1
|
Dhyani N, Tian C, Gao L, Rudebush TL, Zucker IH. Nrf2-Keap1 in Cardiovascular Disease: Which Is the Cart and Which the Horse? Physiology (Bethesda) 2024; 39:0. [PMID: 38687468 PMCID: PMC11460534 DOI: 10.1152/physiol.00015.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024] Open
Abstract
High levels of oxidant stress in the form of reactive oxidant species are prevalent in the circulation and tissues in various types of cardiovascular disease including heart failure, hypertension, peripheral arterial disease, and stroke. Here we review the role of nuclear factor erythroid 2-related factor 2 (Nrf2), an important and widespread antioxidant and anti-inflammatory transcription factor that may contribute to the pathogenesis and maintenance of cardiovascular diseases. We review studies showing that downregulation of Nrf2 exacerbates heart failure, hypertension, and autonomic function. Finally, we discuss the potential for using Nrf2 modulation as a therapeutic strategy for cardiovascular diseases and autonomic dysfunction.
Collapse
Affiliation(s)
- Neha Dhyani
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Changhai Tian
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Lie Gao
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Tara L Rudebush
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| |
Collapse
|
2
|
Gambaryan S, Mohagaonkar S, Nikolaev VO. Regulation of the renin-angiotensin-aldosterone system by cyclic nucleotides and phosphodiesterases. Front Endocrinol (Lausanne) 2023; 14:1239492. [PMID: 37674612 PMCID: PMC10478253 DOI: 10.3389/fendo.2023.1239492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/02/2023] [Indexed: 09/08/2023] Open
Abstract
The renin-angiotensin-aldosterone system (RAAS) is one of the key players in the regulation of blood volume and blood pressure. Dysfunction of this system is connected with cardiovascular and renal diseases. Regulation of RAAS is under the control of multiple intracellular mechanisms. Cyclic nucleotides and phosphodiesterases are the major regulators of this system since they control expression and activity of renin and aldosterone. In this review, we summarize known mechanisms by which cyclic nucleotides and phosphodiesterases regulate renin gene expression, secretion of renin granules from juxtaglomerular cells and aldosterone production from zona glomerulosa cells of adrenal gland. We also discuss several open questions which deserve future attention.
Collapse
Affiliation(s)
- Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Sanika Mohagaonkar
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Viacheslav O. Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
3
|
Monteiro LM, Barbosa CF, Lichtenecker DCK, Argeri R, Gomes GN. Sex modifies the renal consequences of high fructose consumption introduced after weaning. Front Physiol 2023; 14:1090090. [PMID: 37008005 PMCID: PMC10050681 DOI: 10.3389/fphys.2023.1090090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
After lactation, many children consume fructose-rich processed foods. However, overconsumption of these foods can predispose individuals to non-communicable chronic diseases, which can have different repercussions depending on the sex. Thus, we evaluated the effects of fructose overload introduced after weaning on the renal function of young rats of both sexes.Methods: After weaning, male and female offspring of Wistar rats were assigned to drink water (the male/water and female/water groups) or 20% D-fructose solution (male/fructose and female/fructose groups). Food and water or fructose solution was offered ad libitum. Rats were evaluated at 4 months. Parameters analyzed: blood pressure, body weight, triglyceride levels, glomerular filtration rate, sodium, potassium, calcium, and magnesium excretion, macrophage infiltration, and eNOS and 8OHdG expression in renal tissue. CEUA-UNIFESP: 2757270117.Results: Fructose intake affected the blood pressure, body weight, and plasma triglyceride in all rats. Glomerular filtration rate was significantly reduced in males that received fructose when compared to that of the control group. Sodium and potassium excretion decreased in all fructose-treated rats; however, the excreted load of these ions was significantly higher in females than in males. In the female control group, calcium excretion was higher than that of the male control group. Fructose overload increased magnesium excretion in females, and also increased macrophage infiltration and reduced eNOS expression in both males and females.Conclusion: Fructose overload introduced after weaning caused metabolic and renal changes in rats. Renal function was more affected in males; however, several significant alterations were also observed in the female-fructose group.
Collapse
Affiliation(s)
- Letícia Maria Monteiro
- Department of Physiology, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
- Postgraduate Program in Translational Medicine, Department of Medicine, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | - Celine Farias Barbosa
- Department of Physiology, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | | | - Rogério Argeri
- Department of Physiology, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
- Postgraduate Program in Translational Medicine, Department of Medicine, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | - Guiomar Nascimento Gomes
- Department of Physiology, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
- *Correspondence: Guiomar Nascimento Gomes,
| |
Collapse
|
4
|
Ranjbar T, Oza PP, Kashfi K. The Renin-Angiotensin-Aldosterone System, Nitric Oxide, and Hydrogen Sulfide at the Crossroads of Hypertension and COVID-19: Racial Disparities and Outcomes. Int J Mol Sci 2022; 23:ijms232213895. [PMID: 36430371 PMCID: PMC9699619 DOI: 10.3390/ijms232213895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Coronavirus disease 2019 is caused by SARS-CoV-2 and is more severe in the elderly, racial minorities, and those with comorbidities such as hypertension and diabetes. These pathologies are often controlled with medications involving the renin-angiotensin-aldosterone system (RAAS). RAAS is an endocrine system involved in maintaining blood pressure and blood volume through components of the system. SARS-CoV-2 enters the cells through ACE2, a membrane-bound protein related to RAAS. Therefore, the use of RAAS inhibitors could worsen the severity of COVID-19's symptoms, especially amongst those with pre-existing comorbidities. Although a vaccine is currently available to prevent and reduce the symptom severity of COVID-19, other options, such as nitric oxide and hydrogen sulfide, may also have utility to prevent and treat this virus.
Collapse
Affiliation(s)
- Tara Ranjbar
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA
| | - Palak P. Oza
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA
- Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10016, USA
- Correspondence:
| |
Collapse
|
5
|
Gul R, Alsalman N, Alfadda AA. Inhibition of eNOS Partially Blunts the Beneficial Effects of Nebivolol on Angiotensin II-Induced Signaling in H9c2 Cardiomyoblasts. Curr Issues Mol Biol 2022; 44:2139-2152. [PMID: 35678673 PMCID: PMC9164031 DOI: 10.3390/cimb44050144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022] Open
Abstract
We have recently illustrated that nebivolol can inhibit angiotensin II (Ang II)-mediated signaling in cardiomyoblasts; however, to date, the detailed mechanism for the beneficial effects of nebivolol has not been studied. Here, we investigated whether the inhibition of NO bioavailability by blocking eNOS (endothelial nitric oxide synthase) using L-NG-nitroarginine methyl ester (L-NAME) would attenuate nebivolol-mediated favorable effects on Ang II-evoked signaling in H9c2 cardiomyoblasts. Our data reveal that the nebivolol-mediated antagonistic effects on Ang II-induced oxidative stress were retreated by concurrent pretreatment with L-NAME and nebivolol. Similarly, the expressions of pro-inflammatory markers TNF-α and iNOS stimulated by Ang II were not decreased with the combination of nebivolol plus L-NAME. In contrast, the nebivolol-induced reduction in the Ang II-triggered mTORC1 pathway and the mRNA levels of hypertrophic markers ANP, BNP, and β-MHC were not reversed with the addition of L-NAME to nebivolol. In compliance with these data, the inhibition of eNOS by L-N⁵-(1-Iminoethyl) ornithine (LNIO) and its upstream regulator AMP-activated kinase (AMPK) with compound C in the presence of nebivolol showed effects similar to those of the L-NAME plus nebivolol combination on Ang II-mediated signaling. Pretreatment with either compound C plus nebivolol or LNIO plus nebivolol showed similar effects to those of the L-NAME plus nebivolol combination on Ang II-mediated signaling. In conclusion, our data indicate that the rise in NO bioavailability caused by nebivolol via the stimulation of AMPK/eNOS signaling is key for its anti-inflammatory and antioxidant properties but not for its antihypertrophic response upon Ang II stimulation.
