1
|
Salnikova DI, Nikiforov NG, Postnov AY, Orekhov AN. Target Role of Monocytes as Key Cells of Innate Immunity in Rheumatoid Arthritis. Diseases 2024; 12:81. [PMID: 38785736 PMCID: PMC11119903 DOI: 10.3390/diseases12050081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic, and inflammatory autoimmune condition characterized by synovitis, pannus formation (with adjacent bone erosion), and joint destruction. In the perpetuation of RA, fibroblast-like synoviocytes (FLSs), macrophages, B cells, and CD4+ T-cells-specifically Th1 and Th17 cells-play crucial roles. Additionally, dendritic cells, neutrophils, mast cells, and monocytes contribute to the disease progression. Monocytes, circulating cells primarily derived from the bone marrow, participate in RA pathogenesis. Notably, CCR2 interacts with CCL2, and CX3CR1 (expressed by monocytes) cooperates with CX3CL1 (produced by FLSs), facilitating the migration involved in RA. Canonical "classical" monocytes predominantly acquire the phenotype of an "intermediate" subset, which differentially expresses proinflammatory cytokines (IL-1β, IL-6, and TNF) and surface markers (CD14, CD16, HLA-DR, TLRs, and β1- and β2-integrins). However, classical monocytes have greater potential to differentiate into osteoclasts, which contribute to bone resorption in the inflammatory milieu; in RA, Th17 cells stimulate FLSs to produce RANKL, triggering osteoclastogenesis. This review aims to explore the monocyte heterogeneity, plasticity, antigenic expression, and their differentiation into macrophages and osteoclasts. Additionally, we investigate the monocyte migration into the synovium and the role of their cytokines in RA.
Collapse
Affiliation(s)
- Diana I. Salnikova
- Laboratory of Oncoproteomics, Department of Experimental Tumor Biology, Institute of Carcinogenesis, Blokhin N.N. National Medical Research Center of Oncology, 24 Kashirskoe Highway, 115522 Moscow, Russia
| | - Nikita G. Nikiforov
- Laboratory of Angiopathology, The Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia; (N.G.N.); (A.N.O.)
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 3 Tsyurupa Street, 117418 Moscow, Russia;
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, 119334 Moscow, Russia
| | - Anton Y. Postnov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 3 Tsyurupa Street, 117418 Moscow, Russia;
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, The Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia; (N.G.N.); (A.N.O.)
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 3 Tsyurupa Street, 117418 Moscow, Russia;
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, 121609 Moscow, Russia
| |
Collapse
|
2
|
Sims NA, Lévesque JP. Oncostatin M: Dual Regulator of the Skeletal and Hematopoietic Systems. Curr Osteoporos Rep 2024; 22:80-95. [PMID: 38198032 PMCID: PMC10912291 DOI: 10.1007/s11914-023-00837-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 01/11/2024]
Abstract
PURPOSE OF THE REVIEW The bone and hematopoietic tissues coemerge during development and are functionally intertwined throughout mammalian life. Oncostatin M (OSM) is an inflammatory cytokine of the interleukin-6 family produced by osteoblasts, bone marrow macrophages, and neutrophils. OSM acts via two heterodimeric receptors comprising GP130 with either an OSM receptor (OSMR) or a leukemia inhibitory factor receptor (LIFR). OSMR is expressed on osteoblasts, mesenchymal, and endothelial cells and mice deficient for the Osm or Osmr genes have both bone and blood phenotypes illustrating the importance of OSM and OSMR in regulating these two intertwined tissues. RECENT FINDINGS OSM regulates bone mass through signaling via OSMR, adaptor protein SHC1, and transducer STAT3 to both stimulate osteoclast formation and promote osteoblast commitment; the effect on bone formation is also supported by action through LIFR. OSM produced by macrophages is an important inducer of neurogenic heterotopic ossifications in peri-articular muscles following spinal cord injury. OSM produced by neutrophils in the bone marrow induces hematopoietic stem and progenitor cell proliferation in an indirect manner via OSMR expressed by bone marrow stromal and endothelial cells that form hematopoietic stem cell niches. OSM acts as a brake to therapeutic hematopoietic stem cell mobilization in response to G-CSF and CXCR4 antagonist plerixafor. Excessive OSM production by macrophages in the bone marrow is a key contributor to poor hematopoietic stem cell mobilization (mobilopathy) in people with diabetes. OSM and OSMR may also play important roles in the progression of several cancers. It is increasingly clear that OSM plays unique roles in regulating the maintenance and regeneration of bone, hematopoietic stem and progenitor cells, inflammation, and skeletal muscles. Dysregulated OSM production can lead to bone pathologies, defective muscle repair and formation of heterotopic ossifications in injured muscles, suboptimal mobilization of hematopoietic stem cells, exacerbated inflammatory responses, and anti-tumoral immunity. Ongoing research will establish whether neutralizing antibodies or cytokine traps may be useful to correct pathologies associated with excessive OSM production.
