1
|
Boengler K, Eickelmann C, Kleinbongard P. Mitochondrial Kinase Signaling for Cardioprotection. Int J Mol Sci 2024; 25:4491. [PMID: 38674076 PMCID: PMC11049936 DOI: 10.3390/ijms25084491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Myocardial ischemia/reperfusion injury is reduced by cardioprotective adaptations such as local or remote ischemic conditioning. The cardioprotective stimuli activate signaling cascades, which converge on mitochondria and maintain the function of the organelles, which is critical for cell survival. The signaling cascades include not only extracellular molecules that activate sarcolemmal receptor-dependent or -independent protein kinases that signal at the plasma membrane or in the cytosol, but also involve kinases, which are located to or within mitochondria, phosphorylate mitochondrial target proteins, and thereby modify, e.g., respiration, the generation of reactive oxygen species, calcium handling, mitochondrial dynamics, mitophagy, or apoptosis. In the present review, we give a personal and opinionated overview of selected protein kinases, localized to/within myocardial mitochondria, and summarize the available data on their role in myocardial ischemia/reperfusion injury and protection from it. We highlight the regulation of mitochondrial function by these mitochondrial protein kinases.
Collapse
Affiliation(s)
- Kerstin Boengler
- Institute of Physiology, Justus-Liebig University, 35392 Giessen, Germany
| | - Chantal Eickelmann
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, 45147 Essen, Germany; (C.E.); (P.K.)
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, 45147 Essen, Germany; (C.E.); (P.K.)
| |
Collapse
|
2
|
Torregroza C, Glashoerster CO, Feige K, Stroethoff M, Raupach A, Heinen A, Hollmann MW, Huhn R. Mediation of the Cardioprotective Effects of Mannitol Discovered, with Refutation of Common Protein Kinases. Int J Mol Sci 2021; 22:ijms222212471. [PMID: 34830353 PMCID: PMC8625521 DOI: 10.3390/ijms222212471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 02/04/2023] Open
Abstract
The osmodiuretic agent Mannitol exerts cardioprotection against ischemia and reperfusion (I/R) injury when applied as a pre- and/or postconditioning stimulus. Previously, we demonstrated that these properties are mediated via the activation of mitochondrial ATP-sensitive potassium (mKATP) channels. However, considering Mannitol remains in the extracellular compartment, the question arises as to which receptor and intracellular signaling cascades are involved in myocardial protection by the osmodiuretic substance. Protein kinase B (Akt) and G (PKG), as part of the reperfusion injury salvage kinase (RISK) and/or endothelial nitric oxide (eNOS)/PKG pathway, are two well-investigated intracellular targets conferring myocardial protection upstream of mitochondrial potassium channels. Adenosine receptor subtypes have been shown to trigger different cardioprotective pathways, for example, the reperfusion injury. Further, Mannitol induces an increased activation of the adenosine 1 receptor (A1R) in renal cells conferring its nephroprotective properties. Therefore, we investigated whether (1) Akt and PKG are possible signaling targets involved in Mannitol-induced conditioning upstream of the mKATP channel and/or whether (2) cardioprotection by Mannitol is mediated via activation of the A1R. All experiments were performed on male Wistar rats in vitro employing the Langendorff isolated heart perfusion technique with infarct size determination as the primary endpoint. To unravel possible protein kinase activation, Mannitol was applied in combination with the Akt (MK2206) or PKG (KT5823) inhibitor. In further groups, an A1R blocker (DPCPX) was given with or without Mannitol. Preconditioning with Mannitol (Man) significantly reduced the infarct size compared to the control group. Co-administration of the A1R blocker DPXPC fully abolished myocardial protection of Mannitol. Interestingly and in contrast to the initial hypothesis, neither administration of the Akt nor the PKG blocker had any impact on the cardioprotective properties of Mannitol-induced preconditioning. These results are quite unexpected and show that the protein kinases Akt and PKG—as possible targets of known protective signaling cascades—are not involved in Mannitol-induced preconditioning. However, the cardioprotective effects of Mannitol are mediated via the A1R.
Collapse
Affiliation(s)
- Carolin Torregroza
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (C.T.); (C.O.G.); (M.S.); (A.R.); (R.H.)
| | - Chiara O. Glashoerster
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (C.T.); (C.O.G.); (M.S.); (A.R.); (R.H.)
| | - Katharina Feige
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (C.T.); (C.O.G.); (M.S.); (A.R.); (R.H.)
- Correspondence:
| | - Martin Stroethoff
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (C.T.); (C.O.G.); (M.S.); (A.R.); (R.H.)
| | - Annika Raupach
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (C.T.); (C.O.G.); (M.S.); (A.R.); (R.H.)
| | - André Heinen
- Institute of Cardiovascular Physiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany;
| | - Markus W. Hollmann
- Department of Anesthesiology, Amsterdam University Medical Center (AUMC), Location AMC, Meiberdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Ragnar Huhn
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (C.T.); (C.O.G.); (M.S.); (A.R.); (R.H.)
- Department of Anesthesiology, Kerckhoff-Clinic GmbH, Benekestr. 2-8, 61231 Bad Nauheim, Germany
| |
Collapse
|
3
|
Fang J, Wang S, Zhou J, Shao X, Sun H, Liang Y, He X, Jiang Y, Liu B, Jin X, Fang J, Du J. Electroacupuncture Regulates Pain Transition Through Inhibiting PKCε and TRPV1 Expression in Dorsal Root Ganglion. Front Neurosci 2021; 15:685715. [PMID: 34354561 PMCID: PMC8329384 DOI: 10.3389/fnins.2021.685715] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Many cases of acute pain can be resolved with few side effects. However, some cases of acute pain may persist beyond the time required for tissue injury recovery and transit to chronic pain, which is hard to treat. The mechanisms underlying pain transition are not entirely understood, and treatment strategies are lacking. In this study, the hyperalgesic priming model was established on rats to study pain transition by injection of carrageenan (Car) and prostaglandin E2 (PGE2). The expression levels of protein kinase C epsilon (PKCε) and transient receptor potential vanilloid 1 (TRPV1) in the L4–L6 dorsal root ganglion (DRG) were investigated. Electroacupuncture (EA) is a form of acupuncture in which a small electric current is passed between a pair of acupuncture needles. EA was administrated, and its effect on hyperalgesia and PKCε and TRPV1 expression was investigated. The PKCε–TRPV1 signaling pathway in DRG was implicated in the pain transition. EA increased the pain threshold of model animals and regulated the high expression of PKCε and TRPV1. Moreover, EA also regulated hyperalgesia and high TRPV1 expression induced by selective PKCε activation. We also found that EA partly increased chronic pain threshold, even though it was only administered between the Car and PGE2 injections. These findings suggested that EA could prevent the transition from acute to chronic pain by inhibiting the PKCε and TRPV1 expression in the peripheral nervous system.
Collapse
Affiliation(s)
- Junfan Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Sisi Wang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Jie Zhou
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Xiaomei Shao
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Haiju Sun
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Yi Liang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Xiaofen He
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Yongliang Jiang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Boyi Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Xiaoming Jin
- Department of Anatomy, Cell Biology and Physiology, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Junying Du
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| |
Collapse
|
4
|
Nowak G, Megyesi J. Protein kinase Cα mediates recovery of renal and mitochondrial functions following acute injury. FEBS J 2019; 287:1830-1849. [PMID: 31659858 DOI: 10.1111/febs.15110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/10/2019] [Accepted: 10/26/2019] [Indexed: 11/30/2022]
Abstract
Previously, we have shown that active protein kinase Cα (PKCα) promotes recovery of mitochondrial function after injury in vitro [Nowak G & Bakajsova D (2012) Am J Physiol Renal Physiol 303, F515-F526]. This study examined whether PKCα regulates recovery of mitochondrial and kidney functions after ischemia-induced acute injury (AKI) in vivo. Markers of kidney injury were increased after bilateral ischemia and returned to normal levels in wild-type (WT) mice. Maximum mitochondrial respiration and activities of respiratory complexes and Fo F1 -ATPase decreased after ischemia and recovered in WT mice. Reperfusion after ischemia was accompanied by translocation of active PKCα to mitochondria. PKCα deletion reduced mitochondrial respiration and activities of respiratory complex I and Fo F1 -ATPase in noninjured kidneys, indicating that PKCα is essential in developing fully functional renal mitochondria. These changes in PKCα-deficient mice were accompanied by lower levels of complex I subunits (NDUFA9 and NDUFS3) and the γ-subunit of Fo F1 -ATPase. Also, lack of PKCα exacerbated ischemia-induced decreases in respiration, complex I and Fo F1 -ATPase activities, and blocked their recovery after injury, indicating a crucial role of PKCα in promoting mitochondrial recovery after AKI. Further, PKCα deletion exacerbated acetylation and succinylation of key mitochondrial proteins of energy metabolism after ischemia due to decreases in deacetylase and desuccinylase (sirtuin3 and sirtuin5) levels in renal mitochondria. Thus, our data show a novel role for PKCα in regulating levels of mitochondrial sirtuins and acetylation and succinylation of key mitochondrial proteins. We conclude that PKCα deletion: (a) affects renal physiology by decreasing mitochondrial capacity for maximum respiration; (b) blocks recovery of mitochondrial functions, renal morphology, and functions after AKI; and (c) decreases survival after AKI. ENZYMES: Protein kinase C: EC 2.7.11.13; NADH : ubiquinone reductase (H+ -translocating; complex I): EC 7.1.1.2; FoF1-ATPase (H+ -transporting two-sector ATPase): EC 7.1.2.2; Succinate : ubiquinone oxidoreductase (complex II): EC 1.3.5.1; Ubiquinol : cytochrome-c reductase (complex III): EC 7.1.1.8; Cytochrome c oxidase (complex IV): EC 1.9.3.1; NAD-dependent protein deacetylase sirtuin-3, mitochondrial: EC 2.3.1.286; NAD-dependent protein deacetylase sirtuin-5, mitochondrial: EC 3.5.1.-; Proteinase K (peptidase K): EC 3.4.21.64.
Collapse
Affiliation(s)
- Grazyna Nowak
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Judit Megyesi
- Division of Nephrology, Departments of Internal Medicine & Physiology and Biophysics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
5
|
Loss of GCN5L1 in cardiac cells disrupts glucose metabolism and promotes cell death via reduced Akt/mTORC2 signaling. Biochem J 2019; 476:1713-1724. [PMID: 31138772 DOI: 10.1042/bcj20190302] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/21/2019] [Accepted: 05/27/2019] [Indexed: 12/13/2022]
Abstract
GCN5L1 regulates protein acetylation and mitochondrial energy metabolism in diverse cell types. In the heart, loss of GCN5L1 sensitizes the myocardium to injury from exposure to nutritional excess and ischemia/reperfusion injury. This phenotype is associated with the reduced acetylation of metabolic enzymes and elevated mitochondrial reactive oxygen species (ROS) generation, although the direct molecular targets of GCN5L1 remain largely unknown. In this study, we sought to determine the mechanism by which GCN5L1 impacts energy substrate utilization and mitochondrial health. We find that hypoxia and reoxygenation (H/R) leads to a reduction in cell viability and Akt phosphorylation in GCN5L1 knockdown AC16 cardiomyocytes, in parallel with elevated glucose utilization and impaired fatty acid use. We demonstrate that glycolysis is uncoupled from glucose oxidation under normoxic conditions in GCN5L1-depleted cells. We show that GCN5L1 directly binds to the Akt-activating mTORC2 component Rictor, and that loss of Rictor acetylation is evident in GCN5L1 knockdown cells. Finally, we show that restoring Rictor acetylation in GCN5L1-depleted cells reduces mitochondrial ROS generation and increases cell survival in response to H/R. These studies suggest that GCN5L1 may play a central role in energy substrate metabolism and cell survival via the regulation of Akt/mTORC2 signaling.
