1
|
Nascimento AA, Pereira-Figueiredo D, Borges-Martins VP, Kubrusly RC, Calaza KC. GABAergic system and chloride cotransporters as potential therapeutic targets to mitigate cell death in ischemia. J Neurosci Res 2024; 102:e25355. [PMID: 38808645 DOI: 10.1002/jnr.25355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 04/17/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024]
Abstract
Gamma aminobutyric acid (GABA) is a critical inhibitory neurotransmitter in the central nervous system that plays a vital role in modulating neuronal excitability. Dysregulation of GABAergic signaling, particularly involving the cotransporters NKCC1 and KCC2, has been implicated in various pathologies, including epilepsy, schizophrenia, autism spectrum disorder, Down syndrome, and ischemia. NKCC1 facilitates chloride influx, whereas KCC2 mediates chloride efflux via potassium gradient. Altered expression and function of these cotransporters have been associated with excitotoxicity, inflammation, and cellular death in ischemic events characterized by reduced cerebral blood flow, leading to compromised tissue metabolism and subsequent cell death. NKCC1 inhibition has emerged as a potential therapeutic approach to attenuate intracellular chloride accumulation and mitigate neuronal damage during ischemic events. Similarly, targeting KCC2, which regulates chloride efflux, holds promise for improving outcomes and reducing neuronal damage under ischemic conditions. This review emphasizes the critical roles of GABA, NKCC1, and KCC2 in ischemic pathologies and their potential as therapeutic targets. Inhibiting or modulating the activity of these cotransporters represents a promising strategy for reducing neuronal damage, preventing excitotoxicity, and improving neurological outcomes following ischemic events. Furthermore, exploring the interactions between natural compounds and NKCC1/KCC2 provides additional avenues for potential therapeutic interventions for ischemic injury.
Collapse
Affiliation(s)
- A A Nascimento
- Neurobiology of the Retina Laboratory, Department of Neurobiology and Graduate Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - D Pereira-Figueiredo
- Graduate Program in Biomedical Sciences (Physiology and Pharmacology), Fluminense Federal University, Niterói, Brazil
| | - V P Borges-Martins
- Laboratory of Neuropharmacology, Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Niterói, Brazil
| | - R C Kubrusly
- Laboratory of Neuropharmacology, Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Niterói, Brazil
| | - K C Calaza
- Neurobiology of the Retina Laboratory, Department of Neurobiology and Graduate Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil
- Graduate Program in Biomedical Sciences (Physiology and Pharmacology), Fluminense Federal University, Niterói, Brazil
| |
Collapse
|
2
|
Bhuiyan MIH, Habib K, Sultan MT, Chen F, Jahan I, Weng Z, Rahman MS, Islam R, Foley LM, Hitchens TK, Deng X, Canna SW, Sun D, Cao G. SPAK inhibitor ZT-1a attenuates reactive astrogliosis and oligodendrocyte degeneration in a mouse model of vascular dementia. CNS Neurosci Ther 2024; 30:e14654. [PMID: 38433018 PMCID: PMC10909630 DOI: 10.1111/cns.14654] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/08/2024] [Accepted: 01/28/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Astrogliosis and white matter lesions (WML) are key characteristics of vascular contributions to cognitive impairment and dementia (VCID). However, the molecular mechanisms underlying VCID remain poorly understood. Stimulation of Na-K-Cl cotransport 1 (NKCC1) and its upstream kinases WNK (with no lysine) and SPAK (the STE20/SPS1-related proline/alanine-rich kinase) play a role in astrocytic intracellular Na+ overload, hypertrophy, and swelling. Therefore, in this study, we assessed the effect of SPAK inhibitor ZT-1a on pathogenesis and cognitive function in a mouse model of VCID induced by bilateral carotid artery stenosis (BCAS). METHODS Following sham or BCAS surgery, mice were randomly assigned to receive either vehicle (DMSO) or SPAK inhibitor ZT-1a treatment regimen (days 14-35 post-surgery). Mice were then evaluated for cognitive functions by Morris water maze, WML by ex vivo MRI-DTI analysis, and astrogliosis/demyelination by immunofluorescence and immunoblotting. RESULTS Compared to sham control mice, BCAS-Veh mice exhibited chronic cerebral hypoperfusion and memory impairments, accompanied by significant MRI DTI-detected WML and oligodendrocyte (OL) death. Increased activation of WNK-SPAK-NKCC1-signaling proteins was detected in white matter tissues and in C3d+ GFAP+ cytotoxic astrocytes but not in S100A10+ GFAP+ homeostatic astrocytes in BCAS-Veh mice. In contrast, ZT-1a-treated BCAS mice displayed reduced expression and phosphorylation of NKCC1, decreased astrogliosis, OL death, and WML, along with improved memory functions. CONCLUSION BCAS-induced upregulation of WNK-SPAK-NKCC1 signaling contributes to white matter-reactive astrogliosis, OL death, and memory impairment. Pharmacological inhibition of the SPAK activity has therapeutic potential for alleviating pathogenesis and memory impairment in VCID.