Collapse
Affiliation(s)
- Natalie A Sims
- St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC, Australia
- Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | - Jean-Pierre Lévesque
- Translational Research Institute, Mater Research Institute - The University of Queensland, 37 Kent Street, Woolloongabba, QLD, Australia.
| |
Collapse
|
3
|
Hydrogen Sulfide Downregulates Oncostatin M Expression via PI3K/Akt/NF-κB Signaling Processes in Neutrophil-like Differentiated HL-60 Cells. Antioxidants (Basel) 2023; 12:antiox12020417. [PMID: 36829975 PMCID: PMC9952767 DOI: 10.3390/antiox12020417] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The cytokine oncostatin M (OSM) is regarded as a critical mediator in various inflammatory responses. While the gaseous signaling molecule hydrogen sulfide (H2S) plays a role in a variety of pathophysiological conditions, such as hypertension, inflammatory pain, osteoarthritis, ischemic stroke, oxidative stress, retinal degeneration, and inflammatory responses, the underlying mechanism of H2S action on OSM expression in neutrophils needs to be clarified. In this work, we studied how H2S reduces OSM expression in neutrophil-like differentiated (d)HL-60 cells. To evaluate the effects of H2S, sodium hydrosulfide (NaHS, a donor that produces H2S), ELISA, real-time PCR (qPCR), immunoblotting, and immunofluorescence staining were utilized. Although exposure to granulocyte-macrophage colony-stimulating factor (GM-CSF) resulted in upregulated levels of production and mRNA expression of OSM, these upregulated levels were reduced by pretreatment with NaHS in dHL-60 cells. Similarly, the same pretreatment lowered phosphorylated levels of phosphatidylinositol 3-kinase, Akt, and nuclear factor-kB that had been elevated by stimulation with GM-CSF. Overall, our results indicated that H2S could be a therapeutic agent for inflammatory disorders via suppression of OSM.
Collapse
|
4
|
Mishra A, Singla R, Kumar R, Sharma A, Joshi R, Sarma P, Kaur G, Prajapat M, Bhatia A, Medhi B. Granulocyte Colony-Stimulating Factor Improved Core Symptoms of Autism Spectrum Disorder via Modulating Glutamatergic Receptors in the Prefrontal Cortex and Hippocampus of Rat Brains. ACS Chem Neurosci 2022; 13:2942-2961. [PMID: 36166499 DOI: 10.1021/acschemneuro.2c00270] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Chronic neuroinflammation-induced anomalous glutamate receptor activation has been identified as one of the important factors in the pathogenesis of autism spectrum disorder (ASD). Thus, the current study was designed to elucidate the neuroprotective effect of the granulocyte colony-stimulating factor (G-CSF), a haemopoietic growth factor, an anti-inflammatory, and a neuroprotectant to decipher the underlying mechanism(s) in the valproic acid (VPA)-induced experimental model of ASD. Experimentally, the ASD rat model was induced by a single dose of VPA (600 mg/kg; i.p.) on gestation day 12.5 to the pregnant female rats. After birth, pups were treated with vehicle, normal saline 0.9% i.p., risperidone (2.5 mg/kg; i.p.), and G-CSF (10, 35, and 70 μg/kg; i.p.) from postnatal day (PND) 23 to 43. All the groups were subjected to various developmental and behavior tests from birth. The rats were sacrificed on PND 55, and their brain was excised and processed for biochemical parameters (oxidative stress, inflammatory markers, BDNF), histological examination (H&E, Nissl staining), NMDA, and AMPA receptor expression by immunohistochemistry, western blot, and real-time polymerase chain reaction evaluation. Also, the possible interaction of the G-CSF with NMDA and AMPA receptors was evaluated using the in-silico method. The results of the study showed that in VPA-exposed rats, postnatal treatment of G-CSF rescued all the behavioral abnormalities, oxidative stress, and inflammatory parameters in a dose-dependent manner while risperidone did not show any significant results. The in-silico analysis showed the direct interaction of G-CSF with NMDA and AMPA receptors. The upregulated expression of NMDA and AMPA both in the prefrontal cortex as well as hippocampus was alleviated by G-CSF thereby validating its anti-inflammatory and excitoprotective properties. Thus, G-CSF demonstrated neuroprotection against the core symptoms of autism in the VPA-induced rodent model, making it a potential candidate for the treatment of ASD.
