of fatty-acid-binding protein (L-FABP) to peroxisomes. Biochem J 2006; 394:475-84. [PMID: 16262600 PMCID: PMC1408678 DOI: 10.1042/bj20051058] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The liver isoform of fatty-acid-binding protein (L-FABP) facilitates the cellular uptake, transport and metabolism of fatty acids and is also involved in the regulation of gene expressions and cell differentiation. Consistent with these functions, L-FABP is predominantly present in the cytoplasm and to a lesser extent in the nucleus; however, a significant portion of this protein has also been detected in fractions containing different organelles. More recent observations, notably on L-FABP-deficient mice, indicated a possible direct involvement of L-FABP in the peroxisomal oxidation of long-chain fatty acids. In order to clarify the links between L-FABP and peroxisomal lipid metabolism, we reinvestigated the subcellular distribution of the protein. Analytical subcellular fractionation by a method preserving the intactness of isolated peroxisomes, two-dimensional gel electrophoresis of peroxisomal matrix proteins combined with MS analysis, and immunoelectron microscopy of liver sections demonstrate the presence of L-FABP in the matrix of peroxisomes as a soluble protein. Peroxisomal L-FABP was highly inducible by clofibrate. The induction of L-FABP was accompanied by a marked increase in the binding capacity of peroxisomal matrix proteins for oleic acid and cis-parinaric acid. The peroxisomal beta-oxidation of palmitoyl-CoA and acyl-CoA thioesterase activity were stimulated by L-FABP, indicating that the protein modulates the function of peroxisomal lipid-metabolizing enzymes. The possible role of intraperoxisomal L-FABP in lipid metabolism is discussed.
Collapse
Affiliation(s)
- Vasily D. Antonenkov
- *Department of Biochemistry, Biocenter Oulu, University of Oulu, Linnanmaa, P.O. Box 3000, FIN-90014 Oulu, Finland
- Correspondence may be addressed to either of these authors (email or )
| | - Raija T. Sormunen
- †Department of Pathology, Biocenter Oulu, University of Oulu, Linnanmaa, P.O. Box 3000, FIN-90014 Oulu, Finland
| | - Steffen Ohlmeier
- *Department of Biochemistry, Biocenter Oulu, University of Oulu, Linnanmaa, P.O. Box 3000, FIN-90014 Oulu, Finland
| | - Leen Amery
- ‡Departement Moleculaire Celbiologie, Katholieke Universiteit Leuven, Campus Gasthuisberg, Afdeling Farmakologie, Herestraat 49 (box 601), B-3000 Leuven, Belgium
| | - Marc Fransen
- ‡Departement Moleculaire Celbiologie, Katholieke Universiteit Leuven, Campus Gasthuisberg, Afdeling Farmakologie, Herestraat 49 (box 601), B-3000 Leuven, Belgium
| | - Guy P. Mannaerts
- ‡Departement Moleculaire Celbiologie, Katholieke Universiteit Leuven, Campus Gasthuisberg, Afdeling Farmakologie, Herestraat 49 (box 601), B-3000 Leuven, Belgium
| | - J. Kalervo Hiltunen
- *Department of Biochemistry, Biocenter Oulu, University of Oulu, Linnanmaa, P.O. Box 3000, FIN-90014 Oulu, Finland
- Correspondence may be addressed to either of these authors (email or )
| |
Collapse
|
40
|
Raychaudhury B, Gupta S, Banerjee S, Datta SC. Peroxisome is a reservoir of intracellular calcium. Biochim Biophys Acta Gen Subj 2006; 1760:989-92. [PMID: 16713100 DOI: 10.1016/j.bbagen.2006.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 02/27/2006] [Accepted: 02/28/2006] [Indexed: 12/31/2022]
Abstract
We have examined fura 2-loaded purified peroxisomes under confocal microscope to prove that this mammalian organelle is a store of intracellular calcium pool. Presence of calcium channel and vanadate sensitive Ca(2+)-ATPase in the purified peroxisomal membrane has been demonstrated. We have further observed that machineries to maintain calcium pool in this mammalian organelle are impaired during infection caused by Leishmania donovani. Results reveal that peroxisomes have a merit to play a significant role in the metabolism of intracellular calcium.
Collapse
Affiliation(s)
- Bikramjit Raychaudhury
- Department of Biological Chemistry, Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | | | | | | |
Collapse
|
41
|
Olson KJ, Ahmadzadeh H, Arriaga EA. Within the cell: analytical techniques for subcellular analysis. Anal Bioanal Chem 2005; 382:906-17. [PMID: 15928950 DOI: 10.1007/s00216-005-3135-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 01/28/2005] [Accepted: 01/31/2005] [Indexed: 01/26/2023]
Abstract
This review covers recent developments in the preparation, manipulation, and analyses of subcellular environments. In particular, it highlights approaches for (1) separation and detection of individual organelles, (2) preparation of ultra-pure organelle fractions, and (3) utilization of novel labeling strategies. These approaches, based on innovative technologies such as microfluidics, immunoisolation, mass spectrometry and electrophoresis, suggest that subcellular analyses will soon become as commonplace as single cell and bulk cellular assays.
Collapse
Affiliation(s)
- Karen J Olson
- Department of Biomedical Engineering, University of Minnesota, 312 Church Street SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|