Collapse
|
6
|
Ren X, Roessler AE, Lynch TL, Haar L, Mallick F, Lui Y, Tranter M, Ren MH, Xie WR, Fan GC, Zhang JM, Kranias EG, Anjak A, Koch S, Jiang M, Miao Q, Wang Y, Cohen A, Rubinstein J, Weintraub NL, Jones WK. Cardioprotection via the skin: nociceptor-induced conditioning against cardiac MI in the NIC of time. Am J Physiol Heart Circ Physiol 2018; 316:H543-H553. [PMID: 30575436 DOI: 10.1152/ajpheart.00094.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Timely reperfusion is still the most effective approach to limit infarct size in humans. Yet, despite advances in care and reduction in door-to-balloon times, nearly 25% of patients develop heart failure postmyocardial infarction, with its attendant morbidity and mortality. We previously showed that cardioprotection results from a skin incision through the umbilicus in a murine model of myocardial infarction. In the present study, we show that an electrical stimulus or topical capsaicin applied to the skin in the same region induces significantly reduced infarct size in a murine model. We define this class of phenomena as nociceptor-induced conditioning (NIC) based on the peripheral nerve mechanism of initiation. We show that NIC is effective both as a preconditioning and postconditioning remote stimulus, reducing infarct size by 86% and 80%, respectively. NIC is induced via activation of skin C-fiber nerves. Interestingly, the skin region that activates NIC is limited to the anterior of the T9-T10 vertebral region of the abdomen. Cardioprotection after NIC requires the integrity of the spinal cord from the region of stimulation to the thoracic vertebral region of the origin of the cardiac nerves but does not require that the cord be intact in the cervical region. Thus, we show that NIC is a reflex and not a central nervous system-mediated effect. The mechanism involves bradykinin 2 receptor activity and activation of PKC, specifically, PKC-α. The similarity of the neuroanatomy and conservation of the effectors of cardioprotection supports that NIC may be translatable to humans as a nontraumatic and practical adjunct therapy against ischemic disease. NEW & NOTEWORTHY This study shows that an electrical stimulus to skin sensory nerves elicits a very powerful cardioprotection against myocardial infarction. This stimulus works by a neurogenic mechanism similar to that previously elucidated for remote cardioprotection of trauma. Nociceptor-induced conditioning is equally potent when applied before ischemia or at reperfusion and has great potential clinically.
Collapse
Affiliation(s)
- Xiaoping Ren
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Mawood, Illinois
| | - Anne E Roessler
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Mawood, Illinois
| | - Thomas L Lynch
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Mawood, Illinois
| | - Lauren Haar
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Mawood, Illinois
| | - Faryal Mallick
- Division of Cardiology, Department of Medicine, University of Cincinnati College of Medicine , Cincinnati, Ohio
| | - Yong Lui
- Division of Cardiology, Department of Medicine, University of Cincinnati College of Medicine , Cincinnati, Ohio
| | - Michael Tranter
- Division of Cardiology, Department of Medicine, University of Cincinnati College of Medicine , Cincinnati, Ohio
| | - Michelle Huan Ren
- Division of Cardiology, Department of Medicine, University of Cincinnati College of Medicine , Cincinnati, Ohio
| | - Wen Rui Xie
- Department of Anesthesiology and Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Guo-Chang Fan
- Department of Pharmacology, University of Cincinnati , Cincinnati, Ohio
| | - Jun-Ming Zhang
- Department of Anesthesiology and Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | | | - Ahmad Anjak
- Division of Cardiology, Department of Medicine, University of Cincinnati College of Medicine , Cincinnati, Ohio
| | - Sheryl Koch
- Division of Cardiology, Department of Medicine, University of Cincinnati College of Medicine , Cincinnati, Ohio
| | - Min Jiang
- Division of Cardiology, Department of Medicine, University of Cincinnati College of Medicine , Cincinnati, Ohio
| | - Qing Miao
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Mawood, Illinois
| | - Yang Wang
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Mawood, Illinois
| | - Albert Cohen
- Department of Mathematics, Michigan State University , East Lansing, Michigan
| | - Jack Rubinstein
- Division of Cardiology, Department of Medicine, University of Cincinnati College of Medicine , Cincinnati, Ohio
| | - Neal L Weintraub
- Division of Cardiology, Georgia Regents University, Augusta, Geogia
| | - W Keith Jones
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Mawood, Illinois
| |
Collapse
|
7
|
Abstract
Heart failure (HF) is a physiological state in which cardiac output is insufficient to meet the needs of the body. It is a clinical syndrome characterized by impaired ability of the left ventricle to either fill or eject blood efficiently. HF is a disease of multiple aetiologies leading to progressive cardiac dysfunction and it is the leading cause of deaths in both developed and developing countries. HF is responsible for about 73,000 deaths in the UK each year. In the USA, HF affects 5.8 million people and 550,000 new cases are diagnosed annually. Cardiac remodelling (CD), which plays an important role in pathogenesis of HF, is viewed as stress response to an index event such as myocardial ischaemia or imposition of mechanical load leading to a series of structural and functional changes in the viable myocardium. Protein kinase C (PKC) isozymes are a family of serine/threonine kinases. PKC is a central enzyme in the regulation of growth, hypertrophy, and mediators of signal transduction pathways. In response to circulating hormones, activation of PKC triggers a multitude of intracellular events influencing multiple physiological processes in the heart, including heart rate, contraction, and relaxation. Recent research implicates PKC activation in the pathophysiology of a number of cardiovascular disease states. Few reports are available that examine PKC in normal and diseased human hearts. This review describes the structure, functions, and distribution of PKCs in the healthy and diseased heart with emphasis on the human heart and, also importantly, their regulation in heart failure.
Collapse
Affiliation(s)
- Raphael M Singh
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston, England, PR1 2HE, UK.
- Faculty of Medicine and Health Sciences, University of Guyana, Turkeyen, Georgetown, Guyana.
| | - Emanuel Cummings
- Faculty of Medicine and Health Sciences, University of Guyana, Turkeyen, Georgetown, Guyana
| | - Constantinos Pantos
- Department of Pharmacology, School of Medicine, University of Athens, Athens, Greece
| | - Jaipaul Singh
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston, England, PR1 2HE, UK
| |
Collapse
|
8
|
Wang S, Zhang F, Zhao G, Cheng Y, Wu T, Wu B, Zhang YE. Mitochondrial PKC-ε deficiency promotes I/R-mediated myocardial injury via GSK3β-dependent mitochondrial permeability transition pore opening. J Cell Mol Med 2017; 21:2009-2021. [PMID: 28266127 PMCID: PMC5571523 DOI: 10.1111/jcmm.13121] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 01/05/2017] [Indexed: 11/29/2022] Open
Abstract
Mitochondrial fission is critically involved in cardiomyocyte apoptosis, which has been considered as one of the leading causes of ischaemia/reperfusion (I/R)‐induced myocardial injury. In our previous works, we demonstrate that aldehyde dehydrogenase‐2 (ALDH2) deficiency aggravates cardiomyocyte apoptosis and cardiac dysfunction. The aim of this study was to elucidate whether ALDH2 deficiency promotes mitochondrial injury and cardiomyocyte death in response to I/R stress and the underlying mechanism. I/R injury was induced by aortic cross‐clamping for 45 min. followed by unclamping for 24 hrs in ALDH2 knockout (ALDH2−/−) and wild‐type (WT) mice. Then myocardial infarct size, cell apoptosis and cardiac function were examined. The protein kinase C (PKC) isoform expressions and their mitochondrial translocation, the activity of dynamin‐related protein 1 (Drp1), caspase9 and caspase3 were determined by Western blot. The effects of N‐acetylcysteine (NAC) or PKC‐δ shRNA treatment on glycogen synthase kinase‐3β (GSK‐3β) activity and mitochondrial permeability transition pore (mPTP) opening were also detected. The results showed that ALDH2−/− mice exhibited increased myocardial infarct size and cardiomyocyte apoptosis, enhanced levels of cleaved caspase9, caspase3 and phosphorylated Drp1. Mitochondrial PKC‐ε translocation was lower in ALDH2−/− mice than in WT mice, and PKC‐δ was the opposite. Further data showed that mitochondrial PKC isoform ratio was regulated by cellular reactive oxygen species (ROS) level, which could be reversed by NAC pre‐treatment under I/R injury. In addition, PKC‐ε inhibition caused activation of caspase9, caspase3 and Drp1Ser616 in response to I/R stress. Importantly, expression of phosphorylated GSK‐3β (inactive form) was lower in ALDH2−/− mice than in WT mice, and both were increased by NAC pre‐treatment. I/R‐induced mitochondrial translocation of GSK‐3β was inhibited by PKC‐δ shRNA or NAC pre‐treatment. In addition, mitochondrial membrane potential (∆Ψm) was reduced in ALDH2−/− mice after I/R, which was partly reversed by the GSK‐3β inhibitor (SB216763) or PKC‐δ shRNA. Collectively, our data provide the evidence that abnormal PKC‐ε/PKC‐δ ratio promotes the activation of Drp1 signalling, caspase cascades and GSK‐3β‐dependent mPTP opening, which results in mitochondrial injury‐triggered cardiomyocyte apoptosis and myocardial dysfuction in ALDH2−/− mice following I/R stress.
Collapse
Affiliation(s)
- Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Feng Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gang Zhao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong Cheng
- Heart Centre of Zhengzhou Ninth People's Hospital, Zhengzhou, Henan, China
| | - Ting Wu
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Bing Wu
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - You-En Zhang
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
9
|
Scruggs SB, Wang D, Ping P. PRKCE gene encoding protein kinase C-epsilon-Dual roles at sarcomeres and mitochondria in cardiomyocytes. Gene 2016; 590:90-6. [PMID: 27312950 DOI: 10.1016/j.gene.2016.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/23/2016] [Accepted: 06/05/2016] [Indexed: 12/26/2022]
Abstract
Protein kinase C-epsilon (PKCε) is an isoform of a large PKC family of enzymes that has a variety of functions in different cell types. Here we discuss two major roles of PKCε in cardiac muscle cells; specifically, its role in regulating cardiac muscle contraction via targeting the sarcomeric proteins, as well as modulating cardiac cell energy production and metabolism by targeting cardiac mitochondria. The importance of PKCε action is described within the context of intracellular localization, as substrate selectivity and specificity is achieved through spatiotemporal targeting of PKCε. Accordingly, the role of PKCε in regulating myocardial function in physiological and pathological states has been documented in both cardioprotection and cardiac hypertrophy.