Collapse
Affiliation(s)
- Abhishek Mishra
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh160012, India
| | - Rubal Singla
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh160012, India
| | - Rohit Kumar
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh160012, India
| | - AmitRaj Sharma
- Department of Neurology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh160012, India
| | - Rupa Joshi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh160012, India
| | - Phulen Sarma
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh160012, India
| | - Gurjeet Kaur
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh160012, India
| | - Manisha Prajapat
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh160012, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh160012, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh160012, India
| |
Collapse
|
5
|
Setiadi H, El-Banayosy AM, George S, Schmidtke DW, El-Banayosy A, Horstmanshof DA, Long JW. Oncostatin M: a Potential Biomarker to Predict Infection in Patients with Left Ventricular Assist Devices. ASAIO J 2022; 68:1036-1043. [PMID: 34772849 PMCID: PMC9110559 DOI: 10.1097/mat.0000000000001608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Infection is a serious adverse event limiting left ventricular assist device (LVAD) therapy in advanced heart failure patients, but a reliable means to identify patients at increased risk of infection is still lacking. We hypothesized that preoperative elevated levels of plasma Oncostatin M (OSM), a cytokine marker of leukocyte activation and inflammation, would be predictive of subsequent infection. We measured plasma OSM in 41 LVAD patients one day before LVAD implantation and postoperatively over two months. Preoperative plasma OSM levels were normal in 27 patients (group A, 4.9 ± 3.2 pg/ml) but elevated in 14 patients (group B, 1649.0 ± 458.9 pg/ml) ( p = 0.003). Early postoperative levels rose in both groups and declined rapidly in group A, with group B declining slowly over two months. Significantly more infections developed in group B than group A patients over two months postimplantation ( p = 0.004). No other routine clinical assessment or laboratory testing afforded this differentiation. These findings suggest that preoperative plasma OSM levels may assist in identifying patients at increased risk of infections after LVAD implantation.
Collapse
Affiliation(s)
- Hendra Setiadi
- INTEGRIS Advanced Cardiac Care, Nazih Zuhdi Transplant Institute, INTEGRIS Baptist Medical Center, Oklahoma City, Oklahoma
| | - Ahmed M. El-Banayosy
- INTEGRIS Advanced Cardiac Care, Nazih Zuhdi Transplant Institute, INTEGRIS Baptist Medical Center, Oklahoma City, Oklahoma
| | - Susan George
- INTEGRIS Advanced Cardiac Care, Nazih Zuhdi Transplant Institute, INTEGRIS Baptist Medical Center, Oklahoma City, Oklahoma
| | - David W. Schmidtke
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas
| | - Aly El-Banayosy
- INTEGRIS Advanced Cardiac Care, Nazih Zuhdi Transplant Institute, INTEGRIS Baptist Medical Center, Oklahoma City, Oklahoma
| | - Douglas A. Horstmanshof
- INTEGRIS Advanced Cardiac Care, Nazih Zuhdi Transplant Institute, INTEGRIS Baptist Medical Center, Oklahoma City, Oklahoma
| | - James W. Long
- INTEGRIS Advanced Cardiac Care, Nazih Zuhdi Transplant Institute, INTEGRIS Baptist Medical Center, Oklahoma City, Oklahoma
| |
Collapse
|
6
|
Oncostatin M regulates hematopoietic stem cell (HSC) niches in the bone marrow to restrict HSC mobilization. Leukemia 2022; 36:333-347. [PMID: 34518644 DOI: 10.1038/s41375-021-01413-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023]
Abstract
We show that pro-inflammatory oncostatin M (OSM) is an important regulator of hematopoietic stem cell (HSC) niches in the bone marrow (BM). Treatment of healthy humans and mice with granulocyte colony-stimulating factor (G-CSF) dramatically increases OSM release in blood and BM. Using mice null for the OSM receptor (OSMR) gene, we demonstrate that OSM provides a negative feed-back acting as a brake on HSPC mobilization in response to clinically relevant mobilizing molecules G-CSF and CXCR4 antagonist. Likewise, injection of a recombinant OSM molecular trap made of OSMR complex extracellular domains enhances HSC mobilization in poor mobilizing C57BL/6 and NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ mice. Mechanistically, OSM attenuates HSC chemotactic response to CXCL12 and increases HSC homing to the BM signaling indirectly via BM endothelial and mesenchymal cells which are the only cells expressing OSMR in the BM. OSM up-regulates E-selectin expression on BM endothelial cells indirectly increasing HSC proliferation. RNA sequencing of HSCs from Osmr-/- and wild-type mice suggest that HSCs have altered cytoskeleton reorganization, energy usage and cycling in the absence of OSM signaling in niches. Therefore OSM is an important regulator of HSC niche function restraining HSC mobilization and anti-OSM therapy combined with current mobilizing regimens may improve HSPC mobilization for transplantation.