Collapse
Affiliation(s)
- Mohammad Iqbal H. Bhuiyan
- Department of Pharmaceutical Sciences, School of PharmacyUniversity of Texas at El PasoEl PasoTexasUSA
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Pittsburgh Institute for Neurodegenerative DisordersUniversity of PittsburghPittsburghPennsylvaniaUSA
- Veterans Affairs Pittsburgh Health Care System Pittsburgh Healthcare SystemGeriatric Research Education and Clinical CenterPittsburghPennsylvaniaUSA
| | - Khadija Habib
- Department of Pharmaceutical Sciences, School of PharmacyUniversity of Texas at El PasoEl PasoTexasUSA
| | - Md Tipu Sultan
- Department of Pharmaceutical Sciences, School of PharmacyUniversity of Texas at El PasoEl PasoTexasUSA
| | - Fenghua Chen
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Israt Jahan
- Department of Pharmaceutical Sciences, School of PharmacyUniversity of Texas at El PasoEl PasoTexasUSA
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Zhongfang Weng
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Md Shamim Rahman
- Department of Pharmaceutical Sciences, School of PharmacyUniversity of Texas at El PasoEl PasoTexasUSA
| | | | - Lesley M. Foley
- Animal Imaging CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - T. Kevin Hitchens
- Animal Imaging CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of NeurobiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, School of Life SciencesXiamen UniversityXiamenFujianChina
| | - Scott W. Canna
- Department of Pediatric RheumatologyThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Dandan Sun
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Pittsburgh Institute for Neurodegenerative DisordersUniversity of PittsburghPittsburghPennsylvaniaUSA
- Veterans Affairs Pittsburgh Health Care System Pittsburgh Healthcare SystemGeriatric Research Education and Clinical CenterPittsburghPennsylvaniaUSA
| | - Guodong Cao
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Veterans Affairs Pittsburgh Health Care System Pittsburgh Healthcare SystemGeriatric Research Education and Clinical CenterPittsburghPennsylvaniaUSA
| |
Collapse
|
3
|
Blood-Brain Barrier Transporters: Opportunities for Therapeutic Development in Ischemic Stroke. Int J Mol Sci 2022; 23:ijms23031898. [PMID: 35163820 PMCID: PMC8836701 DOI: 10.3390/ijms23031898] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/20/2022] Open
Abstract
Globally, stroke is a leading cause of death and long-term disability. Over the past decades, several efforts have attempted to discover new drugs or repurpose existing therapeutics to promote post-stroke neurological recovery. Preclinical stroke studies have reported successes in identifying novel neuroprotective agents; however, none of these compounds have advanced beyond a phase III clinical trial. One reason for these failures is the lack of consideration of blood-brain barrier (BBB) transport mechanisms that can enable these drugs to achieve efficacious concentrations in ischemic brain tissue. Despite the knowledge that drugs with neuroprotective properties (i.e., statins, memantine, metformin) are substrates for endogenous BBB transporters, preclinical stroke research has not extensively studied the role of transporters in central nervous system (CNS) drug delivery. Here, we review current knowledge on specific BBB uptake transporters (i.e., organic anion transporting polypeptides (OATPs in humans; Oatps in rodents); organic cation transporters (OCTs in humans; Octs in rodents) that can be targeted for improved neuroprotective drug delivery. Additionally, we provide state-of-the-art perspectives on how transporter pharmacology can be integrated into preclinical stroke research. Specifically, we discuss the utility of in vivo stroke models to transporter studies and considerations (i.e., species selection, co-morbid conditions) that will optimize the translational success of stroke pharmacotherapeutic experiments.
