1
|
Peng T, Li X, Tong X. Insights into the methods for separation and chromatographic determination of nucleotides/nucleosides in Cordyceps spp. J Chromatogr A 2024; 1734:465279. [PMID: 39197362 DOI: 10.1016/j.chroma.2024.465279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024]
Abstract
Cordyceps genus is entomopathogenic mushrooms that have traditionally been used in ethnomedicine in Asian countries. Nucleosides (Ns), nucleotide(Nt), Nucleobases (Nb) and their analogues play a critically physiological role and have a great potential in drug development, such as pentostatin and cordycepin (COR). Due to their significance bioactivity, several Nt/Ns were used as markers for quality evaluation for medicinal Cordyceps, including adenosine, inosine, guanosine, uridine and COR. Among them, COR is the most considerable adenosine analogue, exhibiting significant therapeutic potential and has many intracellular targets. Nt/Ns contains polar compounds and the phosphate groups of Nt deprotonate and carry negative charges with a broad range of pH values. Recent years, various advanced methods of extraction and separation, and nanomaterials have been developed to extract, isolate and determine these molecules, such as ultrasound-assisted extraction (UAE), Supercritical fluid extraction (SFE) and pressurized liquid extraction (PLE) for the extraction, the solid phase extraction (SPE) methods (microextraction SPE (SPME), magnetic SPE (MSPE), and unique SPE materials based on the boronate affinity for the separation, and chromatography methods employing ultraviolet (UV), fluorescence, MS detection and electrospray ionization (ESI), along with matrix-assisted laser desorption/ ionization (MALDI) for the determination. COR derived from adenosine and its structure is very similar to that of 2'-deoxyadenosine (2'-dA) and adenosine, resulting in an incorrect identification, which will influence its therapeutic effects. Therefore, this review primarily focused on the characteristics of Nt/Ns, the advanced methods, strategies, nanomaterials for extracting and determining Nt/Ns (COR in particular) in Cordyceps spp, as well as the methods for distinguishing COR from its structure analogs.
Collapse
Affiliation(s)
- Ting Peng
- The Ministry of Education Key Laboratory of Standardization of Chinese Medicine, Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Resources Breeding Base of Co-Founded, College of Pharmacy, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610000, China
| | - Xiaoxing Li
- The Ministry of Education Key Laboratory of Standardization of Chinese Medicine, Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Resources Breeding Base of Co-Founded, College of Pharmacy, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610000, China
| | - Xinxin Tong
- The Ministry of Education Key Laboratory of Standardization of Chinese Medicine, Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Resources Breeding Base of Co-Founded, College of Pharmacy, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610000, China.
| |
Collapse
|
2
|
Tasca CI, Zuccarini M, Di Iorio P, Ciruela F. Lessons from the physiological role of guanosine in neurodegeneration and cancer: Toward a multimodal mechanism of action? Purinergic Signal 2024:10.1007/s11302-024-10033-y. [PMID: 39004650 DOI: 10.1007/s11302-024-10033-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
Neurodegenerative diseases and brain tumours represent important health challenges due to their severe nature and debilitating consequences that require substantial medical care. Interestingly, these conditions share common physiological characteristics, namely increased glutamate, and adenosine transmission, which are often associated with cellular dysregulation and damage. Guanosine, an endogenous nucleoside, is safe and exerts neuroprotective effects in preclinical models of excitotoxicity, along with cytotoxic effects on tumour cells. However, the lack of well-defined mechanisms of action for guanosine hinders a comprehensive understanding of its physiological effects. In fact, the absence of specific receptors for guanosine impedes the development of structure-activity research programs to develop guanosine derivatives for therapeutic purposes. Alternatively, given its apparent interaction with the adenosinergic system, it is plausible that guanosine exerts its neuroprotective and anti-tumorigenic effects by modulating adenosine transmission through undisclosed mechanisms involving adenosine receptors, transporters, and purinergic metabolism. Here, several potential molecular mechanisms behind the protective actions of guanosine will be discussed. First, we explore its potential interaction with adenosine receptors (A1R and A2AR), including the A1R-A2AR heteromer. In addition, we consider the impact of guanosine on extracellular adenosine levels and the role of guanine-based purine-converting enzymes. Collectively, the diverse cellular functions of guanosine as neuroprotective and antiproliferative agent suggest a multimodal and complementary mechanism of action.
Collapse
Affiliation(s)
- Carla Inês Tasca
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
- Laboratory of Neurochemistry-4, Neuroscience Program/Biochemistry Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100, Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, 66100, Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100, Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, 66100, Chieti, Italy
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
- Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907L'Hospitalet de Llobregat, Bellvitge, Spain
| |
Collapse
|
3
|
Wu J, Liu J, Sun J, Liu Y, He T, Zhao J, Mei X, Liu Y, Yang M, Zhu S. Diallyl Trisulfide Acts as a Soil Disinfestation Against the Ilyonectria destructans through Inducing the Burst of Reactive Oxygen Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9669-9679. [PMID: 38632108 DOI: 10.1021/acs.jafc.4c01422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Soil-borne diseases represent an impediment to the sustainable development of agriculture. A soil-borne disease caused by Ilyonectria destructans severely impacts Panax species, and soil disinfestation has proven to be an effective management approach. Here, diallyl trisulfide (DATS), derived from garlic, exhibited pronounced inhibitory effects on the growth of I. destructans in vitro tests and contributed to the alleviation of soil-borne diseases in the field. A comprehensive analysis demonstrated that DATS inhibits the growth of I. destructans by activating detoxifying enzymes, such as GSTs, disrupting the equilibrium of redox reactions. A series of antioxidant amino acids were suppressed by DATS. Particularly noteworthy is the substantial depletion of glutathione by DATS, resulting in the accumulation of ROS, ultimately culminating in the inhibition of I. destructans growth. Briefly, DATS could effectively suppress soil-borne diseases by inhibiting pathogen growth through the activation of ROS, and it holds promise as a potential environmentally friendly soil disinfestation.
Collapse
Affiliation(s)
- Jiaqing Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Jinyu Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Junwei Sun
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Yingpin Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Tao He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Jing Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Xinyue Mei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Yixiang Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Min Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Shusheng Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
4
|
Dos Santos B, Piermartiri T, Tasca CI. The impact of purine nucleosides on neuroplasticity in the adult brain. Purinergic Signal 2024:10.1007/s11302-024-09988-9. [PMID: 38367178 DOI: 10.1007/s11302-024-09988-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/23/2024] [Indexed: 02/19/2024] Open
Abstract
Neuroplasticity refers to the nervous system's ability to adapt and reorganize its cell structures and neuronal networks in response to internal and external stimuli. In adults, this process involves neurogenesis, synaptogenesis, and synaptic and neurochemical plasticity. Several studies have reported the significant impact of the purinergic system on neuroplasticity modulation. And, there is considerable evidence supporting the role of purine nucleosides, such as adenosine, inosine, and guanosine, in this process. This review presents extensive research on how these nucleosides enhance the neuroplasticity of the adult central nervous system, particularly in response to damage. The mechanisms through which these nucleosides exert their effects involve complex interactions with various receptors and signaling pathways. Adenosine's influence on neurogenesis involves interactions with adenosine receptors, specifically A1R and A2AR. A1R activation appears to inhibit neuronal differentiation and promote astrogliogenesis, while A2AR activation supports neurogenesis, neuritogenesis, and synaptic plasticity. Inosine and guanosine positively impact cell proliferation, neurogenesis, and neuritogenesis. Inosine seems to modulate extracellular adenosine levels, and guanosine might act through interactions between purinergic and glutamatergic systems. Additionally, the review discusses the potential therapeutic implications of purinergic signaling in neurodegenerative and neuropsychiatric diseases, emphasizing the importance of these nucleosides in the neuroplasticity of brain function and recovery.
Collapse
Affiliation(s)
- Beatriz Dos Santos
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
- Programa de Pós-Graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Tetsade Piermartiri
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
- Programa de Pós-Graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Carla I Tasca
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
- Programa de Pós-Graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
- Programa de Pós-Graduação Em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
5
|
Cao Y, Lu J, Cai G. Quality improvement of soybean meal by yeast fermentation based on the degradation of anti-nutritional factors and accumulation of beneficial metabolites. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1441-1449. [PMID: 37822013 DOI: 10.1002/jsfa.13041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/25/2023] [Accepted: 10/12/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Soybean meal (SBM) is the main protein source for animal diets but its anti-nutritional constituents affect animal growth and immunity. The yeast culture of soybean meal (SBM-YC) that fermented with yeast and hydrolyzed by protease simultaneously could reduce anti-nutritional factors effectively and accumulate beneficial metabolites. RESULTS The crude protein and acid-soluble protein content of SBM-YC reached 542.5 g kg-1 and 117.2 g kg-1 , respectively, and the essential amino acid content increased by 17.9%. Raffinose and stachyose decreased over 95.0%, and the organic acid content such as acetic acid, butyric acid, citric acid, lactic acid, succinic acid, and propionic acid produced by fermentation reached 6.1, 3.8, 3.6, 2.5, 1.2, and 0.4 g kg-1 , respectively. As biomarkers of yeast culture, nucleosides and their precursors reached 1.7 g kg-1 ; in particular, the inosine content increased from 0 to 0.3 g kg-1 . The total antioxidant capacity, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) free radical activity, metal chelating ability, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging ability were increased by 50.3%, 46.1%, 43.9%, and 20.6%, respectively. CONCLUSION This study established a diversified evaluation index, which could lay the foundations for the production and quality control of SBM-YC in the future. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yazhuo Cao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Jian Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Guolin Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Kurt Z, Çimen D, Denizli A, Bereli N. Development of Optical-Based Molecularly Imprinted Nanosensors for Adenosine Detection. ACS OMEGA 2023; 8:18839-18850. [PMID: 37273602 PMCID: PMC10233842 DOI: 10.1021/acsomega.3c01028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/28/2023] [Indexed: 06/06/2023]
Abstract
Adenosine nucleoside is an important molecule in human physiology. The levels of adenosine nucleoside in urine and plasma are directly or indirectly related to diseases such as neurodegenerative diseases and cancer. In the present study, adenosine-imprinted and non-imprinted poly(2-hydroxyethyl methacrylate-methacrylic acid) (poly(HEMA-MAA)) surface plasmon resonance (SPR) nanosensors were prepared for the determination of adenosine nucleoside. First, MAA/adenosine pre-polymerization complexes were prepared at different molar ratios using adenosine as a template molecule and methacrylic acid (MAA) as a monomer, and SPR nanosensor surfaces were optimized by determining the highest imprinting factor of the chip surfaces. The surfaces of adenosine-imprinted and non-imprinted SPR nanosensors were characterized by using atomic force microscopy, ellipsometry, and contact angle measurements. Kinetic analyses were made with different concentrations in the range of 0.5-400.0 nM for the detection range with a pH 7.4 phosphate buffer solution. The limit of detection in adenosine aqueous solutions, artificial plasma, and artificial urine was determined to be 0.018, 0.015, and 0.013 nM, respectively. In the selectivity analysis of the developed nanosensors, the selectivity of adenosine SPR nanosensors in solutions at different concentrations was determined by using guanosine and cytidine nucleosides. The relative selectivity coefficients of adenosine-imprinted SPR nanosensors for adenosine/cytidine and adenosine/guanosine are 3.836 and 3.427, respectively. Since adenosine-imprinted SPR nanosensors are intended to be used in medical analysis and research, adenosine analysis has also been studied in artificial urine and artificial plasma samples.