Collapse
Affiliation(s)
- Sarah B Scruggs
- Departments of Physiology, Medicine (Cardiology) and Bioinformatics, NIH BD2K Center of Excellence for Biomedical Computing, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Ding Wang
- Departments of Physiology, Medicine (Cardiology) and Bioinformatics, NIH BD2K Center of Excellence for Biomedical Computing, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Peipei Ping
- Departments of Physiology, Medicine (Cardiology) and Bioinformatics, NIH BD2K Center of Excellence for Biomedical Computing, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
10
|
Song IA, Oh AY, Kim JH, Choi YM, Jeon YT, Ryu JH, Hwang JW. The involvement of protein kinase C-ε in isoflurane induced preconditioning of human embryonic stem cell--derived Nkx2.5(+) cardiac progenitor cells. BMC Anesthesiol 2016; 16:13. [PMID: 26897636 PMCID: PMC4761209 DOI: 10.1186/s12871-016-0178-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/16/2016] [Indexed: 11/29/2022] Open
Abstract
Background Anesthetic preconditioning can improve survival of cardiac progenitor cells exposed to oxidative stress. We investigated the role of protein kinase C and isoform protein kinase C-ε in isoflurane-induced preconditioning of cardiac progenitor cells exposed to oxidative stress. Methods Cardiac progenitor cells were obtained from undifferentiated human embryonic stem cells. Immunostaining with anti-Nkx2.5 was used to confirm the differentiated cardiac progenitor cells. Oxidative stress was induced by H2O2 and FeSO4. For anesthetic preconditioning, cardiac progenitor cells were exposed to 0.25, 0.5, and 1.0 mM of isoflurane. PMA and chelerythrine were used for protein kinase C activation and inhibition, while εψRACK and εV1-2 were used for protein kinase C -ε activation and inhibition, respectively. Results Isoflurane-preconditioning decreased the death rate of Cardiac progenitor cells exposed to oxidative stress (death rates isoflurane 0.5 mM 12.7 ± 9.3 %, 1.0 mM 12.0 ± 7.7 % vs. control 31.4 ± 10.2 %). Inhibitors of both protein kinase C and protein kinase C -ε abolished the preconditioning effect of isoflurane 0.5 mM (death rates 27.6 ± 13.5 % and 25.9 ± 8.7 % respectively), and activators of both protein kinase C and protein kinase C - ε had protective effects from oxidative stress (death rates 16.0 ± 3.2 % and 10.6 ± 3.8 % respectively). Conclusions Both PKC and PKC-ε are involved in isoflurane-induced preconditioning of human embryonic stem cells -derived Nkx2.5+ Cardiac progenitor cells under oxidative stress.
Collapse
Affiliation(s)
- In-Ae Song
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea.
| | - Ah-Young Oh
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea. .,Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul, Repulic of Korea.
| | - Jin-Hee Kim
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea. .,Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul, Repulic of Korea.
| | - Young-Min Choi
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea. .,The Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Young-Tae Jeon
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea. .,Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul, Repulic of Korea.
| | - Jung-Hee Ryu
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea. .,Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul, Repulic of Korea.
| | - Jung-Won Hwang
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea. .,Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul, Repulic of Korea.
| |
Collapse
|
11
|
Mukherjee A, Roy S, Saha B, Mukherjee D. Spatio-Temporal Regulation of PKC Isoforms Imparts Signaling Specificity. Front Immunol 2016; 7:45. [PMID: 26925059 PMCID: PMC4756072 DOI: 10.3389/fimmu.2016.00045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/29/2016] [Indexed: 12/18/2022] Open
Affiliation(s)
| | - Sayoni Roy
- National Centre for Cell Science , Pune , India
| | | | | |
Collapse
|
12
|
Abstract
KATP channels are integral to the functions of many cells and tissues. The use of electrophysiological methods has allowed for a detailed characterization of KATP channels in terms of their biophysical properties, nucleotide sensitivities, and modification by pharmacological compounds. However, even though they were first described almost 25 years ago (Noma 1983, Trube and Hescheler 1984), the physiological and pathophysiological roles of these channels, and their regulation by complex biological systems, are only now emerging for many tissues. Even in tissues where their roles have been best defined, there are still many unanswered questions. This review aims to summarize the properties, molecular composition, and pharmacology of KATP channels in various cardiovascular components (atria, specialized conduction system, ventricles, smooth muscle, endothelium, and mitochondria). We will summarize the lessons learned from available genetic mouse models and address the known roles of KATP channels in cardiovascular pathologies and how genetic variation in KATP channel genes contribute to human disease.
Collapse
Affiliation(s)
- Monique N Foster
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| | - William A Coetzee
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| |
Collapse
|
13
|
Obis T, Hurtado E, Nadal L, Tomàs M, Priego M, Simon A, Garcia N, Santafe MM, Lanuza MA, Tomàs J. The novel protein kinase C epsilon isoform modulates acetylcholine release in the rat neuromuscular junction. Mol Brain 2015; 8:80. [PMID: 26625935 PMCID: PMC4665914 DOI: 10.1186/s13041-015-0171-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/25/2015] [Indexed: 01/20/2023] Open
Abstract
Background Various protein kinase C (PKC) isoforms contribute to the phosphorylating activity that modulates neurotransmitter release. In previous studies we showed that nPKCε is confined in the presynaptic site of the neuromuscular junction and its presynaptic function is activity-dependent. Furthermore, nPKCε regulates phorbol ester-induced acetylcholine release potentiation, which further indicates that nPKCε is involved in neurotransmission. The present study is designed to examine the nPKCε involvement in transmitter release at the neuromuscular junction. Results We use the specific nPKCε translocation inhibitor peptide εV1-2 and electrophysiological experiments to investigate the involvement of this isoform in acetylcholine release. We observed that nPKCε membrane translocation is key to the synaptic potentiation of NMJ, being involved in several conditions that upregulate PKC isoforms coupling to acetylcholine (ACh) release (incubation with high Ca2+, stimulation with phorbol esters and protein kinase A, stimulation with adenosine 3′,5′-cyclic monophosphorothioate, 8-Bromo-, Rp-isomer, sodium salt -Sp-8-BrcAMP-). In all these conditions, preincubation with the nPKCε translocation inhibitor peptide (εV1-2) impairs PKC coupling to acetylcholine release potentiation. In addition, the inhibition of nPKCε translocation and therefore its activity impedes that presynaptic muscarinic autoreceptors and adenosine autoreceptors modulate transmitter secretion. Conclusions Together, these results point to the importance of nPKCε isoform in the control of acetylcholine release in the neuromuscular junction.
Collapse
Affiliation(s)
- Teresa Obis
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain
| | - Erica Hurtado
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain
| | - Laura Nadal
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain
| | - Marta Tomàs
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain
| | - Mercedes Priego
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain
| | - Anna Simon
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain
| | - Neus Garcia
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain
| | - Manel M Santafe
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain
| | - Maria A Lanuza
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain.
| | - Josep Tomàs
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain.
| |
Collapse
|
14
|
Sharma R, Randhawa PK, Singh N, Jaggi AS. Bradykinin in ischemic conditioning-induced tissue protection: Evidences and possible mechanisms. Eur J Pharmacol 2015; 768:58-70. [DOI: 10.1016/j.ejphar.2015.10.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/15/2015] [Accepted: 10/15/2015] [Indexed: 01/02/2023]
|
15
|
Pang Y, Chai CR, Gao K, Jia XH, Kong JG, Chen XQ, Vatcher G, Chen JG, Yu ACH. Ischemia preconditioning protects astrocytes from ischemic injury through 14-3-3γ. J Neurosci Res 2015; 93:1507-18. [PMID: 25711139 DOI: 10.1002/jnr.23574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 01/11/2015] [Accepted: 01/25/2015] [Indexed: 12/28/2022]
Abstract
Stroke is a leading cause of death and disability, and new strategies are required to reduce neuronal injury and improve prognosis. Ischemia preconditioning (IPC) is an intrinsic phenomenon that protects cells from subsequent ischemic injury and might provide promising mechanisms for clinical treatment. In this study, primary astrocytes exhibited significantly less cell death than control when exposed to different durations of IPC (15, 30, 60, or 120 min). A 15-min duration was the most effective IPC to protect astrocytes from 8-hr-ischemia injury. The protective mechanisms of IPC involve the upregulation of protective proteins, including 14-3-3γ, and attenuation of malondialdehyde (MDA) content and ATP depletion. 14-3-3γ is an antiapoptotic intracellular protein that was significantly upregulated for up to 84 hr after IPC. In addition, IPC promoted activation of the c-Jun N-terminal kinase (JNK), extracellular signal-related kinase (ERK)-1/2, p38, and protein kinase B (Akt) signaling pathways. When JNK was specifically inhibited with SP600125, the upregulation of 14-3-3γ induced by IPC was almost completely abolished; however, there was no effect on ATP or MDA levels. This suggests that, even though both energy preservation and 14-3-3γ up-regulation were turned on by IPC, they were controlled by different pathways. The ERK1/2, p38, and Akt signaling pathways were not involved in the 14-3-3γ upregulation and energy preservation. These results indicate that IPC could protect astrocytes from ischemia injury by inducing 14-3-3γ and by alleviating energy depletion through different pathways, suggesting multiple protection of IPC and providing new insights into potential stroke therapies.
Collapse
Affiliation(s)
- Ying Pang
- Neuroscience Research Institute, Peking University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Chao Rui Chai
- Neuroscience Research Institute, Peking University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Kai Gao
- Neuroscience Research Institute, Peking University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Xi Hua Jia
- Neuroscience Research Institute, Peking University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Jin Ge Kong
- Neuroscience Research Institute, Peking University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Xiao Qian Chen
- Department of Pathophysiology, Ministry of Education and Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Greg Vatcher
- Neuroscience Research Institute, Peking University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Jian Guo Chen
- Key Laboratory of Biomembrane and Membrane Bioengineering, Key Laboratory of Cell Proliferation and Differentiation, Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Albert Cheung Hoi Yu
- Neuroscience Research Institute, Peking University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China.,Laboratory of Translational Medicine, Institute of Systems Biomedicine, Peking University, Beijing, China
| |
Collapse
|
16
|
Acute, delayed and chronic remote ischemic conditioning is associated with downregulation of mTOR and enhanced autophagy signaling. PLoS One 2014; 9:e111291. [PMID: 25347774 PMCID: PMC4210174 DOI: 10.1371/journal.pone.0111291] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/23/2014] [Indexed: 11/29/2022] Open
Abstract
Background Remote ischemic conditioning (RIC), induced by brief periods of limb ischemia has been shown to decrease acute myocardial injury and chronic responses after acute coronary syndromes. While several signaling pathways have been implicated, our understanding of the cardioprotection and its underlying mediators and mechanisms remains incomplete. In this study we examine the effect of RIC on pro-autophagy signaling as a possible mechanism of benefit. Methods and Results We examined the role of autophagy in the acute/first window (15 minutes after RIC), delayed/second window (24 hours after RIC) and chronic (24 hours after 9 days of repeated RIC) phases of cardioprotection. C57BL/6 mice (N = 69) were allocated to each treatment phase and further stratified to receive RIC, induced by four cycles of 5 minutes of limb ischemia followed by 5 minutes of reperfusion, or control treatment consisting solely of handling without transient ischemia. The groups included, group 1 (1W control), group 2 (1W RIC), group 3 (2W control), group 4 (2W RIC), group 5 (3W control) and group 6 (3W RIC). Hearts were isolated for assessment of cardiac function and infarct size after global ischemia using a Langendorff preparation. Infarct size was reduced in all three phases of cardioprotection, in association with improvements in post-ischemic left ventricular end diastolic pressure (LVEDP) and developed pressure (LVDP) (P<0.05). The pattern of autophagy signaling varied; 1W RIC increased AMPK levels and decreased the activation of mammalian target of rapamycin (mTOR), whereas chronic RIC was associated with persistent mTOR suppression and increased levels of autophagosome proteins, LC3II/I and Atg5. Conclusions Cardioprotection following transient ischemia exists in both the acute and delayed/chronic phases of conditioning. RIC induces pro-autophagy signaling but the pattern of responses varies depending on the phase, with the most complete portfolio of responses observed when RIC is administered chronically.