Collapse
|
4
|
Josiah SS, Meor Azlan NF, Zhang J. Targeting the WNK-SPAK/OSR1 Pathway and Cation-Chloride Cotransporters for the Therapy of Stroke. Int J Mol Sci 2021; 22:1232. [PMID: 33513812 PMCID: PMC7865768 DOI: 10.3390/ijms22031232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 02/05/2023] Open
Abstract
Stroke is one of the major culprits responsible for morbidity and mortality worldwide, and the currently available pharmacological strategies to combat this global disease are scanty. Cation-chloride cotransporters (CCCs) are expressed in several tissues (including neurons) and extensively contribute to the maintenance of numerous physiological functions including chloride homeostasis. Previous studies have implicated two CCCs, the Na+-K+-Cl- and K+-Cl- cotransporters (NKCCs and KCCs) in stroke episodes along with their upstream regulators, the with-no-lysine kinase (WNKs) family and STE20/SPS1-related proline/alanine rich kinase (SPAK) or oxidative stress response kinase (OSR1) via a signaling pathway. As the WNK-SPAK/OSR1 pathway reciprocally regulates NKCC and KCC, a growing body of evidence implicates over-activation and altered expression of NKCC1 in stroke pathology whilst stimulation of KCC3 during and even after a stroke event is neuroprotective. Both inhibition of NKCC1 and activation of KCC3 exert neuroprotection through reduction in intracellular chloride levels and thus could be a novel therapeutic strategy. Hence, this review summarizes the current understanding of functional regulations of the CCCs implicated in stroke with particular focus on NKCC1, KCC3, and WNK-SPAK/OSR1 signaling and discusses the current and potential pharmacological treatments for stroke.
Collapse
Affiliation(s)
| | | | - Jinwei Zhang
- Hatherly Laboratories, Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Exeter EX4 4PS, UK; (S.S.J.); (N.F.M.A.)
| |
Collapse
|
5
|
Klug NR, Chechneva OV, Hung BY, O'Donnell ME. High glucose-induced effects on Na +-K +-2Cl - cotransport and Na +/H + exchange of blood-brain barrier endothelial cells: involvement of SGK1, PKCβII, and SPAK/OSR1. Am J Physiol Cell Physiol 2021; 320:C619-C634. [PMID: 33406028 DOI: 10.1152/ajpcell.00177.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hyperglycemia exacerbates edema formation and worsens neurological outcome in ischemic stroke. Edema formation in the early hours of stroke involves transport of ions and water across an intact blood-brain barrier (BBB), and swelling of astrocytes. We showed previously that high glucose (HG) exposures of 24 hours to 7 days increase abundance and activity of BBB Na+-K+-2Cl- cotransport (NKCC) and Na+/H+ exchange 1 (NHE1). Further, bumetanide and HOE-642 inhibition of these transporters significantly reduces edema and infarct following middle cerebral artery occlusion in hyperglycemic rats, suggesting that NKCC and NHE1 are effective therapeutic targets for reducing edema in hyperglycemic stroke. The mechanisms underlying hyperglycemia effects on BBB NKCC and NHE1 are not known. In the present study we investigated whether serum-glucocorticoid regulated kinase 1 (SGK1) and protein kinase C beta II (PKCβII) are involved in HG effects on BBB NKCC and NHE1. We found transient increases in phosphorylated SGK1 and PKCβII within the first hour of HG exposure, after 5-60 min for SGK1 and 5 min for PKCβII. However, no changes were observed in cerebral microvascular endothelial cell SGK1 or PKCβII abundance or phosphorylation (activity) after 24 or 48 h HG exposures. Further, we found that HG-induced increases in NKCC and NHE1 abundance were abolished by inhibition of SGK1 but not PKCβII, whereas the increases in NKCC and NHE activity were abolished by inhibition of either kinase. Finally, we found evidence that STE20/SPS1-related proline/alanine-rich kinase and oxidative stress-responsive kinase-1 (SPAK/OSR1) participate in the HG-induced effects on BBB NKCC.
Collapse
Affiliation(s)
- Nicholas R Klug
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Olga V Chechneva
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Benjamin Y Hung
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Martha E O'Donnell
- Department of Physiology and Membrane Biology, University of California, Davis, California
| |
Collapse
|
6
|
Tao D, Liu F, Sun X, Qu H, Zhao S, Zhou Z, Xiao T, Zhao C, Zhao M. Bumetanide: A review of its neuroplasticity and behavioral effects after stroke. Restor Neurol Neurosci 2020; 37:397-407. [PMID: 31306143 DOI: 10.3233/rnn-190926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Stroke often leads to neuronal injury and neurological functional deficits. Whilst spontaneous neurogenesis and axon regeneration are induced by ischemic stroke, effective pharmacological treatments are also essential for the improvement of neuroplasticity and functional recovery after stroke. However, no pharmacological therapy has been demonstrated to be able to effectively improve the functional recovery after stroke. Bumetanide is a specific Na+-K+-Cl- co-transporter inhibitor which can maintain chloride homeostasis in neurons. Therefore, many studies have focused on this drug's effect in stroke recovery in recent years. Here, we first review the function of Na+-K+-Cl- co-transporter in neurons, then how bumetanide's role in reducing brain damage, promoting neuroplasticity, leading to functional recovery after stroke, is elucidated. Finally, we discuss current limitations of bumetanide's efficiency and their potential solutions. These results may provide new avenues for further exploring mechanisms of post-stroke functional recovery as well as promising therapeutic targets for functional disability rehabilitation after ischemic stroke.