Collapse
Affiliation(s)
- Zehra
Tuğçe Kurt
- Bioengineering
Division, Hacettepe University, Ankara 06230, Turkey
| | - Duygu Çimen
- Department
of Chemistry, Hacettepe University, Ankara 06800, Turkey
| | - Adil Denizli
- Department
of Chemistry, Hacettepe University, Ankara 06800, Turkey
| | - Nilay Bereli
- Department
of Chemistry, Hacettepe University, Ankara 06800, Turkey
| |
Collapse
|
7
|
Sun YL, Zhao PP, Zhu CB, Jiang MC, Li XM, Tao JL, Hu CC, Yuan B. Integrating metabolomics and network pharmacology to assess the effects of quercetin on lung inflammatory injury induced by human respiratory syncytial virus. Sci Rep 2023; 13:8051. [PMID: 37198253 DOI: 10.1038/s41598-023-35272-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/15/2023] [Indexed: 05/19/2023] Open
Abstract
Quercetin (QR) has significant anti-respiratory syncytial virus (RSV) effects. However, its therapeutic mechanism has not been thoroughly explored. In this study, a lung inflammatory injury model caused by RSV was established in mice. Untargeted lung tissue metabolomics was used to identify differential metabolites and metabolic pathways. Network pharmacology was used to predict potential therapeutic targets of QR and analyze biological functions and pathways modulated by QR. By overlapping the results of the metabolomics and the network pharmacology analyses, the common targets of QR that were likely to be involved in the amelioration of RSV-induced lung inflammatory injury by QR were identified. Metabolomics analysis identified 52 differential metabolites and 244 corresponding targets, while network pharmacology analysis identified 126 potential targets of QR. By intersecting these 244 targets with the 126 targets, hypoxanthine-guanine phosphoribosyltransferase (HPRT1), thymidine phosphorylase (TYMP), lactoperoxidase (LPO), myeloperoxidase (MPO), and cytochrome P450 19A1 (CYP19A1) were identified as the common targets. The key targets, HPRT1, TYMP, LPO, and MPO, were components of purine metabolic pathways. The present study demonstrated that QR effectively ameliorated RSV-induced lung inflammatory injury in the established mouse model. Combining metabolomics and network pharmacology showed that the anti-RSV effect of QR was closely associated with purine metabolism pathways.
Collapse
Affiliation(s)
- Ya-Lei Sun
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Pei-Pei Zhao
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Cheng-Bi Zhu
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | | | - Xin-Min Li
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Jia-Lei Tao
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Chan-Chan Hu
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Bin Yuan
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
8
|
Weese-Myers ME, Cryan MT, Witt CE, Caldwell KCN, Modi B, Ross AE. Dynamic and Rapid Detection of Guanosine during Ischemia. ACS Chem Neurosci 2023; 14:1646-1658. [PMID: 37040534 PMCID: PMC10265669 DOI: 10.1021/acschemneuro.3c00048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023] Open
Abstract
Guanosine acts in both neuroprotective and neurosignaling pathways in the central nervous system; in this paper, we present the first fast voltammetric measurements of endogenous guanosine release during pre- and post-ischemic conditions. We discuss the metric of our measurements via analysis of event concentration, duration, and interevent time of rapid guanosine release. We observe changes across all three metrics from our normoxic to ischemic conditions. Pharmacological studies were performed to confirm that guanosine release is a calcium-dependent process and that the signaling observed is purinergic. Finally, we show the validity of our ischemic model via staining and fluorescent imaging. Overall, this paper sets the tone for rapid monitoring of guanosine and provides a platform to investigate the extent to which guanosine accumulates at the site of brain injury, i.e., ischemia.
Collapse
Affiliation(s)
- Moriah E. Weese-Myers
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172
- Co-first author
| | - Michael T. Cryan
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172
- Co-first author
| | - Colby E. Witt
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172
| | - Kaejaren C. N. Caldwell
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172
| | - Bindu Modi
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172
| | - Ashley E. Ross
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172
| |
Collapse
|
9
|
DuBois EM, Adewumi HO, O'Connor PR, Labovitz JE, O'Shea TM. Trehalose-Guanosine Glycopolymer Hydrogels Direct Adaptive Glia Responses in CNS Injury. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2211774. [PMID: 37097729 DOI: 10.1002/adma.202211774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/21/2023] [Indexed: 06/18/2023]
Abstract
Neural tissue damaged after central nervous system (CNS) injury does not naturally regenerate but is instead replaced by non-neural fibrotic scar tissue that serves no neurological function. Scar-free repair to create a more permissive environment for regeneration requires altering the natural injury responses of glial cells. In this work, glycopolymer-based supramolecular hydrogels are synthesized to direct adaptive glia repair after CNS injury. Combining poly(trehalose-co-guanosine) (pTreGuo) glycopolymers with free guanosine (fGuo) generates shear-thinning hydrogels through stabilized formation of long-range G-quadruplex secondary structures. Hydrogels with smooth or granular microstructures and mechanical properties spanning three orders of magnitude are produced through facile control of pTreGuo hydrogel composition. Injection of pTreGuo hydrogels into healthy mouse brains elicits minimal stromal cell infiltration and peripherally derived inflammation that is comparable to a bioinert methyl cellulose benchmarking material. pTreGuo hydrogels alter astrocyte borders and recruit microglia to infiltrate and resorb the hydrogel bulk over 7 d. Injections of pTreGuo hydrogels into ischemic stroke alter the natural responses of glial cells after injury to reduce the size of lesions and increase axon regrowth into lesion core environments. These results support the use of pTreGuo hydrogels as part of neural regeneration strategies to activate endogenous glia repair mechanisms.
Collapse
Affiliation(s)
- Eric M DuBois
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| | - Honour O Adewumi
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| | - Payton R O'Connor
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| | - Jacob E Labovitz
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| | - Timothy M O'Shea
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| |
Collapse
|
10
|
Hayatdavoudi P, Hosseini M, Hajali V, Hosseini A, Rajabian A. The role of astrocytes in epileptic disorders. Physiol Rep 2022; 10:e15239. [PMID: 35343625 PMCID: PMC8958496 DOI: 10.14814/phy2.15239] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 04/17/2023] Open
Abstract
Epilepsy affects about 1% of the population and approximately 30% of epileptic patients are resistant to current antiepileptic drugs. As a hallmark in epileptic tissue, many of the epileptic patients show changes in glia morphology and function. There are characteristic changes in different types of glia in different epilepsy models. Some of these changes such as astrogliosis are enough to provoke epileptic seizures. Astrogliosis is well known in mesial temporal lobe epilepsy (MTLE), the most common form of refractory epilepsy. A better understanding of astrocytes alterations could lead to novel and efficient pharmacological approaches for epilepsy. In this review, we present the alterations of astrocyte morphology and function and present some instances of targeting astrocytes in seizure and epilepsy.
Collapse
Affiliation(s)
- Parichehr Hayatdavoudi
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Department of PhysiologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research CenterMashhad University of Medical SciencesMashhadIran
| | - Vahid Hajali
- Department of NeuroscienceFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal PlantsMashhad University of Medical SciencesMashhadIran
- Department of PharmacologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Arezoo Rajabian
- Department of Internal MedicineFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
11
|
Liu Y, He X, Di Z, Du X. Study on the Active Constituents and Molecular Mechanism of Zhishi Xiebai Guizhi Decoction in the Treatment of CHD Based on UPLC-UESI-Q Exactive Focus, Gene Expression Profiling, Network Pharmacology, and Experimental Validation. ACS OMEGA 2022; 7:3925-3939. [PMID: 35155889 PMCID: PMC8829943 DOI: 10.1021/acsomega.1c04491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
As one of the most common clinical cardiovascular diseases (CVDs), coronary heart disease (CHD) is the most common cause of death in the world. It has been confirmed that Zhishi Xiebai Guizhi decoction (ZXGD), a classical prescription of the traditional Chinese medicine (TCM), has achieved certain effects in the treatment of CHD; however, the mechanism still remains controversial. In this paper, an integrated approach, including UPLC-UESI-Q Exactive Focus, gene expression profiling, network pharmacology, and experimental validation, was introduced to systematically investigate the mechanism of ZXGD in the treatment of CHD. First, UPLC-UESI-Q Exactive Focus was applied to identify the chemical compounds of ZXGD. Then, the targets of the components for ZXGD were predicted by MedChem Studio software embed in the integrative pharmacology-based research platform of TCM, and the differentially expressed genes (DEGs) of CHD were obtained by gene expression profiling in gene expression omnibus database. The common genes of the above two genes were obtained by Venn analysis as the targets of GXGD in treatment with CHD. Third, the core targets were screened out by protein-protein interaction network analysis, and the kyoto encyclopedia of genes and genomes pathway enrichment analysis was performed by the database for annotation, visualization, and integrated discovery bioinformatics resources. After that, the formula-herb-compound-target-pathway network was constructed to explore the mechanism of ZXGD in the treatment of CHD. Finally, molecular docking and the vitro experiment were carried out to validate some key targets. As a result, a total of 39 compounds, 12 core targets, and 4 pathways contributed to ZXGD for the treatment of CHD. This study preliminarily provided a foundation for the study on the mechanism against CHD for ZXGD and may be a reference for the compatibility mechanism and the extended application of TCM compound prescription.