Collapse
|
17
|
Gao L, Chen L, Lu ZZ, Gao H, Wu L, Chen YX, Zhang CM, Jiang YK, Jing Q, Zhang YY, Yang HT. Activation of α1B-adrenoceptors contributes to intermittent hypobaric hypoxia-improved postischemic myocardial performance via inhibiting MMP-2 activation. Am J Physiol Heart Circ Physiol 2014; 306:H1569-81. [PMID: 24705558 DOI: 10.1152/ajpheart.00772.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inhibition of matrix metalloproteinases-2 (MMP-2) activation renders cardioprotection from ischemia/reperfusion (I/R) injury; however, the signaling pathways involved have not been fully understood. Intermittent hypobaric hypoxia (IHH) has been shown to enhance myocardial tolerance to I/R injury via triggering intrinsic adaptive responses. Here we investigated whether IHH protects the heart against I/R injury via the regulation of MMP-2 and how the MMP-2 is regulated. IHH (Po2 = 84 mmHg, 4-h/day, 4 wk) improved postischemic myocardial contractile performance, lactate dehydrogenase (LDH) release, and infarct size in isolated perfused rat hearts. Moreover, IHH reversed I/R-induced MMP-2 activation and release, disorders in the levels of MMP-2 regulators, peroxynitrite (ONOO(-)) and tissue inhibitor of metalloproteinase-4 (TIMP-4), and loss of the MMP-2 targets α-actinin and troponin I. This protection was mimicked, but not augmented, by a MMP inhibitor doxycycline and lost by the α1-adrenoceptor (AR) antagonist prazosin. Furthermore, IHH increased myocardial α1A-AR and α1B-AR density but not α1D-AR after I/R. Concomitantly, IHH further enhanced the translocation of PKC epsilon (PKCε) and decreased the release of mitochondrial cytochrome c due to I/R via the activation of α1B-AR but not α1A-AR or α1D-AR. IHH-conferred cardioprotection in the postischemic contractile function, LDH release, MMP-2 activation, and nitrotyrosine as well as TIMP-4 contents were mimicked but not additive by α1-AR stimulation with phenylephrine and were abolished by an α1B-AR antagonist chloroethylclonidine and a PKCε inhibitor PKCε V1-2. These findings demonstrate that IHH exerts cardioprotection through attenuating excess ONOO(-) biosynthesis and TIMP-4 loss and sequential MMP-2 activation via the activation of α1B-AR/PKCε pathway.
Collapse
Affiliation(s)
- Ling Gao
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine Shanghai, China; and
| | - Le Chen
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine Shanghai, China; and
| | - Zhi-Zhen Lu
- Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Molecular Cardiovascular Sciences Ministry of Education, Beijing, China
| | - Hong Gao
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine Shanghai, China; and
| | - Lan Wu
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine Shanghai, China; and
| | - Yi-Xiong Chen
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine Shanghai, China; and
| | - Cai-Mei Zhang
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine Shanghai, China; and
| | - Yu-Kun Jiang
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine Shanghai, China; and
| | - Qing Jing
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine Shanghai, China; and
| | - You-Yi Zhang
- Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Molecular Cardiovascular Sciences Ministry of Education, Beijing, China
| | - Huang-Tian Yang
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine Shanghai, China; and
| |
Collapse
|
18
|
Label-free cell phenotypic profiling decodes the composition and signaling of an endogenous ATP-sensitive potassium channel. Sci Rep 2014; 4:4934. [PMID: 24816792 PMCID: PMC4017216 DOI: 10.1038/srep04934] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/24/2014] [Indexed: 11/27/2022] Open
Abstract
Current technologies for studying ion channels are fundamentally limited because of their inability to functionally link ion channel activity to cellular pathways. Herein, we report the use of label-free cell phenotypic profiling to decode the composition and signaling of an endogenous ATP-sensitive potassium ion channel (KATP) in HepG2C3A, a hepatocellular carcinoma cell line. Label-free cell phenotypic agonist profiling showed that pinacidil triggered characteristically similar dynamic mass redistribution (DMR) signals in A431, A549, HT29 and HepG2C3A, but not in HepG2 cells. Reverse transcriptase PCR, RNAi knockdown, and KATP blocker profiling showed that the pinacidil DMR is due to the activation of SUR2/Kir6.2 KATP channels in HepG2C3A cells. Kinase inhibition and RNAi knockdown showed that the pinacidil activated KATP channels trigger signaling through Rho kinase and Janus kinase-3, and cause actin remodeling. The results are the first demonstration of a label-free methodology to characterize the composition and signaling of an endogenous ATP-sensitive potassium ion channel.
Collapse
|
19
|
Activation of prosurvival signaling pathways during the memory phase of volatile anesthetic preconditioning in human myocardium: a pilot study. Mol Cell Biochem 2013; 388:195-201. [DOI: 10.1007/s11010-013-1910-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 11/15/2013] [Indexed: 01/31/2023]
|
20
|
Hasseldam H, Hansen-Schwartz J, Munkholm N, Hou J, Johansen FF. Remote post-conditioning reduces hypoxic damage early after experimental stroke. Neurol Res 2013; 35:336-43. [PMID: 23540402 DOI: 10.1179/1743132812y.0000000130] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES Given that reliable markers for early ischemic brain damage are lacking, we set out to test whether pimonidazole can be used as a reliable tool in the quantification of hypoxic insults, at early time points following experimental stroke. METHODS We have used semi-quantitative Western blotting detection of pimonidazole adducts in a rat model of reversible middle cerebral artery occlusion (MCAO), treated with remote post-conditioning. RESULTS First, we demonstrated that a linear relationship exist between pimonidazole binding in the ischemic hemisphere and duration of ischemia, in animals subjected to 5, 15, 30, or 60 minutes of occlusion followed by 120 minutes of reflow. Then we showed a significant reduction in pimonidazole binding in the infarcted hemisphere, when rats with 60 minutes of MCAO, immediately after establishment of cerebral reflow, had 3×15 minutes intermittent hind limb ischemia followed by 24-hour survival. We analysed the middle cerebral arteries from animals with 60 minutes of MCAO and early remote post-conditioning, followed by 30 minutes, 24, or 48 hours of reflow. At 24 hours of reflow increases in phosphorylated protein kinase C-alpha with concomitantly increased levels of p38 phosphorylation were observed. CONCLUSIONS Our investigation demonstrates that pimonidazole can be used for quantifying ischemic impact in stroke, even after very short survival times. It furthermore shows that early remote post-conditioning reduces ischemic damage, probably through hyperpolarization and reduced reflow vasospasm in the conduit middle cerebral arteries.
Collapse
|
21
|
Yamanaka R, Shindo Y, Hotta K, Suzuki K, Oka K. NO/cGMP/PKG signaling pathway induces magnesium release mediated by mitoKATP channel opening in rat hippocampal neurons. FEBS Lett 2013; 587:2643-8. [PMID: 23831575 DOI: 10.1016/j.febslet.2013.06.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/26/2013] [Accepted: 06/26/2013] [Indexed: 11/19/2022]
Abstract
Intracellular Mg²⁺ concentration ([Mg²⁺]i) and NO regulate cell survival and death. To reveal the involvement of NO in intracellular Mg²⁺ regulation, we visualized intracellular Mg²⁺ using the fluorescent Mg²⁺ indicator KMG-104-AM in rat hippocampal neurons. Pharmacological experiments using SNAP, 8-Br-cGMP, diazoxide and several inhibitors revealed that the NO/cGMP/Protein kinsase G (PKG) signaling pathway triggers an increase in [Mg²⁺]i, and that Mg²⁺ mobilization is due to Mg²⁺ release from mitochondria induced by mitoKATP channel opening. In addition, Mg²⁺ release is potentiated by the positive feedback loop including mitoKATP channel opening, mitochondrial depolarization and PKC activation.
Collapse
Affiliation(s)
- Ryu Yamanaka
- Center for Biosciences and Informatics, School of Fundamental Science and Technology, Keio University, Yokohama, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
22
|
Hemorrhagic preconditioning improves vascular reactivity after hemorrhagic shock by activation of PKCα and PKCε via the adenosine A1 receptor in rats. J Trauma Acute Care Surg 2013; 74:1266-74. [DOI: 10.1097/ta.0b013e31828dba35] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
23
|
Xu J, Lan D, Yang G, Li T, Liu L. Hemorrhagic preconditioning improves vascular reactivity after hemorrhagic shock by activation of PKC[alpha] and PKC[epsilon] via the adenosine A1 receptor in rats. J Trauma Acute Care Surg 2013. [DOI: 10.1097/01586154-201305000-00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Manning JR, Perkins SO, Sinclair EA, Gao X, Zhang Y, Newman G, Pyle WG, Schultz JEJ. Low molecular weight fibroblast growth factor-2 signals via protein kinase C and myofibrillar proteins to protect against postischemic cardiac dysfunction. Am J Physiol Heart Circ Physiol 2013; 304:H1382-96. [PMID: 23479264 DOI: 10.1152/ajpheart.00613.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Among its many biological roles, fibroblast growth factor-2 (FGF2) acutely protects the heart from dysfunction associated with ischemia/reperfusion (I/R) injury. Our laboratory has demonstrated that this is due to the activity of the low molecular weight (LMW) isoform of FGF2 and that FGF2-mediated cardioprotection relies on the activity of protein kinase C (PKC); however, which PKC isoforms are responsible for LMW FGF2-mediated cardioprotection, and their downstream targets, remain to be elucidated. To identify the PKC pathway(s) that contributes to postischemic cardiac recovery by LMW FGF2, mouse hearts expressing only LMW FGF2 (HMWKO) were bred to mouse hearts not expressing PKCα (PKCαKO) or subjected to a selective PKCε inhibitor (εV(1-2)) before and during I/R. Hearts only expressing LMW FGF2 showed significantly improved postischemic recovery of cardiac function following I/R (P < 0.05), which was significantly abrogated in the absence of PKCα (P < 0.05) or presence of PKCε inhibition (P < 0.05). Hearts only expressing LMW FGF2 demonstrated differences in actomyosin ATPase activity as well as increases in the phosphorylation of troponin I and T during I/R compared with wild-type hearts; several of these effects were dependent on PKCα activity. This evidence indicates that both PKCα and PKCε play a role in LMW FGF2-mediated protection from cardiac dysfunction and that PKCα signaling to the contractile apparatus is a key step in the mechanism of LMW FGF2-mediated protection against myocardial dysfunction.