Collapse
Affiliation(s)
- Dongxia Tao
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Fangxi Liu
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Xiaoyu Sun
- Neurology, The People's Hospital of Liaoning Province, Shenyang, China
| | - Huiling Qu
- Neurology, The People's Hospital of Liaoning Province, Shenyang, China
| | - Shanshan Zhao
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Zhike Zhou
- Geriatrics, The First Hospital of China Medical University, Shenyang, China
| | - Ting Xiao
- Dermatology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Immunodermatology, Ministry of Health, Ministry of Education, Shenyang, China
| | - Chuansheng Zhao
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Mei Zhao
- Cardiology, The Shengjing Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
7
|
Yuen NY, Chechneva OV, Chen YJ, Tsai YC, Little LK, Dang J, Tancredi DJ, Conston J, Anderson SE, O'Donnell ME. Exacerbated brain edema in a rat streptozotocin model of hyperglycemic ischemic stroke: Evidence for involvement of blood-brain barrier Na-K-Cl cotransport and Na/H exchange. J Cereb Blood Flow Metab 2019; 39:1678-1692. [PMID: 29739261 PMCID: PMC6727129 DOI: 10.1177/0271678x18770844] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cerebral edema is exacerbated in diabetic ischemic stroke through poorly understood mechanisms. We showed previously that blood-brain barrier (BBB) Na-K-Cl cotransport (NKCC) and Na/H exchange (NHE) are major contributors to edema formation in normoglycemic ischemic stroke. Here, we investigated whether hyperglycemia-exacerbated edema involves changes in BBB NKCC and NHE expression and/or activity and whether inhibition of NKCC or NHE effectively reduces edema and injury in a type I diabetic model of hyperglycemic stroke. Cerebral microvascular endothelial cell (CMEC) NKCC and NHE abundances and activities were determined by Western blot, radioisotopic flux and microspectrofluorometric methods. Cerebral edema and Na in rats subjected to middle cerebral artery occlusion (MCAO) were assessed by nuclear magnetic resonance methods. Hyperglycemia exposures of 1-7d significantly increased CMEC NKCC and NHE abundance and activity. Subsequent exposure to ischemic factors caused more robust increases in NKCC and NHE activities than in normoglycemic CMEC. MCAO-induced edema and brain Na uptake were greater in hyperglycemic rats. Intravenous bumetanide and HOE-642 significantly attenuated edema, brain Na uptake and ischemic injury. Our findings provide evidence that BBB NKCC and NHE contribute to increased edema in hyperglycemic stroke, suggesting that these Na transporters are promising therapeutic targets for reducing damage in diabetic stroke.
Collapse
Affiliation(s)
- Natalie Y Yuen
- 1 Department of Physiology and Membrane Biology, University of California, Davis, CA, USA
| | - Olga V Chechneva
- 1 Department of Physiology and Membrane Biology, University of California, Davis, CA, USA
| | - Yi-Je Chen
- 2 Department of Pharmacology, University of California, Davis, CA, USA
| | - Yi-Chen Tsai
- 1 Department of Physiology and Membrane Biology, University of California, Davis, CA, USA
| | - Logan K Little
- 1 Department of Physiology and Membrane Biology, University of California, Davis, CA, USA
| | - James Dang
- 1 Department of Physiology and Membrane Biology, University of California, Davis, CA, USA
| | - Daniel J Tancredi
- 3 Department of Pediatrics, University of California, Davis, CA, USA
| | - Jacob Conston
- 1 Department of Physiology and Membrane Biology, University of California, Davis, CA, USA
| | - Steven E Anderson
- 1 Department of Physiology and Membrane Biology, University of California, Davis, CA, USA
| | - Martha E O'Donnell
- 1 Department of Physiology and Membrane Biology, University of California, Davis, CA, USA
| |
Collapse
|
8
|
Capolongo G, Suzumoto Y, D'Acierno M, Simeoni M, Capasso G, Zacchia M. ERK1,2 Signalling Pathway along the Nephron and Its Role in Acid-base and Electrolytes Balance. Int J Mol Sci 2019; 20:E4153. [PMID: 31450703 PMCID: PMC6747339 DOI: 10.3390/ijms20174153] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/14/2019] [Accepted: 08/22/2019] [Indexed: 12/17/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are intracellular molecules regulating a wide range of cellular functions, including proliferation, differentiation, apoptosis, cytoskeleton remodeling and cytokine production. MAPK activity has been shown in normal kidney, and its over-activation has been demonstrated in several renal diseases. The extracellular signal-regulated protein kinases (ERK 1,2) signalling pathway is the first described MAPK signaling. Intensive investigations have demonstrated that it participates in the regulation of ureteric bud branching, a fundamental process in establishing final nephron number; in addition, it is also involved in the differentiation of the nephrogenic mesenchyme, indicating a key role in mammalian kidney embryonic development. In the present manuscript, we show that ERK1,2 signalling mediates several cellular functions also in mature kidney, describing its role along the nephron and demonstrating whether it contributes to the regulation of ion channels and transporters implicated in acid-base and electrolytes homeostasis.
