1
|
Hilgers RHP, Das KC. Redox Regulation of K + Channel: Role of Thioredoxin. Antioxid Redox Signal 2024. [PMID: 39099341 DOI: 10.1089/ars.2023.0416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Significance: Potassium channels regulate the influx and efflux of K+ ions in various cell types that generate and propagate action potential associated with excitation, contraction, and relaxation of various cell types. Although redox active cysteines are critically important for channel activity, the redox regulation of K+ channels by thioredoxin (Trx) has not been systematically reviewed. Recent Advances: Redox regulation of K+ channel is now increasingly recognized as drug targets in the pathological condition of several cardiovascular disease processes. The role of Trx in regulation of these channels and its implication in pathological conditions have not been adequately reviewed. This review specifically focuses on the redox-regulatory role of Trx on K+ channel structure and function in physiological and pathophysiological conditions. Critical Issues: Ion channels, including K+ channel, have been implicated in the functioning of cardiomyocyte excitation-contraction coupling, vascular hyperpolarization, cellular proliferation, and neuronal stimulation in physiological and pathophysiological conditions. Although oxidation-reduction of ion channels is critically important in their function, the role of Trx, redox regulatory protein in regulation of these channels, and its implication in pathological conditions need to be studied to gain further insight into channel function. Future Directions: Future studies need to map all redox regulatory pathways in channel structure and function using novel mouse models and redox proteomic and signal transduction studies, which modulate various currents and altered excitability of relevant cells implicated in a pathological condition. We are yet at infancy of studies related to redox control of various K+ channels and structured and focused studies with novel animal models. Antioxid. Redox Signal. 00, 00-00.
Collapse
Affiliation(s)
- Rob H P Hilgers
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Kumuda C Das
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
2
|
da Silva JF, Polk FD, Martin PE, Thai SH, Savu A, Gonzales M, Kath AM, Gee MT, Pires PW. Sex-specific mechanisms of cerebral microvascular BK Ca dysfunction in a mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.06.543962. [PMID: 37333104 PMCID: PMC10274786 DOI: 10.1101/2023.06.06.543962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
BACKGROUND Cerebral microvascular dysfunction and nitro-oxidative stress are present in patients with Alzheimer's disease (AD) and may contribute to disease progression and severity. Large conductance Ca 2+ -activated K + channels (BK Ca ) play an essential role in vasodilatory responses and maintenance of myogenic tone in resistance arteries. BK Ca impairment can lead to microvascular dysfunction and hemodynamic deficits in the brain. We hypothesized that reduced BK Ca function in cerebral arteries mediates microvascular and neurovascular responses in the 5x-FAD model of AD. METHODS BK Ca activity in the cerebral microcirculation was assessed by patch clamp electrophysiology and pressure myography, in situ Ca 2+ sparks by spinning disk confocal microscopy, hemodynamics by laser speckle contrast imaging. Molecular and biochemical analyses were conducted by affinity-purification assays, qPCR, Western blots and immunofluorescence. RESULTS We observed that pial arteries from 5-6 months-old male and female 5x-FAD mice exhibited a hyper-contractile phenotype than wild-type (WT) littermates, which was linked to lower vascular BK Ca activity and reduced open probability. In males, BK Ca dysfunction is likely a consequence of an observed lower expression of the pore-forming subunit BKα and blunted frequency of Ca 2+ sparks, which are required for BK Ca activity. However, in females, impaired BK Ca function is, in part, a consequence of reversible nitro-oxidative changes in the BK α subunit, which reduces its open probability and regulation of vascular tone. We further show that BK Ca function is involved in neurovascular coupling in mice, and its dysfunction is linked to neurovascular dysfunction in the model. CONCLUSION These data highlight the central role played by BK Ca in cerebral microvascular and neurovascular regulation, as well as sex-dependent mechanisms underlying its dysfunction in a mouse model of AD.
Collapse
|
3
|
Ochoa SV, Otero L, Aristizabal-Pachon AF, Hinostroza F, Carvacho I, Torres YP. Hypoxic Regulation of the Large-Conductance, Calcium and Voltage-Activated Potassium Channel, BK. Front Physiol 2022; 12:780206. [PMID: 35002762 PMCID: PMC8727448 DOI: 10.3389/fphys.2021.780206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/15/2021] [Indexed: 11/15/2022] Open
Abstract
Hypoxia is a condition characterized by a reduction of cellular oxygen levels derived from alterations in oxygen balance. Hypoxic events trigger changes in cell-signaling cascades, oxidative stress, activation of pro-inflammatory molecules, and growth factors, influencing the activity of various ion channel families and leading to diverse cardiovascular diseases such as myocardial infarction, ischemic stroke, and hypertension. The large-conductance, calcium and voltage-activated potassium channel (BK) has a central role in the mechanism of oxygen (O2) sensing and its activity has been related to the hypoxic response. BK channels are ubiquitously expressed, and they are composed by the pore-forming α subunit and the regulatory subunits β (β1–β4), γ (γ1–γ4), and LINGO1. The modification of biophysical properties of BK channels by β subunits underly a myriad of physiological function of these proteins. Hypoxia induces tissue-specific modifications of BK channel α and β subunits expression. Moreover, hypoxia modifies channel activation kinetics and voltage and/or calcium dependence. The reported effects on the BK channel properties are associated with events such as the increase of reactive oxygen species (ROS) production, increases of intracellular Calcium ([Ca2+]i), the regulation by Hypoxia-inducible factor 1α (HIF-1α), and the interaction with hemeproteins. Bronchial asthma, chronic obstructive pulmonary diseases (COPD), and obstructive sleep apnea (OSA), among others, can provoke hypoxia. Untreated OSA patients showed a decrease in BK-β1 subunit mRNA levels and high arterial tension. Treatment with continuous positive airway pressure (CPAP) upregulated β1 subunit mRNA level, decreased arterial pressures, and improved endothelial function coupled with a reduction in morbidity and mortality associated with OSA. These reports suggest that the BK channel has a role in the response involved in hypoxia-associated hypertension derived from OSA. Thus, this review aims to describe the mechanisms involved in the BK channel activation after a hypoxic stimulus and their relationship with disorders like OSA. A deep understanding of the molecular mechanism involved in hypoxic response may help in the therapeutic approaches to treat the pathological processes associated with diseases involving cellular hypoxia.
Collapse
Affiliation(s)
- Sara V Ochoa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.,Semillero de Investigación, Biofísica y Fisiología de Canales Iónicos, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Liliana Otero
- Center of Dental Research Dentistry Faculty, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Fernando Hinostroza
- Department of Biology and Chemistry, Faculty of Basic Sciences, Universidad Católica del Maule, Talca, Chile.,Centro de Investigación de Estudios Avanzados del Maule, CIEAM, Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile.,Facultad de Ciencias de la Salud, Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca, Chile
| | - Ingrid Carvacho
- Department of Biology and Chemistry, Faculty of Basic Sciences, Universidad Católica del Maule, Talca, Chile
| | - Yolima P Torres
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.,Semillero de Investigación, Biofísica y Fisiología de Canales Iónicos, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
4
|
Coskun C, Buyuknacar HS, Cicek F, Gunay I. BK channel openers NS1619 and NS11021 reverse hydrogen peroxide-induced membrane potential changes in skeletal muscle. J Recept Signal Transduct Res 2020; 40:449-455. [PMID: 32326798 DOI: 10.1080/10799893.2020.1756324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Large conductance calcium-activated potassium (BK) channels play a crucial role in the repolarization and after-hyperpolarization phases of the cell membrane. The channel openers are also used in treatment of some diseases, including hypo/hyperkalemic periodic paralysis. However, little is known about the effects of BK channels and the channel activators on membrane potentials in skeletal muscle. In addition, the effects of reactive oxygen species (ROS) on BK channels in skeletal muscle are also unknown. Therefore, the aim of this study was to determine the effects of BK channel openers and ROS on membrane potentials in skeletal muscle fibers. For this purpose, resting membrane potentials and action potentials (AP) of frog gastrocnemius muscles were recorded in the presence of commonly used BK channel openers NS1619 and NS11021, H2O2 (a type of ROS), and both using intracellular microelectrode technique. The channel activators significantly and dose-dependently decreased amplitude and increased rise time of AP but did not impact repolarization. The presence of H2O2 plus NS1619 or NS11021 resulted in significant change because the channel openers completely reversed the deleterious effects of hydrogen peroxide on the repolarization phase of AP in skeletal muscle fibers. In the present study, the contributions of BK channel activation and the modulatory role of H2O2 on membrane potentials was demonstrated in skeletal muscle fibers, for the first time. Moreover, it should be noted that BK channel openers should be used in the treatment of reactive oxygen species-induced skeletal muscle diseases.
Collapse
Affiliation(s)
- Cagil Coskun
- Department of Biophysics, Faculty of Medicine, Cukurova University, Adana, Turkey
| | | | - Figen Cicek
- Department of Biophysics, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Ismail Gunay
- Department of Biophysics, Faculty of Medicine, Cukurova University, Adana, Turkey
| |
Collapse
|
5
|
Feng X, Zhou X, Zhang W, Li X, He A, Liu B, Shi R, Wu L, Wu J, Zhu D, Li N, Sun M, Xu Z. Maternal high-sucrose diets altered vascular large-conductance Ca2+-activated K+ channels via reactive oxygen species in offspring rats†. Biol Reprod 2017; 96:1085-1095. [DOI: 10.1093/biolre/iox031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/13/2017] [Indexed: 12/22/2022] Open
|
6
|
The NOX2-derived reactive oxygen species damaged endothelial nitric oxide system via suppressed BKCa/SKCa in preeclampsia. Hypertens Res 2017; 40:457-464. [PMID: 28077855 DOI: 10.1038/hr.2016.180] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 12/21/2022]
Abstract
The endothelial nitric oxide (NO) system may be damaged in preeclampsia; however, the involved mechanisms are unclear. In this study, we used primary human umbilical vein endothelial cells (HUVECs) to evaluate the endothelial NO system in preeclampsia and to determine the underlying mechanisms that are involved. We isolated and cultured HUVECs from normal and preeclamptic pregnancies and evaluated endothelial NO synthase enzyme (eNOS) expression and NO production. Whole-cell K+ currents and oxidative stress were also determined in normal and preeclamptic HUVECs. Compared with normal HUVECs, eNOS expression, NO production and whole-cell K+ currents in preeclamptic HUVECs were markedly decreased, whereas oxidative stress was significantly increased. The decreased K+ currents were associated with damaged Ca2+-activated K+ (KCa) channels, especially the large (BKCa) and small (SKCa) conductance KCa channels, and were involved in the downregulated eNOS expression in preeclamptic HUVECs. Moreover, the increased oxidative stress detected in preeclamptic HUVECs was mediated by NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 2 (NOX2)-dependent reactive oxygen species overproduction that could downregulate whole-cell K+ currents, eNOS expression and NO production. Taken together, our study indicated that the increased oxidative stress in preeclamptic HUVECs could downregulate the NO system by suppressing BKCa and SKCa channels. Because the damaged NO system was closely related to endothelial dysfunction, this study provides important information to further understand the pathological process of endothelial cell dysfunction in preeclampsia.