Collapse
Affiliation(s)
- Janet R Manning
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Huang YE, Tang ZH, Xie W, Shen XT, Liu MH, Peng XP, Zhao ZZ, Nie DEB, Liu LS, Jiang ZS. Endogenous hydrogen sulfide mediates the cardioprotection induced by ischemic postconditioning in the early reperfusion phase. Exp Ther Med 2012; 4:1117-1123. [PMID: 23226785 PMCID: PMC3494106 DOI: 10.3892/etm.2012.733] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 09/18/2012] [Indexed: 01/08/2023] Open
Abstract
Hydrogen sulfide (H2S), produced by cystanthionine-γ-lysase (CSE) in the cardiovascular system, has been suggested to be the third gasotransmitter in addition to nitric oxide (NO) and carbon monoxide (CO). The present study aimed to investigate the role of H2S in ischemic postconditioning (IPO) during the early period of reperfusion. IPO with 6 episodes of 10 sec reperfusion followed by 6 episodes of 10 sec ischemia (IPO 2’) was administered when reperfusion was initiated. Cardiodynamics and the concentration of H2S were measured at 1, 2, 3, 4, 5, 10, 20, 30, 60, 90 and 120 min of reperfusion. Lactate dehydrogenase (LDH) levels and infarct size were determined at the end of the reperfusion. The concentration of H2S was stable during the whole experiment in the control group, whereas it reached a peak at the first minute of reperfusion in the ischemia-reperfusion (IR) group. The concentration of H2S at the first minute of reperfusion in the IPO 2’ group was higher compared to that of the IR group, which correlated with cardioprotection including improved heart contractile function and reduced infarct size and LDH levels. However, the above effects of IPO 2’ were attenuated by pre-treatment with blockade of endogenous H2S production with DL-propargylglycine for 20 min prior to global ischemia. Furthermore, we found that other forms of IPO, IPO commencing at 1 min after reperfusion (delayed IPO) or lasting only for 1 min (IPO 1’), failed to increase the concentration of H2S and protect the myocardium. We conclude that the peak of endogenous H2S in the early reperfusion phase is the key to cardioprotection induced by IPO.
Collapse
Affiliation(s)
- Yi-E Huang
- Institute of Cardiovascular Disease and Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001; ; Huaihua Medical College, Huaihua, Hunan 418000, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Berbamine (BM), a natural compound derived from Berberis vulgaris L, has been reported to inhibit cardiac contractile function at higher concentrations. Here, we report that BM had concentration-dependent biphasic effects on myocardial contraction in Langendorff-perfused rat hearts, that is, at lower concentrations (30-100 nM), it displayed positive inotropic and lusitropic effects, whereas at a higher concentration of 1 μM, it caused a negative inotropic effect after an initially weak increase. These effects were further confirmed in cardiomyocytes isolated from the left ventricles of rats. Moreover, the increased cell shortening by BM at concentrations from 0.1 to 100 nM was not associated with an alteration of intracellular Ca transients. Consistently, at 30 nM, BM shifted the cell shortening--Ca transient relationship curve induced by cumulative elevation of extracellular Ca concentration to the left. Furthermore, BM significantly increased membrane-bound but not filament-bound protein kinase C epsilon (PKCε) in the isolated hearts and cardiomyocytes. Such a translocation was inhibited by PKCε-specific inhibitor PKCε V1-2 concomitant with the abolishment of the BM-induced increase in contraction. These findings reveal the positive inotropic effect of BM in the myocardium and demonstrate that BM increases myocardial contractility by increasing myofilament Ca sensitivity via a PKCε-dependent signaling pathway.
Collapse
|
27
|
Husainy MA, Dickenson JM, Galiñanes M. The MPTP Status During Early Reoxygenation is Critical for Cardioprotection. J Surg Res 2012; 174:62-72. [DOI: 10.1016/j.jss.2010.11.879] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 10/22/2010] [Accepted: 11/05/2010] [Indexed: 10/18/2022]
|
28
|
Andrews DT, Royse C, Royse AG. The mitochondrial permeability transition pore and its role in anaesthesia-triggered cellular protection during ischaemia-reperfusion injury. Anaesth Intensive Care 2012; 40:46-70. [PMID: 22313063 DOI: 10.1177/0310057x1204000106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review summarises the most recent data in support of the role of the mitochondrial permeability transition pore (mPTP) in ischaemia-reperfusion injury, how anaesthetic agents interact with this molecular channel, and the relevance this holds for current anaesthetic practice. Ischaemia results in damage to the electron transport chain of enzymes and sets into play the assembly of a non-specific mega-channel (the mPTP) that transgresses the inner mitochondrial membrane. During reperfusion, uncontrolled opening of the mPTP causes widespread depolarisation of the inner mitochondrial membrane, hydrolysis of ATP, mitochondrial rupture and eventual necrotic cell death. Similarly, transient opening of the mPTP during less substantial ischaemia leads to differential swelling of the intermembrane space compared to the mitochondrial matrix, rupture of the outer mitochondrial membrane and release of pro-apoptotic factors into the cytosol. Recent data suggests that cellular protection from volatile anaesthetic agents follows specific downstream interactions with this molecular channel that are initiated early during anaesthesia. Intravenous anaesthetic agents also prevent the opening of the mPTP during reperfusion. Although by dissimilar mechanisms, both volatiles and propofol promote cell survival by preventing uncontrolled opening of the mPTP after ischaemia. It is now considered that anaesthetic-induced closure of the mPTP is the underlying effector mechanism that is responsible for the cytoprotection previously demonstrated in clinical studies investigating anaesthetic-mediated cardiac and neuroprotection. Manipulation of mPTP function offers a novel means of preventing ischaemic cell injury. Anaesthetic agents occupy a unique niche in the pharmacological armamentarium available for use in preventing cell death following ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- David T Andrews
- Department of Anaesthesia, Mater Misericordiae Health Services, Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
29
|
Garg K, Yadav HN, Singh M, Sharma PL. Mechanism of cardioprotective effect of erythropoietin-induced preconditioning in rat heart. Indian J Pharmacol 2011; 42:219-23. [PMID: 20927246 PMCID: PMC2941611 DOI: 10.4103/0253-7613.68421] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 05/13/2010] [Accepted: 06/19/2010] [Indexed: 11/18/2022] Open
Abstract
Objective: The cardioprotective potential of human recombinant erythropoietin (alpha) (Epo) against ischemia-reperfusion-induced injury is well known. But, the underlying mechanisms are not well elucidated. The aim of this study was to characterize the mechanism involved in the cardioprotective effect of Epo-induced preconditioning in isolated rat heart. Materials and Methods: The heart was mounted on a Langendorff apparatus. After 10 min of stabilization, four cycles of ischemic preconditioning (IPC) were given followed by 30 min of global ischemia and 120 min of reperfusion. Epo preconditioning was induced by four cycles of 5-min perfusion of K-H solution containing Epo (1.0 U/ml) followed by 5 min perfusion with K-H solution. Myocardial infarct size was estimated macroscopically using the triphenyltetrazolium chloride staining technique. The extent of myocardial injury was measured by release of lactate dehydrogenase and creatine kinase-MB in the coronary effluent. Results: The present study demonstrates that Epo preconditioning was almost as effective as IPC. Administration of Wortmannin (100 nM), a PI-3K inhibitor, or Chelerythrine (1 µM), a protein kinase-C (PKC) inhibitor, or AG490 (5 µM), a JAK-2 inhibitor, significantly attenuated the cardioprotective effects of Epo-induced preconditioning. Conclusion: Our result suggest that the cardioprotective potential of Epo-induced preconditioning in isolated rat heart was due to an interplay of the JAK-2, PI-3K and PKC pathways. Inhibition of any one of the three pathways was sufficient to block the cardioprotective effect of Epo-induced preconditioning in isolated rat heart.
Collapse
Affiliation(s)
- Kavita Garg
- Department of Pharmacology, I.S.F College of Pharmacy, Moga - 142 001, Punjab, India
| | | | | | | |
Collapse
|
30
|
Barua A, Standen NB, Galiñanes M. Dual role of nNOS in ischemic injury and preconditioning. BMC PHYSIOLOGY 2010; 10:15. [PMID: 20707900 PMCID: PMC2927582 DOI: 10.1186/1472-6793-10-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 08/13/2010] [Indexed: 11/16/2022]
Abstract
Background Nitric oxide (NO) is cardioprotective and a mediator of ischemic preconditioning (IP). Endothelial nitric oxide synthase (eNOS) is protective against myocardial ischemic injury and a component of IP but the role and location of neuronal nitric oxide synthase (nNOS) remains unclear. Therefore, the aims of these studies were to: (i) investigate the role of nNOS in ischemia/reoxygenation-induced injury and IP, (ii) determine whether its effect is species-dependent, and (iii) elucidate the relationship of nNOS with mitoKATP channels and p38MAPK, two key components of IP transduction pathway. Results Ventricular myocardial slices from rats and wild and nNOS knockout mice, and right atrial myocardial slices from human were subjected to 90 min ischemia and 120 min reoxygenation (37°C). Specimens were randomized to receive various treatments (n = 6/group). Both the provision of exogenous NO and the inhibition of endogenous NO production significantly reduced tissue injury (creatine kinase release, cell necrosis and apoptosis), an effect that was species-independent. The cardioprotection seen with nNOS inhibition was as potent as that of IP, however, in nNOS knockout mice the cardioprotective effect of non-selective NOS (L-NAME) and selective nNOS inhibition and also that of IP was blocked while the benefit of exogenous NO remained intact. Additional studies revealed that the cardioprotection afforded by exogenous NO and by inhibition of nNOS were unaffected by the mitoKATP channel blocker 5-HD, although it was abrogated by p38MAPK blocker SB203580. Conclusions nNOS plays a dual role in ischemia/reoxygenation in that its presence is necessary to afford cardioprotection by IP and its inhibition reduces myocardial ischemic injury. The role of nNOS is species-independent and exerted downstream of the mitoKATP channels and upstream of p38MAPK.
Collapse
Affiliation(s)
- Anupama Barua
- Cardiac Surgery Unit, Dept of Cardiovascular Sciences, University of Leicester, UK
| | | | | |
Collapse
|
31
|
Lemoine S, Puddu PE, Durand C, Lepage O, Babatasi G, Ivascau C, Massetti M, Gérard JL, Hanouz JL. Signaling pathways involved in postconditioning-induced cardioprotection of human myocardium, in vitro. Exp Biol Med (Maywood) 2010; 235:768-76. [PMID: 20511681 DOI: 10.1258/ebm.2010.009342] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We examined the respective role and relationship between protein kinase C (PKC), mitochondrial adenosine triphosphate-sensitive potassium (mitoK(ATP)) channel and p38 mitogen-activated protein kinase (MAPK) in postconditioning of human myocardium, in vitro. Isometrically contracting, isolated human right atrial trabeculae were exposed to 30 min hypoxia and 60 min reoxygenation. Phorbol 12-myristate 13-acetate (a PKC activator), diazoxide (a mitoK(ATP) opener) and anisomycin (a p38 MAPK activator) were superfused in early reoxygenation alone and with calphostin C (a PKC inhibitor), 5-hydroxy-decanoate (5-HD, a mitoK(ATP) channel inhibitor) and SB 202190 (a p38 MAPK inhibitor). Developed force at the end of the 60 min reoxygenation (FoC(60)) period was compared between groups (mean +/- SD). Phorbol 12-myristate 13-acetate (91 +/- 4% of baseline), diazoxide (85 +/- 5% of baseline) and anisomycin (90 +/- 4% of baseline) enhanced the FoC(60) as compared with the control group (53 +/- 7% of baseline, P < 0.0001). The enhanced FoC(60) induced by phorbol 12-myristate 13-acetate was abolished by calphostin C (52 +/- 5% of baseline) and 5-HD (56 +/- 3% of baseline), but not by SB 202190 (90 +/- 8%). The diazoxide-induced recovery of FoC(60) was attenuated by 5-HD (55 +/- 6% of baseline), but was not modified by calphostin C (87 +/- 5% of baseline) and SB 202190 (90 +/- 8% of baseline). The anisomycin-induced recovery of FoC(60) was abolished by calphostin C (61 +/- 9% of baseline) and SB 202190 (52 +/- 8% of baseline), but not by 5-HD (88 +/- 6% of baseline). In conclusion, PKC activation, opening of mitoK(ATP) channels and p38 MAPK activation in early reoxygenation induced the postconditioning of human myocardium, in vitro. Furthermore, PKC activation was upstream of the opening of mitoK(ATP) channels; p38 MAPK acted on PKC. Therefore, mitoK(ATP) and p38 MAPK seemed to be involved in two independent pathways.