Collapse
Affiliation(s)
- Yuan Liu
- Institute
of Traditional Chinese Medicine, Shaanxi
Academy of Traditional Chinese Medicine, Xi’an, Shaanxi 710003, China
| | - Xu He
- Department
of Integrated Traditional Chinese and Western Medicine, Shaanxi University of Chinese Medicine, Xianyang 711301, China
| | - Zhibiao Di
- Institute
of Traditional Chinese Medicine, Shaanxi
Academy of Traditional Chinese Medicine, Xi’an, Shaanxi 710003, China
| | - Xia Du
- Institute
of Traditional Chinese Medicine, Shaanxi
Academy of Traditional Chinese Medicine, Xi’an, Shaanxi 710003, China
- Institute
of Chinese Materia Medica, China Academy
of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
12
|
Huang Q, Cao L, Luo N, Qian H, Wei M, Xue L, Zhou Q, Zou B, Tan L, Chu Y, Ma X, Wang C, Wu H, Zhang L, Sun L, Li D, Fan X, Miao L, Zhou G. Predicting Range of Initial Warfarin Dose Based on Pharmacometabolomic and Genetic Inputs. Clin Pharmacol Ther 2021; 110:1585-1594. [PMID: 34460938 DOI: 10.1002/cpt.2407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/22/2021] [Indexed: 12/29/2022]
Abstract
Anticoagulation response to warfarin during the initial stage of therapy varies among individuals. In this study, we aimed to combine pharmacometabolomic and pharmacogenetic data to predict interindividual variation in warfarin response, and, on this basis, suggest an initial daily dose range. The baseline metabolic profiles, genotypes, and clinical information of 160 patients with heart valve disease served as the variables of the function of the last international normalized ratio measured before a patient's discharge (INRday7 ) to screen for potential biomarkers. The partial least-squares model showed that two baseline metabolites (uridine and guanosine), one single-nucleotide variation (VKORC1), and four clinical parameters (weight, creatinine level, amiodarone usage, and initial daily dose) had good predictive power for INRday7 (R2 = 0.753 for the training set, 0.643 for the test set). With these biomarkers, a machine learning algorithm (two-dimensional linear discriminant analysis-multinomial logit model) was used to predict the subgroups with extremely warfarin-sensitive or less warfarin-sensitive patients with a prediction accuracy of 91% for the training set and 90% for the test set, indicating that individual responses to warfarin could be effectively predicted. Based on this model, we have successfully designed an algorithm,"IniWarD," for predicting an effective dose range in the initial 7-day warfarin therapy. The results indicate that the daily dose range suggested by the IniWarD system is more appropriate than that of the conventional genotype-based method, and the risk of bleeding or thrombus due to warfarin could thus be avoided.
Collapse
Affiliation(s)
- Qing Huang
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,National Medical Products Administration, Key Laboratory for Impurity Profile of Chemical Drugs, Jiangsu Institute for Food and Drug Control, Nanjing, China
| | - Ling Cao
- National Medical Products Administration, Key Laboratory for Impurity Profile of Chemical Drugs, Jiangsu Institute for Food and Drug Control, Nanjing, China
| | - Nan Luo
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hanyu Qian
- National Medical Products Administration, Key Laboratory for Impurity Profile of Chemical Drugs, Jiangsu Institute for Food and Drug Control, Nanjing, China
| | - Meng Wei
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Ling Xue
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qiang Zhou
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Bingjie Zou
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Li Tan
- National Medical Products Administration, Key Laboratory for Impurity Profile of Chemical Drugs, Jiangsu Institute for Food and Drug Control, Nanjing, China
| | - Yanan Chu
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Xueping Ma
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Changtian Wang
- Department of Cardio-Thoracic Surgery, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Haiwei Wu
- Department of Cardio-Thoracic Surgery, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Lei Zhang
- Department of Cardio-Thoracic Surgery, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Lei Sun
- Department of Cardio-Thoracic Surgery, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Demin Li
- Department of Cardio-Thoracic Surgery, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Xialei Fan
- National Medical Products Administration, Key Laboratory for Impurity Profile of Chemical Drugs, Jiangsu Institute for Food and Drug Control, Nanjing, China
| | - Liyan Miao
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guohua Zhou
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Department of Cardio-Thoracic Surgery, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| |
Collapse
|
13
|
Kutryb-Zajac B, Mierzejewska P, Slominska EM, Smolenski RT. Therapeutic Perspectives of Adenosine Deaminase Inhibition in Cardiovascular Diseases. Molecules 2020; 25:molecules25204652. [PMID: 33053898 PMCID: PMC7587364 DOI: 10.3390/molecules25204652] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Adenosine deaminase (ADA) is an enzyme of purine metabolism that irreversibly converts adenosine to inosine or 2'deoxyadenosine to 2'deoxyinosine. ADA is active both inside the cell and on the cell surface where it was found to interact with membrane proteins, such as CD26 and adenosine receptors, forming ecto-ADA (eADA). In addition to adenosine uptake, the activity of eADA is an essential mechanism that terminates adenosine signaling. This is particularly important in cardiovascular system, where adenosine protects against endothelial dysfunction, vascular inflammation, or thrombosis. Besides enzymatic function, ADA protein mediates cell-to-cell interactions involved in lymphocyte co-stimulation or endothelial activation. Furthermore, alteration in ADA activity was demonstrated in many cardiovascular pathologies such as atherosclerosis, myocardial ischemia-reperfusion injury, hypertension, thrombosis, or diabetes. Modulation of ADA activity could be an important therapeutic target. This work provides a systematic review of ADA activity and anchoring inhibitors as well as summarizes the perspectives of their therapeutic use in cardiovascular pathologies associated with increased activity of ADA.
Collapse
Affiliation(s)
- Barbara Kutryb-Zajac
- Correspondence: (B.K.-Z); (R.T.S.); Tel.: +48-58-349-14-64 (B.K.-Z.); +48-58-349-14-60 (R.T.S.)
| | | | | | - Ryszard T. Smolenski
- Correspondence: (B.K.-Z); (R.T.S.); Tel.: +48-58-349-14-64 (B.K.-Z.); +48-58-349-14-60 (R.T.S.)
| |
Collapse
|
14
|
Guanosine modulates SUMO2/3-ylation in neurons and astrocytes via adenosine receptors. Purinergic Signal 2020; 16:439-450. [PMID: 32892251 PMCID: PMC7524998 DOI: 10.1007/s11302-020-09723-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
SUMOylation is a post-translational modification (PTM) whereby members of the Small Ubiquitin-like MOdifier (SUMO) family of proteins are conjugated to lysine residues in target proteins. SUMOylation has been implicated in a wide range of physiological and pathological processes, and much attention has been given to its role in neurodegenerative conditions. Due to its reported role in neuroprotection, pharmacological modulation of SUMOylation represents an attractive potential therapeutic strategy in a number of different brain disorders. However, very few compounds that target the SUMOylation pathway have been identified. Guanosine is an endogenous nucleoside with important neuromodulatory and neuroprotective effects. Experimental evidence has shown that guanosine can modulate different intracellular pathways, including PTMs. In the present study we examined whether guanosine alters global protein SUMOylation. Primary cortical neurons and astrocytes were treated with guanosine at 1, 10, 100, 300, or 500 μM at four time points, 1, 6, 24, or 48 h. We show that guanosine increases global SUMO2/3-ylation in neurons and astrocytes at 1 h at concentrations above 10 μM. The molecular mechanisms involved in this effect were evaluated in neurons. The guanosine-induced increase in global SUMO2/3-ylation was still observed in the presence of dipyridamole, which prevents guanosine internalization, demonstrating an extracellular guanosine-induced effect. Furthermore, the A1 adenosine receptor antagonist DPCPX abolished the guanosine-induced increase in SUMO2/3-ylation. The A2A adenosine receptor antagonist ZM241385 increased SUMOylation per se, but did not alter guanosine-induced SUMOylation, suggesting that guanosine may modulate SUMO2/3-ylation through an A1-A2A receptor interaction. Taken together, this is the first report to show guanosine as a SUMO2/3-ylation enhancer in astrocytes and neurons.
Collapse
|
15
|
Piermartiri TCB, Dos Santos B, Barros-Aragão FGQ, Prediger RD, Tasca CI. Guanosine Promotes Proliferation in Neural Stem Cells from Hippocampus and Neurogenesis in Adult Mice. Mol Neurobiol 2020; 57:3814-3826. [PMID: 32592125 DOI: 10.1007/s12035-020-01977-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/08/2020] [Indexed: 01/26/2023]
Abstract
Neural stem cells can generate new neurons in the mouse adult brain in a complex multistep process called neurogenesis. Several factors regulate this process, including neurotransmitters, hormones, neurotrophic factors, pharmacological agents, and environmental factors. Purinergic signaling, mainly the adenosinergic system, takes part in neurogenesis, being involved in cell proliferation, migration, and differentiation. However, the role of the purine nucleoside guanosine in neurogenesis remains unclear. Here, we examined the effect of guanosine by using the neurosphere assay derived from neural stem cells of adult mice. We found that continuous treatment with guanosine increased the number of neurospheres, neural stem cell proliferation, and neuronal differentiation. The effect of guanosine to increase the number of neurospheres was reduced by removing adenosine from the culture medium. We next traced the neurogenic effect of guanosine in vivo. The intraperitoneal treatment of adult C57BL/6 mice with guanosine (8 mg/kg) for 26 days increased the number of dividing bromodeoxyuridine (BrdU)-positive cells and also increased neurogenesis, as identified by measuring doublecortin (DCX)-positive cells in the dentate gyrus (DG) of the hippocampus. Antidepressant-like behavior in adult mice accompanied the guanosine-induced neurogenesis in the DG. These results provide new evidence of a pro-neurogenic effect of guanosine on neural stem/progenitor cells, and it was associated in vivo with antidepressant-like effects.
Collapse
Affiliation(s)
- Tetsade C B Piermartiri
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.,Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, UFSC, Florianópolis, SC, Brazil
| | - Beatriz Dos Santos
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.,Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, UFSC, Florianópolis, SC, Brazil
| | | | - Rui D Prediger
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, UFSC, Florianópolis, SC, Brazil.,Departamento de Farmacologia, Centro de Ciências Biológicas, UFSC, Florianópolis, SC, Brazil
| | - Carla Inês Tasca
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil. .,Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, UFSC, Florianópolis, SC, Brazil.
| |
Collapse
|
16
|
Carbotti G, Petretto A, Naschberger E, Stürzl M, Martini S, Mingari MC, Filaci G, Ferrini S, Fabbi M. Cytokine-Induced Guanylate Binding Protein 1 (GBP1) Release from Human Ovarian Cancer Cells. Cancers (Basel) 2020; 12:E488. [PMID: 32093058 PMCID: PMC7072386 DOI: 10.3390/cancers12020488] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/08/2020] [Accepted: 02/17/2020] [Indexed: 01/01/2023] Open
Abstract
We showed that IL-27 shares several effects with IFN-γ in human cancer cells. To identify novel extracellular mediators, potentially involved in epithelial ovarian cancer (EOC) biology, we analyzed the effect of IL-27 or IFN-γ on the secretome of cultured EOC cells by mass-spectrometry (nano-UHPLC-MS/MS). IL-27 and IFN-γ modulate the release of a limited fraction of proteins among those induced in the whole cell. We focused our attention on GBP1, a guanylate-binding protein and GTPase, which mediates several biological activities of IFNs. Cytokine treatment induced GBP1, 2, and 5 expressions in EOC cells, but only GBP1 was secreted. ELISA and immunoblotting showed that cytokine-stimulated EOC cells release full-length GBP1 in vitro, through non-classical pathways, not involving microvesicles. Importantly, full-length GBP1 accumulates in the ascites of most EOC patients and ex-vivo EOC cells show constitutive tyrosine-phosphorylated STAT1/3 proteins and GBP1 expression, supporting a role for Signal Transducer And Activator Of Transcription (STAT)-activating cytokines in vivo. High GBP1 gene expression correlates with better overall survival in the TCGA (The Cancer Genome Atlas) dataset of EOC. In addition, GBP1 transfection partially reduced EOC cell viability in an MTT assay. Our data show for the first time that cytokine-stimulated tumor cells release soluble GBP1 in vitro and in vivo and suggest that GBP1 may have anti-tumor effects in EOC.