Collapse
|
7
|
Alansary D, Schmidt B, Dörr K, Bogeski I, Rieger H, Kless A, Niemeyer BA. Thiol dependent intramolecular locking of Orai1 channels. Sci Rep 2016; 6:33347. [PMID: 27624281 PMCID: PMC5022029 DOI: 10.1038/srep33347] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/25/2016] [Indexed: 12/11/2022] Open
Abstract
Store-operated Ca(2+) entry mediated by STIM1-gated Orai1 channels is essential to activate immune cells and its inhibition or gain-of-function can lead to immune dysfunction and other pathologies. Reactive oxygen species interacting with cysteine residues can alter protein function. Pretreatment of the Ca(2+) selective Orai1 with the oxidant H2O2 reduces ICRAC with C195, distant to the pore, being its major redox sensor. However, the mechanism of inhibition remained elusive. Here we combine experimental and theoretical approaches and show that oxidation of Orai1 leads to reduced subunit interaction, slows diffusion and that either oxidized C195 or its oxidomimetic mutation C195D located at the exit of transmembrane helix 3 virtually eliminates channel activation by intramolecular interaction with S239 of transmembrane helix 4, thereby locking the channel in a closed conformation. Our results demonstrate a novel mechanistic model for ROS-mediated inhibition of Orai1 and identify a candidate residue for pharmaceutical intervention.
Collapse
Affiliation(s)
- Dalia Alansary
- Molecular Biophysics, Saarland University, 66421 Homburg, Germany
| | - Barbara Schmidt
- Molecular Biophysics, Saarland University, 66421 Homburg, Germany
- Department of Biophysics, Saarland University, 66421 Homburg, Germany
- Department of Theoretical Physics, Saarland University, 66041 Saarbrücken, Germany
| | - Kathrin Dörr
- Molecular Biophysics, Saarland University, 66421 Homburg, Germany
| | - Ivan Bogeski
- Department of Biophysics, Saarland University, 66421 Homburg, Germany
| | - Heiko Rieger
- Department of Theoretical Physics, Saarland University, 66041 Saarbrücken, Germany
| | - Achim Kless
- Gruenenthal Innovation, Drug Discovery Technologies, Gruenenthal GmbH, 52078 Aachen, Germany
| | | |
Collapse
|
8
|
Abstract
SIGNIFICANCE Hydrogen peroxide (H2O2) is not only a key mediator of oxidative stress but also one of the most important cellular second messengers. This small short-lived molecule is involved in the regulation of a wide range of different biological processes, including regulation of cellular signaling pathways. Studying the role of H2O2 in living systems would be challenging without modern approaches. A genetically encoded fluorescent biosensor, HyPer, is one of the most effective tools for this purpose. RECENT ADVANCES HyPer has been used by many investigators of redox signaling in various models of different scales: from cytoplasmic subcompartments and single cells to tissues of whole organisms. In many studies, the results obtained using HyPer have enabled a better understanding of the roles of H2O2 in these biological processes. However, much remains to be learned. CRITICAL ISSUES In this review, we focus on the uses of HyPer. We provide a general description of HyPer and its improved versions. Separate chapters are devoted to the results obtained by various groups who have used this biosensor for their experiments in living cells and organisms. FUTURE DIRECTIONS HyPer is an effective tool for H2O2 imaging in living systems as indicated by the increasing numbers of publications each year since its development. However, this biosensor requires further improvements. In particular, much brighter and more pH-stable versions of HyPer are necessary for imaging in mammalian tissues. Antioxid. Redox Signal. 24, 731-751.
Collapse
Affiliation(s)
- Dmitry S Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Moscow, Russia
| | | |
Collapse
|
9
|
Jovanovic ZD, Stanojevic MB, Nedeljkov VB. The neurotoxic effects of hydrogen peroxide and copper in Retzius nerve cells of the leech Haemopis sanguisuga. Biol Open 2016; 5:381-8. [PMID: 26935393 PMCID: PMC4890660 DOI: 10.1242/bio.014936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress and the generation of reactive oxygen species (ROS) play an important role in cellular damage. Electrophysiological analyses have shown that membrane transport proteins are susceptible to ROS. In the present study, oxidative stress was induced in Retzius nerve cells of the leechHaemopis sanguisugaby bath application of 1 mM of hydrogen peroxide (H2O2) and 0.02 mM of copper (Cu) for 20 min. The H2O2/Cu(II) produced considerable changes in the electrical properties of the Retzius nerve cells. Intracellular recording of the resting membrane potential revealed that the neuronal membrane was depolarized in the presence of H2O2/Cu(II). We found that the amplitude of action potentials decreased, while the duration augmented in a progressive way along the drug exposure time. The combined application of H2O2and Cu(II) caused an initial excitation followed by depression of the spontaneous electrical activity. Voltage-clamp recordings revealed a second effect of the oxidant, a powerful inhibition of the outward potassium channels responsible for the repolarization of action potentials. The neurotoxic effect of H2O2/Cu(II) on the spontaneous spike electrogenesis and outward K(+)current of Retzius nerve cells was reduced in the presence of hydroxyl radical scavengers, dimethylthiourea and dimethyl sulfoxide, but not mannitol. This study provides evidence for the oxidative modification of outward potassium channels in Retzius nerve cells. The oxidative mechanism of the H2O2/Cu(II) system action on the electrical properties of Retzius neurons proposed in this study might have a wider significance, referring not only to leeches but also to mammalian neurons.
Collapse
Affiliation(s)
- Zorica D Jovanovic
- Department of Pathological Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marija B Stanojevic
- Institute for Pathological Physiology, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Vladimir B Nedeljkov
- Institute for Pathological Physiology, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
10
|
Abstract
SIGNIFICANCE Voltage-gated K+ channels are a large family of K+-selective ion channel protein complexes that open on membrane depolarization. These K+ channels are expressed in diverse tissues and their function is vital for numerous physiological processes, in particular of neurons and muscle cells. Potentially reversible oxidative regulation of voltage-gated K+ channels by reactive species such as reactive oxygen species (ROS) represents a contributing mechanism of normal cellular plasticity and may play important roles in diverse pathologies including neurodegenerative diseases. RECENT ADVANCES Studies using various protocols of oxidative modification, site-directed mutagenesis, and structural and kinetic modeling provide a broader phenomenology and emerging mechanistic insights. CRITICAL ISSUES Physicochemical mechanisms of the functional consequences of oxidative modifications of voltage-gated K+ channels are only beginning to be revealed. In vivo documentation of oxidative modifications of specific amino-acid residues of various voltage-gated K+ channel proteins, including the target specificity issue, is largely absent. FUTURE DIRECTIONS High-resolution chemical and proteomic analysis of ion channel proteins with respect to oxidative modification combined with ongoing studies on channel structure and function will provide a better understanding of how the function of voltage-gated K+ channels is tuned by ROS and the corresponding reducing enzymes to meet cellular needs.
Collapse
Affiliation(s)
- Nirakar Sahoo
- 1 Department of Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena and Jena University Hospital , Jena, Germany
| | | | | |
Collapse
|
11
|
Fernández-Velasco M, Ruiz-Hurtado G, Gómez AM, Rueda A. Ca(2+) handling alterations and vascular dysfunction in diabetes. Cell Calcium 2014; 56:397-407. [PMID: 25218935 DOI: 10.1016/j.ceca.2014.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/30/2014] [Accepted: 08/07/2014] [Indexed: 12/12/2022]
Abstract
More than 65% of patients with diabetes mellitus die from cardiovascular disease or stroke. Hyperglycemia, due to either reduced insulin secretion or reduced insulin sensitivity, is the hallmark feature of diabetes mellitus. Vascular dysfunction is a distinctive phenotype found in both types of diabetes and could be responsible for the high incidence of stroke, heart attack, and organ damage in diabetic patients. In addition to well-documented endothelial dysfunction, Ca(2+) handling alterations in vascular smooth muscle cells (VSMCs) play a key role in the development and progression of vascular complications in diabetes. VSMCs provide not only structural integrity to the vessels but also control myogenic arterial tone and systemic blood pressure through global and local Ca(2+) signaling. The Ca(2+) signalosome of VSMCs is integrated by an extensive number of Ca(2+) handling proteins (i.e. channels, pumps, exchangers) and related signal transduction components, whose function is modulated by endothelial effectors. This review summarizes recent findings concerning alterations in endothelium and VSMC Ca(2+) signaling proteins that may contribute to the vascular dysfunction found in the diabetic condition.
Collapse
Affiliation(s)
| | - Gema Ruiz-Hurtado
- Unidad de Hipertensión, Instituto de Investigación imas12, Hospital 12 de Octubre, Madrid, Spain; Instituto Pluridisciplinar, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - Ana M Gómez
- Inserm, UMR S769, Faculté de Pharmacie, Université Paris Sud, Labex LERMIT, DHU TORINO, Châtenay-Malabry, France
| | - Angélica Rueda
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico.
| |
Collapse
|
12
|
Olszewska A, Bednarczyk P, Siemen D, Szewczyk A. Modulation of the mitochondrial large-conductance calcium-regulated potassium channel by polyunsaturated fatty acids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1602-10. [PMID: 25046142 DOI: 10.1016/j.bbabio.2014.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 07/03/2014] [Accepted: 07/11/2014] [Indexed: 10/25/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) and their metabolites can modulate several biochemical processes in the cell and thus prevent various diseases. PUFAs have a number of cellular targets, including membrane proteins. They can interact with plasma membrane and intracellular potassium channels. The goal of this work was to verify the interaction between PUFAs and the most common and intensively studied mitochondrial large conductance Ca(2+)-regulated potassium channel (mitoBKCa). For this purpose human astrocytoma U87 MG cell lines were investigated using a patch-clamp technique. We analyzed the effects of arachidonic acid (AA); eicosatetraynoic acid (ETYA), which is a non-metabolizable analog of AA; docosahexaenoic acid (DHA); and eicosapentaenoic acid (EPA). The open probability (Po) of the channel did not change significantly after application of 10μM ETYA. Po increased, however, after adding 10μM AA. The application of 30μM DHA or 10μM EPA also increased the Po of the channel. Additionally, the number of open channels in the patch increased in the presence of 30μM EPA. Collectively, our results indicate that PUFAs regulate the BKCa channel from the inner mitochondrial membrane.