Collapse
Affiliation(s)
- Rukhsana Gul
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia; (N.A.); (A.A.A.)
| | - Nouf Alsalman
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia; (N.A.); (A.A.A.)
| | - Assim A. Alfadda
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia; (N.A.); (A.A.A.)
- Department of Medicine, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia
| |
Collapse
|
6
|
Zhang D, Tu H, Hu W, Duan B, Zimmerman MC, Li YL. Hydrogen Peroxide Scavenging Restores N-Type Calcium Channels in Cardiac Vagal Postganglionic Neurons and Mitigates Myocardial Infarction-Evoked Ventricular Arrhythmias in Type 2 Diabetes Mellitus. Front Cardiovasc Med 2022; 9:871852. [PMID: 35548411 PMCID: PMC9082497 DOI: 10.3389/fcvm.2022.871852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveWithdrawal of cardiac vagal activity is associated with ventricular arrhythmia-related high mortality in patients with type 2 diabetes mellitus (T2DM). Our recent study found that reduced cell excitability of cardiac vagal postganglionic (CVP) neurons is involved in cardiac vagal dysfunction and further exacerbates myocardial infarction (MI)-evoked ventricular arrhythmias and mortality in T2DM. However, the mechanisms responsible for T2DM-impaired cell excitability of CVP neurons remain unclear. This study tested if and how elevation of hydrogen peroxide (H2O2) inactivates CVP neurons and contributes to cardiac vagal dysfunction and ventricular arrhythmogenesis in T2DM.Methods and ResultsRat T2DM was induced by a high-fat diet plus streptozotocin injection. Local in vivo transfection of adenoviral catalase gene (Ad.CAT) successfully induced overexpression of catalase and subsequently reduced cytosolic H2O2 levels in CVP neurons in T2DM rats. Ad.CAT restored protein expression and ion currents of N-type Ca2+ channels and increased cell excitability of CVP neurons in T2DM. Ad.CAT normalized T2DM-impaired cardiac vagal activation, vagal control of ventricular function, and heterogeneity of ventricular electrical activity. Additionally, Ad.CAT not only reduced the susceptibility to ventricular arrhythmias, but also suppressed MI-evoked lethal ventricular arrhythmias such as VT/VF in T2DM.ConclusionsWe concluded that endogenous H2O2 elevation inhibited protein expression and activation of N-type Ca2+ channels and reduced cell excitability of CVP neurons, which further contributed to the withdrawal of cardiac vagal activity and ventricular arrhythmogenesis in T2DM. Our current study suggests that the H2O2-N-type Ca2+ channel signaling axis might be an effective therapeutic target to suppress ventricular arrhythmias in T2DM patients with MI.
Collapse
Affiliation(s)
- Dongze Zhang
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Huiyin Tu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Wenfeng Hu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Bin Duan
- Mary and Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Matthew C. Zimmerman
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
- *Correspondence: Yu-Long Li
| |
Collapse
|
7
|
McFall A, Nicklin SA, Work LM. The counter regulatory axis of the renin angiotensin system in the brain and ischaemic stroke: Insight from preclinical stroke studies and therapeutic potential. Cell Signal 2020; 76:109809. [PMID: 33059037 PMCID: PMC7550360 DOI: 10.1016/j.cellsig.2020.109809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 01/01/2023]
Abstract
Stroke is the 2nd leading cause of death worldwide and the leading cause of physical disability and cognitive issues. Although we have made progress in certain aspects of stroke treatment, the consequences remain substantial and new treatments are needed. Hypertension has long been recognised as a major risk factor for stroke, both haemorrhagic and ischaemic. The renin angiotensin system (RAS) plays a key role in blood pressure regulation and this, plus local expression and signalling of RAS in the brain, both support the potential for targeting this axis therapeutically in the setting of stroke. While historically, focus has been on suppressing classical RAS signalling through the angiotensin type 1 receptor (AT1R), the identification of a counter-regulatory axis of the RAS signalling via the angiotensin type 2 receptor (AT2R) and Mas receptor has renewed interest in targeting the RAS. This review describes RAS signalling in the brain and the potential of targeting the Mas receptor and AT2R in preclinical models of ischaemic stroke. The animal and experimental models, and the route and timing of intervention, are considered from a translational perspective.