Collapse
Affiliation(s)
- Sandrine Lemoine
- Laboratory of Experimental Anesthesiology and Cellular Physiology EA3212, Institut Fédératif de Recherche ICORE146 Université de Caen Basse Normandie, CHU de Caen, 14033 Caen Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Linares-Palomino J, Husainy MA, Lai VK, Dickenson JM, Galiñanes M. Selective blockade of protein kinase B protects the rat and human myocardium against ischaemic injury. J Physiol 2010; 588:2173-91. [PMID: 20403980 DOI: 10.1113/jphysiol.2010.190462] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Protein kinase B (PKB/Akt) plays a critical role in cell survival but the investigation of its involvement has been limited by the lack of specific pharmacological agents. In this study, using novel PKB inhibitors (VIII and XI), we investigated the role of PKB in cardioprotection of the rat and human myocardium, the location of PKB in relation to mitoK(ATP) channels and p38 mitogen-activated protein kinase (p38 MAPK), and whether the manipulation of PKB can overcome the unresponsiveness to protection of the diabetic myocardium. Myocardial slices from rat left ventricle and from the right atrial appendage of patients undergoing elective cardiac surgery were subjected to 90 min ischaemia/120 min reoxygenation at 37 degrees C. Tissue injury was assessed by creatine kinase (CK) released and determination of cell necrosis and apoptosis. The results showed that blockade of PKB activity caused significant reduction of CK release and cell death, a benefit that was as potent as ischaemic preconditioning and could be reproduced by blockade of phosphatidylinositol 3-kinase (PI-3K) with wortmannin and LY 294002. The protection was time dependent with maximal benefit seen when PKB and PI-3K were inhibited before ischaemia or during both ischaemia and reoxygenation. In addition, it was revealed that PKB is located downstream of mitoK(ATP) channels but upstream of p38 MAPK. PKB inhibition induced a similar degree of protection in the human and rat myocardium and, importantly, it reversed the unresponsiveness to protection of the diabetic myocardium. In conclusion, inhibition of PKB plays a critical role in protection of the mammalian myocardium and may represent a clinical target for the reduction of ischaemic injury.
Collapse
Affiliation(s)
- José Linares-Palomino
- Cardiac Surgery Unit, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | | | | | | | | |
Collapse
|
33
|
Effects of a high fat diet on liver mitochondria: increased ATP-sensitive K+ channel activity and reactive oxygen species generation. J Bioenerg Biomembr 2010; 42:245-53. [PMID: 20373005 DOI: 10.1007/s10863-010-9284-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 03/22/2010] [Indexed: 12/25/2022]
Abstract
High fat diets are extensively associated with health complications within the spectrum of the metabolic syndrome. Some of the most prevalent of these pathologies, often observed early in the development of high-fat dietary complications, are non-alcoholic fatty liver diseases. Mitochondrial bioenergetics and redox state changes are also widely associated with alterations within the metabolic syndrome. We investigated the mitochondrial effects of a high fat diet leading to non-alcoholic fatty liver disease in mice. We found that the diet does not substantially alter respiratory rates, ADP/O ratios or membrane potentials of isolated liver mitochondria. However, H(2)O(2) release using different substrates and ATP-sensitive K(+) transport activities are increased in mitochondria from animals on high fat diets. The increase in H(2)O(2) release rates was observed with different respiratory substrates and was not altered by modulators of mitochondrial ATP-sensitive K(+) channels, indicating it was not related to an observed increase in K(+) transport. Altogether, we demonstrate that mitochondria from animals with diet-induced steatosis do not present significant bioenergetic changes, but display altered ion transport and increased oxidant generation. This is the first evidence, to our knowledge, that ATP-sensitive K(+) transport in mitochondria can be modulated by diet.
Collapse
|
34
|
Tappia PS, Asemu G, Rodriguez-Leyva D. Phospholipase C as a potential target for cardioprotection during oxidative stressThis review is one of a selection of papers published in a Special Issue on Oxidative Stress in Health and Disease. Can J Physiol Pharmacol 2010; 88:249-63. [DOI: 10.1139/y10-019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cardiac dysfunction due to ischemia–reperfusion (I/R) is associated with marked changes in membrane function and subsequent Ca2+-handling abnormalities in cardiomyocytes. The membrane abnormalities in hearts subjected to I/R arise primarily from oxidative stress as a consequence of increased formation of reactive oxygen species and other oxidants, as well as reduced antioxidant defenses. Little is known, however, about the nature and mechanisms of the sarcolemmal membrane changes with respect to phospholipase C (PLC)-related signaling events. In addition, the mechanisms involved in protection of the postischemic myocardium and in ischemic preconditioning with respect to PLC function need to be established. Accordingly, this article reviews the historical and current information on PLC-mediated signal transduction mechanisms in I/R, as well as outlining future directions that should be addressed. Such information will extend our knowledge of ischemic heart disease and help improve its therapy.
Collapse
Affiliation(s)
- Paramjit S. Tappia
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Department of Human Nutritional Sciences, Faculty of Human Ecology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Girma Asemu
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Department of Human Nutritional Sciences, Faculty of Human Ecology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Delfin Rodriguez-Leyva
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Department of Human Nutritional Sciences, Faculty of Human Ecology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
35
|
Rodríguez-Enríquez S, Marín-Hernández A, Gallardo-Pérez JC, Moreno-Sánchez R. Kinetics of transport and phosphorylation of glucose in cancer cells. J Cell Physiol 2009; 221:552-9. [DOI: 10.1002/jcp.21885] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Golomb E, Nyska A, Schwalb H. Occult Cardiotoxicity—Toxic Effects on Cardiac Ischemic Tolerance. Toxicol Pathol 2009; 37:572-93. [DOI: 10.1177/0192623309339503] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The outcome of cardiac ischemic events depends not only on the extent and duration of the ischemic stimulus but also on the myocardial intrinsic tolerance to ischemic injury. Cardiac ischemic tolerance reflects myocardial functional reserves that are not always used when the tissue is appropriately oxygenated. Ischemic tolerance is modulated by ubiquitous signal transduction pathways, transcription factors and cellular enzymes, converging on the mitochondria as the main end effector. Therefore, drugs and toxins affecting these pathways may impair cardiac ischemic tolerance without affecting myocardial integrity or function in oxygenated conditions. Such effect would not be detected by current toxicological studies but would considerably influence the outcome of ischemic events. The authors refer to such effect as “occult cardiotoxicity.” In this review, the authors summarize current knowledge about main mechanisms that determine cardiac ischemic tolerance, methods to assess it, and the effects of drugs and toxins on it. The authors offer a view that low cardiac ischemic tolerance is a premorbid status and, therefore, that occult cardiotoxicity is a significant potential source of cardiac morbidity. The authors propose that toxicologic assessment of compounds would include the assessment of their effect on cardiac ischemic tolerance.
Collapse
Affiliation(s)
- Eliahu Golomb
- Department of Pathology, Shaare Zedek Medical Center, Jerusalem 91031, Israel
| | - Abraham Nyska
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978, Israel
| | - Herzl Schwalb
- The Joseph Lunenfeld Cardiac Surgery Research Center, Department of Cardiothoracic Surgery, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| |
Collapse
|
37
|
Meyer KD, Zhang H, Zhang L. Prenatal cocaine exposure abolished ischemic preconditioning-induced protection in adult male rat hearts: role of PKCepsilon. Am J Physiol Heart Circ Physiol 2009; 296:H1566-76. [PMID: 19286950 DOI: 10.1152/ajpheart.00898.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Prenatal cocaine exposure in rats resulted in decreased PKCepsilon protein expression in the heart of adult male but not female offspring. The present study determined its functional consequence of inhibiting cardioprotection mediated by ischemic preconditioning. Pregnant Sprague-Dawley rats were administered intraperitoneally saline or cocaine (30 mg.kg(-1).day(-1)) from day 15 to day 21 of gestational age. Hearts were isolated from 3-mo-old offspring and were subjected to ischemia and reperfusion injury in a Langendorff preparation, with or without prior ischemic preconditioning. Preischemic values of left ventricular function were the same between the saline control and cocaine-treated animals. Ischemic preconditioning of two episodes of 5-min ischemia significantly decreased infarct size and enhanced postischemic functional recovery of the left ventricle in the saline control animals. This ischemic preconditioning was associated with increased phospho-PKCepsilon, but not phospho-PKCdelta, levels and was blocked by a PKCepsilon translocation inhibitor peptide. Prenatal cocaine treatment abolished the ischemic preconditioning-mediated increase in phospho-PKCepsilon and cardioprotection in the heart of male offspring. In contrast, the cardioprotective effect was fully maintained in female offspring that were exposed to cocaine before birth. The results suggest that prenatal cocaine exposure causes a sex-specific loss of cardioprotection by ischemic preconditioning in adult offspring, which is most likely due to fetal programming of PKCepsilon gene repression, resulting in a downregulation of PKCepsilon function in the heart of adult male offspring.
Collapse
Affiliation(s)
- Kurt D Meyer
- Center for Perinatal Biology, Dept. of Physiology & Pharmacology, Loma Linda Univ. School of Medicine, Loma Linda, CA 92350, USA
| | | | | |
Collapse
|
38
|
Protein kinase C subtypes and retinal ischemic preconditioning. Exp Eye Res 2008; 87:300-11. [PMID: 18722601 DOI: 10.1016/j.exer.2008.05.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Revised: 05/19/2008] [Accepted: 05/27/2008] [Indexed: 11/23/2022]
Abstract
The purpose of our study was to determine the specific subtypes of protein kinase C involved in the neuroprotection afforded by retinal ischemic preconditioning (IPC), their relationship to the opening of mitochondrial KATP (mKATP) channels, and their role in apoptosis after preconditioning and ischemia. Rats were subjected to retinal ischemia after IPC, or retinas were rendered ischemic after pharmacological opening of mKATP channels. Using immunohistochemistry and image analysis, we determined cellular localization of PKC subtypes. We blocked PKC-delta and -epsilon to study the effect on protection with IPC or with IPC-mimicking by the opening of mKATP channels. PKC subtypes were inhibited pharmacologically or with interfering RNA. Electroretinography assessed functional recovery after ischemia. IPC was effectively mimicked by injection of diazoxide to open the mKATP channel. IPC and/or its mimicking were attenuated by the PKC-delta inhibitor rottlerin and by interfering RNA targeting PKC-delta or -epsilon. Using TUNEL staining and Western blotting for caspase-3 and fodrin breakdown we assessed apoptosis. The injection of interfering RNA to PKC-delta and -epsilon before preconditioning significantly enhanced TUNEL staining as well as the cleavage of caspase-3 and fodrin after ischemia. In summary, our experiments have shown that both PKC-delta and -epsilon subtypes are involved in the cellular signaling that results in neuroprotection from IPC and that both are downstream of the opening of mKATP channels.