Collapse
Affiliation(s)
- Anna Olszewska
- Department of Biochemistry, Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Warsaw, Poland.
| | - Piotr Bednarczyk
- Department of Biochemistry, Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Warsaw, Poland; Department of Biophysics, Warsaw University of Life Sciences, Warsaw, Poland
| | - Detlef Siemen
- Department of Neurology, Otto-von-Guericke Universität Magdeburg, Germany
| | - Adam Szewczyk
- Department of Biochemistry, Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Warsaw, Poland
| |
Collapse
|
13
|
Zhu R, Huang X, Hu XQ, Xiao D, Zhang L. Gestational hypoxia increases reactive oxygen species and inhibits steroid hormone-mediated upregulation of Ca(2+)-activated K(+) channel function in uterine arteries. Hypertension 2014; 64:415-22. [PMID: 24866137 DOI: 10.1161/hypertensionaha.114.03555] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gestational hypoxia inhibits steroid hormone-induced upregulation of Ca(2+)-activated K(+) (KCa) channel activities in uterine arteries. We tested the hypothesis that increased reactive oxygen species play an important role in hypoxia-mediated inhibition of KCa channel activities. Uterine arteries were isolated from nonpregnant (nonpregnant uterine artery) and near-term (≈142-145 day) pregnant (pregnant uterine artery) sheep maintained at either sea level or high altitude (3820 m, Pao2: 60 mm Hg) for 110 days. In pregnant uterine arteries, hypoxia significantly decreased large conductance channel opener NS1619- and small conductance channel opener NS309-induced relaxations, which were partially restored by reactive oxygen species inhibitor N-acetylcysteine (NAC). NAC significantly increased large conductance KCa but not small conductance KCa current densities in uterine arterial smooth muscle cells in pregnant animals acclimatized to high altitude. The NAC-sensitive component of small conductance KCa-induced relaxations was diminished in endothelium-denuded arteries. In nonpregnant uterine arteries, NS1619- and NS309-induced relaxations were diminished compared with those in pregnant uterine arteries. Treatment of nonpregnant uterine arteries with 17β-estradiol and progesterone for 48 hours increased small conductance KCa type 3 protein abundance and NS1619- and NS309-induced relaxations, which were inhibited by hypoxia. This hypoxia-mediated inhibition was reversed by NAC. Consistently, steroid hormone treatment had no significant effects on large conductance KCa current density in nonpregnant uterine arteries of hypoxic animals in the absence of NAC but significantly increased it in the presence of NAC. These results suggest an important role of hypoxia-mediated reactive oxygen species in negatively regulating steroid hormone-mediated upregulation of KCa channel activity and adaptation of uterine vascular reactivity in pregnancy, which may contribute to the increased incidence of preeclampsia and fetal intrauterine growth restriction associated with gestational hypoxia.
Collapse
Affiliation(s)
- Ronghui Zhu
- From the Division of Pharmacology, Department of Basic Sciences, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA
| | - Xiaohui Huang
- From the Division of Pharmacology, Department of Basic Sciences, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA
| | - Xiang-Qun Hu
- From the Division of Pharmacology, Department of Basic Sciences, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA
| | - DaLiao Xiao
- From the Division of Pharmacology, Department of Basic Sciences, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA
| | - Lubo Zhang
- From the Division of Pharmacology, Department of Basic Sciences, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA.
| |
Collapse
|
14
|
Manzanares D, Srinivasan M, Salathe ST, Ivonnet P, Baumlin N, Dennis JS, Conner GE, Salathe M. IFN-γ-mediated reduction of large-conductance, Ca2+-activated, voltage-dependent K+ (BK) channel activity in airway epithelial cells leads to mucociliary dysfunction. Am J Physiol Lung Cell Mol Physiol 2014; 306:L453-62. [PMID: 24414257 DOI: 10.1152/ajplung.00247.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Effective mucociliary clearance (MCC) depends in part on adequate airway surface liquid (ASL) volume to maintain an appropriate periciliary fluid height that allows normal ciliary activity. Apically expressed large-conductance, Ca(2+)-activated, and voltage-dependent K(+) (BK) channels provide an electrochemical gradient for Cl(-) secretion and thus play an important role for adequate airway hydration. Here we show that IFN-γ decreases ATP-mediated apical BK activation in normal human airway epithelial cells cultured at the air-liquid interface. IFN-γ decreased mRNA levels of KCNMA1 but did not affect total protein levels. Because IFN-γ upregulates dual oxidase (DUOX)2 and therefore H2O2 production, we hypothesized that BK inactivation could be mediated by BK oxidation. However, DUOX2 knockdown did not affect the IFN-γ effect on BK activity. IFN-γ changed mRNA levels of the BK β-modulatory proteins KCNMB2 (increased) and KCNMB4 (decreased) as well as leucine-rich repeat-containing protein (LRRC)26 (decreased). Mallotoxin, a BK opener only in the absence of LRRC26, showed that BK channels lost their association with LRRC26 after IFN-γ treatment. Finally, IFN-γ caused a decrease in ciliary beating frequency that was immediately rescued by apical fluid addition, suggesting that it was due to ASL volume depletion. These data were confirmed with direct ASL measurements using meniscus scanning. Overexpression of KCNMA1, the pore-forming subunit of BK, overcame the reduction of ASL volume induced by IFN-γ. Key experiments were repeated in cystic fibrosis cells and showed the same results. Therefore, IFN-γ induces mucociliary dysfunction through BK inactivation.
Collapse
|
15
|
Xiao D, Hu XQ, Huang X, Zhou J, Wilson SM, Yang S, Zhang L. Chronic hypoxia during gestation enhances uterine arterial myogenic tone via heightened oxidative stress. PLoS One 2013; 8:e73731. [PMID: 24066066 PMCID: PMC3774750 DOI: 10.1371/journal.pone.0073731] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/19/2013] [Indexed: 11/25/2022] Open
Abstract
Chronic hypoxia during gestation has profound adverse effects on the adaptation of uteroplacental circulation in pregnancy. Yet, the underlying mechanisms are not fully understood. The present study tested the hypothesis that enhanced production of reactive oxygen species (ROS) in uterine arteries plays a critical role in the maladaptation of uterine circulation associated with chronic hypoxia. Uterine arteries were isolated from nonpregnant and near-term pregnant sheep maintained at sea level (~300 m) or exposed to high-altitude (3801 m) hypoxia for 110 days. Hypoxia significantly increased ROS production in uterine arteries of pregnant, but not nonpregnant, sheep. This was associated with a significant increase in NADPH oxidase (Nox) 2, but not Nox1 or Nox4, protein abundance and total Nox activity in uterine arteries of pregnant animals. Chronic hypoxia significantly increased pressure-dependent uterine arterial myogenic tone in pregnant sheep, which was abrogated by a Nox inhibitor apocynin. Additionally, the hypoxia-induced increase in myogenic reactivity of uterine arteries to phorbol 12,13-dibutyrate in pregnant sheep was blocked by apocynin and tempol. In consistence with the myogenic responses, the hypoxia-mediated down-regulation of BKCa channel activity in uterine arteries of pregnant animals was reversed by apocynin. The findings suggest that heightened oxidative stress in uterine arteries plays a key role in suppressing the BKCa channel activity, resulting in increased myogenic reactivity and maladaptation of uteroplacental circulation caused by chronic hypoxia during gestation.
Collapse
Affiliation(s)
- Daliao Xiao
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Xiang-Qun Hu
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Xiaohui Huang
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Jianjun Zhou
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Sean M. Wilson
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Shumei Yang
- Department of Chemistry and Biochemistry, California State University, San Bernardino, California, United States of America
| | - Lubo Zhang
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| |
Collapse
|
16
|
Contreras GF, Castillo K, Enrique N, Carrasquel-Ursulaez W, Castillo JP, Milesi V, Neely A, Alvarez O, Ferreira G, González C, Latorre R. A BK (Slo1) channel journey from molecule to physiology. Channels (Austin) 2013; 7:442-58. [PMID: 24025517 DOI: 10.4161/chan.26242] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Calcium and voltage-activated potassium (BK) channels are key actors in cell physiology, both in neuronal and non-neuronal cells and tissues. Through negative feedback between intracellular Ca (2+) and membrane voltage, BK channels provide a damping mechanism for excitatory signals. Molecular modulation of these channels by alternative splicing, auxiliary subunits and post-translational modifications showed that these channels are subjected to many mechanisms that add diversity to the BK channel α subunit gene. This complexity of interactions modulates BK channel gating, modifying the energetic barrier of voltage sensor domain activation and channel opening. Regions for voltage as well as Ca (2+) sensitivity have been identified, and the crystal structure generated by the 2 RCK domains contained in the C-terminal of the channel has been described. The linkage of these channels to many intracellular metabolites and pathways, as well as their modulation by extracellular natural agents, has been found to be relevant in many physiological processes. This review includes the hallmarks of BK channel biophysics and its physiological impact on specific cells and tissues, highlighting its relationship with auxiliary subunit expression.
Collapse
Affiliation(s)
- Gustavo F Contreras
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso, Chile; Doctorado en Ciencias mención Neurociencia; Universidad de Valparaíso; Valparaíso, Chile
| | - Karen Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso, Chile
| | - Nicolás Enrique
- Grupo de Investigación en Fisiología Vascular (GINFIV); Universidad Nacional de la Plata; La Plata, Argentina
| | - Willy Carrasquel-Ursulaez
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso, Chile; Doctorado en Ciencias mención Neurociencia; Universidad de Valparaíso; Valparaíso, Chile
| | - Juan Pablo Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso, Chile; Facultad de Ciencias; Universidad de Chile; Santiago, Chile
| | - Verónica Milesi
- Grupo de Investigación en Fisiología Vascular (GINFIV); Universidad Nacional de la Plata; La Plata, Argentina
| | - Alan Neely
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso, Chile
| | | | - Gonzalo Ferreira
- Laboratorio de Canales Iónicos; Departamento de Biofísica; Facultad de Medicina; Universidad de la República; Montevideo, Uruguay
| | - Carlos González
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso, Chile
| | - Ramón Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso, Chile
| |
Collapse
|
17
|
Abstract
Ion channels perform a variety of cellular functions in lung epithelia. Oxidant- and antioxidant-mediated mechanisms (that is, redox regulation) of ion channels are areas of intense research. Significant progress has been made in our understanding of redox regulation of ion channels since the last Experimental Biology report in 2003. Advancements include: 1) identification of nonphagocytic NADPH oxidases as sources of regulated reactive species (RS) production in epithelia, 2) an understanding that excessive treatment with antioxidants can result in greater oxidative stress, and 3) characterization of novel RS signaling pathways that converge upon ion channel regulation. These advancements, as discussed at the 2013 Experimental Biology Meeting in Boston, MA, impact our understanding of oxidative stress in the lung, and, in particular, illustrate that the redox state has profound effects on ion channel and cellular function.