Collapse
Affiliation(s)
- Grazia Carbotti
- IRCCS Ospedale Policlinico San Martino, Biotherapies Unit, Largo R. Benzi 10, 16132 Genoa, Italy; (G.C.); (G.F.)
| | - Andrea Petretto
- Core Facilities—Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genoa, Italy;
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 12, 91054 Erlangen, Germany; (E.N.); (M.S.)
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 12, 91054 Erlangen, Germany; (E.N.); (M.S.)
| | - Stefania Martini
- IRCCS Ospedale Policlinico San Martino, Immunology Unit, Largo R. Benzi 10, 16132 Genoa, Italy; (S.M.); (M.C.M.)
| | - Maria Cristina Mingari
- IRCCS Ospedale Policlinico San Martino, Immunology Unit, Largo R. Benzi 10, 16132 Genoa, Italy; (S.M.); (M.C.M.)
- Department of Experimental Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Via L.B. Alberti 2, 16132 Genoa, Italy
| | - Gilberto Filaci
- IRCCS Ospedale Policlinico San Martino, Biotherapies Unit, Largo R. Benzi 10, 16132 Genoa, Italy; (G.C.); (G.F.)
- Centre of Excellence for Biomedical Research and Department of Internal Medicine, University of Genoa, Via De Toni 14, 16132 Genoa, Italy
| | - Silvano Ferrini
- IRCCS Ospedale Policlinico San Martino, Biotherapies Unit, Largo R. Benzi 10, 16132 Genoa, Italy; (G.C.); (G.F.)
| | - Marina Fabbi
- IRCCS Ospedale Policlinico San Martino, Biotherapies Unit, Largo R. Benzi 10, 16132 Genoa, Italy; (G.C.); (G.F.)
| |
Collapse
|
17
|
Jackson EK, Mi Z, Kleyman TR, Cheng D. 8-Aminoguanine Induces Diuresis, Natriuresis, and Glucosuria by Inhibiting Purine Nucleoside Phosphorylase and Reduces Potassium Excretion by Inhibiting Rac1. J Am Heart Assoc 2019; 7:e010085. [PMID: 30608204 PMCID: PMC6404173 DOI: 10.1161/jaha.118.010085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background 8-Aminoguanosine and 8-aminoguanine are K+-sparing natriuretics that increase glucose excretion. Most effects of 8-aminoguanosine are due to its metabolism to 8-aminoguanine. However, the mechanism by which 8-aminoguanine affects renal function is unknown and is the focus of this investigation. Methods and Results Because 8-aminoguanine has structural similarities with inhibitors of the epithelial sodium channel (ENaC), Na+/H+ exchangers, and adenosine A1 receptors, we examined the effects of 8-aminoguanine on EN aC activity in mouse collecting duct cells, on intracellular pH of human proximal tubular epithelial cells, on responses to a selective A1-receptor agonist in vivo, and on renal excretory function in A1-receptor knockout rats. These experiments showed that 8-aminoguanine did not block EN aC, Na+/H+ exchangers, or A1 receptors. Because Rac1 enhances activity of mineralocorticoid receptors and some guanosine analogues inhibit Rac1, we examined the effects of 8-aminoguanine on Rac1 activity in mouse collecting duct cells. Rac1 activity was significantly inhibited by 8-aminoguanine. Because in vitro 8-aminoguanine is a purine nucleoside phosphorylase ( PNP ase) inhibitor, we examined the effects of a natriuretic dose of 8-aminoguanine on urinary excretion of PNP ase substrates and products. 8-Aminoguanine increased and decreased, respectively, urinary excretion of PNP ase substrates and products. Next we compared in rats the renal effects of intravenous doses of 9-deazaguanine ( PNP ase inhibitor) versus 8-aminoguanine. 8-Aminoguanine and 9-deazaguanine induced similar increases in urinary Na+ and glucose excretion, yet only 8-aminoguanine reduced K+ excretion. Nsc23766 (Rac1 inhibitor) mimicked the effects of 8-aminoguanine on K+ excretion. Conclusions 8-Aminoguanine increases Na+ and glucose excretion by blocking PNP ase and decreases K+ excretion by inhibiting Rac1.
Collapse
Affiliation(s)
- Edwin K Jackson
- 2 Department of Pharmacology and Chemical Biology University of Pittsburgh School of Medicine Pittsburgh PA
| | - Zaichuan Mi
- 2 Department of Pharmacology and Chemical Biology University of Pittsburgh School of Medicine Pittsburgh PA
| | - Thomas R Kleyman
- 1 Renal-Electrolyte Division Department of Medicine University of Pittsburgh School of Medicine Pittsburgh PA
| | - Dongmei Cheng
- 2 Department of Pharmacology and Chemical Biology University of Pittsburgh School of Medicine Pittsburgh PA
| |
Collapse
|
18
|
Dong Z, Sun Y, Wei G, Li S, Zhao Z. A Nucleoside/Nucleobase-Rich Extract from Cordyceps Sinensis Inhibits the Epithelial-Mesenchymal Transition and Protects against Renal Fibrosis in Diabetic Nephropathy. Molecules 2019; 24:E4119. [PMID: 31739543 PMCID: PMC6891521 DOI: 10.3390/molecules24224119] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
Cordyceps Sinensis, a traditional Chinese medicine and a healthy food, has been used for the treatment of kidney disease for a long time. The aim of present study was to isolate a nucleoside/nucleobase-rich extract from Cordyceps Sinensis (CS-N), determine the contents of nucleosides and nucleobases, and explore its anti-diabetic nephropathy activity. CS-N was isolated and purified by using microporous resin and glucan columns and the unknown compounds were identified by using HPLC-DAD and LC-MS. The effects of CS-N on the epithelial-mesenchymal transition (EMT), extracellular matrix (ECM) depositions, and the MAPK signaling pathway were evaluated in streptozotocin (STZ)-induced diabetic mice and high glucose (HG)-exposed HK-2 cells. CS-N significantly attenuated the abnormity of renal functional parameters, ameliorated histopathological changes, and inhibited EMT and ECM accumulation by regulating p38/ERK signaling pathways. Our findings indicate that CS-N exerts a therapeutic effect on experimental diabetic renal fibrosis by mitigating the EMT and the subsequent ECM deposition with inhibition of p38 and ERK signaling pathways.
Collapse
Affiliation(s)
- Zhonghua Dong
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China; (Z.D.); (Y.S.)
| | - Yueyue Sun
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China; (Z.D.); (Y.S.)
| | - Guangwei Wei
- School of Basic Medical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China;
| | - Siying Li
- School of Basic Medical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China;
| | - Zhongxi Zhao
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China; (Z.D.); (Y.S.)
- Shandong Engineering & Technology Research Center for Jujube Food and Drug, 44 West Wenhua Road, Jinan 250012, China
| |
Collapse
|
19
|
Wen Z, Jiang R, Huang Y, Wen Z, Rui D, Liao X, Ling Z. Inhibition of lung cancer cells and Ras/Raf/MEK/ERK signal transduction by ectonucleoside triphosphate phosphohydrolase-7 (ENTPD7). Respir Res 2019; 20:194. [PMID: 31443651 PMCID: PMC6708200 DOI: 10.1186/s12931-019-1165-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 08/13/2019] [Indexed: 12/11/2022] Open
Abstract
Background The aim of this study was to investigate the effects and mechanisms of ectonucleoside triphosphate phosphohydrolase-7 (ENTPD7) on lung cancer cells. Methods The expression characteristics of ENTPD7 and its effect on the survival of lung cancer patients were analyzed by referring to The Cancer Genome Atlas (TCGA). Streptavidin-peroxidase (SP) staining was performed to detect the ENTPD7 protein in tumor tissues and adjacent tissues. Plasmid transfection technology was also applied to silence ENTPD7 gene. Crystal violet staining and flow cytometry were performed to determine cell proliferation and apoptosis. Tumor-bearing nude mice model was established to investigate the effect of sh-ENTPD7 on tumors. Results The results showed that patients with low levels of ENTPD7 had higher survival rates. ENTPD7 was up-regulated in lung cancer tissues and cells. Down-regulation of the expression of ENTPD7 inhibited proliferation but promoted apoptosis of lung cancer cell. Silencing ENTPD7 also inhibited the expression levels of Ras and Raf proteins and the phosphorylation of mitogen-activated protein kinase (MEK) and extracellular signal-regulated kinase (ERK). Tumor-bearing nude mice experiments showed that silencing ENTPD7 had an inhibitory effect on lung cancer cells. Conclusions ENTPD7 was overexpressed in lung cancer cells. Down-regulating ENTPD7 could inhibit lung cancer cell proliferation and promote apoptosis via inhibiting the Ras/Raf/MEK/ERK pathway.
Collapse
Affiliation(s)
- Zhongwei Wen
- Department of Respiratory and Critical Care Medicine, the Fourth Affiliated Hospital of Guangxi Medical University, No. 1 Liushi Road, Liuzhou, 545005, Guangxi Province, China
| | - Rongfang Jiang
- Department of Respiratory and Critical Care Medicine, the Fourth Affiliated Hospital of Guangxi Medical University, No. 1 Liushi Road, Liuzhou, 545005, Guangxi Province, China
| | - Ying Huang
- Department of Respiratory and Critical Care Medicine, the Fourth Affiliated Hospital of Guangxi Medical University, No. 1 Liushi Road, Liuzhou, 545005, Guangxi Province, China
| | - Zhineng Wen
- Department of Respiratory and Critical Care Medicine, the Fourth Affiliated Hospital of Guangxi Medical University, No. 1 Liushi Road, Liuzhou, 545005, Guangxi Province, China
| | - Dong Rui
- Department of Respiratory and Critical Care Medicine, the Fourth Affiliated Hospital of Guangxi Medical University, No. 1 Liushi Road, Liuzhou, 545005, Guangxi Province, China
| | - Xiaoxiao Liao
- Department of Respiratory and Critical Care Medicine, the Fourth Affiliated Hospital of Guangxi Medical University, No. 1 Liushi Road, Liuzhou, 545005, Guangxi Province, China
| | - Zhougui Ling
- Department of Respiratory and Critical Care Medicine, the Fourth Affiliated Hospital of Guangxi Medical University, No. 1 Liushi Road, Liuzhou, 545005, Guangxi Province, China.