Collapse
Affiliation(s)
- Aisling McFall
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Stuart A Nicklin
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Lorraine M Work
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
8
|
Offringa A, Montijn R, Singh S, Paul M, Pinto YM, Pinto-Sietsma* SJ. The mechanistic overview of SARS-CoV-2 using angiotensin-converting enzyme 2 to enter the cell for replication: possible treatment options related to the renin-angiotensin system. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2020; 6:317-325. [PMID: 32464637 PMCID: PMC7314063 DOI: 10.1093/ehjcvp/pvaa053] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/25/2020] [Accepted: 05/07/2020] [Indexed: 01/08/2023]
Abstract
The SARS-CoV-2 pandemic is a healthcare crisis caused by insufficient knowledge applicable to effectively combat the virus. Therefore, different scientific discovery strategies need to be connected, to generate a rational treatment which can be made available as rapidly as possible. This relies on a solid theoretical understanding of the mechanisms of SARS-CoV-2 infection and host responses, which is coupled to the practical experience of clinicians that are treating patients. Because SARS-CoV-2 enters the cell by binding to angiotensin-converting enzyme 2 (ACE2), targeting ACE2 to prevent such binding seems an obvious strategy to combat infection. However, ACE2 performs its functions outside the cell and was found to enter the cell only by angiotensin II type 1 receptor (AT1R)-induced endocytosis, after which ACE2 is destroyed. This means that preventing uptake of ACE2 into the cell by blocking AT1R would be a more logical approach to limit entry of SARS-CoV-2 into the cell. Since ACE2 plays an important protective role in maintaining key biological processes, treatments should not disrupt the functional capacity of ACE2, to counterbalance the negative effects of the infection. Based on known mechanisms and knowledge of the characteristics of SARS-CoV we propose the hypothesis that the immune system facilitates SARS-CoV-2 replication which disrupts immune regulatory mechanisms. The proposed mechanism by which SARS-CoV-2 causes disease immediately suggests a possible treatment, since the AT1R is a key player in this whole process. AT1R antagonists appear to be the ideal candidate for the treatment of SARS-CoV-2 infection. AT1R antagonists counterbalance the negative consequences of angiotesnin II and, in addition, they might even be involved in preventing the cellular uptake of the virus without interfering with ACE2 function. AT1R antagonists are widely available, cheap, and safe. Therefore, we propose to consider using AT1R antagonists in the treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Annette Offringa
- Microbiology and System Biology, Netherlands Organisation for Applied Scientific Research, The Hague, The Netherlands
| | - Roy Montijn
- Microbiology and System Biology, Netherlands Organisation for Applied Scientific Research, The Hague, The Netherlands
| | - Sandeep Singh
- Vascular Medicine, Amsterdam UMC, Academic Medical Center Amsterdam, Amsterdam, The Netherlands
- Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, Academic Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Martin Paul
- Faculty of Health Medicine and Life Sciences, University of Maastricht, Maastricht, The Netherlands
| | - Yigal M Pinto
- Cardiology, Amsterdam UMC, Academic Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Sara-Joan Pinto-Sietsma*
- Vascular Medicine, Amsterdam UMC, Academic Medical Center Amsterdam, Amsterdam, The Netherlands
- Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, Academic Medical Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Shen Y, Park JB, Lee SY, Han SK, Ryu PD. Exercise training normalizes elevated firing rate of hypothalamic presympathetic neurons in heart failure rats. Am J Physiol Regul Integr Comp Physiol 2018; 316:R110-R120. [PMID: 30485115 DOI: 10.1152/ajpregu.00225.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Exercise training (ExT) normalizes elevated sympathetic nerve activity in heart failure (HF), but the underlying mechanisms are not well understood. In this study, we examined the effects of 3 wk of ExT on the electrical activity of the hypothalamic presympathetic neurons in the brain slice of HF rats. HF rats were prepared by ligating the left descending coronary artery. The electrophysiological properties of paraventricular nucleus neurons projecting to the rostral ventrolateral medulla (PVN-RVLM) were examined using the slice patch-clamp technique. The neuronal firing rate was elevated in HF rats, and ExT induced a reduction in the firing rate ( P < 0.01). This ExT-induced decrease in the firing rate was associated with an increased frequency of spontaneous and miniature inhibitory postsynaptic current (IPSCs; P < 0.05). There was no significant change in excitatory postsynaptic current. Replacing Ca2+ with Mg2+ in the recording solution reduced the elevated IPSC frequency in HF rats with ExT ( P < 0.01) but not in those without ExT, indicating an increase in the probability of GABA release. In contrast, ExT did not restore the reduced GABAA receptor-mediated tonic inhibitory current in HF rats. A GABAA receptor blocker (bicuculline, 20 μM) increased the firing rate in HF rats with ExT ( P < 0.01) but not in those without ExT. Collectively, these results show that ExT normalized the elevated firing activity by increasing synaptic GABA release in PVN-RVLM neurons in HF rats. Our findings provide a brain mechanism underlying the beneficial effects of ExT in HF, which may shed light on the pathophysiology of other diseases accompanied by sympathetic hyperactivation.
Collapse
Affiliation(s)
- Yiming Shen
- Department of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University , Seoul , Republic of Korea
| | - Jin Bong Park
- Department of Physiology, School of Medicine, Chungnam National University , Daejeon , Republic of Korea
| | - So Yeong Lee
- Department of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University , Seoul , Republic of Korea
| | - Seong Kyu Han
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Pan Dong Ryu
- Department of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University , Seoul , Republic of Korea
| |
Collapse
|
10
|
Hypothalamic dysfunction in heart failure: pathogenetic mechanisms and therapeutic implications. Heart Fail Rev 2017; 23:55-61. [DOI: 10.1007/s10741-017-9659-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Affiliation(s)
- Pablo Nakagawa
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City
| | - Curt D Sigmund
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City.
| |
Collapse
|
12
|
Sharma NM, Nandi SS, Zheng H, Mishra PK, Patel KP. A novel role for miR-133a in centrally mediated activation of the renin-angiotensin system in congestive heart failure. Am J Physiol Heart Circ Physiol 2017; 312:H968-H979. [PMID: 28283551 DOI: 10.1152/ajpheart.00721.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 01/08/2023]
Abstract
An activated renin-angiotensin system (RAS) within the central nervous system has been implicated in sympathoexcitation during various disease conditions including congestive heart failure (CHF). In particular, activation of the RAS in the paraventricular nucleus (PVN) of the hypothalamus has been recognized to augment sympathoexcitation in CHF. We observed a 2.6-fold increase in angiotensinogen (AGT) in the PVN of CHF. To elucidate the molecular mechanism for increased expression of AGT, we performed in silico analysis of the 3'-untranslated region (3'-UTR) of AGT and found a potential binding site for microRNA (miR)-133a. We hypothesized that decreased miR-133a might contribute to increased AGT in the PVN of CHF rats. Overexpression of miR-133a in NG108 cells resulted in 1.4- and 1.5-fold decreases in AGT and angiotensin type II (ANG II) type 1 receptor (AT1R) mRNA levels, respectively. A luciferase reporter assay performed on NG108 cells confirmed miR-133a binding to the 3'-UTR of AGT. Consistent with these in vitro data, we observed a 1.9-fold decrease in miR-133a expression with a concomitant increase in AGT and AT1R expression within the PVN of CHF rats. Furthermore, restoring the levels of miR-133a within the PVN of CHF rats with viral transduction resulted in a significant reduction of AGT (1.4-fold) and AT1R (1.5-fold) levels with a concomitant decrease in basal renal sympathetic nerve activity (RSNA). Restoration of miR-133a also abrogated the enhanced RSNA responses to microinjected ANG II within the PVN of CHF rats. These results reveal a novel and potentially unique role for miR-133a in the regulation of ANG II within the PVN of CHF rats, which may potentially contribute to the commonly observed sympathoexcitation in CHF.NEW & NOTEWORTHY Angiotensinogen (AGT) expression is upregulated in the paraventricular nucleus of the hypothalamus through posttranscriptional mechanism interceded by microRNA-133a in heart failure. Understanding the mechanism of increased expression of AGT in pathological conditions leading to increased sympathoexcitation may provide the basis for the possible development of new therapeutic agents with enhanced specificity.