Collapse
|
18
|
Hasan SM, Redzic ZB, Alshuaib WB. Hydrogen peroxide-induced reduction of delayed rectifier potassium current in hippocampal neurons involves oxidation of sulfhydryl groups. Brain Res 2013; 1520:61-9. [DOI: 10.1016/j.brainres.2013.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 04/30/2013] [Accepted: 05/07/2013] [Indexed: 01/30/2023]
|
19
|
JOVANOVIC Z, JOVANOVIC S. A Comparison of the Effects of Cumene Hydroperoxide and Hydrogen Peroxide on Retzius Nerve Cells of the Leech Haemopis sanguisuga. Exp Anim 2013; 62:9-17. [DOI: 10.1538/expanim.62.9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Zorica JOVANOVIC
- Department of Pathological Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Svetlana JOVANOVIC
- Clinic of Ophthalmology, Clinical Centre of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
20
|
Bondarenko A, Panasiuk O, Stepanenko L, Goswami N, Sagach V. Reduced hyperpolarization of endothelial cells following high dietary Na+: effects of enalapril and tempol. Clin Exp Pharmacol Physiol 2012; 39:608-13. [PMID: 22540516 DOI: 10.1111/j.1440-1681.2012.05718.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
1. High dietary Na(+) is associated with impaired vascular endothelial function. However, the underlying mechanisms are not completely understood. In the present study, we investigated whether the endothelial hyperpolarization response to acetylcholine (ACh) exhibited any abnormalities in Wistar rats fed a high-salt diet (HSD) for 1 month and, if so, whether chronic treatment with the angiotensin-converting enzyme inhibitor enalapril or the anti-oxidant tempol could normalize the response. Membrane potential was recorded using the perforated patch-clamp technique on the endothelium of rat aorta. 2. Acetylcholine (2 μmol/L) produced a hyperpolarization sensitive to TRAM-34, a blocker of intermediate-conductance Ca(2+) -sensitive K(+) channels (IK(Ca)), but not to apamin, a blocker of small-conductance Ca(2+)-sensitive K(+) channels (SK(Ca)). NS309 (3 μmol/L), an activator of SK(Ca) and IK(Ca) channels, produced a hyperpolarization of similar magnitude as ACh. 3. In the HSD group, the ACh-evoked hyperpolarization was significantly attenuated compared with that in the control group, which was fed normal chow rather than an HSD. Similarly, the hyperpolarization produced by NS309 was weaker in tissues from HSD-fed rats. 4. Combination of HSD with chronic enalapril treatment (20 mg/kg per day for 1 month) normalized endothelial hyperpolarizing responses to ACh. Chronic tempol treatment (1 mmol/L in tap water for 1 month) prevented the reduced hyperpolarization to ACh. 5. The results of the present study indicate that excess in dietary Na(+) results in a failure of endothelial cells to generate normal IK(Ca) channel-mediated hyperpolarizing responses. Our observations implicate oxidative stress mediated by increased angiotensin II signalling as a mechanism underlying altered endothelial hyperpolarization during dietary salt loading.
Collapse
Affiliation(s)
- Alexander Bondarenko
- Circulatory Physiology Department, AA Bogomoletz Institute of Physiology, Kiev, Ukraine.
| | | | | | | | | |
Collapse
|
21
|
Poon CCW, Seto SW, Au ALS, Zhang Q, Li RWS, Lee WYW, Leung GPH, Kong SK, Yeung JHK, Ngai SM, Ho HP, Lee SMY, Chan SW, Kwan YW. Mitochondrial monoamine oxidase-A-mediated hydrogen peroxide generation enhances 5-hydroxytryptamine-induced contraction of rat basilar artery. Br J Pharmacol 2011; 161:1086-98. [PMID: 20977458 DOI: 10.1111/j.1476-5381.2010.00941.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE We evaluated the role(s) of monoamine oxidase (MAO)-mediated H₂O₂ generation on 5-hydroxytryptamine (5-HT)-induced tension development of isolated basilar artery of spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats. EXPERIMENTAL APPROACH Basilar artery (endothelium-denuded) was isolated for tension measurement and Western blots. Enzymically dissociated single myocytes from basilar arteries were used for patch-clamp electrophysiological and confocal microscopic studies. KEY RESULTS Under resting tension, 5-HT elicited a concentration-dependent tension development with a greater sensitivity (with unchanged maximum tension development) in SHR compared with WKY (EC(50) : 28.4 ± 4.1 nM vs. 98.2 ± 9.4 nM). The exaggerated component of 5-HT-induced tension development in SHR was eradicated by polyethylene glycol-catalase, clorgyline and citalopram whereas exogenously applied H₂O₂ enhanced the 5-HT-elicited tension development in WKY. A greater protein expression of MAO-A was detected in basilar arteries from SHR than in those from WKY. In single myocytes and the entire basilar artery, 5-HT generated (clorgyline-sensitive) a greater amount of H₂O₂ in SHR compared with WKY. Whole-cell iberiotoxin-sensitive Ca(2+) -activated K(+) (BK(Ca) ) amplitude measured in myocytes of SHR was approximately threefold greater than that in WKY (at +60 mV: 7.61 ± 0.89 pA·pF(-1) vs. 2.61 ± 0.66 pA·pF(-1) ). In SHR myocytes, 5-HT caused a greater inhibition (clorgyline-, polyethylene glycol-catalase- and reduced glutathione-sensitive) of BK(Ca) amplitude than in those from WKY. CONCLUSIONS AND IMPLICATIONS 5-HT caused an increased generation of mitochondrial H₂O₂ via MAO-A-mediated 5-HT metabolism, which caused a greater inhibition of BK(Ca) gating in basilar artery myocytes, leading to exaggerated basilar artery tension development in SHR.
Collapse
Affiliation(s)
- Christina Chui Wa Poon
- School of Biomedical Sciences (Programme in Vascular and Metabolic Biology), Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Liu B, Sun X, Zhu Y, Gan L, Xu H, Yang X. Biphasic effects of H(2)O(2) on BK(Ca) channels. Free Radic Res 2011; 44:1004-12. [PMID: 20560834 DOI: 10.3109/10715762.2010.495126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The inhibitory or activating effect of H(2)O(2) on large conductance calcium and voltage-dependent potassium (BK(Ca)) channels has been reported. However, the mechanism by which this occurs is unclear. In this paper, BK(Ca) channels encoded by mouse Slo were expressed in HEK 293 cells and BK(Ca) channel activity was measured by electrophysiology. The results showed that H(2)O(2) inhibited BK(Ca) channel activity in inside-out patches but enhanced BK(Ca) channel activity in cell-attached patches. The inhibition by H(2)O(2) in inside-out patches may be due to oxidative modification of cysteine residues in BK(Ca) channels or other membrane proteins that regulate BK(Ca) channel function. PI3K/AKT signaling modulates the H(2)O(2)-induced BK(Ca) channel activation in cell-attached patches. BK(Ca) channels and PI3K signaling pathway were involved in H(2)O(2)-induced vasodilation and H(2)O(2)-induced vasodilation by PI3K pathway was mainly due to modulation of BK(Ca) channel activity.
Collapse
Affiliation(s)
- Bo Liu
- Huazhong University of Science and Technology, Wuhan, PR China
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Brain angiotensin II (Ang II) induces tonic sympathoexcitatory effects through AT1 receptor stimulation of glutamatergic neurons and sympathoinhibitory effects via GABAergic neurons in the rostral ventrolateral medulla, the brainstem 'pressor area'. NADPH-derived superoxide production and reactive oxygen species signalling is critical in these actions, and AT2 receptors in the rostral ventrolateral medulla appear to mediate opposing effects on sympathetic outflow. In the hypothalamic paraventricular nucleus, Ang II has AT1 receptor-mediated sympathoexcitatory effects and enhances nitric oxide formation, which in turn inhibits the Ang II effects through a GABAergic mechanism. Ang II also decreases the tonic sympathoinhibitory effect of gamma amino butyric acid within the paraventricular nucleus. Angiotensin III and Angiotensin IV increase blood pressure via brain AT1 receptor stimulation. Angiotensin (1-7) influences cardiovascular function through a specific Mas-receptor. This review examines the evidence that brain angiotensin peptides, glutamate, gamma amino butyric acid and nitric oxide interact within the rostral ventrolateral medulla and paraventricular nucleus to control sympathetic tone and blood pressure.
Collapse
|
24
|
Wu RS, Marx SO. The BK potassium channel in the vascular smooth muscle and kidney: α- and β-subunits. Kidney Int 2010; 78:963-74. [DOI: 10.1038/ki.2010.325] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Romanenko VG, Thompson J, Begenisich T. Ca2+-activated K channels in parotid acinar cells: The functional basis for the hyperpolarized activation of BK channels. Channels (Austin) 2010; 4:278-88. [PMID: 20519930 DOI: 10.4161/chan.4.4.12197] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fluid secretion relies on a close interplay between Ca(2+)-activated Cl and K channels. Salivary acinar cells contain both large conductance, BK, and intermediate conductance, IK1, K channels. Physiological fluid secretion occurs with only modest (<500 nM) increases in intracellular Ca(2+) levels but BK channels in many cell types and in heterologous expression systems require very high concentrations for significant activation. We report here our efforts to understand this apparent contradiction. We determined the Ca(2+) dependence of IK1 and BK channels in mouse parotid acinar cells. IK1 channels activated with an apparent Ca(2+) affinity of about 350 nM and a Hill coefficient near 3. Native parotid BK channels activated at similar Ca(2+) levels unlike the BK channels in other cell types. Since the parotid BK channel is encoded by an uncommon splice variant, we examined this clone in a heterologous expression system. In contrast to the native parotid channel, activation of this expressed "parSlo" channel required very high levels of Ca(2+). In order to understand the functional basis for the special properties of the native channels, we analyzed the parotid BK channel in the context of the Horrigan-Aldrich model of BK channel gating. We found that the shifted activation of parotid BK channels resulted from a hyperpolarizing shift of the voltage dependence of voltage sensor activation and channel opening and included a large change in the coupling of these two processes.