Collapse
|
39
|
Activation of kappa-opioid receptor as a method for prevention of ischemic and reperfusion arrhythmias: role of protein kinase C and K(ATP) channels. Bull Exp Biol Med 2008; 143:187-90. [PMID: 17970197 DOI: 10.1007/s10517-007-0046-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Intravenous pretreatment with kappa-opioid receptor antagonist (-)-U-50,488 (1 mg/kg) improved heart resistance to the arrhythmogenic effect of coronary occlusion and reperfusion. Selective kappa1-opioid receptor antagonist norbinaltorphimine and nonselective blocker of peripheral opioid receptors methylnaloxone abolished this antiarrhythmic effect. Preliminary blockade of protein kinase C with chelerythrine or inhibition of ATP-dependent K+ channels (K(ATP) channels) with glybenclamide abolished the antiarrhythmic effect of kappa-opioid receptor activation. Selective inhibitor of sarcolemmal K(ATP) channels did not modulate the kappa-opioid receptor-mediated increase in cardiac electrical stability. Our results suggest that protein kinase C and mitochondrial K(ATP) channels play an important role in the antiarrhythmic effect associated with activation of peripheral kappa-opioid receptors.
Collapse
|
40
|
Pan TT, Neo KL, Hu LF, Yong QC, Bian JS. H2S preconditioning-induced PKC activation regulates intracellular calcium handling in rat cardiomyocytes. Am J Physiol Cell Physiol 2007; 294:C169-77. [PMID: 17989210 DOI: 10.1152/ajpcell.00282.2007] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was aimed to investigate the regulatory effect of protein kinase C (PKC) on intracellular Ca(2+) handling in hydrogen sulfide (H(2)S)-preconditioned cardiomyocytes and its consequent effects on ischemia challenge. Immunoblot analysis was used to assess PKC isoform translocation in the rat cardiomyocytes 20 h after NaHS (an H(2)S donor, 10(-4) M) preconditioning (SP, 30 min). Intracellular Ca(2+) was measured with a spectrofluorometric method using fura-2 ratio as an indicator. Cell length was compared before and after ischemia-reperfusion insults to indicate the extent of hypercontracture. SP motivated translocation of PKCalpha, PKCepsilon, and PKCdelta to membrane fraction but only translocation of PKCepsilon and PKCdelta was abolished by an ATP-sensitive potassium channel blocker glibenclamide. It was also found that SP significantly accelerated the decay of both electrically and caffeine-induced intracellular [Ca(2+)] transients, which were reversed by a selective PKC inhibitor chelerythrine. These data suggest that SP facilitated Ca(2+) removal via both accelerating uptake of Ca(2+) into sarcoplasmic reticulum and enhancing Ca(2+) extrusion through Na(+)/Ca(2+) exchanger in a PKC-dependent manner. Furthermore, blockade of PKC also attenuated the protective effects of SP against Ca(2+) overload during ischemia and against myocyte hypercontracture at the onset of reperfusion. We demonstrate for the first time that SP activates PKCalpha, PKCepsilon, and PKCdelta in cardiomyocytes via different signaling mechanisms. Such PKC activation, in turn, protects the heart against ischemia-reperfusion insults at least partly by ameliorating intracellular Ca(2+) handling.
Collapse
Affiliation(s)
- Ting-Ting Pan
- Cardiovascular Biology Research Group, Department of Pharmacology, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
41
|
Jiang MT, Nakae Y, Ljubkovic M, Kwok WM, Stowe DF, Bosnjak ZJ. Isoflurane Activates Human Cardiac Mitochondrial Adenosine Triphosphate-Sensitive K+ Channels Reconstituted in Lipid Bilayers. Anesth Analg 2007; 105:926-32, table of contents. [PMID: 17898367 DOI: 10.1213/01.ane.0000278640.81206.92] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Activation of the mitochondrial adenosine triphosphate (ATP)-sensitive K+ channel (mitoK(ATP)) has been proposed as a critical step in myocardial protection by isoflurane-induced preconditioning in humans and animals. Recent evidence suggests that reactive oxygen species (ROS) may mediate isoflurane-mediated myocardial protection. In this study, we examined the direct effect of isoflurane and ROS on human cardiac mitoK(ATP) channels reconstituted into the lipid bilayers. METHODS Inner mitochondrial membranes were isolated from explanted human left ventricles not suitable for heart transplantation and fused into lipid bilayers in symmetrical potassium glutamate solution (150 mM). ATP-sensitive K+ currents were recorded before and after exposure to isoflurane and H2O2 under voltage clamp. RESULTS The human mitoK(ATP) was identified by its sensitivity to inhibition by ATP and 5-hydroxydecanoate. Addition of isoflurane (0.8 mM) increased the open probability of the mitoK(ATP) channels, either in the presence or absence of ATP inhibition (0.5 mM). The isoflurane-mediated increase in K+ currents was completely inhibited by 5-hydroxydecanoate. Similarly, H2O2 (200 microM) was able to activate the mitoK(ATP) previously inhibited by ATP. CONCLUSIONS These data confirm that isoflurane, as well as ROS, directly activates reconstituted human cardiac mitoK(ATP) channel in vitro, without apparent involvement of cytosolic protein kinases, as commonly proposed. Activation of the mitoK(ATP) channel may contribute to the myocardial protective effect of isoflurane in the human heart.
Collapse
Affiliation(s)
- Ming T Jiang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Bouwman RA, Musters RJP, van Beek-Harmsen BJ, de Lange JJ, Lamberts RR, Loer SA, Boer C. Sevoflurane-induced cardioprotection depends on PKC-alpha activation via production of reactive oxygen species. Br J Anaesth 2007; 99:639-45. [PMID: 17905752 DOI: 10.1093/bja/aem202] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND We previously demonstrated the involvement of the Ca2+-independent protein kinase C-delta (PKC-delta) isoform in sevoflurane-induced cardioprotection against ischaemia and reperfusion (I/R) injury. Since sevoflurane is known to modulate myocardial Ca2+-handling directly, in this study we investigated the role of the Ca2+-dependent PKC-alpha isoform in sevoflurane-induced cardioprotective signalling in relation to reactive oxygen species (ROS), adenosine triphosphate-sensitive mitochondrial K+ (mitoK+(ATP)) channels, and PKC-delta. METHODS Preconditioned (15 min 3.8 vol% sevoflurane) isolated rat right ventricular trabeculae were subjected to I/R, consisting of 40 min superfusion with hypoxic, glucose-free buffer, followed by normoxic glucose-containing buffer for 60 min. After reperfusion, contractile recovery was expressed as percentage of force development before I/R. The role of PKC-alpha, ROS, mitoK+(ATP) channels, and PKC-delta was established using the following pharmacological inhibitors: Go6976 (GO; 50 nM), n-(2-mercaptopropionyl)-glycine (MPG; 300 microM), 5-hydroxydecanoic acid sodium (5HD; 100 microM), and rottlerin (ROT; 1 microM). RESULTS Preconditioning of trabeculae with sevoflurane improved contractile recovery after I/R [65 (3)% (I/R + SEVO) vs 47 (3)% (I/R); n = 8; P < 0.05]. This cardioprotective effect was attenuated in trabeculae treated with GO [42 (4)% (I/R + SEVO + GO); P > 0.05 vs (I/R)]. In sevoflurane-treated trabeculae, PKC-alpha translocated towards mitochondria, as shown by immunofluorescent co-localization analysis. GO and MPG, but not 5HD or ROT, abolished this translocation. CONCLUSIONS Sevoflurane improves post-ischaemic contractile recovery via activation of PKC-alpha. ROS production, but not opening of mitoK+(ATP) channels, precedes PKC-alpha translocation towards mitochondria. This study shows the involvement of Ca2+-dependent PKC-alpha in addition to the well-established role of Ca2+-independent PKC isoforms in sevoflurane-induced cardioprotection.
Collapse
Affiliation(s)
- R A Bouwman
- VU University Medical Center (VUMC), Department of Anaesthesiology, Institute for Cardiovascular Research Vrije Universiteit (ICaR-VU), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
43
|
Nattel S, Khan RA. Protein kinase C, connexin43, and ischemic preconditioning: Complex interactions of potential importance for controlling arrhythmias. Heart Rhythm 2007; 4:1194-5. [PMID: 17765620 DOI: 10.1016/j.hrthm.2007.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2007] [Indexed: 10/23/2022]
Affiliation(s)
- Stanley Nattel
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada.
| | | |
Collapse
|
44
|
Simonis G, Briem SK, Schoen SP, Bock M, Marquetant R, Strasser RH. Protein kinase C in the human heart: differential regulation of the isoforms in aortic stenosis or dilated cardiomyopathy. Mol Cell Biochem 2007; 305:103-11. [PMID: 17594058 DOI: 10.1007/s11010-007-9533-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 06/08/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Protein kinase C (PKC) is a central enzyme in the regulation of growth and hypertrophy. Little was known on PKC isoform regulation in human heart. Goal of this study was to characterize the isoforms of protein kinase C in human heart, their changes during ontogenesis, and their regulation in myocardial hypertrophy and heart failure. METHODS In left ventricular and atrial samples from adults with end-stage dilated cardiomyopathy (DCM), from adults with severe aortic stenosis (AS), from small infants undergoing repair of ventricular septal defects, and from healthy organ donors (CO), activity of protein kinase C and the expression of its isozymes were examined. RESULTS In the adult human heart, the isoforms PKC-alpha, PCK-beta, PKC-delta, PKC-epsilon, PKC-lambda/-iota, and PKC-zeta were detected both on protein and on mRNA level. All isozymes are subjected to downregulation during ontogenesis. No evidence, however, exists for an isoform shift from infancy to adulthood. DCM leads to a pronounced upregulation of PKC-beta. Severe left ventricular hypertrophy in AS, however, recruits a distinct isoform pattern, i.e., isoforms PKC-alpha, PKC-delta, PKC-epsilon, PKC-lambda/-iota, and PKC-zeta are upregulated, whereas PKC-beta is not changed under this condition. CONCLUSION This work gives evidence for a differential recruitment of human PKC isoforms in various forms of myocardial hypertrophy and heart failure.