Collapse
Affiliation(s)
- Neeru M Sharma
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Shyam S Nandi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Hong Zheng
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and.,Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kaushik P Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| |
Collapse
|
13
|
Saleem M, Pokkunuri I, Asghar M. Superoxide increases angiotensin II AT1 receptor function in human kidney-2 cells. FEBS Open Bio 2017; 6:1273-1284. [PMID: 28203527 PMCID: PMC5302058 DOI: 10.1002/2211-5463.12148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/19/2016] [Accepted: 10/17/2016] [Indexed: 01/11/2023] Open
Abstract
The redox-sensitive Sp family transcription factor has been linked to the regulation of angiotensin II type 1 receptor (AT1R). However, the exact mechanism of AT1R regulation in renal cells is poorly understood. We tested the specificity of reactive oxygen species (ROS), superoxide vs. hydrogen peroxide (H2O2), and the specific role of Sp3 transcription factor, if any, in the regulation of AT1R in human kidney cells (HK2 cells). Superoxide dismutase (SOD) inhibitor diethyldithiocarbamate (DETC), but not H2O2 treatment, increased fluorescence levels of superoxide probe dihydroethidium (DHE). H2O2, but not DETC, treatment increased the fluorescence of the H2O2-sensitive probe dichloro-dihydro-fluorescein (DCFH). These data suggest that SOD inhibition by DETC increases the superoxide but not H2O2 and exogenously added H2O2 is not converted to superoxide in renal cells. Furthermore, DETC, but not H2O2, treatment increased nuclear accumulation of Sp3, which was attenuated with the superoxide dismutase (SOD)-mimetic tempol. DETC treatment also increased AT1R mRNA and protein levels that were attenuated with tempol, whereas H2O2 did not have any effects on AT1R mRNA. Moreover, Sp3 overexpression increased, while Sp3 depletion by siRNA decreased, protein levels of AT1R. In addition, Sp3 siRNA in the presence of DETC decreased AT1R protein expression. Furthermore, DETC treatment increased the levels of cell surface AT1R as measured by biotinylation and immunofluorescence studies. Angiotensin II increased PKC activity in vehicle-treated cells that further increased in DETC-treated cells, which was attenuated by AT1R blocker candesartan and SOD-mimetic tempol. Taken together, our results suggest that superoxide, but not H2O2, via Sp3 up-regulates AT1R expression and function in the renal cells.
Collapse
Affiliation(s)
- Mohammad Saleem
- Pharmacological and Pharmaceutical Sciences Heart and Kidney Institute College of Pharmacy University of Houston TX USA
| | - Indira Pokkunuri
- Pharmacological and Pharmaceutical Sciences Heart and Kidney Institute College of Pharmacy University of Houston TX USA
| | - Mohammad Asghar
- Pharmacological and Pharmaceutical Sciences Heart and Kidney Institute College of Pharmacy University of Houston TX USA
| |
Collapse
|
14
|
Hezel M, Peleli M, Liu M, Zollbrecht C, Jensen BL, Checa A, Giulietti A, Wheelock CE, Lundberg JO, Weitzberg E, Carlström M. Dietary nitrate improves age-related hypertension and metabolic abnormalities in rats via modulation of angiotensin II receptor signaling and inhibition of superoxide generation. Free Radic Biol Med 2016; 99:87-98. [PMID: 27474450 DOI: 10.1016/j.freeradbiomed.2016.07.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/06/2016] [Accepted: 07/25/2016] [Indexed: 12/14/2022]
Abstract
Advanced age is associated with increased risk for cardiovascular disease and type 2 diabetes. A proposed central event is diminished amounts of nitric oxide (NO) due to reduced generation by endothelial NO synthase (eNOS) and increased oxidative stress. In addition, it is widely accepted that increased angiotensin II (ANG II) signaling is also implicated in the pathogenesis of endothelial dysfunction and hypertension by accelerating formation of reactive oxygen species. This study was designed to test the hypothesis that dietary nitrate supplementation could reduce blood pressure and improve glucose tolerance in aged rats, via attenuation of NADPH oxidase activity and ANG II receptor signaling. Dietary nitrate supplementation for two weeks reduced blood pressure (10-15mmHg) and improved glucose clearance in old, but not in young rats. These favorable effects were associated with increased insulin responses, reduced plasma creatinine as well as improved endothelial relaxation to acetylcholine and attenuated contractility to ANG II in resistance arteries. Mechanistically, nitrate reduced NADPH oxidase-mediated oxidative stress in the cardiovascular system and increased cGMP signaling. Finally, nitrate treatment in aged rats normalized the gene expression profile of ANG II receptors (AT1A, AT2, AT1A/AT2 ratio) in the renal and cardiovascular systems without altering plasma levels of renin or ANG II. Our results show that boosting the nitrate-nitrite-NO pathway can partly compensate for age-related disturbances in endogenous NO generation via inhibition of NADPH oxidase and modulation of ANG II receptor expression. These novel findings may have implications for nutrition-based preventive and therapeutic strategies against cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Michael Hezel
- Department of Physiology and Pharmacology, Karolinska Institutet, S-17177 Stockholm, Sweden.
| | - Maria Peleli
- Department of Physiology and Pharmacology, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Ming Liu
- Department of Physiology and Pharmacology, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Christa Zollbrecht
- Department of Physiology and Pharmacology, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Boye L Jensen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Antonio Checa
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Alessia Giulietti
- Department of Physiology and Pharmacology, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Craig E Wheelock
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, S-17177 Stockholm, Sweden.
| |
Collapse
|
15
|
Vaz GC, Sharma NM, Zheng H, Zimmerman MC, Santos RS, Frezard F, Fontes MAP, Patel KP. Liposome-entrapped GABA modulates the expression of nNOS in NG108-15 cells. J Neurosci Methods 2016; 273:55-63. [PMID: 27523033 DOI: 10.1016/j.jneumeth.2016.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/25/2016] [Accepted: 08/05/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Liposomes are concentric lipid vesicles that allow a sustained release of entrapped substances. GABA (γ-aminobutyric acid) is the most prevalent inhibitory neurotransmitter in the central nervous system. NEW METHOD Using GABA-containing liposomes (GL) prepared by the freeze-thawing method, we determined the effect of sustained release of GABA on expression of neuronal nitric oxide synthase (nNOS) and GABAA receptor (GABAAR) in an in vitro neuronal model. RESULTS Neuronal cell line NG108-15 treated with different doses of GL during 24h showed an increase in expression of GABAAR (54 and 50% with 10 and 20ng doses, respectively) and nNOS (138, 157 and 165% with 20, 50 and 100ng doses, respectively) compared with cells treated with empty liposomes (EL). Additionally, cells treated with 50ng of GL showed an increase in GABAAR (23%) after 1h followed by an increase in nNOS (55, 46 and 55%) at 8, 12 and 24h time points, respectively. Immunofluorescence experiments confirmed an increase in nNOS (134%) and basal intracellular levels of nitric oxide (84%) after GL treatment. Further, treatment of cells with GL showed a decrease in expression of a protein inhibitor of nNOS (PIN) (26, 66 and 57% with 20, 50 and 100ng doses respectively) compared with control. COMPARISON WITH EXISTING METHODS This is first demonstration for the development of GL that allows sustained slow release of this neurotransmitter. CONCLUSION These results suggest that a slow release of GABA can change the expression of nNOS possibly via alteration in PIN levels in neuronal cells.