Collapse
Affiliation(s)
- Victor G Romanenko
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | | | |
Collapse
|
26
|
Gao Y, Yang Y, Guan Q, Pang X, Zhang H, Zeng D. IL-1beta modulate the Ca(2+)-activated big-conductance K channels (BK) via reactive oxygen species in cultured rat aorta smooth muscle cells. Mol Cell Biochem 2009; 338:59-68. [PMID: 19949838 DOI: 10.1007/s11010-009-0338-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 11/19/2009] [Indexed: 10/20/2022]
Abstract
The large conductance Ca(2+)-activated K(+) (BK) channel, abundantly expressed in vascular smooth muscle cells, plays a critical role in controlling vascular tone. Activation of BK channels leads to membrane hyperpolarization and promotes vasorelaxation. BK channels are activated either by elevation of the intracellular Ca(2+) concentration or by membrane depolarization. It is also regulated by a diversity of vasodilators and vasoconstrictors. Interleukin-1beta (IL-1beta) is one of the cytokines that play important roles in the development and progression of a variety of cardiovascular diseases. The effects of IL-1beta on vascular reactivity are controversial, and little is known about the modulation of BK channel function by IL-1beta. In this study, we investigated how IL-1beta modulates BK channel function in cultured arterial smooth muscle cells (ASMCs), and examined the role of H(2)O(2) in the process. We demonstrated that IL-1beta had biphasic effects on BK channel function and membrane potential of ASMCs, that is both concentration and time dependent. IL-1beta increased BK channel-dependent K(+) current and hyperpolarized ASMCs when applied for 30 min. While long-term (24-48 h) treatment of IL-1beta resulted in decreased expression of alpha-subunit of BK channel, suppressed BK channel activity, decreased BK channel-dependent K(+) current and depolarization of the cells. H(2)O(2) scavenger catalase completely abolished the early effect of IL-1beta, while it only partly diminished the long-term effect of IL-1beta. These results may provide important molecular mechanisms for therapeutic strategies targeting BK channel in inflammation-related diseases.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Cardiology, the First Affiliated Hospital, China Medical University, Heping District, Shengyang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
27
|
Liu B, Gan L, Sun X, Zhu Y, Tong Z, Xu H, Yang X. Enhancement of BK(Ca) channel activity induced by hydrogen peroxide: involvement of lipid phosphatase activity of PTEN. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2174-82. [PMID: 19646416 DOI: 10.1016/j.bbamem.2009.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 07/01/2009] [Accepted: 07/22/2009] [Indexed: 02/06/2023]
Abstract
Large-conductance calcium and voltage-dependent potassium (BK(Ca)) channel is an important determinant of vascular tone. It is activated by hydrogen peroxide (H(2)O(2)) which occurs in various physiological and pathological processes. However, the regulation mechanism is not fully understood. In the present study, the mSlo in the presence or absence of hbeta1 were cotransfected with the PTEN(wt), PTEN(C124S), PTEN(G129E) in HEK 293 cells. Typical BK(Ca) channel currents could be recorded in cell-attached configurations. We found that PTEN(wt) reduced the H(2)O(2)-induced BK(Ca) channel activation during the initial 10 min treatment. In contrast, coexpression with catalytically inactive PTEN(C124S)/PTEN(G129E) mutants that lack lipid phosphatase activity produced no regulation on the H(2)O(2)-induced BK(Ca) channel activation. These results demonstrated that PTEN regulated the H(2)O(2)-induced BK(Ca) channel activation through phosphatidylinositol 3-phosphatse. However, the inhibitory effect of PTEN on the H(2)O(2)-induced BK(Ca) channel activation was attenuated when cells were treated with H(2)O(2) at concentrations higher than 100 microM or at 100 microM for long-term treatment. In addition, the p-AKT expression level in PTEN(wt) overexpressing cells was lower than that in control cells, and the increase of cytoplasmic free calcium concentration ([Ca(2+)](i)) induced by H(2)O(2) was also inhibited. These findings may elucidate a new mechanism for H(2)O(2)-induced BK(Ca) channel activation and provide some evidences for the role of PTEN on vasodilation induced by H(2)O(2).
Collapse
Affiliation(s)
- Bo Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Hou S, Heinemann SH, Hoshi T. Modulation of BKCa channel gating by endogenous signaling molecules. Physiology (Bethesda) 2009; 24:26-35. [PMID: 19196649 DOI: 10.1152/physiol.00032.2008] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Large-conductance Ca(2+)- and voltage-activated K(+) (BK(Ca), MaxiK, or Slo1) channels are expressed in almost every tissue in our body and participate in many critical functions such as neuronal excitability, vascular tone regulation, and neurotransmitter release. The functional versatility of BK(Ca) channels owes in part to the availability of a spectacularly wide array of biological modulators of the channel function. In this review, we focus on modulation of BK(Ca) channels by small endogenous molecules, emphasizing their molecular mechanisms. The mechanistic information available from studies on the small naturally occurring modulators is expected to contribute to our understanding of the physiological and pathophysiological roles of BK(Ca) channels.
Collapse
Affiliation(s)
- Shangwei Hou
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
29
|
Grgic I, Kaistha BP, Hoyer J, Köhler R. Endothelial Ca+-activated K+ channels in normal and impaired EDHF-dilator responses--relevance to cardiovascular pathologies and drug discovery. Br J Pharmacol 2009; 157:509-26. [PMID: 19302590 DOI: 10.1111/j.1476-5381.2009.00132.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The arterial endothelium critically contributes to blood pressure control by releasing vasodilating autacoids such as nitric oxide, prostacyclin and a third factor or pathway termed 'endothelium-derived hyperpolarizing factor' (EDHF). The nature of EDHF and EDHF-signalling pathways is not fully understood yet. However, endothelial hyperpolarization mediated by the Ca(2+)-activated K(+) channels (K(Ca)) has been suggested to play a critical role in initializing EDHF-dilator responses in conduit and resistance-sized arteries of many species including humans. Endothelial K(Ca) currents are mediated by the two K(Ca) subtypes, intermediate-conductance K(Ca) (KCa3.1) (also known as, a.k.a. IK(Ca)) and small-conductance K(Ca) type 3 (KCa2.3) (a.k.a. SK(Ca)). In this review, we summarize current knowledge about endothelial KCa3.1 and KCa2.3 channels, their molecular and pharmacological properties and their specific roles in endothelial function and, particularly, in the EDHF-dilator response. In addition we focus on recent experimental evidences derived from KCa3.1- and/or KCa2.3-deficient mice that exhibit severe defects in EDHF signalling and elevated blood pressures, thus highlighting the importance of the KCa3.1/KCa2.3-EDHF-dilator system for blood pressure control. Moreover, we outline differential and overlapping roles of KCa3.1 and KCa2.3 for EDHF signalling as well as for nitric oxide synthesis and discuss recent evidence for a heterogeneous (sub) cellular distribution of KCa3.1 (at endothelial projections towards the smooth muscle) and KCa2.3 (at inter-endothelial borders and caveolae), which may explain their distinct roles for endothelial function. Finally, we summarize the interrelations of altered KCa3.1/KCa2.3 and EDHF system impairments with cardiovascular disease states such as hypertension, diabetes, dyslipidemia and atherosclerosis and discuss the therapeutic potential of KCa3.1/KCa2.3 openers as novel types of blood pressure-lowering drugs.
Collapse
Affiliation(s)
- Ivica Grgic
- Department of Internal Medicine-Nephrology, Philipps-University, Marburg, Germany
| | | | | | | |
Collapse
|
30
|
Borrelli O, Barbara G, Di Nardo G, Cremon C, Lucarelli S, Frediani T, Paganelli M, De Giorgio R, Stanghellini V, Cucchiara S. Neuroimmune interaction and anorectal motility in children with food allergy-related chronic constipation. Am J Gastroenterol 2009; 104:454-63. [PMID: 19174791 DOI: 10.1038/ajg.2008.109] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Food allergy is thought to trigger functional constipation in children but the underlying mechanisms are still unknown. Mast cells (MCs) and their relationship with nerve fibers (NFs) in the rectal mucosa, as well as anorectal motility, were studied in children with refractory chronic constipation before and after an elimination diet for cow's milk, egg, and soy proteins. METHODS Thirty-three children (range: 1-10.8 years) underwent anorectal manometry and suction rectal biopsy before and after 8 weeks of oligoantigenic diet. MCs and NFs were identified immunohistochemically. Quantification of MCs (%MC/area) and MCs within 10 microm of NFs (%MC-NF/area) was performed by computer-assisted analysis. RESULTS Eighteen children responded to the diet (R-group) and fifteen did not (the NR-group). At baseline there was a significant difference in anal resting pressure (ARP; mm Hg), percentage of relaxation (%R), and residual pressure (RP; mm Hg) of anal canal during rectal distension between the R-group (66+/-4.1, 84.3+/-2.8, 10.4+/-2.3, respectively) and the NR-group (49+/-5, 92.2+/-1.7, 4.8+/-1.7, respectively; P<0.05). After the diet, significant changes in ARP, RP, and %R were observed only in the R-group (44+/-3.7, 93.7+/-1.5, 3.8+/-1.2, respectively; P<0.05). At baseline, the R-group showed an increase in %MC/area (8.3+/-0.7) and %MC-NF/area (5.2+/-2.6) with respect to the NR-group (5.1+/-0.5 and 2.3+/-0.4, respectively; P<0.05). After the diet, only the R-group showed a significant reduction of %MC/area and %MC-NF/area (4.4+/-0.5 and 2.2+/-0.4, respectively; P<0.001). Both ARP and RP significantly correlated with %MC/area and %MC-NF/area; %R showed a significant inverse correlation with both %MC/area and %MC-NF/area. CONCLUSIONS In children with food allergy-related chronic constipation, an increase in both rectal MC density and spatial interactions between MCs and NFs correlates with anal motor abnormalities. These variables are significantly affected by the diet.
Collapse
Affiliation(s)
- Osvaldo Borrelli
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, University "La Sapienza," Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
A fluorescence study of human serum albumin binding sites modification by hypochlorite. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2008; 94:77-81. [PMID: 19036598 DOI: 10.1016/j.jphotobiol.2008.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 10/23/2008] [Accepted: 10/23/2008] [Indexed: 11/20/2022]
Abstract
A study has been made on the properties of human serum albumin (HSA) binding sites and how they are modified by pre-oxidation of the protein with hypochlorite. The oxidation extent was assessed from changes in the protein intrinsic fluorescence and production of carbonyl groups. HSA retains its solute binding capacity even after exposure to relatively large amounts of hypochlorite (up to 40 oxidant molecules per protein). From an analysis of the binding isotherms of dansyl sarcosine (DS) and dansyl-1-sulfonamide (DNSA) to native and hypochlorite treated albumin it is concluded that pre-oxidation of the protein reduces the number of active sites without affecting the binding capacity of the remaining binding sites. From DS and DNSA fluorescence anisotropy, Laurdan anisotropy and generalized polarization measurements, it is concluded that both Sites I and II in the native protein provide very rigid environments to the bound probes. These characteristics of the sites remain even after extensive treatment with hypochlorite. This stubbornness of HSA could allow the protein to maintain its function along its in vivo lifetime.