Collapse
|
7
|
Ursolic Acid Suppresses Oncostatin M Expression through Blockade of PI3K/Akt/NF-κB Signaling Processes in Neutrophil-like Differentiated HL-60 Cells. Processes (Basel) 2022. [DOI: 10.3390/pr10020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Cytokine oncostatin M (OSM) plays an important role in a variety of inflammatory reactions and is mainly produced in neutrophils in inflammatory diseases. While natural pentacyclic triterpenoid ursolic acid (UA) possesses a wide range of beneficial effects, such as anti-oxidant, anti-tumor, and anti-inflammatory, the regulatory processes of OSM suppression by UA in neutrophils are still poorly understood. This study was aimed at examining how UA regulates OSM expression in neutrophil-like differentiated (d)HL-60 cells. Enzyme-linked immunosorbent assay, quantitative polymerase chain reaction, and immunoblotting were employed to analyze the effects of UA. Whereas stimulation with granulocyte-macrophage colony-stimulating factor (GM-CSF) led to elevations of OSM production and mRNA expression, these elevations were lowered by treatment with UA in neutrophil-like dHL-60 cells. When the cells were exposed to GM-CSF, phosphorylated levels of phosphatidylinositol 3-kinase, Akt, and nuclear factor-kB were upregulated. However, the upregulations were diminished by treatment with UA in neutrophil-like dHL-60 cells. The results of this study proposed that UA might relieve inflammatory diseases via inhibition of OSM.
Collapse
|
8
|
Han NR, Park HJ, Moon PD. Resveratrol Downregulates Granulocyte-Macrophage Colony-Stimulating Factor-Induced Oncostatin M Production through Blocking of PI3K/Akt/NF-κB Signal Cascade in Neutrophil-like Differentiated HL-60 Cells. Curr Issues Mol Biol 2022; 44:541-549. [PMID: 35723323 PMCID: PMC8928961 DOI: 10.3390/cimb44020037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/16/2022] Open
Abstract
Oncostatin M (OSM) is essential in a wide range of inflammatory responses, and most OSM is produced by neutrophils in respiratory diseases. While resveratrol (RES) is regarded as an anti-inflammatory agent in a variety of conditions, the mechanism of OSM inhibition by RES in neutrophils remains to be elucidated. In this study, we investigated whether RES could inhibit OSM production in neutrophil-like differentiated (d)HL-60 cells. The effects of RES were measured by means of an enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and Western blotting. Increases in production and mRNA expression of OSM resulted from the addition of granulocyte-macrophage colony-stimulating factor (GM-CSF) in neutrophil-like dHL-60 cells; however, these increases were downregulated by RES treatment. Exposure to GM-CSF led to elevations of phosphorylation of phosphatidylinositol 3-kinase (PI3K), Akt, and nuclear factor (NF)-kB. Treatment with RES induced downregulation of the phosphorylated levels of PI3K, Akt, and NF-κB in neutrophil-like dHL-60 cells. These results suggest that RES could be applicable to prevent and/or treat inflammatory disorders through blockade of OSM.
Collapse
Affiliation(s)
- Na-Ra Han
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Hi-Joon Park
- Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Phil-Dong Moon
- Center for Converging Humanities, Kyung Hee University, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-961-0897
| |
Collapse
|
9
|
Szulc-Kielbik I, Klink M. Polymorphonuclear Neutrophils and Tumors: Friend or Foe? EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:141-167. [PMID: 35165863 DOI: 10.1007/978-3-030-91311-3_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tumor microenvironment (TME) is a dynamic network that apart from tumor cells includes also cells of the immune system, e.g., neutrophils, which are recruited from blood circulation. In TME, neutrophils are strongly implicated in the direct and indirect interactions with tumor cells or other immune cells, and they play roles in both preventing and/or facilitating tumor progression and metastasis. The dual role of neutrophils is determined by their high plasticity and heterogeneity. Analogous to the macrophages, neutrophils can express antitumoral (N1) and protumoral (N2) phenotypes which differ substantially in morphology and function. N1 phenotype characterizes with a high cytotoxic and proinflammatory activities, while N2 phenotype with immunosuppressive and prometastatic properties. The antitumoral effect of neutrophils includes for example the production of reactive oxygen species or proapoptotic molecules. The protumoral action of neutrophils relies on releasing of proangiogenic and prometastatic mediators, immunosuppressive factors, as well as on direct helping tumor cells in extravasation process. This chapter summarizes the heterogeneity of neutrophils in TME, as well as their dual role on tumor cells.