Collapse
Affiliation(s)
- Gisele C Vaz
- Department of Physiology & Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Neeru M Sharma
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, United States
| | - Hong Zheng
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, United States
| | - Matthew C Zimmerman
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, United States
| | - Robson S Santos
- Department of Physiology & Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Frederic Frezard
- Department of Physiology & Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Marco A P Fontes
- Department of Physiology & Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Kaushik P Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, United States.
| |
Collapse
|
16
|
Abstract
Sleep apnea (SA) is increasing in prevalence and is commonly comorbid with hypertension. Chronic intermittent hypoxia is used to model the arterial hypoxemia seen in SA, and through this paradigm, the mechanisms that underlie SA-induced hypertension are becoming clear. Cyclic hypoxic exposure during sleep chronically stimulates the carotid chemoreflexes, inducing sensory long-term facilitation, and drives sympathetic outflow from the hindbrain. The elevated sympathetic tone drives hypertension and renal sympathetic activity to the kidneys resulting in increased plasma renin activity and eventually angiotensin II (Ang II) peripherally. Upon waking, when respiration is normalized, the sympathetic activity does not diminish. This is partially because of adaptations leading to overactivation of the hindbrain regions controlling sympathetic outflow such as the nucleus tractus solitarius (NTS), and rostral ventrolateral medulla (RVLM). The sustained sympathetic activity is also due to enhanced synaptic signaling from the forebrain through the paraventricular nucleus (PVN). During the waking hours, when the chemoreceptors are not exposed to hypoxia, the forebrain circumventricular organs (CVOs) are stimulated by peripherally circulating Ang II from the elevated plasma renin activity. The CVOs and median preoptic nucleus chronically activate the PVN due to the Ang II signaling. All together, this leads to elevated nocturnal mean arterial pressure (MAP) as a response to hypoxemia, as well as inappropriately elevated diurnal MAP in response to maladaptations.
Collapse
Affiliation(s)
- Brent Shell
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, EAD 332B, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Katelynn Faulk
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, EAD 332B, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - J Thomas Cunningham
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, EAD 332B, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| |
Collapse
|
17
|
Pollatzek E, Hitzel N, Ott D, Raisl K, Reuter B, Gerstberger R. Functional expression of P2 purinoceptors in a primary neuroglial cell culture of the rat arcuate nucleus. Neuroscience 2016; 327:95-114. [PMID: 27072848 DOI: 10.1016/j.neuroscience.2016.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 12/22/2022]
Abstract
The arcuate nucleus (ARC) plays an important role in the hypothalamic control of energy homeostasis. Expression of various purinoceptor subtypes in the rat ARC and physiological studies suggest a modulatory function of P2 receptors within the neuroglial ARC circuitry. A differentiated mixed neuronal and glial microculture was therefore established from postnatal rat ARC, revealing neuronal expression of ARC-specific transmitters involved in food intake regulation (neuropeptide Y (NPY), proopiomelanocortin (POMC), tyrosine hydroxylase (TH)). Some NPYergic neurons cosynthesized TH, while POMC and TH expression proved to be mutually exclusive. Stimulation with the general purinoceptor agonists 2-methylthioadenosine-5'triphosphate (2-MeSATP) and ATP but not the P2X1/P2X3 receptor subtype agonist α,β-methyleneadenosine-5'triphosphate (α,β-meATP) induced intracellular calcium signals in ARC neurons and astrocytes. Some 5-10% each of 2-MeSATP responsive neurons expressed POMC, NYP or TH. Supporting the calcium imaging data, radioligand binding studies to hypothalamic membranes showed high affinity for 2-MeSATP, ATP but not α,β-meATP to displace [α-(35)S]deoxyadenosine-5'thiotriphosphate ([(35)S]dATPαS) from P2 receptors. Repetitive superfusion with equimolar 2-MeSATP allowed categorization of ARC cells into groups with a high or low (LDD) degree of purinoceptor desensitization, the latter allowing further receptor characterization. Calcium imaging experiments performed at 37°C vs. room temperature showed further reduction of desensitization. Agonist-mediated intracellular calcium signals were suppressed in all LDD neurons but only 25% of astrocytes in the absence of extracellular calcium, suggestive of metabotropic P2Y receptor expression in the majority of ARC astrocytes. The highly P2Y1-selective receptor agonists MRS2365 and 2-methylthioadenosine-5'diphosphate (2-MeSADP) activated 75-85% of all 2-MeSATP-responsive ARC astrocytes. Taking into consideration the high potency to dose-dependently stimulate ARC cells of the LDD group, the high affinity for rat P2X(1-3) and low affinity for rat P2X4, P2X7 and P2Y receptor subtypes except P2Y1 and P2Y13, the agonist 2-MeSATP primarily acted upon P2X2 and P2Y1 purinoceptors to trigger intracellular calcium signaling in ARC neurons and astrocytes.
Collapse
Affiliation(s)
- Eric Pollatzek
- Institut für Veterinär-Physiologie und -Biochemie, Justus-Liebig-Universität Giessen, Frankfurter Strasse 100, D-35392 Giessen, Deutschland.
| | - Norma Hitzel
- Institut für Veterinär-Physiologie und -Biochemie, Justus-Liebig-Universität Giessen, Frankfurter Strasse 100, D-35392 Giessen, Deutschland.
| | - Daniela Ott
- Institut für Veterinär-Physiologie und -Biochemie, Justus-Liebig-Universität Giessen, Frankfurter Strasse 100, D-35392 Giessen, Deutschland.
| | - Katrin Raisl
- Institut für Veterinär-Physiologie und -Biochemie, Justus-Liebig-Universität Giessen, Frankfurter Strasse 100, D-35392 Giessen, Deutschland.
| | - Bärbel Reuter
- Institut für Veterinär-Physiologie und -Biochemie, Justus-Liebig-Universität Giessen, Frankfurter Strasse 100, D-35392 Giessen, Deutschland.
| | - Rüdiger Gerstberger
- Institut für Veterinär-Physiologie und -Biochemie, Justus-Liebig-Universität Giessen, Frankfurter Strasse 100, D-35392 Giessen, Deutschland.
| |
Collapse
|
18
|
Exercise Training Attenuates Upregulation of p47(phox) and p67(phox) in Hearts of Diabetic Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5868913. [PMID: 26989452 PMCID: PMC4771908 DOI: 10.1155/2016/5868913] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/24/2015] [Accepted: 12/21/2015] [Indexed: 01/22/2023]
Abstract
Exercise training (ExT) is currently being used as a nonpharmacological strategy to improve cardiac function in diabetic patients. However, the molecular mechanism(s) underlying its beneficial effects remains poorly understood. Oxidative stress is known to play a key role in the pathogenesis of diabetic cardiomyopathy and one of the enzyme systems that produce reactive oxygen species is NADH/NADPH oxidase. The goal of this study was to investigate the effect of streptozotocin- (STZ-) induced diabetes on expression of p47(phox) and p67(phox), key regulatory subunits of NADPH oxidase, in cardiac tissues and determine whether ExT can attenuate these changes. Four weeks after STZ treatment, expression of p47(phox) and p67(phox) increased 2.3-fold and 1.6-fold, respectively, in left ventricles of diabetic rats and these increases were attenuated with three weeks of ExT, initiated 1 week after onset of diabetes. In atrial tissues, there was increased expression of p47(phox) (74%), which was decreased by ExT in diabetic rats. Furthermore, increased collagen III levels in diabetic hearts (52%) were significantly reduced by ExT. Taken together, ExT attenuates the increased expression of p47(phox) and p67(phox) in the hearts of diabetic rats which could be an underlying mechanism for improving intracardiac matrix and thus cardiac function and prevent cardiac remodeling in diabetic cardiomyopathy.