| |
Collapse
|
20
|
Jackson EK, Mi Z, Janesko-Feldman K, Jackson TC, Kochanek PM. 2',3'-cGMP exists in vivo and comprises a 2',3'-cGMP-guanosine pathway. Am J Physiol Regul Integr Comp Physiol 2019; 316:R783-R790. [PMID: 30789788 PMCID: PMC6620655 DOI: 10.1152/ajpregu.00401.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/11/2019] [Accepted: 02/19/2019] [Indexed: 01/10/2023]
Abstract
The discovery in 2009 that 2',3'-cAMP exists in biological systems was rapidly followed by identification of 2',3'-cGMP in cell and tissue extracts. To determine whether 2',3'-cGMP exists in mammals under physiological conditions, we used ultraperformance LC-MS/MS to measure 2',3'-cAMP and 2',3'-cGMP in timed urine collections (via direct bladder cannulation) from 25 anesthetized mice. Urinary excretion rates (means ± SE) of 2',3'-cAMP (15.5 ± 1.8 ng/30 min) and 2',3'-cGMP (17.9 ± 1.9 ng/30 min) were similar. Mice also excreted 2'-AMP (3.6 ± 1.1 ng/20 min) and 3'-AMP (9.5 ± 1.2 ng/min), hydrolysis products of 2',3'-cAMP, and 2'-GMP (4.7 ± 1.7 ng/30 min) and 3'-GMP (12.5 ± 1.8 ng/30 min), hydrolysis products of 2',3'-cGMP. To validate that the chromatographic signals were from these endogenous noncanonical nucleotides, we repeated these experiments in mice (n = 18) lacking 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), an enzyme known to convert 2',3'-cyclic nucleotides to their corresponding 2'-nucleotides. In CNPase-knockout mice, urinary excretions of 2',3'-cAMP, 3'-AMP, 2',3'-cGMP, and 3'-GMP were increased, while urinary excretions of 2'-AMP and 2'-GMP were decreased. Infusions of exogenous 2',3'-cAMP increased urinary excretion of 2',3'-cAMP, 2'-AMP, 3'-AMP, and adenosine, whereas infusions of exogenous 2',3'-cGMP increased excretion of 2',3'-cGMP, 2'-GMP, 3'-GMP, and guanosine. Together, these data suggest the endogenous existence of not only a 2',3'-cAMP-adenosine pathway (2',3'-cAMP → 2'-AMP/3'-AMP → adenosine), which was previously identified, but also a 2',3'-cGMP-guanosine pathway (2',3'-cGMP → 2'-GMP/3'-GMP → guanosine), observed here for the first time. Because it is well known that adenosine and guanosine protect tissues from injury, our data support the concept that both pathways may work together to protect tissues from injury.
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Zaichuan Mi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Keri Janesko-Feldman
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Travis C Jackson
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| |
Collapse
|
21
|
Cryan MT, Ross AE. Subsecond detection of guanosine using fast-scan cyclic voltammetry. Analyst 2019; 144:249-257. [PMID: 30484441 DOI: 10.1039/c8an01547c] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Guanosine is an important neuromodulator and neuroprotector in the brain and is involved in many pathological conditions, including ischemia and neuroinflammation. Traditional methods to detect guanosine in the brain, like HPLC, offer low limits of detection and are robust; however, subsecond detection is not possible. Here, we present a method for detecting rapid fluctuations of guanosine concentration in real-time using fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes. The optimized waveform scanned from -0.4 V to 1.3 V and back at a rate of 400 V s-1 and application frequency of 10 Hz. Potential limits were chosen to increase selectivity of guanosine over the structurally similar interferent adenosine. Two oxidation peaks were detected with the optimized waveform: the primary oxidation reaction occurred at 1.3 V and the secondary oxidation at 0.8 V. Guanosine detection was stable over time with a limit of detection of 30 ± 10 nM, which permits its use to monitor low nanomolar fluctuations in the brain. To demonstrate the feasibility of the method for in-tissue detection, guanosine was exogenously applied and detected within live rat brain slices. This paper demonstrates the first characterization of guanosine using FSCV, and will be a valuable method for measuring signaling dynamics during guanosine neuromodulation and protection.
Collapse
Affiliation(s)
- Michael T Cryan
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA.
| | - Ashley E Ross
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA.
| |
Collapse
|
22
|
Dobrachinski F, Gerbatin RR, Sartori G, Golombieski RM, Antoniazzi A, Nogueira CW, Royes LF, Fighera MR, Porciúncula LO, Cunha RA, Soares FAA. Guanosine Attenuates Behavioral Deficits After Traumatic Brain Injury by Modulation of Adenosinergic Receptors. Mol Neurobiol 2018; 56:3145-3158. [PMID: 30105669 DOI: 10.1007/s12035-018-1296-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of disability worldwide, triggering chronic neurodegeneration underlying cognitive and mood disorder still without therapeutic prospects. Based on our previous observations that guanosine (GUO) attenuates short-term neurochemical alterations caused by TBI, this study investigated the effects of chronical GUO treatment in behavioral, molecular, and morphological disturbances 21 days after trauma. Rats subject to TBI displayed mood (anxiety-like) and memory dysfunction. This was accompanied by a decreased expression of both synaptic (synaptophysin) and plasticity proteins (BDNF and CREB), a loss of cresyl violet-stained neurons, and increased astrogliosis and microgliosis in the hippocampus. Notably, chronic GUO treatment (7.5 mg/kg i.p. daily starting 1 h after TBI) prevented all these TBI-induced long-term behavioral, neurochemical, and morphological modifications. This neuroprotective effect of GUO was abrogated in the presence of the adenosine A1 receptor antagonist DPCPX (1 mg/kg) but unaltered by the adenosine A2A receptor antagonist SCH58261 (0.05 mg/kg). These findings show that a chronic GUO treatment prevents the long-term mood and memory dysfunction triggered by TBI, which involves adenosinergic receptors.
Collapse
Affiliation(s)
- Fernando Dobrachinski
- Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences, Federal University of Santa Maria, UFSM, Santa Maria, RS, 97105-900, Brazil
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Rogério R Gerbatin
- Laboratory of Exercise Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Gláubia Sartori
- Laboratory of Synthesis, Reactivity and Pharmacological Evaluating and Toxicology of Organochalcogens, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Ronaldo M Golombieski
- Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences, Federal University of Santa Maria, UFSM, Santa Maria, RS, 97105-900, Brazil
| | - Alfredo Antoniazzi
- Laboratory of Biotechnology and Animal Reproduction - BioRep Veterinary Hospital, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Cristina W Nogueira
- Laboratory of Synthesis, Reactivity and Pharmacological Evaluating and Toxicology of Organochalcogens, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Luiz F Royes
- Laboratory of Exercise Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Michele R Fighera
- Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences, Federal University of Santa Maria, UFSM, Santa Maria, RS, 97105-900, Brazil
- Department of Neuropsychiatry, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Lisiane O Porciúncula
- Laboratory of Studies on the Purinergic System, Department of Biochemistry / ICBS, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rodrigo A Cunha
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Félix A A Soares
- Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences, Federal University of Santa Maria, UFSM, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
23
|
Preventive effects of guanosine on intestinal inflammation in 2, 4-dinitrobenzene sulfonic acid (DNBS)-induced colitis in rats. Inflammopharmacology 2018; 27:349-359. [PMID: 29907915 DOI: 10.1007/s10787-018-0506-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/06/2018] [Indexed: 02/08/2023]
|
24
|
Adenosine causes read-through into the late region of the HPV16 genome in a guanosine-dependent manner. Virology 2018; 521:1-19. [PMID: 29864673 DOI: 10.1016/j.virol.2018.05.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 11/21/2022]
Abstract
Adenosine plays an important role in cell death and differentiation as well as in tumorigenesis and the intra- and extra-cellular levels range from nanomolar to millimolar levels under various physiological or pathophysiological conditions. Here we report that adenosine can activate HPV16 late gene expression in a dose- and time-dependent manner, but only in the presence of guanosine. This activation occurred within hours after addition of the nucleosides and was primarily dependent on the ENT1 nucleoside transporter protein. Induction of HPV16 late gene expression was mainly the result of increased read-through at the early HPV16 polyadenylation signal into the late region of the HPV16 genome, thereby producing HPV16 late L2 mRNAs. The effect of guanosine and adenosine on HPV16 late gene expression was mediated by the increased binding to HPV16 mRNAs and nuclear export of the cellular HuR protein. Our results demonstrate that nucleosides can affect HPV16 gene expression.
Collapse
|
25
|
Jackson EK. Discovery and Roles of 2',3'-cAMP in Biological Systems. Handb Exp Pharmacol 2017; 238:229-252. [PMID: 26721674 DOI: 10.1007/164_2015_40] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In 2009, investigators using ultra-performance liquid chromatography-tandem mass spectrometry to measure, by selected reaction monitoring, 3',5'-cAMP in the renal venous perfusate from isolated, perfused kidneys detected a large signal at the same m/z transition (330 → 136) as 3',5'-cAMP but at a different retention time. Follow-up experiments demonstrated that this signal was due to a positional isomer of 3',5'-cAMP, namely, 2',3'-cAMP. Soon thereafter, investigative teams reported the detection of 2',3'-cAMP and other 2',3'-cNMPs (2',3'-cGMP, 2',3'-cCMP, and 2',3'-cUMP) in biological systems ranging from bacteria to plants to animals to humans. Injury appears to be the major stimulus for the release of these unique noncanonical cNMPs, which likely are formed by the breakdown of RNA. In mammalian cells in culture, in intact rat and mouse kidneys, and in mouse brains in vivo, 2',3'-cAMP is metabolized to 2'-AMP and 3'-AMP; and these AMPs are subsequently converted to adenosine. In rat and mouse kidneys and mouse brains, injury releases 2',3'-cAMP, 2'-AMP, and 3'-AMP into the extracellular compartment; and in humans, traumatic brain injury is associated with large increases in 2',3'-cAMP, 2'-AMP, 3'-AMP, and adenosine in the cerebrospinal fluid. These findings motivate the extracellular 2',3'-cAMP-adenosine pathway hypothesis: intracellular production of 2',3'-cAMP → export of 2',3'-cAMP → extracellular metabolism of 2',3'-cAMP to 2'-AMP and 3'-AMP → extracellular metabolism of 2'-AMP and 3'-AMP to adenosine. Since 2',3'-cAMP has been shown to activate mitochondrial permeability transition pores (mPTPs) leading to apoptosis and necrosis and since adenosine is generally tissue protective, the extracellular 2',3'-cAMP-adenosine pathway may be a protective mechanism [i.e., removes 2',3'-cAMP (an intracellular toxin) and forms adenosine (a tissue protectant)]. This appears to be the case in the brain where deficiency in CNPase (the enzyme that metabolizes 2',3'-cAMP to 2-AMP) leads to increased susceptibility to brain injury and neurological diseases. Surprisingly, CNPase deficiency in the kidney actually protects against acute kidney injury, perhaps by preventing the formation of 2'-AMP (which turns out to be a renal vasoconstrictor) and by augmenting the mitophagy of damaged mitochondria. With regard to 2',3'-cNMPs and their downstream metabolites, there is no doubt much more to be discovered.