Collapse
Affiliation(s)
- Giovanna Capolongo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | | | | | - Mariadelina Simeoni
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | - Giovambattista Capasso
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
- Biogem Scarl, 83031 Ariano Irpino, Italy
| | - Miriam Zacchia
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy.
| |
Collapse
|
9
|
Barthels D, Das H. Current advances in ischemic stroke research and therapies. Biochim Biophys Acta Mol Basis Dis 2018; 1866:165260. [PMID: 31699365 DOI: 10.1016/j.bbadis.2018.09.012] [Citation(s) in RCA: 346] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/24/2018] [Accepted: 09/09/2018] [Indexed: 01/09/2023]
Abstract
With more than 795,000 cases occurring every year, stroke has become a major problem in the United States across all demographics. Stroke is the leading cause of long-term disability and is the fifth leading cause of death in the US. Ischemic stroke represents 87% of total strokes in the US, and is currently the main focus of stroke research. This literature review examines the risk factors associated with ischemic stroke, changes in cell morphology and signaling in the brain after stroke, and the advantages and disadvantages of in vivo and in vitro ischemic stroke models. Classification systems for stroke etiology are also discussed briefly, as well as current ischemic stroke therapies and new therapeutic strategies that focus on the potential of stem cells to promote stroke recovery.
Collapse
Affiliation(s)
- Derek Barthels
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Hiranmoy Das
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.
| |
Collapse
|
10
|
Sifat AE, Vaidya B, Villalba H, Albekairi TH, Abbruscato TJ. Neurovascular unit transport responses to ischemia and common coexisting conditions: smoking and diabetes. Am J Physiol Cell Physiol 2018; 316:C2-C15. [PMID: 30207783 DOI: 10.1152/ajpcell.00187.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transporters at the neurovascular unit (NVU) are vital for the regulation of normal brain physiology via ion, water, and nutrients movement. In ischemic stroke, the reduction of cerebral blood flow causes several complex pathophysiological changes in the brain, one of which includes alterations of the NVU transporters, which can exacerbate stroke outcome by increased brain edema (by altering ion, water, and glutamate transporters), altered energy metabolism (by altering glucose transporters), and enhanced drug toxicity (by altering efflux transporters). Smoking and diabetes are common risk factors as well as coexisting conditions in ischemic stroke that are also reported to change the expression and function of NVU transporters. Coexistence of these conditions could cause an additive effect in terms of the alterations of brain transporters that might lead to worsened ischemic stroke prognosis and recovery. In this review, we have discussed the effects of ischemic stroke, smoking, and diabetes on some essential NVU transporters and how the simultaneous presence of these conditions can affect the clinical outcome after an ischemic episode. Further scientific investigations are required to elucidate changes in NVU transport in cerebral ischemia, which can lead to better, personalized therapeutic interventions tailor-made for these comorbid conditions.