Collapse
|
19
|
Wang G, Zhang Q, Yuan W, Wu J, Li C. Sildenafil Protects against Myocardial Ischemia-Reperfusion Injury Following Cardiac Arrest in a Porcine Model: Possible Role of the Renin-Angiotensin System. Int J Mol Sci 2015; 16:27015-31. [PMID: 26569234 PMCID: PMC4661868 DOI: 10.3390/ijms161126010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/13/2015] [Accepted: 11/03/2015] [Indexed: 12/28/2022] Open
Abstract
Sildenafil, a phosphodiesterase-5 inhibitor sold as Viagra, is a cardioprotector against myocardial ischemia/reperfusion (I/R) injury. Our study explored whether sildenafil protects against I/R-induced damage in a porcine cardiac arrest and resuscitation (CAR) model via modulating the renin-angiotensin system. Male pigs were randomly divided to three groups: Sham group, Saline group, and sildenafil (0.5 mg/kg) group. Thirty min after drug infusion, ventricular fibrillation (8 min) and cardiopulmonary resuscitation (up to 30 min) was conducted in these animals. We found that sildenafil ameliorated the reduced cardiac function and improved the 24-h survival rate in this model. Sildenafil partly attenuated the increases of plasma angiotensin II (Ang II) and Ang (1–7) levels after CAR. Sildenafil also decreased apoptosis and Ang II expression in myocardium. The increases of expression of angiotensin-converting-enzyme (ACE), ACE2, Ang II type 1 receptor (AT1R), and the Ang (1–7) receptor Mas in myocardial tissue were enhanced after CAR. Sildenafil suppressed AT1R up-regulation, but had no effect on ACE, ACE2, and Mas expression. Sildenafilfurther boosted the upregulation of endothelial nitric oxide synthase (eNOS), cyclic guanosine monophosphate (cGMP) and inducible nitric oxide synthase(iNOS). Collectively, our results suggest that cardioprotection of sildenafil in CAR model is accompanied by an inhibition of Ang II-AT1R axis activation.
Collapse
Affiliation(s)
- Guoxing Wang
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8 Worker's Stadium South Road, Chao-Yang District, Beijing 100020, China.
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, Xicheng District, Beijing 100050, China.
| | - Qian Zhang
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8 Worker's Stadium South Road, Chao-Yang District, Beijing 100020, China.
| | - Wei Yuan
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8 Worker's Stadium South Road, Chao-Yang District, Beijing 100020, China.
| | - Junyuan Wu
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8 Worker's Stadium South Road, Chao-Yang District, Beijing 100020, China.
| | - Chunsheng Li
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8 Worker's Stadium South Road, Chao-Yang District, Beijing 100020, China.
| |
Collapse
|
20
|
Xu B, Li H. Brain mechanisms of sympathetic activation in heart failure: Roles of the renin‑angiotensin system, nitric oxide and pro‑inflammatory cytokines (Review). Mol Med Rep 2015; 12:7823-9. [PMID: 26499491 PMCID: PMC4758277 DOI: 10.3892/mmr.2015.4434] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 09/10/2015] [Indexed: 12/14/2022] Open
Abstract
Patients with chronic heart failure (CHF) have an insufficient perfusion to the peripheral tissues due to decreased cardiac output. The compensatory mechanisms are triggered even prior to the occurrence of clinical symptoms, which include activation of the sympathetic nervous system (SNS) and other neurohumoral factors. However, the long‑term activation of the SNS contributes to progressive cardiac dysfunction and has toxic effects on the cardiomyocytes. The mechanisms leading to the activation of SNS include changes in peripheral baroreceptor and chemoreceptor reflexes and the abnormal regulation of sympathetic nerve activity (SNA) in the central nervous system (CNS). Recent studies have focused on the role of brain mechanisms in the regulation of SNA and the progression of CHF. The renin‑angiotensin system, nitric oxide and pro‑inflammatory cytokines were shown to be involved in the abnormal regulation of SNA in the CNS. The alteration of these neurohumoral factors during CHF influences the activity of neurons in the autonomic regions and finally increase the sympathetic outflow. The present review summarizes the brain mechanisms contributing to sympathoexcitation in CHF.
Collapse
Affiliation(s)
- Bin Xu
- Department of Cardiology, Shanghai First People's Hospital, College of Medicine, Shanghai Jiaotong University, Shanghai 200080, P.R. China
| | - Hongli Li
- Department of Cardiology, Shanghai First People's Hospital, College of Medicine, Shanghai Jiaotong University, Shanghai 200080, P.R. China
| |
Collapse
|
21
|
Central nervous system circuits modified in heart failure: pathophysiology and therapeutic implications. Heart Fail Rev 2015; 19:759-79. [PMID: 24573960 DOI: 10.1007/s10741-014-9427-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pathophysiology of heart failure (HF) is characterized by an abnormal activation of neurohumoral systems, including the sympathetic nervous and the renin-angiotensin-aldosterone systems, which have long-term deleterious effects on the disease progression. Perpetuation of this neurohumoral activation is partially dependent of central nervous system (CNS) pathways, mainly involving the paraventricular nucleus of the hypothalamus and some regions of the brainstem. Modifications in these integrative CNS circuits result in the attenuation of sympathoinhibitory and exacerbation of sympathoexcitatory pathways. In addition to the regulation of sympathetic outflow, these central pathways coordinate a complex network of agents with an established pathophysiological relevance in HF such as angiotensin, aldosterone, and proinflammatory cytokines. Central pathways could be potential targets in HF therapy since the current mainstay of HF pharmacotherapy aims primarily at antagonizing the peripheral mechanisms. Thus, in the present review, we describe the role of CNS pathways in HF pathophysiology and as potential novel therapeutic targets.