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 100 Technology Drive, Room 514, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
26
|
Ilinskaya ON, Ulyanova VV, Yarullina DR, Gataullin IG. Secretome of Intestinal Bacilli: A Natural Guard against Pathologies. Front Microbiol 2017; 8:1666. [PMID: 28919884 PMCID: PMC5586196 DOI: 10.3389/fmicb.2017.01666] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/17/2017] [Indexed: 12/12/2022] Open
Abstract
Current studies of human gut microbiome usually do not consider the special functional role of transient microbiota, although some of its members remain in the host for a long time and produce broad spectrum of biologically active substances. Getting into the gastrointestinal tract (GIT) with food, water and probiotic preparations, two representatives of Bacilli class, genera Bacillus and Lactobacillus, colonize epithelium blurring the boundaries between resident and transient microbiota. Despite their minor proportion in the microbiome composition, these bacteria can significantly affect both the intestinal microbiota and the entire body thanks to a wide range of secreted compounds. Recently, insufficiency and limitations of pure genome-based analysis of gut microbiota became known. Thus, the need for intense functional studies is evident. This review aims to characterize the Bacillus and Lactobacillus in GIT, as well as the functional roles of the components released by these members of microbial intestinal community. Complex of their secreted compounds is referred by us as the "bacillary secretome." The composition of the bacillary secretome, its biological effects in GIT and role in counteraction to infectious diseases and oncological pathologies in human organism is the subject of the review.
Collapse
Affiliation(s)
| | - Vera V. Ulyanova
- Department of Microbiology, Kazan Federal UniversityKazan, Russia
| | | | - Ilgiz G. Gataullin
- Department of Surgery and Oncology, Regional Clinical Cancer CenterKazan, Russia
| |
Collapse
|
27
|
Fuentes F, Alarcón M, Badimon L, Fuentes M, Klotz KN, Vilahur G, Kachler S, Padró T, Palomo I, Fuentes E. Guanosine exerts antiplatelet and antithrombotic properties through an adenosine-related cAMP-PKA signaling. Int J Cardiol 2017; 248:294-300. [PMID: 28811090 DOI: 10.1016/j.ijcard.2017.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/09/2017] [Accepted: 08/04/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Guanosine is a natural product and an endogenous nucleoside that has shown to increase during myocardial ischemia. Platelets are critically involved in ischemic coronary events. It remains unknown, however, whether guanosine may affect platelet activation and function. We sought to investigate the potential antiplatelet and antithrombotic properties of guanosine and decipher the mechanisms behind. METHODS We firstly assessed the effects of guanosine on platelet activation/aggregation upon stimulation with several platelet agonists including adenosine diphosphate (ADP), collagen, arachidonic acid (AA), and TRAP-6. Guanosine antithrombotic potential was also evaluated both in vitro (Badimon perfusion chamber) and in vivo (murine model). In addition we assessed any potential effect on bleeding. At a mechanistic level we determined the release of thromboxane B2, intraplatelet cAMP levels, the binding affinity on platelet membrane, and the activation/phosphorylation of protein kinase A (PKA), phospholipase C (PLC) and PKC. RESULTS Guanosine markedly inhibited platelet activation/aggregation-challenged by ADP and, although to a lesser extent, also reduced platelet aggregation challenged by collagen, AA and TRAP-6. Guanosine significantly reduced thrombus formation both in vitro and in vivo without significantly affects bleeding. Guanosine antiplatelet effects were associated with the activation of the cAMP/PKA signaling pathway, and a reduction in thromboxane B2 levels and PLC and PKC phosphorylation. The platelet aggregation and binding affinity assays revealed that guanosine effects on platelets were mediated by adenosine. CONCLUSION Guanosine effectively reduces ADP-induced platelet aggregation and limits thrombotic risk. These antithrombotic properties are associated with the activation of the cAMP/PKA signaling pathway.
Collapse
Affiliation(s)
- Francisco Fuentes
- Becario Obstetricia y Ginecología, Universidad Católica del Maule, Talca, Chile
| | - Marcelo Alarcón
- Platelet Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule, R09I2001 Talca, Chile
| | - Lina Badimon
- Cardiovascular Science Institute - ICCC,IIB-Sant Pau, CIBERCV, Barcelona, Spain; Cardiovascular Research Chair, Universidad Autónoma Barcelona (UAB), Barcelona, Spain
| | - Manuel Fuentes
- Platelet Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile
| | - Karl-Norbert Klotz
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
| | - Gemma Vilahur
- Cardiovascular Science Institute - ICCC,IIB-Sant Pau, CIBERCV, Barcelona, Spain
| | - Sonja Kachler
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
| | - Teresa Padró
- Cardiovascular Science Institute - ICCC,IIB-Sant Pau, CIBERCV, Barcelona, Spain
| | - Iván Palomo
- Platelet Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule, R09I2001 Talca, Chile.
| | - Eduardo Fuentes
- Platelet Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule, R09I2001 Talca, Chile; Núcleo Científico Multidisciplinario, Universidad de Talca, Talca, Chile.
| |
Collapse
|
28
|
Combination of purine and pyrimidine nucleosides influences growth performance, gut morphology, digestive enzymes, serum biochemical indices and immune functions in broiler chickens. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
29
|
Oliveira KA, Dal-Cim TA, Lopes FG, Nedel CB, Tasca CI. Guanosine promotes cytotoxicity via adenosine receptors and induces apoptosis in temozolomide-treated A172 glioma cells. Purinergic Signal 2017; 13:305-318. [PMID: 28536931 DOI: 10.1007/s11302-017-9562-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/19/2017] [Indexed: 12/13/2022] Open
Abstract
Gliomas are a malignant tumor group whose patients have survival rates around 12 months. Among the treatments are the alkylating agents as temozolomide (TMZ), although gliomas have shown multiple resistance mechanisms for chemotherapy. Guanosine (GUO) is an endogenous nucleoside involved in extracellular signaling that presents neuroprotective effects and also shows the effect of inducing differentiation in cancer cells. The chemotherapy allied to adjuvant drugs are being suggested as a novel approach in gliomas treatment. In this way, this study evaluated whether GUO presented cytotoxic effects on human glioma cells as well as GUO effects in association with a classical chemotherapeutic compound, TMZ. Classical parameters of tumor aggressiveness, as alterations on cell viability, type of cell death, migration, and parameters of glutamatergic transmission, were evaluated. GUO (500 and 1000 μM) decreases the A172 glioma cell viability after 24, 48, or 72 h of treatment. TMZ alone or GUO plus TMZ also reduced glioma cell viability similarly. GUO combined with TMZ showed a potentiation effect of increasing apoptosis in A172 glioma cells, and a similar pattern was observed in reducing mitochondrial membrane potential. GUO per se did not elevate the acidic vesicular organelles occurrence, but TMZ or GUO plus TMZ increased this autophagy hallmark. GUO did not alter glutamate transport per se, but it prevented TMZ-induced glutamate release. GUO or TMZ did not alter glutamine synthetase activity. Pharmacological blockade of glutamate receptors did not change GUO effect on glioma viability. GUO cytotoxicity was partially prevented by adenosine receptor (A1R and A2AR) ligands. These results point to a cytotoxic effect of GUO on A172 glioma cells and suggest an anticancer effect of GUO as a putative adjuvant treatment, whose mechanism needs to be unraveled.
Collapse
Affiliation(s)
- Karen A Oliveira
- Programa de Pós-Graduação em Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Tharine A Dal-Cim
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Flávia G Lopes
- Departamento de Biologia Celular, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Cláudia B Nedel
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, Florianópolis, Brazil.,Departamento de Biologia Celular, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Carla Inês Tasca
- Programa de Pós-Graduação em Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil. .,Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, Florianópolis, Brazil. .,Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
30
|
Dobrachinski F, da Rosa Gerbatin R, Sartori G, Ferreira Marques N, Zemolin AP, Almeida Silva LF, Franco JL, Freire Royes LF, Rechia Fighera M, Antunes Soares FA. Regulation of Mitochondrial Function and Glutamatergic System Are the Target of Guanosine Effect in Traumatic Brain Injury. J Neurotrauma 2017; 34:1318-1328. [PMID: 27931151 DOI: 10.1089/neu.2016.4563] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is a highly complex multi-factorial disorder. Experimental trauma involves primary and secondary injury cascades that underlie delayed neuronal dysfunction and death. Mitochondrial dysfunction and glutamatergic excitotoxicity are the hallmark mechanisms of damage. Accordingly, a successful pharmacological intervention requires a multi-faceted approach. Guanosine (GUO) is known for its neuromodulator effects in various models of brain pathology, specifically those that involve the glutamatergic system. The aim of the study was to investigate the GUO effects against mitochondrial damage in hippocampus and cortex of rats subjected to TBI, as well as the relationship of this effect with the glutamatergic system. Adult male Wistar rats were subjected to a unilateral moderate fluid percussion brain injury (FPI) and treated 15 min later with GUO (7.5 mg/kg) or vehicle (saline 0.9%). Analyses were performed in hippocampus and cortex 3 h post-trauma and revealed significant mitochondrial dysfunction, characterized by a disrupted membrane potential, unbalanced redox system, decreased mitochondrial viability, and complex I inhibition. Further, disruption of Ca2+ homeostasis and increased mitochondrial swelling was also noted. Our results showed that mitochondrial dysfunction contributed to decreased glutamate uptake and levels of glial glutamate transporters (glutamate transporter 1 and glutamate aspartate transporter), which leads to excitotoxicity. GUO treatment ameliorated mitochondrial damage and glutamatergic dyshomeostasis. Thus, GUO might provide a new efficacious strategy for the treatment acute physiological alterations secondary to TBI.
Collapse
Affiliation(s)
- Fernando Dobrachinski
- 1 Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria , Santa Maria, RS, Brasil .,5 CNC-Centro de Neurociências e Biologia Celular, Faculdade de Medicina, Universidade de Coimbra , Coimbra, Portugal
| | - Rogério da Rosa Gerbatin
- 1 Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria , Santa Maria, RS, Brasil .,2 Laboratório de Bioquímica do Exercício, Universidade Federal de Santa Maria , Santa Maria, RS, Brasil
| | - Gláubia Sartori
- 1 Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria , Santa Maria, RS, Brasil
| | - Naiani Ferreira Marques
- 1 Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria , Santa Maria, RS, Brasil
| | - Ana Paula Zemolin
- 1 Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria , Santa Maria, RS, Brasil
| | - Luiz Fernando Almeida Silva
- 1 Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria , Santa Maria, RS, Brasil
| | - Jeferson Luis Franco
- 1 Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria , Santa Maria, RS, Brasil .,4 Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal do Pampa , Campus São Gabriel, São Gabriel, RS, Brasil
| | - Luiz Fernando Freire Royes
- 1 Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria , Santa Maria, RS, Brasil .,2 Laboratório de Bioquímica do Exercício, Universidade Federal de Santa Maria , Santa Maria, RS, Brasil
| | - Michele Rechia Fighera
- 1 Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria , Santa Maria, RS, Brasil .,3 Departamento de Neuropsiquiatria, Centro de Ciências da Saúde, Universidade Federal de Santa Maria , Santa Maria, RS, Brasil
| | - Félix Alexandre Antunes Soares
- 1 Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria , Santa Maria, RS, Brasil
| |
Collapse
|
31
|
Thomaz DT, Dal-Cim TA, Martins WC, Cunha MP, Lanznaster D, de Bem AF, Tasca CI. Guanosine prevents nitroxidative stress and recovers mitochondrial membrane potential disruption in hippocampal slices subjected to oxygen/glucose deprivation. Purinergic Signal 2016; 12:707-718. [PMID: 27613537 DOI: 10.1007/s11302-016-9534-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/26/2016] [Indexed: 12/12/2022] Open
Abstract
Guanosine, the endogenous guanine nucleoside, prevents cellular death induced by ischemic events and is a promising neuroprotective agent. During an ischemic event, nitric oxide has been reported to either cause or prevent cell death. Our aim was to evaluate the neuroprotective effects of guanosine against oxidative damage in hippocampal slices subjected to an in vitro ischemia model, the oxygen/glucose deprivation (OGD) protocol. We also assessed the participation of nitric oxide synthase (NOS) enzymes activity on the neuroprotection promoted by guanosine. Here, we showed that guanosine prevented the increase in ROS, nitric oxide, and peroxynitrite production induced by OGD. Moreover, guanosine prevented the loss of mitochondrial membrane potential in hippocampal slices subjected to OGD. Guanosine did not present an antioxidant effect per se. The protective effects of guanosine were mimicked by inhibition of neuronal NOS, but not of inducible NOS. The neuroprotective effect of guanosine may involve activation of cellular mechanisms that prevent the increase in nitric oxide production, possibly via neuronal NOS.