Collapse
Affiliation(s)
| | - Magdalena Klink
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland.
| |
Collapse
|
10
|
Han NR, Ko SG, Park HJ, Moon PD. Dexamethasone Attenuates Oncostatin M Production via Suppressing of PI3K/Akt/NF-κB Signaling in Neutrophil-like Differentiated HL-60 Cells. Molecules 2021; 27:molecules27010129. [PMID: 35011361 PMCID: PMC8746434 DOI: 10.3390/molecules27010129] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Oncostatin M (OSM) plays a role in various inflammatory reactions, and neutrophils are the main source of OSM in pulmonary diseases. However, there is no evidence showing the mechanism of OSM production in neutrophils. While dexamethasone (Dex) has been known to exert anti-inflammatory activity in various fields, the precise mechanisms of OSM downregulation by Dex in neutrophils remain to be determined. Here, we examined how OSM is produced in neutrophil-like differentiated HL-60 cells. Enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and Western blot analysis were utilized to assess the potential of Dex. Granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulation resulted in OSM elevation in neutrophil-like dHL-60 cells. OSM elevation induced by GM-CSF is regulated by phosphatidylinositol 3-kinase (PI3K)/Akt/nuclear factor (NF)-kB signal cascades. GM-CSF stimulation upregulated phosphorylated levels of PI3K or Akt or NF-κB in neutrophil-like dHL-60 cells. Treatment with Dex decreased OSM levels as well as the phosphorylated levels of PI3K or Akt or NF-κB in neutrophil-like dHL-60 cells. Our findings show the potential of Dex in the treatment of inflammatory diseases via blocking of OSM.
Collapse
Affiliation(s)
- Na-Ra Han
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Hi-Joon Park
- Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Phil-Dong Moon
- Center for Converging Humanities, Kyung Hee University, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-961-0897
| |
Collapse
|
11
|
Endothelial signaling by neutrophil-released oncostatin M enhances P-selectin-dependent inflammation and thrombosis. Blood Adv 2020; 3:168-183. [PMID: 30670533 DOI: 10.1182/bloodadvances.2018026294] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/13/2018] [Indexed: 12/25/2022] Open
Abstract
In the earliest phase of inflammation, histamine and other agonists rapidly mobilize P-selectin to the apical membranes of endothelial cells, where it initiates rolling adhesion of flowing neutrophils. Clustering of P-selectin in clathrin-coated pits facilitates rolling. Inflammatory cytokines typically signal by regulating gene transcription over a period of hours. We found that neutrophils rolling on P-selectin secreted the cytokine oncostatin M (OSM). The released OSM triggered signals through glycoprotein 130 (gp130)-containing receptors on endothelial cells that, within minutes, further clustered P-selectin and markedly enhanced its adhesive function. Antibodies to OSM or gp130, deletion of the gene encoding OSM in hematopoietic cells, or conditional deletion of the gene encoding gp130 in endothelial cells inhibited neutrophil rolling on P-selectin in trauma-stimulated venules of the mouse cremaster muscle. In a mouse model of P-selectin-dependent deep vein thrombosis, deletion of OSM in hematopoietic cells or of gp130 in endothelial cells markedly inhibited adhesion of neutrophils and monocytes and the rate and extent of thrombus formation. Our results reveal a paracrine-signaling mechanism by which neutrophil-released OSM rapidly influences endothelial cell function during physiological and pathological inflammation.