Collapse
|
22
|
Gao J, Zucker IH, Gao L. Activation of central angiotensin type 2 receptors by compound 21 improves arterial baroreflex sensitivity in rats with heart failure. Am J Hypertens 2014; 27:1248-56. [PMID: 24687998 DOI: 10.1093/ajh/hpu044] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND In a previous study we demonstrated that central administration of compound 21 (C21), a nonpeptide AT2R agonist, inhibited sympathetic tone in normal rats. In this study, we hypothesized that C21 exerts a similar effect in rats with coronary ligation-induced heart failure (HF). METHODS C21 was intracerebroventricularly infused for 7 days by osmotic mini pump. Blood pressure (BP) and heart rate (HR) were recorded by radiotelemetry in the conscious state to measure spontaneous arterial baroreflex sensitivity. Urine was collected for measurement of norepinephrine excretion. On the last day of C21 treatment, renal sympathetic nerve activity, BP, and HR were directly recorded under anesthesia, and the induced arterial baroreflex sensitivity was evaluated. Protein expressions of neuronal nitric oxide synthase (nNOS) and angiotensin II type 1 receptor (AT1R) in the subfornical organ, paraventricular nucleus, rostral ventrolateral medulla, and nucleus tractus solitarius were determined by Western blot analysis. RESULTS C21-treated HF rats displayed significantly less norepinephrine excretion (2,385.6 ± 121.1 vs. 3,677.3 ± 147.6 ng/24 hours; P < 0.05) and lower renal sympathetic nerve activity (50.2 ± 1.9% of max vs. 70.9 ± 8.2% of max; P < 0.05) than vehicle-treated HF rats. C21-treated rats also exhibited improved spontaneous arterial baroreflex sensitivity and induced arterial baroreflex sensitivity. Bolus intracerebroventricular injection of angiotensin II-evoked pressor and sympatho-excitatory responses were attenuated in the C21-treated HF rats, which displayed upregulated nNOS and downregulated AT1R expression in the subfornical organ, paraventricular nucleus, and rostral ventrolateral medulla. CONCLUSIONS Activation of central angiotensin II type 2 receptor AT2R by C21 suppresses sympathetic outflow in rats with HF by improving baroreflex sensitivity and may provide important benefit in the HF syndrome.
Collapse
Affiliation(s)
- Juan Gao
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Irving H Zucker
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Lie Gao
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
23
|
Zucker IH, Xiao L, Haack KKV. The central renin-angiotensin system and sympathetic nerve activity in chronic heart failure. Clin Sci (Lond) 2014; 126:695-706. [PMID: 24490814 PMCID: PMC4053944 DOI: 10.1042/cs20130294] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
CHF (chronic heart failure) is a multifactorial disease process that is characterized by overactivation of the RAAS (renin-angiotensin-aldosterone system) and the sympathetic nervous system. Both of these systems are chronically activated in CHF. The RAAS consists of an excitatory arm involving AngII (angiotensin II), ACE (angiotensin-converting enzyme) and the AT1R (AngII type 1 receptor). The RAAS also consists of a protective arm consisting of Ang-(1-7) [angiotensin-(1-7)], the AT2R (AngII type 2 receptor), ACE2 and the Mas receptor. Sympatho-excitation in CHF is driven, in large part, by an imbalance of these two arms, with an increase in the AngII/AT1R/ACE arm and a decrease in the AT2R/ACE2 arm. This imbalance is manifested in cardiovascular-control regions of the brain such as the rostral ventrolateral medulla and paraventricular nucleus in the hypothalamus. The present review focuses on the current literature that describes the components of these two arms of the RAAS and their imbalance in the CHF state. Moreover, the present review provides additional evidence for the relevance of ACE2 and Ang-(1-7) as key players in the regulation of central sympathetic outflow in CHF. Finally, we also examine the effects of exercise training as a therapeutic strategy and the molecular mechanisms at play in CHF, in part, because of the ability of exercise training to restore the balance of the RAAS axis and sympathetic outflow.
Collapse
Affiliation(s)
- Irving H Zucker
- *Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, U.S.A
| | - Liang Xiao
- *Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, U.S.A
| | - Karla K V Haack
- *Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, U.S.A
| |
Collapse
|
24
|
Llewellyn TL, Sharma NM, Zheng H, Patel KP. Effects of exercise training on SFO-mediated sympathoexcitation during chronic heart failure. Am J Physiol Heart Circ Physiol 2013; 306:H121-31. [PMID: 24163080 DOI: 10.1152/ajpheart.00534.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Exercise training (ExT) has been shown to reduce sympathetic drive during heart failure (HF). The subfornical organ (SFO) is involved in the neural control of sympathetic drive. We hypothesized that an activated SFO contributes to enhanced sympathetic activity in HF. We also postulated that ExT would reduce the activation of the SFO and its contribution to the sympathetic drive during HF. Sprague-Dawley rats were subjected to coronary artery ligation to induce HF. Rats were assigned to ExT for 3-4 wk. Rats with HF had a 2.5-fold increase in FosB-positive cells in the SFO compared with sham-operated rats, and this was normalized by ExT. Microinjection of ANG II (100 pmol) into the SFO resulted in a greater increase in renal sympathetic nerve activity (RSNA), blood pressure, and heart rate in the HF group than in the sham-operated group. These responses were normalized after ExT (change in RSNA: 23 ± 3% vs. 8 ± 2%). ExT also abolished the decrease in RSNA in HF rats after the microinjection of losartan (200 pmol) into the SFO (-21 ± 4% vs. -2 ± 3%). Finally, there was elevated mRNA (5-fold) and protein expression (43%) of ANG II type 1 receptors in the SFO of rats with HF, which were reversed after ExT. These data suggest that the enhanced activity of the SFO by elevated tonic ANG II contributes to the enhanced sympathoexcitation exhibited in HF. The decrease in ANG II type 1 receptor expression in the SFO by ExT may be responsible for reversing the neuronal activation in the SFO and SFO-mediated sympathoexcitation in rats with HF.
Collapse
Affiliation(s)
- Tamra L Llewellyn
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | | | | | | |
Collapse
|
25
|
Sharma NM, Llewellyn TL, Zheng H, Patel KP. Angiotensin II-mediated posttranslational modification of nNOS in the PVN of rats with CHF: role for PIN. Am J Physiol Heart Circ Physiol 2013; 305:H843-55. [PMID: 23832698 DOI: 10.1152/ajpheart.00170.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An increased sympathetic drive is an adverse characteristic in chronic heart failure (CHF). The protein expression of neuronal nitric oxide synthase (nNOS)- and hence nitric oxide (NO)-mediated sympathoinhibition is reduced in the paraventricular nucleus (PVN) of rats with CHF. However, the molecular mechanism(s) of nNOS downregulation remain(s) unclear. The aim of the study was to reveal the underlying molecular mechanism for the downregulation of nNOS in the PVN of CHF rats. Sprague-Dawley rats with CHF (6-8 wk after coronary artery ligation) demonstrated decreased nNOS dimer/monomer ratio (42%), with a concomitant increase in the expression of PIN (a protein inhibitor of nNOS known to dissociate nNOS dimers into monomers) by 47% in the PVN. Similarly, PIN expression is increased in a neuronal cell line (NG108) treated with angiotensin II (ANG II). Furthermore, there is an increased accumulation of high-molecular-weight nNOS-ubiquitin (nNOS-Ub) conjugates in the PVN of CHF rats (29%). ANG II treatment in NG108 cells in the presence of a proteasome inhibitor, lactacystin, also leads to a 69% increase in accumulation of nNOS-Ub conjugates immunoprecipitated by an antiubiquitin antibody. There is an ANG II-driven, PIN-mediated decrease in the dimeric catalytically active nNOS in the PVN, due to ubiquitin-dependent proteolytic degradation in CHF. Our results show a novel intermediary mechanism that leads to decreased levels of active nNOS in the PVN, involved in subsequent reduction in sympathoinhibition during CHF, offering a new target for the treatment of CHF and other cardiovascular diseases.