Collapse
Affiliation(s)
- Daniel T Thomaz
- Programa de Pós-Graduação em Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Tharine A Dal-Cim
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Wagner C Martins
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Maurício Peña Cunha
- Programa de Pós-Graduação em Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Débora Lanznaster
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Andreza F de Bem
- Departamento de Bioquímica, CCB, UFSC, Universidade Federal de Santa Catarina, Trindade, 88040-900, Florianópolis, SC, Brazil
- Programa de Pós-Graduação em Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Carla I Tasca
- Departamento de Bioquímica, CCB, UFSC, Universidade Federal de Santa Catarina, Trindade, 88040-900, Florianópolis, SC, Brazil.
- Programa de Pós-Graduação em Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
32
|
Bettio LEB, Gil-Mohapel J, Rodrigues ALS. Guanosine and its role in neuropathologies. Purinergic Signal 2016; 12:411-26. [PMID: 27002712 PMCID: PMC5023624 DOI: 10.1007/s11302-016-9509-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/08/2016] [Indexed: 02/08/2023] Open
Abstract
Guanosine is a purine nucleoside thought to have neuroprotective properties. It is released in the brain under physiological conditions and even more during pathological events, reducing neuroinflammation, oxidative stress, and excitotoxicity, as well as exerting trophic effects in neuronal and glial cells. In agreement, guanosine was shown to be protective in several in vitro and/or in vivo experimental models of central nervous system (CNS) diseases including ischemic stroke, Alzheimer's disease, Parkinson's disease, spinal cord injury, nociception, and depression. The mechanisms underlying the neurobiological properties of guanosine seem to involve the activation of several intracellular signaling pathways and a close interaction with the adenosinergic system, with a consequent stimulation of neuroprotective and regenerative processes in the CNS. Within this context, the present review will provide an overview of the current literature on the effects of guanosine in the CNS. The elucidation of the complex signaling events underlying the biochemical and cellular effects of this nucleoside may further establish guanosine as a potential therapeutic target for the treatment of several neuropathologies.
Collapse
Affiliation(s)
- Luis E B Bettio
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Joana Gil-Mohapel
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
| |
Collapse
|
33
|
Zhu Y, Hamlow LA, He CC, Strobehn SF, Lee JK, Gao J, Berden G, Oomens J, Rodgers MT. Influence of Sodium Cationization versus Protonation on the Gas-Phase Conformations and Glycosidic Bond Stabilities of 2'-Deoxyadenosine and Adenosine. J Phys Chem B 2016; 120:8892-904. [PMID: 27494378 DOI: 10.1021/acs.jpcb.6b06105] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The influence of noncovalent interactions with a sodium cation on the gas-phase structures and N-glycosidic bond stabilities of 2'-deoxyadenosine (dAdo) and adenosine (Ado), [dAdo+Na](+) and [Ado+Na](+), are probed via infrared multiple photon dissociation (IRMPD) action spectroscopy and energy-resolved collision-induced dissociation (ER-CID) experiments. ER-CID experiments are also performed on the protonated forms of these nucleosides, [dAdo+H](+) and [Ado+H](+), for comparison purposes. Complementary electronic structure calculations are performed to determine the structures and relative stabilities of the stable low-energy conformations of the sodium cationized nucleoside complexes and to predict their IR spectra. Comparison between the measured IRMPD action spectra and calculated IR spectra enables the conformations of the sodium cationized nucleosides present in the experiments to be elucidated. The influence of sodium cationization versus protonation on the structures and IR spectra is elucidated by comparison to IRMPD and theoretical results previously reported for the protonated forms of these nucleosides. The influence of sodium cationization versus protonation on the glycosidic bond stability of the adenine nucleosides is determined by comparison of the ER-CID behavior of these systems. All structures present in the experiments are found to involve tridentate binding of Na(+) to the N3, O4', and O5' atoms forming favorable 5- and 6-membered chelation rings, which requires that adenine rotate to a syn configuration. This mode of sodium cation binding results in moderate flexibility of the sugar moiety such that the sugar puckering of the conformations present varies between C2'-endo and O4'-endo. Sodium cationization is found to be less effective toward activating the N-glycosidic bond than protonation for both dAdo and Ado. Both the IRMPD yields and ER-CID behavior indicate that the 2'-hydroxyl substituent of Ado stabilizes the N-glycosidic bond relative to that of dAdo.
Collapse
Affiliation(s)
- Y Zhu
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - L A Hamlow
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - C C He
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - S F Strobehn
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - J K Lee
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - J Gao
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - G Berden
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - J Oomens
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| |
Collapse
|
34
|
Almeida RF, Comasseto DD, Ramos DB, Hansel G, Zimmer ER, Loureiro SO, Ganzella M, Souza DO. Guanosine Anxiolytic-Like Effect Involves Adenosinergic and Glutamatergic Neurotransmitter Systems. Mol Neurobiol 2016; 54:423-436. [PMID: 26742520 DOI: 10.1007/s12035-015-9660-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/17/2015] [Indexed: 12/21/2022]
Abstract
Accumulating evidences indicate that endogenous modulators of excitatory synapses in the mammalian brain are potential targets for treating neuropsychiatric disorders. Indeed, glutamatergic and adenosinergic neurotransmissions were recently highlighted as potential targets for developing innovative anxiolytic drugs. Accordingly, it has been shown that guanine-based purines are able to modulate both adenosinergic and glutamatergic systems in mammalian central nervous system. Here, we aimed to investigate the potential anxiolytic-like effects of guanosine and its effects on the adenosinergic and glutamatergic systems. Acute/systemic guanosine administration (7.5 mg/kg) induced robust anxiolytic-like effects in three classical anxiety-related paradigms (elevated plus maze, light/dark box, and round open field tasks). These guanosine effects were correlated with an enhancement of adenosine and a decrement of glutamate levels in the cerebrospinal fluid. Additionally, pre-administration of caffeine (10 mg/kg), an unspecific adenosine receptors' antagonist, completely abolished the behavioral and partially prevented the neuromodulatory effects exerted by guanosine. Although the hippocampal glutamate uptake was not modulated by guanosine (both ex vivo and in vitro protocols), the synaptosomal K+-stimulated glutamate release in vitro was decreased by guanosine (100 μM) and by the specific adenosine A1 receptor agonist, 2-chloro-N 6-cyclopentyladenosine (CCPA, 100 nM). Moreover, the specific adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 100 nM) fully reversed the inhibitory guanosine effect in the glutamate release. The pharmacological modulation of A2a receptors has shown no effect in any of the evaluated parameters. In summary, the guanosine anxiolytic-like effects seem closely related to the modulation of adenosinergic (A1 receptors) and glutamatergic systems.
Collapse
Affiliation(s)
- Roberto Farina Almeida
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Daniel Diniz Comasseto
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Denise Barbosa Ramos
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Gisele Hansel
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Eduardo R Zimmer
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil.,Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Samanta Oliveira Loureiro
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Marcelo Ganzella
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil.,Neurobiology Department, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Diogo Onofre Souza
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil.
| |
Collapse
|
35
|
Intranasal guanosine administration presents a wide therapeutic time window to reduce brain damage induced by permanent ischemia in rats. Purinergic Signal 2015; 12:149-59. [PMID: 26695181 DOI: 10.1007/s11302-015-9489-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/10/2015] [Indexed: 10/22/2022] Open
Abstract
In addition to its intracellular roles, the nucleoside guanosine (GUO) also has extracellular effects that identify it as a putative neuromodulator signaling molecule in the central nervous system. Indeed, GUO can modulate glutamatergic neurotransmission, and it can promote neuroprotective effects in animal models involving glutamate neurotoxicity, which is the case in brain ischemia. In the present study, we aimed to investigate a new in vivo GUO administration route (intranasal, IN) to determine putative improvement of GUO neuroprotective effects against an experimental model of permanent focal cerebral ischemia. Initially, we demonstrated that IN [(3)H] GUO administration reached the brain in a dose-dependent and saturable pattern in as few as 5 min, presenting a higher cerebrospinal GUO level compared with systemic administration. IN GUO treatment started immediately or even 3 h after ischemia onset prevented behavior impairment. The behavior recovery was not correlated to decreased brain infarct volume, but it was correlated to reduced mitochondrial dysfunction in the penumbra area. Therefore, we showed that the IN route is an efficient way to promptly deliver GUO to the CNS and that IN GUO treatment prevented behavioral and brain impairment caused by ischemia in a therapeutically wide time window.
Collapse
|
36
|
Guanosine inhibits LPS-induced pro-inflammatory response and oxidative stress in hippocampal astrocytes through the heme oxygenase-1 pathway. Purinergic Signal 2015; 11:571-80. [PMID: 26431832 DOI: 10.1007/s11302-015-9475-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/24/2015] [Indexed: 12/12/2022] Open
Abstract
Guanosine, a guanine-based purine, is an extracellular signaling molecule that is released from astrocytes and has been shown to promote central nervous system defenses in several in vivo and in vitro injury models. Our group recently demonstrated that guanosine exhibits glioprotective effects in the C6 astroglial cell line by associating the heme oxygenase-1 (HO-1) signaling pathway with protection against azide-induced oxidative stress. Astrocyte overactivation contributes to the triggering of brain inflammation, a condition that is closely related to the development of many neurological disorders. These cells sense and amplify inflammatory signals from microglia and/or initiate the release of inflammatory mediators that are strictly related to transcriptional factors, such as nuclear factor kappa B (NFκB), that are modulated by HO-1. Astrocytes also express toll-like receptors (TLRs); TLRs specifically recognize lipopolysaccharide (LPS), which has been widely used to experimentally study inflammatory response. This study was designed to understand the glioprotective mechanism of guanosine against the inflammatory and oxidative damage induced by LPS exposure in primary cultures of hippocampal astrocytes. Treatment of astrocytes with LPS resulted in deleterious effects, including the augmentation of pro-inflammatory cytokine levels, NFκB activation, mitochondrial dysfunction, increased levels of oxygen/nitrogen species, and decreased levels of antioxidative defenses. Guanosine was able to prevent these effects, protecting the hippocampal astrocytes against LPS-induced cytotoxicity through activation of the HO-1 pathway. Additionally, the anti-inflammatory effects of guanosine were independent of the adenosinergic system. These results highlight the potential role of guanosine against neuroinflammatory-related diseases.