Collapse
Affiliation(s)
- Gregor Simonis
- Department of Medicine/Cardiology, Dresden University of Technology, Fetscherstr. 76, Dresden, 01307, Germany.
| | | | | | | | | | | |
Collapse
|
45
|
Hund TJ, Lerner DL, Yamada KA, Schuessler RB, Saffitz JE. Protein kinase Cepsilon mediates salutary effects on electrical coupling induced by ischemic preconditioning. Heart Rhythm 2007; 4:1183-93. [PMID: 17765619 PMCID: PMC2711555 DOI: 10.1016/j.hrthm.2007.05.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Accepted: 05/30/2007] [Indexed: 11/25/2022]
Abstract
BACKGROUND Ischemic preconditioning delays the onset of electrical uncoupling and prevents loss of the primary ventricular gap junction protein connexin 43 (Cx43) from gap junctions during subsequent ischemia. OBJECTIVE To test the hypothesis that these effects are mediated by protein kinase C epsilon (PKCepsilon), we studied isolated Langendorff-perfused hearts from mice with homozygous germline deletion of PKCepsilon (PKCepsilon-KO). METHODS Cx43 phosphorylation and distribution were measured by quantitative immunoblotting and confocal microscopy. Changes in electrical coupling were monitored using the 4-electrode technique to measure whole-tissue resistivity. RESULTS The amount of Cx43 located in gap junctions, measured by confocal microscopy under basal conditions, was significantly greater in PKCepsilon-KO hearts compared with wild-type, but total Cx43 content measured by immunoblotting was not different. These unanticipated results indicate that PKCepsilon regulates subcellular distribution of Cx43 under normal conditions. Preconditioning prevented loss of Cx43 from gap junctions during ischemia in wild-type but not PKCepsilon-KO hearts. Specific activation of PKCepsilon, but not PKCdelta, also prevented ischemia-induced loss of Cx43 from gap junctions. Preconditioning delayed the onset of uncoupling in wild-type but hastened uncoupling in PKCepsilon-KO hearts. Cx43 phosphorylation at the PKC site Ser368 increased 5-fold after ischemia in wild-type hearts, and surprisingly, by nearly 10-fold in PKCepsilon-KO hearts. Preconditioning prevented phosphorylation of Cx43 in gap junction plaques at Ser368 in wild-type but not PKCepsilon-KO hearts. CONCLUSION Taken together, these results indicate that PKCepsilon plays a critical role in preconditioning to preserve Cx43 signal in gap junctions and delay electrical uncoupling during ischemia.
Collapse
Affiliation(s)
- Thomas J. Hund
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Deborah L. Lerner
- Department of Pediatrics, The Children's Hospital at Providence, Anchorage, AK
| | - Kathryn A. Yamada
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | | | - Jeffrey E. Saffitz
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| |
Collapse
|
46
|
Lange SA, Wolf B, Schober K, Wunderlich C, Marquetant R, Weinbrenner C, Strasser RH. Chronic Angiotensin II Receptor Blockade Induces Cardioprotection During Ischemia by Increased PKC-ε Expression in the Mouse Heart. J Cardiovasc Pharmacol 2007; 49:46-55. [PMID: 17261963 DOI: 10.1097/fjc.0b013e31802c2f77] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION This study was performed to investigate the role of chronic pretreatment with angiotensin II type 1 receptor antagonists (ARB) and angiotensin converting enzyme inhibitors (ACE-I) in myocardial infarction (MI) and ischemic preconditioning (iPC). Little is known about molecular mechanisms of MI and iPC, especially about protein kinase C (PKC) isozyme levels induced by chronic pharmacologic pretreatment with ARB and ACE-I. To address one of the most important signal molecules in iPC, the PKC system was investigated in an ischemia/reperfusion model using isolated mouse hearts. METHODS C57/BL6 mice were treated orally with candesartan cilexetil or ramipril for 2 weeks. Isolated perfused hearts were subjected to 60 minutes of left anterior descending occlusion and 30 minutes of reperfusion. IPC was performed by 3 cycles of 5 minutes of ischemia prior to the infarct ischemia. Infarct size was measured using the propidium iodide method, and PKC isoenzymes were detected by immunoblotting in the membrane and cytosolic fraction. RESULTS In the control group, iPC reduced infarct size from 59.8 +/- 4.2% to 24.5 +/- 1.7%. ARB pretreatment itself reduced the infarct size significantly (38.1 +/- 3.0%) in hearts without iPC. This protection could neither be enhanced by additional iPC (40.3 +/- 3.4%) nor blocked by the AT2-receptor antagonist PD123.319 (40.7 +/- 3.7%). The ARB-induced cardio protection, however, was abolished by chelerythrine (5 micromol/L) (71.7 +/- 6.6%, n = 11, P < 0.001). Furthermore, PKC-epsilon (PKC-epsilon) was significantly increased in the particulate fraction of ARB-pretreated mice. On the contrary, chronic treatment with ACE-I completely blocked iPC (57.7 +/- 3.9%, n = 12, P < 0.001) without any effect on infarct size itself (51.5 +/- 3.0%, n = 12). PKC-epsilon expression was significantly reduced. CONCLUSION Chronic AT1-receptor antagonism is capable of protecting the heart against myocardial infarction in a PKC-epsilon-dependent way. Furthermore, chronic treatment with ACE-I is suggested to have suppressing effects on iPC, possibly caused by reduced PKC-epsilon expression.
Collapse
Affiliation(s)
- Stefan A Lange
- Department of Internal Medicine and Cardiology, Dresden University of Technology, Dresden, Germany.
| | | | | | | | | | | | | |
Collapse
|
47
|
Kubal C, Sheth K, Nadal-Ginard B, Galiñanes M. Bone marrow cells have a potent anti-ischemic effect against myocardial cell death in humans. J Thorac Cardiovasc Surg 2006; 132:1112-8. [PMID: 17059931 DOI: 10.1016/j.jtcvs.2006.06.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 06/21/2006] [Accepted: 06/22/2006] [Indexed: 12/21/2022]
Abstract
OBJECTIVE We sought to elucidate whether bone marrow cells ameliorate the outcomes of myocardial ischemia by reduction of cell death and to investigate whether the benefit is mediated by activation of intracellular kinases. METHODS Muscles from the right atrial appendage of patients were subjected to 90 minutes of normothermic simulated ischemia followed by 120 minutes of reoxygenation. Bone marrow cells from the same patients were co-incubated (10(5) cells per milligram of tissue) with the muscles during the entire experimental period. Some groups were treated with the protein kinase C inhibitor chelerythrine (10 micromol/L) or the p38 mitogen-activated protein kinase inhibitor SB203580 (10 micromol/L). Creatine kinase released into the media during the reoxygenation period was measured (international units per milligram of wet tissue), cell death by necrosis was assessed by propidium iodide, and cell death by apoptosis was assessed by deoxyuride-5'-triphosphate biotin nick end labeling (percentage of aerobic control values). RESULTS Creatine kinase release was significantly reduced (from 1.30 IU/mg wet tissue +/- 0.11 to 0.33 IU/mg wet tissue +/- 0.06; P < .05), and cell death by necrosis and apoptosis was abolished by bone marrow cells (from 30.1% +/- 7.3% and 28.1% +/- 3.9% to -5.6% +/- 5.1% and 3.7% +/- 5.0%, respectively; P < .05), an effect that was reversed by chelerythrine (13.4% +/- 4.4% and 24.6% +/- 8.2%, respectively) and by SB203580 (20.1% +/- 2.4% and 19.5% +/- 5.7%, respectively). CONCLUSIONS Bone marrow cells have a potent effect against cell death of the human myocardium in the acute phase of ischemia that may explain, at least in part, the improvement in cardiac function and the reduction in infarct size seen when bone marrow cells are injected after a myocardial infarction. These findings may have important clinical implications to optimize cell therapy with bone marrow cells. In addition, the identification that the anti-ischemic effect of bone marrow cells is mediated by the kinases protein kinase C and p38 mitogen-activated protein kinase is also clinically relevant; it suggests that some of the beneficial effect of bone marrow cells can be obtained by the activation of intracellular signaling molecules, without the need for cell injection.
Collapse
Affiliation(s)
- Chandrashekhar Kubal
- Department of Cardiovascular Sciences, Cardiac Surgery Unit, The Glenfield Hospital, University of Leicester, Leicester, United Kingdom
| | | | | | | |
Collapse
|
48
|
Hodges K, Gill R, Ramaswamy K, Dudeja PK, Hecht G. Rapid activation of Na+/H+ exchange by EPEC is PKC mediated. Am J Physiol Gastrointest Liver Physiol 2006; 291:G959-68. [PMID: 16782696 DOI: 10.1152/ajpgi.00274.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Enteropathogenic Escherichia coli (EPEC) increases sodium/hydrogen exchanger 2 (NHE2)-mediated sodium uptake by intestinal epithelial cells in a type III secretion-dependent manner. However, the mechanism(s) underlying these changes are not known. This study examines the role of a number of known secreted effector molecules and bacterial adhesins as well as the signaling pathways involved in this process. Deletion of the bacterial adhesins Tir and intimin had no effect on the increase in sodium/hydrogen exchanger (NHE) activity promoted by EPEC infection; however, there was a significant decrease upon deletion of the bundle-forming pili. Bacterial supernatant also failed to alter NHE activity, suggesting that direct interaction with bacteria is necessary. Analysis of the signal transduction cascades responsible for the increased NHE2 activity during EPEC infection showed that PLC increased Ca2+, as well as PKCalpha and PKCepsilon were involved in increasing NHE activity. The activation of PKCepsilon by EPEC has not been previously described nor has its role in regulating NHE2 activity. Because EPEC markedly increases NHE2 activity, this pathogen provides an exceptional opportunity to improve our understanding of this less-characterized NHE isoform.
Collapse
Affiliation(s)
- Kim Hodges
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
49
|
Ardehali H. Signaling mechanisms in ischemic preconditioning: interaction of PKCepsilon and MitoK(ATP) in the inner membrane of mitochondria. Circ Res 2006; 99:798-800. [PMID: 17038649 DOI: 10.1161/01.res.0000247029.31997.a4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Sivarajah A, McDonald MC, Thiemermann C. The production of hydrogen sulfide limits myocardial ischemia and reperfusion injury and contributes to the cardioprotective effects of preconditioning with endotoxin, but not ischemia in the rat. Shock 2006; 26:154-61. [PMID: 16878023 DOI: 10.1097/01.shk.0000225722.56681.64] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We investigated whether (endogenous) hydrogen sulfide (H2S) protects the heart against myocardial ischemia and reperfusion injury. Furthermore, we investigated whether endogenous H2S is involved in the protection afforded by (1) ischemic preconditioning and (2) the second window of protection caused by endotoxin. The involvement of one of the potential (end) effectors of the cardioprotection afforded by H2S was investigated using the mitochondrial KATP channel blocker, 5-hydroxydecanoate (5-HD; 5 mg/kg). Animals were subjected to 25 min regional myocardial ischemia followed by reperfusion (2 h) and were pretreated with the H2S donor, sodium hydrosulfide (3 mg/kg i.v.). Animals were also subjected to shorter periods of myocardial ischemia (15 min) and reperfusion (2 h) and pretreated with an irreversible inhibitor of cystathionine-gamma-lyase, dl-propargylglycine (PAG; 50 mg/kg i.v.). Animals were also pretreated with PAG (50 mg/kg) and subjected to either (1) ischemic preconditioning or (2) endotoxin (1 mg/kg i.p.) 16 h before myocardial ischemia. Myocardial infarct size was determined by p-nitroblue tetrazolium staining. Administration of sodium hydrosulfide significantly reduced myocardial infarct size, and this effect was abolished by 5-HD. Administration of PAG (50 mg/kg) or 5-HD significantly increased infarct size caused by 15 min of myocardial ischemia. The delayed cardioprotection afforded by endotoxin was abolished by 5-HD or PAG. In contrast, PAG (50 mg/kg) did not affect the cardioprotective effects of ischemic preconditioning. These findings suggest that (1) endogenous H2S is produced by myocardial ischemia in sufficient amounts to limit myocardial injury and (2) the synthesis or formation of H2S by cystathionine-gamma-lyase may contribute to the second window of protection caused by endotoxin.
Collapse
Affiliation(s)
- A Sivarajah
- Centre for Experimental Medicine, Nephrology & Critical Care, The William Harvey Research Institute, St. Bartholomew's and The Royal London School of Medicine and Dentistry, Queen Mary-University of London, Charterhouse Square, London, UK
| | | | | |
Collapse
|