Collapse
Affiliation(s)
- Neeru M Sharma
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | | | | | | |
Collapse
|
26
|
Leite LHR, Sharma NM, Bafna S, Zheng H, Coimbra CC, Patel KP. Construction and validation of lentiviral vector carrying rat neuronal nitric oxide synthase in vitro and in vivo. J Neurosci Methods 2012; 211:77-83. [PMID: 22921486 DOI: 10.1016/j.jneumeth.2012.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 08/07/2012] [Accepted: 08/13/2012] [Indexed: 10/28/2022]
Abstract
In the present study, we developed a lentiviral vector with human cytomegalovirus promoter permitting high-level of nNOS expression. Neuronal cell line NG108 was used as an in vitro model to check the validity of gene transfer. The cells were infected with lenti-EGFP or lenti-nNOS particles for 24h. Lenti-nNOS infection in the NG108 cells induced dose dependent increase in mRNA and protein for nNOS; with a dose of 2.5 × 10⁴ pfu/ml, nNOS mRNA expression increased by 40-fold while protein expression was increased by 2.5-fold compared to lenti-EGFP. Moreover, lenti-nNOS infection caused a greater increase in nNOS immunoreactivity in NG108 cells compared to lenti-EGFP as shown by immonocytochemistry. nNOS expression showed time dependent increases with lenti-nNOS infection with maximum up-regulation observed after two weeks of infection. Moreover, in vivo, unilateral injection of lenti-nNOS into the paraventricular nucleus (PVN) of rats induced a 27-fold increase of nNOS protein level in the injected side compared to non-injected side and this escalation was sustained up to three weeks. Overall, lenti-EGFP injection in the PVN did not show any significant change in nNOS expression. Furthermore, NADPH-diaphorase staining of nNOS in the PVN infected with lenti-nNOS induced a visible increase in nNOS expression compared with contralateral non-injected side up to three weeks. These results indicate that this approach of lentiviral mediated gene transfer of nNOS may provide a new means to up-regulate the nNOS expression for longer periods of time compared to adenoviral transfection and can be used as a research tool and potentially a therapy for chronic diseases involving impaired nNOS expression.
Collapse
Affiliation(s)
- Laura H R Leite
- Department of Physiology, Institute of Biological Sciences, Federal University of Juiz de Fora, 36036-900 Juiz de Fora, Minas Gerais, Brazil
| | | | | | | | | | | |
Collapse
|
27
|
Zheng H, Sharma NM, Liu X, Patel KP. Exercise training normalizes enhanced sympathetic activation from the paraventricular nucleus in chronic heart failure: role of angiotensin II. Am J Physiol Regul Integr Comp Physiol 2012; 303:R387-94. [PMID: 22718804 DOI: 10.1152/ajpregu.00046.2012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Exercise training (ExT) normalizes the increased sympathetic outflow in heart failure (HF), but the underlying mechanisms are not known. We hypothesized ExT would normalize the augmented activation of the paraventricular nucleus (PVN) via an angiotensinergic mechanism during HF. Four groups of rats used were the following: 1) sham-sedentary (Sed); 2) sham-ExT; 3) HF-Sed, and 4) HF-ExT. HF was induced by left coronary artery ligation. Four weeks after surgery, 3 wk of treadmill running was performed in ExT groups. The number of FosB-positive cells in the PVN was significantly increased in HF-Sed group compared with the sham-Sed group. ExT normalized (negated) this increase in the rats with HF. In anesthetized condition, the increases in renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP), and heart rate (HR) in response to microinjection of angiotensin (ANG) II (50∼200 pmol) in the PVN of HF-Sed group were significantly greater than of the sham-Sed group. In the HF-ExT group the responses to microinjection of ANG II were not different from sham-Sed or sham-ExT groups. Blockade of ANG II type 1 (AT(1)) receptors with losartan in the PVN produced a significantly greater decrease in RSNA, MAP, and HR in HF-Sed group compared with sham-Sed group. ExT prevented the difference between HF and sham groups. AT(1) receptor protein expression was increased 50% in HF-Sed group compared with sham-Sed group. In the HF-ExT group, AT(1) receptor protein expression was not significantly different from sham-Sed or sham-ExT groups. In conclusion, one mechanism by which ExT alleviates elevated sympathetic outflow in HF may be through normalization of angiotensinergic mechanisms within the PVN.
Collapse
Affiliation(s)
- Hong Zheng
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, 68198-5850, USA
| | | | | | | |
Collapse
|
28
|
Northcott CA, Billecke S, Craig T, Hinojosa-Laborde C, Patel KP, Chen AF, D'Alecy LG, Haywood JR. Nitric oxide synthase, ADMA, SDMA, and nitric oxide activity in the paraventricular nucleus throughout the etiology of renal wrap hypertension. Am J Physiol Heart Circ Physiol 2012; 302:H2276-84. [PMID: 22447945 DOI: 10.1152/ajpheart.00562.2011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Within the paraventricular nucleus (PVN), there is a balance between the excitatory and inhibitory neurotransmitters that regulate blood pressure; in hypertension, the balance shifts to enhanced excitation. Nitric oxide (NO) is an atypical neurotransmitter that elicits inhibitory effects on cardiovascular function. We hypothesized that reduced PVN NO led to elevations in blood pressure during both the onset and sustained phases of hypertension due to decreased NO synthase (NOS) and increased asymmetrical dimethylarginine (ADMA; an endogenous NOS inhibitor) and symmetric dimethylarginine (SDMA). Elevated blood pressure, in response to PVN bilateral microinjections of a NO inhibitor, nitro-L-arginine methyl ester, was blunted in renal wrapped rats during the onset of hypertension (day 7) and sustained renal wrap hypertension (day 28) compared with sham-operated rats. Adenoviruses (Ad) encoding endothelial NOS (eNOS) or LacZ microinjected into the PVN [1 × 10(9) plaque-forming units, bilateral (200 nl/site)] reduced mean arterial pressure compared with control (Day 7, Ad LacZ wrap: 144 ± 7 mmHg and Ad eNOS wrap: 117 ± 5 mmHg, P ≤ 0.05) throughout the study (Day 28, Ad LacZ wrap: 123 ± 1 mmHg and Ad eNOS wrap: 108 ± 4 mmHg, P ≤ 0.05). Western blot analyses of PVN NOS revealed significantly lower PVN neuronal NOS during the onset of hypertension but not in sustained hypertension. Reduced SDMA was found in the PVN during the onset of hypertension; however, no change in ADMA was observed. In conclusion, functional indexes of NO activity indicated an overall downregulation of NO in renal wrap hypertension, but the mechanism by which this occurs likely differs throughout the development of hypertension.
Collapse
Affiliation(s)
- Carrie A Northcott
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, 48824, USA
| | | | | | | | | | | | | | | |
Collapse
|