Collapse
|
32
|
Abstract
Accumulating evidence supports the importance of redox signaling in the pathogenesis and progression of hypertension. Redox signaling is implicated in many different physiological and pathological processes in the vasculature. High blood pressure is in part determined by elevated total peripheral vascular resistance, which is ascribed to dysregulation of vasomotor function and structural remodeling of blood vessels. Aberrant redox signaling, usually induced by excessive production of reactive oxygen species (ROS) and/or by decreases in antioxidant activity, can induce alteration of vascular function. ROS increase vascular tone by influencing the regulatory role of endothelium and by direct effects on the contractility of vascular smooth muscle. ROS contribute to vascular remodeling by influencing phenotype modulation of vascular smooth muscle cells, aberrant growth and death of vascular cells, cell migration, and extracellular matrix (ECM) reorganization. Thus, there are diverse roles of the vascular redox system in hypertension, suggesting that the complexity of redox signaling in distinct spatial spectrums should be considered for a better understanding of hypertension.
Collapse
Affiliation(s)
- Moo Yeol Lee
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
33
|
Juffermans LJM, Kamp O, Dijkmans PA, Visser CA, Musters RJP. Low-intensity ultrasound-exposed microbubbles provoke local hyperpolarization of the cell membrane via activation of BK(Ca) channels. ULTRASOUND IN MEDICINE & BIOLOGY 2008; 34:502-8. [PMID: 17993242 DOI: 10.1016/j.ultrasmedbio.2007.09.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 08/29/2007] [Accepted: 09/10/2007] [Indexed: 05/19/2023]
Abstract
Ultrasound (US) contrast agents have gained wide interest in gene therapy as many researchers reported increased membrane permeability and transfection efficiency by sonoporation in the presence of US contrast agents. We recently demonstrated an increase in cell membrane permeability for Ca2+ in rat cardiomyoblast (H9c2) cells insonified in the presence of microbubbles. In the present study, we specifically investigated whether US-exposed microbubbles have an effect on the cell membrane potential and whether Ca2+-dependent potassium (BK(Ca)) channels are involved. We particularly focused on local events where the microbubble was in contact with the cell membrane. H9c2 cells were cultured on US transparent membranes. US exposure consisted of bursts with a frequency of 1 MHz with a peak-to-peak pressure of 0.1 or 0.5 MPa. Pulse repetition frequency was set to 20 Hz, with a duty cycle of 0.2%. Cells were insonified during 30 s in the presence of Sonovue(trade mark) microbubbles. The membrane potential was monitored during US exposure using the fluorescent dye di-4-aminonaphtylethenylpyridinium (di-4-ANEPPS). The experiments were repeated in the presence of iberiotoxin (100 nM), a specific inhibitor of BK(Ca) channels. Surprisingly, despite the previously reported Ca(2+) influx, we found patches of hyperpolarization of the cell membrane, as reflected by local increases in di-4-ANEPPS mean intensity of fluorescence (MIF) to 118.6 +/- 2.5% (p < 0.001, n = 267) at 0.1 MPa and 125.7 +/- 5.9% (p < 0.001, n = 161) at 0.5 MPa at t = 74 s, respectively, compared with "no US" (100.3 +/- 3.4%, n = 52). This hyperpolarization was caused by the activation of BK(Ca) channels, as iberiotoxin completely prevented hyperpolarization. (MIF(t74) = 100.6 +/- 1.4%; p < 0.001, n = 267) and 0.5 MPa (MIF(t74) = 88.8 +/- 2.0%; p< 0.001, n = 193), compared with 0.1 and 0.5 MPa microbubbles without iberiotoxin. In conclusion, US-exposed microbubbles elicit a Ca2+ influx, which leads to activation of BK(Ca) channels and a subsequent, local hyperpolarization of the cell membrane. This local hyperpolarization of the cell membrane may facilitate uptake of macromolecules through endocytosis and macropinocytosis. (E-mail: ljm.juffermans@vumc.nl).
Collapse
Affiliation(s)
- Lynda J M Juffermans
- Department of Physiology and Cardiology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
34
|
Vascular large conductance calcium-activated potassium channels: functional role and therapeutic potential. Naunyn Schmiedebergs Arch Pharmacol 2007; 376:145-55. [PMID: 17932654 DOI: 10.1007/s00210-007-0193-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 09/19/2007] [Indexed: 12/22/2022]
Abstract
Large-conductance Ca2+-activated K+ channels (BK Ca or maxiK channels) are expressed in different cell types. They play an essential role in the regulation of various cell functions. In particular, BK Ca channels have been extensively studied in vascular smooth muscle cells, where they contribute to the control of vascular tone. They facilitate the feedback regulation against the rise of intracellular Ca2+, membrane depolarization and vasoconstriction. BK Ca channels promote a K+ outward current and lead to membrane hyperpolarization. In endothelial cells expression and function of BK Ca channels play an important role in the regulation of the vascular smooth muscle activity. Endothelial BK Ca channels modulate the biosyntheses and release of various vasoactive modulators and regulate the membrane potential. Because of their regulatory role in vascular tone, endothelial BK Ca channels have been suggested as therapeutic targets for the treatment of cardiovascular diseases. Hypertension, atherosclerosis, and diabetes are associated with altered current amplitude, open probability, and Ca2+-sensing of BK Ca channels. The properties of BK Ca channels and their role in endothelial and vascular smooth muscle cells would address them as potential therapeutic targets. Further studies are necessary to identify the detailed molecular mechanisms of action and to investigate selective BK Ca channels openers as possible therapeutic agents for clinical use.
Collapse
|
35
|
Abstract
BACKGROUND AND PURPOSE Studies of peripheral arteries in hypercholesterolemic animals suggest that increased generation of superoxide contributes to endothelial dysfunction, especially in the presence of atherosclerotic lesions. We tested the hypothesis that vasomotor function is impaired in cerebral arterioles during hypercholesterolemia through a mechanism that involves oxidative stress. METHODS Apolipoprotein E-deficient (apoE(-/-)) mice were fed a normal or a high-fat diet for >6 months. ApoE(+/-) mice fed a normal diet were used as normocholesterolemic controls. Responses of cerebral arterioles were examined in open cranial windows in vivo in anesthetized mice. RESULTS In apoE(-/-) mice, intimal area was increased only in the proximal aorta on the normal diet and also markedly increased in the distal aorta on the high-fat diet. There were no increases in intimal area in the aortas of control mice or in the cerebral arterioles in any group. The dilator response of cerebral arterioles to ACh (10 micromol/L) in control mice (26+/-4% increase in diameter) was reduced in apoE(-/-) mice on either the normal (13+/-2%) or the high-fat (13+/-3%) diet (P<0.05 vs control). NADPH (10 micromol/L), a substrate for NADPH oxidase, produced dilator responses in control mice (8+/-4%) that were significantly increased in apoE(-/-) mice on the high-fat diet (16+/-2%, P<0.05 vs control). Tempol, a superoxide scavenger, and apocynin, an inhibitor of NADPH oxidase, significantly increased vasodilator responses to ACh and decreased vasodilation to NADPH in apoE(-/-) mice on the high-fat diet. Nitroprusside produced a similar dilatation in the cerebral arterioles of all groups. CONCLUSIONS Hypercholesterolemia is associated with oxidative stress and endothelial dysfunction in cerebral arterioles, despite the absence of atherosclerotic lesions.
Collapse
Affiliation(s)
- Jiro Kitayama
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1081, USA
| | | | | | | |
Collapse
|
36
|
Retamal MA, Schalper KA, Shoji KF, Bennett MVL, Sáez JC. Opening of connexin 43 hemichannels is increased by lowering intracellular redox potential. Proc Natl Acad Sci U S A 2007; 104:8322-7. [PMID: 17494739 PMCID: PMC1895948 DOI: 10.1073/pnas.0702456104] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nonjunctional membrane in many cells contains connexin gap junction hemichannels (or connexons) that can open to allow permeation of small molecules. Opening of Cx43 hemichannels is infrequent in normal extracellular Ca(2+) and enhanced by low Ca(2+), positive membrane potentials, and dephosphorylation of critical residues. Here we report that lowering intracellular redox potential increases Cx43 hemichannel open probability under otherwise normal conditions. We studied dye uptake and single-channel activity in HeLa cells transfected with wild-type Cx43, Cx43 with enhanced GFP attached to its C terminus (Cx43-EGFP), and Cx43 with enhanced GFP attached to its N terminus (EGFP-Cx43). Dithiothreitol [(DTT) 10 mM], a membrane permeant-reducing agent, increased the rate of dye uptake by cells expressing Cx43 and Cx43-EGFP, but not by parental cells or cells expressing EGFP-Cx43. Induced dye uptake was blocked by La(3+), by a peptide gap junction and hemichannel blocker (gap 26), and by flufenamic acid. DTT increased Cx43-EGFP hemichannel opening at positive voltages. Bath application of reduced glutathione, a membrane impermeant-reducing agent, did not increase dye uptake, but glutathione in the recording pipette increased hemichannel opening at positive voltages, suggesting that it acted intracellularly. DTT caused little change in levels of surface Cx43 or Cx43-EGFP, or in intracellular pH. These findings suggest that lowering intracellular redox potential increases the opening of Cx43 and Cx43-EGFP hemichannels, possibly by action on cytoplasmic cysteine residues in the connexin C terminus.