Collapse
|
12
|
Han J, Feng Z, Xie Y, Li F, Lv B, Hua T, Zhang Z, Sun C, Su D, Ouyang Q, Cai Y, Zou Y, Tang Y, Sun H, Jiang X. Oncostatin M-induced upregulation of SDF-1 improves Bone marrow stromal cell migration in a rat middle cerebral artery occlusion stroke model. Exp Neurol 2019; 313:49-59. [DOI: 10.1016/j.expneurol.2018.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 09/03/2018] [Accepted: 09/07/2018] [Indexed: 01/02/2023]
|
13
|
West NR, Owens BMJ, Hegazy AN. The oncostatin M-stromal cell axis in health and disease. Scand J Immunol 2018; 88:e12694. [DOI: 10.1111/sji.12694] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 06/15/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Nathaniel R. West
- Department of Cancer Immunology; Genentech; South San Francisco California
| | - Benjamin M. J. Owens
- Somerville College; University of Oxford; Oxford UK
- EUSA Pharma; Hemel Hempstead UK
| | - Ahmed N. Hegazy
- Division of Gastroenterology, Infectiology, and Rheumatology; Charité Universitätsmedizin; Berlin Germany
- Deutsches Rheuma-Forschungszentrum; ein Institut der Leibniz-Gemeinschaft; Berlin Germany
| |
Collapse
|
14
|
Pothoven KL, Schleimer RP. The barrier hypothesis and Oncostatin M: Restoration of epithelial barrier function as a novel therapeutic strategy for the treatment of type 2 inflammatory disease. Tissue Barriers 2017; 5:e1341367. [PMID: 28665760 DOI: 10.1080/21688370.2017.1341367] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mucosal epithelium maintains tissue homeostasis through many processes, including epithelial barrier function, which separates the environment from the tissue. The barrier hypothesis of type 2 inflammatory disease postulates that epithelial and epidermal barrier dysfunction, which cause inappropriate exposure to the environment, can result in allergic sensitization and development of type 2 inflammatory disease. The restoration of barrier dysfunction once it's lost, or the prevention of barrier dysfunction, have the potential to be exciting new therapeutic strategies for the treatment of type 2 inflammatory disease. Neutrophil-derived Oncostatin M has been shown to be a potent disrupter of epithelial barrier function through the induction of epithelial-mesenchymal transition (EMT). This review will discuss these events and outline several points along this axis at which therapeutic intervention could be beneficial for the treatment of type 2 inflammatory diseases.
Collapse
Affiliation(s)
- Kathryn L Pothoven
- a Division of Allergy-Immunology, Department of Medicine , Northwestern University Feinberg School of Medicine , Chicago , IL , USA.,b Driskill Graduate Program , Northwestern University Feinberg School of Medicine , Chicago , IL , USA.,c Immunology Program, Benaroya Research Institute at Virginia Mason , Seattle , WA , USA
| | - Robert P Schleimer
- a Division of Allergy-Immunology, Department of Medicine , Northwestern University Feinberg School of Medicine , Chicago , IL , USA.,d Departments of Otolaryngology and Microbiology-Immunology , Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| |
Collapse
|
15
|
Pothoven KL, Norton JE, Suh LA, Carter RG, Harris KE, Biyasheva A, Welch K, Shintani-Smith S, Conley DB, Liu MC, Kato A, Avila PC, Hamid Q, Grammer LC, Peters AT, Kern RC, Tan BK, Schleimer RP. Neutrophils are a major source of the epithelial barrier disrupting cytokine oncostatin M in patients with mucosal airways disease. J Allergy Clin Immunol 2017; 139:1966-1978.e9. [PMID: 27993536 PMCID: PMC5529124 DOI: 10.1016/j.jaci.2016.10.039] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/13/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND We have previously shown that oncostatin M (OSM) levels are increased in nasal polyps (NPs) of patients with chronic rhinosinusitis (CRS), as well as in bronchoalveolar lavage fluid, after segmental allergen challenge in allergic asthmatic patients. We also showed in vitro that physiologic levels of OSM impair barrier function in differentiated airway epithelium. OBJECTIVE We sought to determine which hematopoietic or resident cell type or types were the source of the OSM expressed in patients with mucosal airways disease. METHODS Paraffin-embedded NP sections were stained with fluorescence-labeled specific antibodies against OSM, GM-CSF, and hematopoietic cell-specific markers. Live cells were isolated from NPs and matched blood samples for flow cytometric analysis. Neutrophils were isolated from whole blood and cultured with the known OSM inducers GM-CSF and follistatin-like 1, and OSM levels were measured in the supernatants. Bronchial biopsy sections from control subjects, patients with moderate asthma, and patients with severe asthma were stained for OSM and neutrophil elastase. RESULTS OSM staining was observed in NPs, showed colocalization with neutrophil elastase (n = 10), and did not colocalize with markers for eosinophils, macrophages, T cells, or B cells (n = 3-5). Flow cytometric analysis of NPs (n = 9) showed that 5.1% ± 2% of CD45+ cells were OSM+, and of the OSM+ cells, 56% ± 7% were CD16+Siglec-8-, indicating neutrophil lineage. Only 0.6 ± 0.4% of CD45+ events from matched blood samples (n = 5) were OSM+, suggesting that increased OSM levels in patients with CRS was locally stimulated and produced. A majority of OSM+ neutrophils expressed arginase 1 (72.5% ± 12%), suggesting an N2 phenotype. GM-CSF levels were increased in NPs compared with those in control tissue and were sufficient to induce OSM production (P < .001) in peripheral blood neutrophils in vitro. OSM+ neutrophils were also observed at increased levels in biopsy specimens from patients with severe asthma. Additionally, OSM protein levels were increased in induced sputum from asthmatic patients compared with that from control subjects (P < .05). CONCLUSIONS Neutrophils are a major source of OSM-producing cells in patients with CRS and severe asthma.