Collapse
|
37
|
Abstract
In cultured renal cells and isolated perfused kidneys, extracellular guanosine augments extracellular adenosine and inosine (the major renal metabolite of adenosine) levels by altering the extracellular disposition of these purines. The present study addressed whether this "guanosine-adenosine mechanism" exists in vivo. In rats (n = 15), intravenous infusions of adenosine (1 µmol/kg per minute) decreased mean arterial blood pressure (MABP) from 114 ± 4 to 83 ± 5 mm Hg, heart rate (HR) from 368 ± 11 to 323 ± 9 beats/min), and renal blood flow (RBF) from 6.2 ± 0.5 to 5.3 ± 0.6 ml/min). In rats (n = 15) pretreated with intravenous guanosine (10 µmol/kg per minute), intravenous adenosine (1 µmol/kg per minute) decreased MABP (from 109 ± 4 to 58 ± 5 mm Hg), HR (from 401 ± 10 to 264 ± 20 beats/min), and RBF (from 6.2 ± 0.7 to 1.7 ± 0.3). Two-factor analysis of variance (2F-ANOVA) revealed a significant interaction (P < 0.0001) between guanosine and adenosine for MABP, HR, and RBF. In control rats, the urinary excretion rate of endogenous inosine was 211 ± 103 ng/30 minutes (n = 9); however, in rats treated with intravenous guanosine (10 µmol/kg per minute), the excretion rate of inosine was 1995 ± 300 ng/30 minutes (n = 12; P < 0.0001 versus controls). Because adenosine inhibits inflammatory cytokine production, we also examined the effects of intravenous guanosine on endotoxemia-induced increases in tumor necrosis factor-α (TNF-α). In control rats (n = 7), lipopolysaccharide (LPS; Escherichia coli 026:B6 endotoxin; 30 mg/kg) increased plasma TNF-α from 164 ± 56 to 4082 ± 730 pg/ml, whereas in rats pretreated with intravenous guanosine (10 µmol/kg per minute; n = 6), LPS increased plasma TNF-α from 121 ± 45 to 1821 ± 413 pg/ml (2F-ANOVA interaction effect, P = 0.0022). We conclude that the guanosine-adenosine mechanism exists in vivo and that guanosine may be a useful therapeutic for reducing inflammation.
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Zaichuan Mi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
38
|
Abstract
In cell culture, extracellular guanosine increases extracellular adenosine by attenuating the disposition of extracellular adenosine (American Journal of Physiology – Cell Physiology 304: C406–C421, 2013). The goal of this investigation was to determine whether this “guanosine–adenosine mechanism” is operative in an intact organ. Twenty‐seven isolated, perfused mouse kidneys were subjected to metabolic poisons (iodoacetate plus 2,4‐dinitrophenol) to cause energy depletion and thereby stimulate renal adenosine production. Adenosine levels in the renal venous perfusate increased from a baseline of 36 ± 8 to 499 ± 96, 258 ± 50, and 71 ± 13 nmol/L at 15, 30, and 60 min, respectively, after administering metabolic poisons (% of basal; 1366 ± 229, 715 ± 128, and 206 ± 33, respectively). Changes in renal venous levels of guanosine closely mirrored the time course of changes in adenosine: baseline of 15 ± 2 to 157 ± 13, 121 ± 8, and 50 ± 5 nmol/L at 15, 30, and 60 min, respectively (% of basal; 1132 ± 104, 871 ± 59, and 400 ± 51, respectively). Freeze‐clamp experiments in 12 kidneys confirmed that metabolic poisons increased kidney tissue levels of adenosine and guanosine. In eight additional kidneys, we examined the ability of guanosine to reduce the renal clearance of exogenous adenosine; and these experiments revealed that guanosine significantly decreased the renal extraction of adenosine. Because guanosine is metabolized by purine nucleoside phosphorylase (PNPase), in another set of 16 kidneys we examined the effects of 8‐aminoguanine (PNPase inhibitor) on renal venous levels of adenosine and inosine (adenosine metabolite). Kidneys treated with 8‐aminoguanine showed a more robust increase in both adenosine and inosine in response to metabolic poisons. We conclude that in the intact kidney, guanosine regulates adenosine levels. In cell culture, extracellular guanosine increases extracellular adenosine by attenuating the disposition of extracellular adenosine (American Journal of Physiology – Cell Physiology 304: C406–C421, 2013). The goal of this study was to determine whether the “guanosine–adenosine mechanism” is operative in an intact organ. In isolated, perfused mouse kidneys, inhibition of energy production induced changes in renal venous levels of guanosine that closely mirrored the time course of changes in adenosine, and freeze‐clamp experiments confirmed that metabolic poisons similarly increased kidney tissue levels of adenosine and guanosine. Moreover, exogenous guanosine significantly decreased the renal extraction of exogenous adenosine, and inhibition of purine nucleoside phosphorylase (metabolizes guanosine) augmented the effects of energy depletion on renal levels of both guanosine and adenosine. We conclude that in the intact kidney, guanosine regulates adenosine levels.
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dongmei Cheng
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Zaichuan Mi
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Delbert G Gillespie
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
39
|
Yerges-Armstrong LM, Ellero-Simatos S, Georgiades A, Zhu H, Lewis J, Horenstein RB, Beitelshees AL, Dane A, Reijmers T, Hankemeier T, Fiehn O, Shuldiner AR, Kaddurah-Daouk R. Purine pathway implicated in mechanism of resistance to aspirin therapy: pharmacometabolomics-informed pharmacogenomics. Clin Pharmacol Ther 2013; 94:525-32. [PMID: 23839601 PMCID: PMC4001726 DOI: 10.1038/clpt.2013.119] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/20/2013] [Indexed: 11/08/2022]
Abstract
Although aspirin is a well-established antiplatelet agent, the mechanisms of aspirin resistance remain poorly understood. Metabolomics allows for measurement of hundreds of small molecules in biological samples, enabling detailed mapping of pathways involved in drug response. We defined the metabolic signature of aspirin exposure in subjects from the Heredity and Phenotype Intervention Heart Study. Many metabolites, including known aspirin catabolites, changed on exposure to aspirin, and pathway enrichment analysis identified purine metabolism as significantly affected by drug exposure. Furthermore, purines were associated with aspirin response, and poor responders had higher postaspirin adenosine and inosine levels than did good responders (n = 76; both P < 4 × 10(-3)). Using our established "pharmacometabolomics-informed pharmacogenomics" approach, we identified genetic variants in adenosine kinase associated with aspirin response. Combining metabolomics and genomics allowed for more comprehensive interrogation of mechanisms of variation in aspirin response--an important step toward personalized treatment approaches for cardiovascular disease.
Collapse
Affiliation(s)
- Laura M. Yerges-Armstrong
- Program in Personalized and Genomic Medicine, Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Sandrine Ellero-Simatos
- Division Analytical Biosciences, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Netherlands Metabolomics Centre, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Anastasia Georgiades
- Duke University Medical Center, Durham, North Carolina, United States of America
| | - Hongjie Zhu
- Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joshua Lewis
- Program in Personalized and Genomic Medicine, Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Richard B. Horenstein
- Program in Personalized and Genomic Medicine, Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Amber L. Beitelshees
- Program in Personalized and Genomic Medicine, Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Adrie Dane
- Division Analytical Biosciences, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Netherlands Metabolomics Centre, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Theo Reijmers
- Division Analytical Biosciences, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Netherlands Metabolomics Centre, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Thomas Hankemeier
- Division Analytical Biosciences, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Netherlands Metabolomics Centre, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Oliver Fiehn
- Genomics Center, University of California, Davis, California, United States of America
| | - Alan R. Shuldiner
- Program in Personalized and Genomic Medicine, Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC
- Duke Institute for Brain Sciences, Duke University, Durham, NC
| | | |
Collapse
|
40
|
Jackson EK, Gillespie DG. Regulation of Cell Proliferation by the Guanosine-Adenosine Mechanism: Role of Adenosine Receptors. Physiol Rep 2013; 1:e00024. [PMID: 23956837 PMCID: PMC3743120 DOI: 10.1002/phy2.24] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A recent study (American Journal of Physiology – Cell Physiology 304:C406–C421, 2013) suggests that extracellular guanosine increases extracellular adenosine by modifying the disposition of extracellular adenosine (“guanosine–adenosine mechanism”) and that the guanosine–adenosine mechanism is not mediated by classical adenosine transport systems (SLC28 and SLC29 families) nor by classical adenosine-metabolizing enzymes. The present investigation had two aims (1) to test the hypothesis that the “guanosine–adenosine mechanism” affects cell proliferation; and (2) to determine whether the transporters SLC19A1, SLC19A2, SLC19A3, or SLC22A2 (known to carrier guanosine analogs) might be responsible for the guanosine–adenosine mechanism. In the absence of added adenosine, guanosine had little effect on the proliferation of coronary artery vascular smooth muscle cells (vascular conduit cells) or preglomerular vascular smooth muscle cells (vascular resistance cells). However, in the presence of added adenosine (3 or 10 μmol/L), guanosine (10–100 μmol/L) decreased proliferation of both cell types, thus resulting in a highly significant (P < 0.000001) interaction between guanosine and adenosine on cell proliferation. The guanosine–adenosine interaction on cell proliferation was abolished by 1,3-dipropyl-8-(p-sulfophenyl)xanthine (adenosine receptor antagonist). Guanosine (30 μmol/L) increased extracellular levels of adenosine when adenosine (3 μmol/L) was added to the medium. This effect was not reproduced by high concentrations of methotrexate (100 μmol/L), thiamine (1000 μmol/L), chloroquine (1000 μmol/L), or acyclovir (10,000 μmol/L), archetypal substrates for SLC19A1, SLC19A2, SLC19A3, and SLC22A2, respectively; and guanosine still increased adenosine levels in the presence of these compounds. In conclusion, the guanosine–adenosine mechanism affects cell proliferation and is not mediated by SLC19A1, SLC19A2, SLC19A3, or SLC22A2.
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | | |
Collapse
|
41
|
Dubyak GR. Dueling nucleosides: cross-regulation of extracellular adenosine by guanosine. Focus on "Extracellular guanosine regulates extracellular adenosine levels". Am J Physiol Cell Physiol 2013; 304:C403-5. [PMID: 23325409 DOI: 10.1152/ajpcell.00012.2013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|