Collapse
Affiliation(s)
- Ali E Sifat
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Bhuvaneshwar Vaidya
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Heidi Villalba
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Thamer H Albekairi
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| |
Collapse
|
11
|
Salman MM, Kitchen P, Woodroofe MN, Bill RM, Conner AC, Heath PR, Conner MT. Transcriptome Analysis of Gene Expression Provides New Insights into the Effect of Mild Therapeutic Hypothermia on Primary Human Cortical Astrocytes Cultured under Hypoxia. Front Cell Neurosci 2017; 11:386. [PMID: 29311824 PMCID: PMC5735114 DOI: 10.3389/fncel.2017.00386] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/20/2017] [Indexed: 01/02/2023] Open
Abstract
Hypothermia is increasingly used as a therapeutic measure to treat brain injury. However, the cellular mechanisms underpinning its actions are complex and are not yet fully elucidated. Astrocytes are the most abundant cell type in the brain and are likely to play a critical role. In this study, transcriptional changes and the protein expression profile of human primary cortical astrocytes cultured under hypoxic conditions for 6 h were investigated. Cells were treated either with or without a mild hypothermic intervention 2 h post-insult to mimic the treatment of patients following traumatic brain injury (TBI) and/or stroke. Using human gene expression microarrays, 411 differentially expressed genes were identified following hypothermic treatment of astrocytes following a 2 h hypoxic insult. KEGG pathway analysis indicated that these genes were mainly enriched in the Wnt and p53 signaling pathways, which were inhibited following hypothermic intervention. The expression levels of 168 genes involved in Wnt signaling were validated by quantitative real-time-PCR (qPCR). Among these genes, 10 were up-regulated and 32 were down-regulated with the remainder unchanged. Two of the differentially expressed genes (DEGs), p38 and JNK, were selected for validation at the protein level using cell based ELISA. Hypothermic intervention significantly down-regulated total protein levels for the gene products of p38 and JNK. Moreover, hypothermia significantly up-regulated the phosphorylated (activated) forms of JNK protein, while downregulating phosphorylation of p38 protein. Within the p53 signaling pathway, 35 human apoptosis-related proteins closely associated with Wnt signaling were investigated using a Proteome Profiling Array. Hypothermic intervention significantly down-regulated 18 proteins, while upregulating one protein, survivin. Hypothermia is a complex intervention; this study provides the first detailed longitudinal investigation at the transcript and protein expression levels of the molecular effects of therapeutic hypothermic intervention on hypoxic human primary cortical astrocytes. The identified genes and proteins are targets for detailed functional studies, which may help to develop new treatments for brain injury based on an in-depth mechanistic understanding of the astrocytic response to hypoxia and/or hypothermia.
Collapse
Affiliation(s)
- Mootaz M Salman
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Philip Kitchen
- Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - M Nicola Woodroofe
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Roslyn M Bill
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Alex C Conner
- Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Matthew T Conner
- Research Institute of Health Sciences, Wolverhampton School of Sciences, University of Wolverhampton, Wolverhampton, United Kingdom
| |
Collapse
|
12
|
Salman MM, Sheilabi MA, Bhattacharyya D, Kitchen P, Conner AC, Bill RM, Woodroofe MN, Conner MT, Princivalle AP. Transcriptome analysis suggests a role for the differential expression of cerebral aquaporins and the MAPK signalling pathway in human temporal lobe epilepsy. Eur J Neurosci 2017; 46:2121-2132. [PMID: 28715131 DOI: 10.1111/ejn.13652] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 01/12/2023]
Abstract
Epilepsies are common disorders of the central nervous system (CNS), affecting up to 2% of the global population. Pharmaco-resistance is a major clinical challenge affecting about 30% of temporal lobe epilepsy (TLE) patients. Water homeostasis has been shown crucial for regulation of neuronal excitability. The control of water movement is achieved through a family of small integral membrane channel proteins called aquaporins (AQPs). Despite the fact that changes in water homeostasis occur in sclerotic hippocampi of people with TLE, the expression of AQPs in the epileptic brain is not fully characterised. This study uses microarray and ELISA methods to analyse the mRNA and protein expression of the human cerebral AQPs in sclerotic hippocampi (TLE-HS) and adjacent neocortex tissue (TLE-NC) of TLE patients. The expression of AQP1 and AQP4 transcripts was significantly increased, while that of the AQP9 transcript was significantly reduced in TLE-HS compared to TLE-NC. AQP4 protein expression was also increased while expression of AQP1 protein remained unchanged, and AQP9 was undetected. Microarray data analysis identified 3333 differentially regulated genes and suggested the involvement of the MAPK signalling pathway in TLE pathogenesis. Proteome array data validated the translational profile for 26 genes and within the MAPK pathway (e.g. p38, JNK) that were identified as differentially expressed from microarray analysis. ELISA data showed that p38 and JNK inhibitors decrease AQP4 protein levels in cultured human primary cortical astrocytes. Elucidating the mechanism of selective regulation of different AQPs and associated regulatory proteins may provide a new therapeutic approach to epilepsy treatment.