Collapse
Affiliation(s)
- Kathryn L Pothoven
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - James E Norton
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Lydia A Suh
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Roderick G Carter
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Kathleen E Harris
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Assel Biyasheva
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Kevin Welch
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | | | - David B Conley
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Mark C Liu
- Divisions of Allergy and Clinical Immunology, Pulmonary and Critical Care Medicine, Johns Hopkins Asthma and Allergy Center, Baltimore, Md
| | - Atsushi Kato
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Pedro C Avila
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Qutayba Hamid
- Meakins-Christie Laboratories of McGill University and McGill University Health Center Research Institute, Montreal, Quebec, Canada
| | - Leslie C Grammer
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Anju T Peters
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert C Kern
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Bruce K Tan
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert P Schleimer
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
16
|
Shang DS, Yang YM, Zhang H, Tian L, Jiang JS, Dong YB, Zhang K, Li B, Zhao WD, Fang WG, Chen YH. Intracerebral GM-CSF contributes to transendothelial monocyte migration in APP/PS1 Alzheimer's disease mice. J Cereb Blood Flow Metab 2016; 36:1978-1991. [PMID: 27444968 PMCID: PMC5094311 DOI: 10.1177/0271678x16660983] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/31/2016] [Accepted: 06/27/2016] [Indexed: 01/01/2023]
Abstract
Although tight junctions between human brain microvascular endothelial cells in the blood-brain barrier prevent molecules or cells in the bloodstream from entering the brain, in Alzheimer's disease, peripheral blood monocytes can "open" these tight junctions and trigger subsequent transendothelial migration. However, the mechanism underlying this migration is unclear. Here, we found that the CSF2RB, but not CSF2RA, subunit of the granulocyte-macrophage colony-stimulating factor receptor was overexpressed on monocytes from Alzheimer's disease patients. CSF2RB contributes to granulocyte-macrophage colony-stimulating factor-induced transendothelial monocyte migration. Granulocyte-macrophage colony-stimulating factor triggers human brain microvascular endothelial cells monolayer tight junction disassembly by downregulating ZO-1 expression via transcription modulation and claudin-5 expression via the ubiquitination pathway. Interestingly, intracerebral granulocyte-macrophage colony-stimulating factor blockade abolished the increased monocyte infiltration in the brains of APP/PS1 Alzheimer's disease model mice. Our results suggest that in Alzheimer's disease patients, high granulocyte-macrophage colony-stimulating factor levels in the brain parenchyma and cerebrospinal fluid induced blood-brain barrier opening, facilitating the infiltration of CSF2RB-expressing peripheral monocytes across blood-brain barrier and into the brain. CSF2RB might be useful as an Alzheimer's disease biomarker. Thus, our findings will help to understand the mechanism of monocyte infiltration in Alzheimer's disease pathogenesis.
Collapse
Affiliation(s)
- De S Shang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, P.R. China
| | - Yi M Yang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, P.R. China
| | - Hu Zhang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, P.R. China
| | - Li Tian
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, P.R. China
| | - Jiu S Jiang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, P.R. China
| | - Yan B Dong
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, P.R. China
| | - Ke Zhang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, P.R. China
| | - Bo Li
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, P.R. China
| | - Wei D Zhao
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, P.R. China
| | - Wen G Fang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, P.R. China
| | - Yu H Chen
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, P.R. China
| |
Collapse
|
17
|
Saha S, Chakraborty A, Bandyopadhyay SS. Stabilization of Oncostatin-M mRNA by Binding of Nucleolin to a GC-Rich Element in Its 3'UTR. J Cell Biochem 2016; 117:988-99. [PMID: 26399567 DOI: 10.1002/jcb.25384] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/22/2015] [Indexed: 12/23/2022]
Abstract
Oncostatin-M (OSM) is a patho-physiologically important pleiotropic, multifunctional cytokine. OSM mRNA sequence analysis revealed that its 3'UTR contains three highly conserved GC-rich cis-elements (GCREs) whose role in mRNA stability is unidentified. In the present study, the functional role of the proximal GC-rich region of osm 3'-UTR (GCRE-1) in post-transcriptional regulation of osm expression in U937 cells was assessed by transfecting construct containing GCRE-1 at 3'-end of a fairly stable reporter gene followed by analysis of the expression of the reporter. GCRE-1 showed mRNA destabilizing activity; however, upon PMA treatment the reporter message containing GCRE-1 was stabilized. This stabilization is owing to a time-dependent progressive binding of trans-factors (at least five proteins) to GCRE-1 post-PMA treatment. Nucleolin was identified as one of the proteins in the RNP complex of GCRE-1 with PMA-treated U937 cytosolic extracts by oligo-dT affinity chromatography of poly-adenylated GCRE-1. Immuno-blot revealed time-dependent enhancement of nucleolin in the cytoplasm which in turn directly binds GCRE-1. RNA co-immunoprecipitation confirmed the GCRE-1-nucleolin interaction in vivo. To elucidate the functional role of nucleolin in stabilization of osm mRNA, nucleolin was overexpressed in U937 cells and found to stabilize the intrinsic osm mRNA, where co-transfection with the reporter containing GCRE-1 confirms the role of GCRE-1 in stabilization of the reporter mRNA. Thus, in conclusion, the results asserted that PMA treatment in U937 cells leads to cytoplasmic translocation of nucleolin that directly binds GCRE-1, one of the major GC-rich instability elements, thereby stabilizing the osm mRNA.