Collapse
Affiliation(s)
- Mauricio A. Retamal
- *Núcleo Milenio Inmunología e Inmunoterapia
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Santiago 4860, Chile; and
| | - Kurt A. Schalper
- *Núcleo Milenio Inmunología e Inmunoterapia
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Santiago 4860, Chile; and
| | - Kenji F. Shoji
- *Núcleo Milenio Inmunología e Inmunoterapia
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Santiago 4860, Chile; and
| | - Michael V. L. Bennett
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
- To whom correspondence may be addressed. E-mail: or
| | - Juan C. Sáez
- *Núcleo Milenio Inmunología e Inmunoterapia
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Santiago 4860, Chile; and
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
37
|
Rogers PA, Chilian WM, Bratz IN, Bryan RM, Dick GM. H2O2 activates redox- and 4-aminopyridine-sensitive Kv channels in coronary vascular smooth muscle. Am J Physiol Heart Circ Physiol 2006; 292:H1404-11. [PMID: 17071731 DOI: 10.1152/ajpheart.00696.2006] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously, we demonstrated that coronary vasodilation in response to hydrogen peroxide (H(2)O(2)) is attenuated by 4-aminopyridine (4-AP), an inhibitor of voltage-gated K(+) (K(V)) channels. Using whole cell patch-clamp techniques, we tested the hypothesis that H(2)O(2) increases K(+) current in coronary artery smooth muscle cells. H(2)O(2) increased K(+) current in a concentration-dependent manner (increases of 14 +/- 3 and 43 +/- 4% at 0 mV with 1 and 10 mM H(2)O(2), respectively). H(2)O(2) increased a conductance that was half-activated at -18 +/- 1 mV and half-inactivated at -36 +/- 2 mV. H(2)O(2) increased current amplitude; however, the voltages of half activation and inactivation were not altered. Dithiothreitol, a thiol reductant, reversed the effect of H(2)O(2) on K(+) current and significantly shifted the voltage of half-activation to -10 +/- 1 mV. N-ethylmaleimide, a thiol-alkylating agent, blocked the effect of H(2)O(2) to increase K(+) current. Neither tetraethylammonium (1 mM) nor iberiotoxin (100 nM), antagonists of Ca(2+)-activated K(+) channels, blocked the effect of H(2)O(2) to increase K(+) current. In contrast, 3 mM 4-AP completely blocked the effect of H(2)O(2) to increase K(+) current. These findings lead us to conclude that H(2)O(2) increases the activity of 4-AP-sensitive K(V) channels. Furthermore, our data support the idea that 4-AP-sensitive K(V) channels are redox sensitive and contribute to H(2)O(2)-induced coronary vasodilation.
Collapse
Affiliation(s)
- Paul A Rogers
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | | | | | | |
Collapse
|
38
|
Lu T, He T, Katusic ZS, Lee HC. Molecular Mechanisms Mediating Inhibition of Human Large Conductance Ca
2+
-Activated K
+
Channels by High Glucose. Circ Res 2006; 99:607-16. [PMID: 16931797 DOI: 10.1161/01.res.0000243147.41792.93] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diabetic vascular dysfunction is associated with an increase in reactive oxygen species (ROS). In this study, we hypothesized that hyperglycemia-induced ROS generation would impair the function of large conductance Ca
2+
-activated K
+
(BK) channels, which are major determinants in vasorelaxation. We found that when cultured in high glucose (HG) (22 mmol/L), HEK293 cells showed a reduction in expressed hSlo current densities, as well as slowed activation and deactivation kinetics. When human coronary smooth muscle cells were cultured in HG, similar findings were observed for the BK currents. HG enhanced superoxide dismutase and suppressed catalase (CAT) expression in HEK293 cells, leading to a significant increase in intracellular ROS. The effects of HG were mimicked by hydrogen peroxide (H
2
O
2
), and hSlo functions were restored by CAT gene transfer. Peroxynitrite inhibited hSlo current density but did not change channel kinetics. The hSloC911A mutant was insensitive to the effects of HG and H
2
O
2
. Hence, imbalance of antioxidant enzymes plays a critical role in ROS generation in HG, impairing hSlo functions through H
2
O
2
-dependent oxidation at cysteine 911. This may represent an important fundamental mechanism that contributes to the impairment of vasodilation in diabetes.
Collapse
Affiliation(s)
- Tong Lu
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
39
|
Rifkind AB. CYP1A in TCDD toxicity and in physiology-with particular reference to CYP dependent arachidonic acid metabolism and other endogenous substrates. Drug Metab Rev 2006; 38:291-335. [PMID: 16684662 DOI: 10.1080/03602530600570107] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Toxicologic and physiologic roles of CYP1A enzyme induction, the major biochemical effect of aryl hydrocarbon receptor activation by TCDD and other receptor ligands, are unknown. Evidence is presented that CYP1A exerts biologic effects via metabolism of endogenous substrates (i.e., arachidonic acid, other eicosanoids, estrogens, bilirubin, and melatonin), production of reactive oxygen, and effects on K(+) and Ca(2+) channels. These interrelated pathways may connect CYP1A induction to TCDD toxicities, including cardiotoxicity, vascular dysfunction, and wasting. They may also underlie homeostatic roles for CYP1A, especially when transiently induced by common chemical exposures and environmental conditions (i.e., tryptophan photoproducts, dietary indoles, and changes in oxygen tension).
Collapse
Affiliation(s)
- Arleen B Rifkind
- Department of Pharmacology, Weill Medical College of Cornell University, New York, NY 10021, USA.
| |
Collapse
|
40
|
Oelze M, Warnholtz A, Faulhaber J, Wenzel P, Kleschyov AL, Coldewey M, Hink U, Pongs O, Fleming I, Wassmann S, Meinertz T, Ehmke H, Daiber A, Münzel T. NADPH oxidase accounts for enhanced superoxide production and impaired endothelium-dependent smooth muscle relaxation in BKbeta1-/- mice. Arterioscler Thromb Vasc Biol 2006; 26:1753-9. [PMID: 16763163 DOI: 10.1161/01.atv.0000231511.26860.50] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Nitric oxide (NO)-induced vasorelaxation involves activation of large conductance Ca2+-activated K+ channels (BK). A regulatory BKbeta1 subunit confers Ca2+, voltage, and NO/cGMP sensitivity to the BK channel. We investigated whether endothelial function and NO/cGMP signaling is affected by a deletion of the beta1-subunit. METHODS AND RESULTS Vascular superoxide in BKbeta1-/- was measured using the fluorescent dye hydroethidine and lucigenin-enhanced chemiluminescence. Vascular NO formation was analyzed using electron paramagnetic resonance (EPR), expression of NADPH oxidase subunits, the endothelial NO synthase (eNOS), the soluble guanylyl cyclase (sGC), as well as the activity and expression of the cyclic GMP-dependent kinase I (cGK-I) were assessed by Western blotting technique. eNOS, sGC, cGK-I expression and acetylcholine-induced NO production were unaltered in Bkbeta1-/- animals, whereas endothelial function was impaired and the activity of the cGK-I was reduced. Vascular O2- and expression of the NADPH oxidase subunits p67phox and Nox1 were increased. Endothelial dysfunction was normalized by the NADPH oxidase inhibitor apocynin. Potassium chloride- and iberiotoxin-induced depolarization mimicked the effect of BKbeta1-deletion by increasing vascular O2- in an NADPH-dependent fashion. CONCLUSIONS The deletion of BKbeta1 causes endothelial dysfunction by increasing O2- formation via increasing activity and expression of the vascular NADPH oxidase.
Collapse
Affiliation(s)
- Matthias Oelze
- II.Medizinische Klinik, Johannes Gutenberg-Universität Mainz, Langenbeckstrasse 1, D-55131 Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
De Godoy MAF, Rattan S. Angiotensin-converting enzyme and angiotensin II receptor subtype 1 inhibitors restitute hypertensive internal anal sphincter in the spontaneously hypertensive rats. J Pharmacol Exp Ther 2006; 318:725-34. [PMID: 16648368 DOI: 10.1124/jpet.106.103366] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The present study determined the effects of the angiotensin-converting enzyme (ACE) inhibitor captopril and angiotensin II receptor subtype 1 (AT1-R) antagonist losartan on the internal anal sphincter pressures (IASP) in spontaneously hypertensive rats (SHR) versus normotensive Wistar-Kyoto rats (WKY). The SHR had significantly higher IASP (21.7 +/- 0.8 mm Hg) than the WKY (14.7 +/- 0.9 mm Hg), which was associated with the higher levels of angiotensin II (Ang II) in plasma (50.3 +/- 0.9 pg/ml) and in muscle bath perfusates (72.7 +/- 11.8 pg/ml) compared with the WKY (p < 0.05). Captopril and losartan decreased the IASP in SHR and WKY, but they were more potent in SHR. Captopril and losartan normalized the IASP in the SHR, whereas these agents may compromise rectoanal continence in the WKY. Reverse transcriptase-polymerase chain reaction and Western blots showed higher levels of angiotensinogen, renin, ACE, and AT1-R in the internal anal sphincter (IAS) of SHR. Ang II caused concentration-dependent contraction of IAS smooth muscle strips from WKY (pEC50 = 8.5 +/- 0.1) and SHR (pEC50 = 8.6 +/- 0.2). Losartan (100 nM) significantly (p < 0.05) inhibited this effect. From these data, we conclude that 1) hypertensive IAS in SHR is primarily the result of renin-angiotensin system up-regulation, 2) ACE inhibitors and AT(1)-R antagonists simply relieve the hypertensive IAS, and 3) the differential effect of these inhibitors in the hypertensive versus the normotensive IAS may explain the lack of incontinence as a side effect in hypertensive patients receiving ACE inhibitors and AT1-R antagonists.
Collapse
Affiliation(s)
- Márcio A F De Godoy
- Department of Medicine, Division of Gastroenterology and Hepatology, Jefferson Medical College of Thomas Jefferson University, 1025 Walnut St., Room 901 College; Philadelphia, PA 19107, USA
| | | |
Collapse
|
42
|
Zhang G, Xu R, Heinemann SH, Hoshi T. Cysteine oxidation and rundown of large-conductance Ca2+-dependent K+ channels. Biochem Biophys Res Commun 2006; 342:1389-95. [PMID: 16516848 DOI: 10.1016/j.bbrc.2006.02.079] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2006] [Accepted: 02/14/2006] [Indexed: 01/26/2023]
Abstract
Gating of Slo1 calcium- and voltage-gated potassium (BK) channels involves allosteric interactions among the channel pore, voltage sensors, and Ca(2+)-binding domains. The allosteric activation of the Slo1 channel is in turn modulated by a variety of regulatory processes, including oxidation. Cysteine oxidation alters functional properties of Slo1 channels and has been suggested to contribute to the decrease in the channel activity following patch excision often referred to as rundown. This study examined the biophysical mechanism of rundown and whether oxidation of cysteine residues located in the C-terminus of the human Slo1 channel (C430 and C911) plays a role. Comparison of the changes in activation properties in different concentrations of Ca(2+) among the wild-type, C430A, and C911A channels during rundown and by treatment with the oxidant hydrogen peroxide showed that oxidation of C430 and C911 markedly contributes to the rundown process.