Collapse
Affiliation(s)
- Mootaz M Salman
- Biomolecular Sciences Research Centre (BMRC), Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK
| | - Mariam A Sheilabi
- Biomolecular Sciences Research Centre (BMRC), Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK
| | | | - Philip Kitchen
- School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, UK
| | - Alex C Conner
- School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, UK
| | - Roslyn M Bill
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - M Nicola Woodroofe
- Biomolecular Sciences Research Centre (BMRC), Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK
| | - Matthew T Conner
- Biomolecular Sciences Research Centre (BMRC), Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK.,Research Institute of Health Sciences, School of Sciences, University of Wolverhampton, Wolverhampton, UK
| | - Alessandra P Princivalle
- Biomolecular Sciences Research Centre (BMRC), Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK
| |
Collapse
|
13
|
Neuhaus W, Krämer T, Neuhoff A, Gölz C, Thal SC, Förster CY. Multifaceted Mechanisms of WY-14643 to Stabilize the Blood-Brain Barrier in a Model of Traumatic Brain Injury. Front Mol Neurosci 2017; 10:149. [PMID: 28603485 PMCID: PMC5445138 DOI: 10.3389/fnmol.2017.00149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/03/2017] [Indexed: 12/27/2022] Open
Abstract
The blood-brain barrier (BBB) is damaged during ischemic insults such as traumatic brain injury or stroke. This contributes to vasogenic edema formation and deteriorate disease outcomes. Enormous efforts are pursued to understand underlying mechanisms of ischemic insults and develop novel therapeutic strategies. In the present study the effects of PPARα agonist WY-14643 were investigated to prevent BBB breakdown and reduce edema formation. WY-14643 inhibited barrier damage in a mouse BBB in vitro model of traumatic brain injury based on oxygen/glucose deprivation in a concentration dependent manner. This was linked to changes of the localization of tight junction proteins. Furthermore, WY-14643 altered phosphorylation of kinases ERK1/2, p38, and SAPK/JNK and was able to inhibit proteosomal activity. Moreover, addition of WY-14643 upregulated PAI-1 leading to decreased t-PA activity. Mouse in vivo experiments showed significantly decreased edema formation in a controlled cortical impact model of traumatic brain injury after WY-14643 application, which was not found in PAI-1 knockout mice. Generally, data suggested that WY-14643 induced cellular responses which were dependent as well as independent from PPARα mediated transcription. In conclusion, novel mechanisms of a PPARα agonist were elucidated to attenuate BBB breakdown during traumatic brain injury in vitro.
Collapse
Affiliation(s)
- Winfried Neuhaus
- Competence Unit Molecular Diagnostics, Competence Center Health and Bioresources, AIT Austrian Institute of Technology (AIT) GmbHVienna, Austria
| | - Tobias Krämer
- Department of Anesthesiology, Medical Center of Johannes Gutenberg University of MainzMainz, Germany
| | - Anja Neuhoff
- Department of Anesthesia and Critical Care, Center of Operative Medicine, University Hospital WürzburgWürzburg, Germany
| | - Christina Gölz
- Department of Anesthesiology, Medical Center of Johannes Gutenberg University of MainzMainz, Germany
| | - Serge C Thal
- Department of Anesthesiology, Medical Center of Johannes Gutenberg University of MainzMainz, Germany
| | - Carola Y Förster
- Department of Anesthesia and Critical Care, Center of Operative Medicine, University Hospital WürzburgWürzburg, Germany
| |
Collapse
|
14
|
Sheu JR, Chen ZC, Jayakumar T, Chou DS, Yen TL, Lee HN, Pan SH, Hsia CH, Yang CH, Hsieh CY. A novel indication of platonin, a therapeutic immunomodulating medicine, on neuroprotection against ischemic stroke in mice. Sci Rep 2017; 7:42277. [PMID: 28165057 PMCID: PMC5292718 DOI: 10.1038/srep42277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/09/2017] [Indexed: 12/19/2022] Open
Abstract
Thrombosis and stroke are major causes of disability and death worldwide. However, the regular antithrombotic drugs may have unsatisfactory results and side effects. Platonin, a cyanine photosensitizing dye, has been used to treat trauma, ulcers and some acute inflammation. Here, we explored the neuroprotective effects of platonin against middle cerebral artery occlusion (MCAO)-induced ischemic stroke in mice. Platonin(200 μg/kg) substantially reduced cerebral infarct volume, brain edema, neuronal cell death and neurological deficit scores, and improved the MCAO-reduced locomotor activity and rotarod performance. Platonin(5–10 μM) potently inhibited platelet aggregation and c-Jun NH2-terminal kinase (JNK) phosphorylation in collagen-activated platelets. The antiaggregation effect did not affect bleeding time but increased occlusion time in platonin(100 and 200 μg/kg)-treated mice. Platonin(2–10 μM) was potent in diminishing collagen- and Fenton reaction-induced ∙OH formation. Platonin(5–10 μM) also suppressed the expression of nitric oxide, inducible nitric oxide synthase, cyclooxygenase-2, interleukin-1β, and JNK phosphorylation in lipopolysaccharide-stimulated macrophages. MCAO-induced expression of 3-nitrotyrosine and Iba1 was apparently attenuated in platonin(200 μg/kg)-treated mice. In conclusion, platonin exhibited remarkable neuroprotective properties against MCAO-induced ischemia in a mouse model through its antiaggregation, antiinflammatory and antiradical properties. The observed therapeutic efficacy of platonin may consider being a novel medcine against ischemic stroke.