Collapse
Affiliation(s)
- Sucharita Saha
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Alina Chakraborty
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Sumita Sengupta Bandyopadhyay
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| |
Collapse
|
18
|
Tazzyman S, Niaz H, Murdoch C. Neutrophil-mediated tumour angiogenesis: subversion of immune responses to promote tumour growth. Semin Cancer Biol 2013; 23:149-58. [PMID: 23410638 DOI: 10.1016/j.semcancer.2013.02.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/09/2013] [Accepted: 02/01/2013] [Indexed: 01/30/2023]
Abstract
Neutrophils are rapidly responding, phagocytes that are an essential part of the host innate immune response to invading micro-organisms. Along with other leucocytes they also play a key role in directing repair at sites of tissue damage. Neutrophils accomplish many of their biological functions by releasing enzymes, anti-microbial agents and cytokines when stimulated to degranulate. There is now increasing evidence to show that tumours are able to recruit neutrophils by secreting a number of tumour cell or stromal-derived chemoattractants. Once within the tumour microenvironment neutrophils, like macrophages, are polarised into a pro-tumour phenotype that can foster tumour growth by secreting factors that directly influence tumour cell proliferation, drive immunosuppression and promote tumour angiogenesis. In this review we discuss the likely mechanisms by which neutrophils are recruited into the tumour and then elaborate on how these cells may induce tumour vascularisation by the secretion of powerful pro-angiogenic factors.
Collapse
Affiliation(s)
- Simon Tazzyman
- MRC Centre for Developmental and Biomedical Genetics, Firth Court, University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|
19
|
David E, Tirode F, Baud'huin M, Guihard P, Laud K, Delattre O, Heymann MF, Heymann D, Redini F, Blanchard F. Oncostatin M is a growth factor for Ewing sarcoma. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1782-95. [PMID: 22982441 DOI: 10.1016/j.ajpath.2012.07.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 06/28/2012] [Accepted: 07/18/2012] [Indexed: 11/18/2022]
Abstract
Primary bone tumors, osteosarcomas and chondrosarcomas, derive from mesenchymal stem cells committed into osteoblasts and chondrocytes; in Ewing sarcomas (ESs), the oncogenic fusion protein EWS-FLI1 prevents mesenchymal differentiation and induces neuroectodermic features. Oncostatin M (OSM) is a cytokine from the IL-6 family that modulates proliferation and differentiation in numerous cells. The basis for inhibition versus induction of proliferation by this cytokine is obscure, although MYC was described as a potent molecular switch in OSM signaling. We show herein that, in contrast to osteosarcomas and chondrosarcomas, for which OSM was cytostatic, OSM induced proliferation of ES cell lines. Knockdown experiments demonstrated that growth induction by OSM depends on both types I [leukemia inhibitory factor receptor (LIFR)] and II [OSM receptor (OSMR)] receptors, high STAT3 activation, and induction of MYC to a high expression level. Indeed, ES cell lines, mice xenografts, and patient biopsy specimens poorly expressed LIF, precluding LIFR lysosomal degradation and OSMR transcriptional induction, thus leading to a high LIFR/OSMR ratio. Because other neuroectodermic tumors (ie, glioma, medulloblastoma, and neuroblastoma) had a similar expression profile, the main role of EWS-FLI1 could be through maintenance of stemness and neuroectodermic features, characterized by a low LIF, a high LIFR/OSMR ratio, and high MYC expression. Thus, this study on rare bone malignancies gives valuable insights on more common cancer regulatory mechanisms and could provide new therapeutic opportunities.
Collapse
|