Collapse
Affiliation(s)
- Guangping Zhang
- Department of Physiology, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
43
|
Santarelli LC, Wassef R, Heinemann SH, Hoshi T. Three methionine residues located within the regulator of conductance for K+ (RCK) domains confer oxidative sensitivity to large-conductance Ca2+-activated K+ channels. J Physiol 2006; 571:329-48. [PMID: 16396928 PMCID: PMC1796801 DOI: 10.1113/jphysiol.2005.101089] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Methionine-directed oxidation of the human Slo1 potassium channel (hSlo1) shifts the half-activation voltage by -30 mV and markedly slows channel deactivation at low concentrations of intracellular Ca2+ ([Ca2+]i). We demonstrate here that the contemporaneous mutation of M536, M712 and M739 to leucine renders the channel functionally insensitive to methionine oxidation caused by the oxidant chloramine-T (Ch-T) without altering other functional characteristics. Coexpression with the auxiliary beta1 subunit fails to restore the full oxidative sensitivity to this triple mutant channel. The Ch-T effect is mediated specifically by M536, M712 and M739 because even small changes in this residue combination interfere with the ability to remove the oxidant sensitivity following mutation. Replacement of M712 or M739, but not M536, with the hydrophilic residue glutamate largely mimics oxidation of the channel and essentially removes the Ch-T sensitivity, suggesting that M712 and M739 may be part of a hydrophobic pocket disrupted by oxidation of non-polar methionine to the more hydrophilic methionine sulfoxide. The increase in wild-type hSlo1 open probability caused by methionine oxidation disappears at high [Ca2+]i and biophysical modelling of the Ch-T effect on steady-state activation implicates a decrease in the allosteric coupling between Ca2+ binding and the pore. The dramatic increase in open probability at low [Ca2+]i especially within the physiological voltage range suggests that oxidation of M536, M712 or M739 may enhance the Slo1 BK activity during conditions of oxidative stress, such as those associated with ischaemia-reperfusion and neurodegenerative disease, or in response to metabolic cues.
Collapse
Affiliation(s)
- Lindsey Ciali Santarelli
- Department of Physiology, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104-6085, USA
| | | | | | | |
Collapse
|
44
|
|
45
|
Xu H, Bian X, Watts SW, Hlavacova A. Activation of Vascular BK Channel by Tempol in DOCA-Salt Hypertensive Rats. Hypertension 2005; 46:1154-62. [PMID: 16216988 DOI: 10.1161/01.hyp.0000186278.50275.fa] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Large-conductance Ca2+-activated potassium (BK) channels modulate vascular smooth muscle tone. Tempol, a superoxide dismutase (SOD) mimetic, lowers blood pressure and inhibits sympathetic nerve activity in normotensive and hypertensive rats. In the present study, we tested the hypotheses depressor responses caused by tempol are partly mediated by vasodilation. It was found that tempol, but not tiron (a superoxide scavenger), dose-dependently relaxed mesenteric arteries (MA) in anesthetized sham and deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Tempol also reduced perfusion pressure in isolated, norepinephrine (NE) preconstricted MA from sham and DOCA-salt hypertensive rats. Maximal responses in DOCA-salt rats were twice as large as those in sham rats. The vasodilation caused by tempol was blocked by iberiotoxin (IBTX, BK channel antagonist, 0.1 micromol/L) and tetraethylammonium chloride (TEA) (1 mmol/L). Tempol did not relax KCl preconstricted arteries in sham or DOCA-salt rats, and Nomega-nitro-L-arginine methyl ester (L-NAME), apamin, or glibenclamide did not alter tempol-induced vasodilation. IBTX constricted MA and this response was larger in DOCA-salt compared with sham rats. Western blots and immunohistochemical analysis revealed increased expression of BK channel alpha subunit protein in DOCA-salt arteries compared with sham arteries. Whole-cell patch clamp studies revealed that tempol enhanced BK channel currents in HEK-293 cells transiently transfected with mslo, the murine BK channel a subunit. These currents were blocked by IBTX. The data indicate that tempol activates BK channels and this effect contributes to depressor responses caused by tempol. Upregulation of the BK channel alpha subunit contributes to the enhanced depressor response caused by tempol in DOCA-salt hypertension.
Collapse
Affiliation(s)
- Hui Xu
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | |
Collapse
|
46
|
Abstract
Basal tone in the internal anal sphincter (IAS) is primarily myogenic. Neurohumoral substances like angiotensin II may partially provide external signal for the basal tone in the IAS. The sphincteric relaxation on the contrary is neurogenic by activation of non-adrenergic non-cholinergic (NANC) nerves that release nitric oxide (NO), vasoactive intestinal polypeptide (VIP) and perhaps carbon monoxide. Because of the presence of spontaneous tone, the IAS offers an excellent model to investigate the nature of the inhibitory neurotransmission for NANC relaxation. Work from different laboratories in different species concludes that NO is the major contributor in the NANC relaxation. This may invoke the role of other inhibitory neurotransmitters such as VIP, working partly via NO. An understanding of the basic regulation of basal tone in the IAS and nature of inhibitory neurotransmission are critical in the pathophysiology and therapeutic potentials in the anorectal motility disorders.
Collapse
Affiliation(s)
- S Rattan
- Division of Gastroenterology & Hepatology, Department of Medicine, Jefferson Medical College of Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
47
|
Hristov KL, Gagov HS, Itzev D, Duridanova DB. Heme oxygenase-2 products activate IKCa: role of CO and iron in guinea pig portal vein smooth muscle cells. J Muscle Res Cell Motil 2005; 25:411-21. [PMID: 15548871 DOI: 10.1007/s10947-004-2771-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Hemin (10 microM) and carbon monoxide (CO) increased iberiotoxin-blockable IKCa in portal vein smooth muscle cells. CO-induced IKCa activation was abolished by 10 microM ODQ, 10 microM cyclopiazonic acid and 1 microM KT5823. The hemin-induced effect on IKCa was abolished by pretreatment with Sn-protoporphyrin IX, a heme oxygenase inhibitor and Fe2+ chelator but was insensitive to inhibitors of soluble guanylate cyclase (GC) and cGMP-dependent protein kinase (PKG). There was no effect of hemin on IKCa in the presence of 3 microM dithiotreitol into the bath or 3 mM glutathione into the pipette solution. Superoxide dismutase (1000 U/ml) or catalase (3000 U/ml) added into the pipette solution also abolished the effect of hemin on IKCa in this tissue. Additionally, 10 microM hemin could not influence IKCa in Ca2+-free external solution or in the presence of 30 microM SKF 95356. It was concluded that CO increases IKCa via its "conventional" signaling pathway, which involves soluble GC and PKG activation and subsequent stimulation of sarcoplasmic reticulum Ca2+ pump activity resulting in Ca2+-dependent activation of IKCa due to the accumulation of Ca2+ into the space near the plasma membrane. On the other hand, internally produced CO could not yield the same IKCa increase, while Fe2+ derived from heme oxygenase 2-dependent degradation of hemin in portal vein smooth muscle cells gives rise to reactive oxygen species namely hydroxyl and superoxide radicals. Both radicals are responsible for the SKF 95356-sensitive non-selective cation channel activation, the Ca2+ influx and the subsequent increase of Ca2+ concentration near the plasma membrane that augments the KCa channel activity.
Collapse
Affiliation(s)
- Kiril L Hristov
- Institute of Biophysics, Bulgarian Academy of Sciences, Department of Membrane Ion Channels, Sofia, Bulgaria
| | | | | | | |
Collapse
|
48
|
Abstract
Opening of potassium channels on vascular smooth muscle cells with resultant hyperpolarization plays a central role in several mechanisms of vasodilation. For example, in the arteriolar circulation where tissue perfusion is regulated, there is an endothelial derived hyperpolarizing factor that opens vascular smooth muscle calcium-activated potassium channels, eliciting dilation. Metabolic vasodilation involves the opening of sarcolemmal ATP-sensitive potassium channels. Adrenergic dilation as well as basal vasomotor tone in several vascular beds depend upon voltage-dependent potassium channels in smooth muscle. Thus hyperpolarization through potassium channel opening is a fundamental mechanism for vasodilation. Disease states such as coronary atherosclerosis and its risk factors are associated with elevated levels of reactive oxygen (ROS) and nitrogen species that have well-defined inhibitory effects on nitric oxide-mediated vasodilation. Effects of ROS on hyperpolarization mechanisms of dilation involving opening of potassium channels are less well understood but are very important because hyperpolarization-mediated dilation often compensates for loss of other dilator mechanisms. We review the effect of ROS on potassium channel function in the vasculature. Depending on the oxidative species, ROS can activate, inhibit, or leave unaltered potassium channel function in blood vessels. Therefore, discerning the activity of enzymes regulating production or degradation of ROS is important when assessing tissue perfusion in health and disease.
Collapse
Affiliation(s)
- David D Gutterman
- Cardiovascular Center, Department of Medicine, General Clinical Research Center, VA Medical Center, Medical College of Wisconsin, Milwaukee 53226, USA.
| | | | | |
Collapse
|
49
|
Santarelli LC, Chen J, Heinemann SH, Hoshi T. The beta1 subunit enhances oxidative regulation of large-conductance calcium-activated K+ channels. ACTA ACUST UNITED AC 2005; 124:357-70. [PMID: 15452197 PMCID: PMC2233902 DOI: 10.1085/jgp.200409144] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Oxidative stress may alter the functions of many proteins including the Slo1 large conductance calcium-activated potassium channel (BKCa). Previous results demonstrated that in the virtual absence of Ca2+, the oxidant chloramine-T (Ch-T), without the involvement of cysteine oxidation, increases the open probability and slows the deactivation of BKCa channels formed by human Slo1 (hSlo1) α subunits alone. Because native BKCa channel complexes may include the auxiliary subunit β1, we investigated whether β1 influences the oxidative regulation of hSlo1. Oxidation by Ch-T with β1 present shifted the half-activation voltage much further in the hyperpolarizing direction (−75 mV) as compared with that with α alone (−30 mV). This shift was eliminated in the presence of high [Ca2+]i, but the increase in open probability in the virtual absence of Ca2+ remained significant at physiologically relevant voltages. Furthermore, the slowing of channel deactivation after oxidation was even more dramatic in the presence of β1. Oxidation of cysteine and methionine residues within β1 was not involved in these potentiated effects because expression of mutant β1 subunits lacking cysteine or methionine residues produced results similar to those with wild-type β1. Unlike the results with α alone, oxidation by Ch-T caused a significant acceleration of channel activation only when β1 was present. The β1 M177 mutation disrupted normal channel activation and prevented the Ch-T–induced acceleration of activation. Overall, the functional effects of oxidation of the hSlo1 pore-forming α subunit are greatly amplified by the presence of β1, which leads to the additional increase in channel open probability and the slowing of deactivation. Furthermore, M177 within β1 is a critical structural determinant of channel activation and oxidative sensitivity. Together, the oxidized BKCa channel complex with β1 has a considerable chance of being open within the physiological voltage range even at low [Ca2+]i.
Collapse
Affiliation(s)
- Lindsey Ciali Santarelli
- Neuroscience Graduate Group, Department of Physiology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
50
|
Affiliation(s)
- Toshinori Hoshi
- Department of Physiology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|