Collapse
Affiliation(s)
- Joen-Rong Sheu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Zhih-Cherng Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Cardiology, Chi-Mei Medical Center, Tainan City, Taiwan.,Department of Pharmacy, Chia Nan University of Pharmacy &Science, Tainan City, Taiwan
| | - Thanasekaran Jayakumar
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Duen-Suey Chou
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ting-Lin Yen
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsing-Ni Lee
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Szu-Han Pan
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Hsuan Hsia
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Hao Yang
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Ying Hsieh
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
15
|
Hsu LW, Shiao WC, Chang NC, Yu MC, Yen TL, Thomas PA, Jayakumar T, Sheu JR. The neuroprotective effects of Tao- Ren- Cheng- Qi Tang against embolic stroke in rats. Chin Med 2017; 12:7. [PMID: 28168001 PMCID: PMC5286857 DOI: 10.1186/s13020-017-0128-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 01/13/2017] [Indexed: 12/12/2022] Open
Abstract
Background Combinations of the traditional Chinese and Western medicines have been used to treat numerous diseases throughout the world, and there is a growing body of evidence showing that some of the herbs used in traditional Chinese medicine elicit significant pharmacological effects. The aim of this study was to demonstrate the neuroprotective effects of Tao-Ren-Cheng-Qi Tang (TRCQT) in combination with aspirin following middle cerebral artery occlusion (MCAO)—induced embolic stroke in rats. Methods A blood clot was embolized into the middle cerebral artery of rats to induce focal ischemic brain injury. After 24 h of MCAO occlusion, the rats were arbitrarily separated into five groups and subjected to different oral treatment processes with TRCQT and aspirin for 30 days before being evaluated in terms of their neurological behavior using a four-point system. The rats were sacrificed at 30 days after drug treatment and the infarct volumes were measured using a 2,3,5-triphenyltetrazolium chloride staining method. Tumor necrosis factor-α (TNF-α), c-Jun N-terminal kinases (JNK), activated caspase-3 and Bax were detected by western blot analysis. The apoptotic cells were identified by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. ROS generation was also measured by electron spin resonance spectrometry. Results Rats treated with TRCQT alone or in combination with aspirin showed a significantly reduced infarct volume (P < 0.001) and improved neurological outcome compared with those treated with distilled water. Rats treated with TRCQT alone (P = 0.021) or in combination with aspirin (P = 0.02) also showed significantly reduced MCAO-induced expression levels of TNF-α and pJNK (P < 0.001) in their ischemic regions. Rats treated with TRCQT alone or in combination with aspirin showed decreased apoptosis by a reduction in the number of TUNEL positive cells, which inhibited the expression of activated caspase-3 (P = 0.038) and Bax (P = 0.004; P = 0.003). TRCQT also led to a significant concentration-dependent reduction in the formation of hydroxyl radicals (P < 0.001). Conclusions TRCQT reduced brain infarct volume and improved neurological outcomes by reducing apoptosis, attenuating the expression of TNF-α and p-JNK, and reducing the formation of hydroxyl radicals in MCAO-induced embolic stroke of rats. Electronic supplementary material The online version of this article (doi:10.1186/s13020-017-0128-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ling-Wei Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Cheng Shiao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Internal Medicine, Yuan's General Hospital, Kaohsiung, Taiwan
| | - Nen-Chung Chang
- Department of Internal Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Meng-Che Yu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ting-Lin Yen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Philip Aloysius Thomas
- Department of Microbiology, Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli, Tamil Nadu 620 001 India
| | - Thanasekaran Jayakumar
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Pharmacology, School of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
16
|
Zeynalov E, Jones SM, Elliott JP. Continuous IV Infusion is the Choice Treatment Route for Arginine-vasopressin Receptor Blocker Conivaptan in Mice to Study Stroke-evoked Brain Edema. J Vis Exp 2016. [PMID: 27684044 DOI: 10.3791/54170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Stroke is one of the major causes of morbidity and mortality in the world. Stroke is complicated by brain edema and other pathophysiological events. Among the most important players in the development and evolution of stroke-evoked brain edema is the hormone arginine-vasopressin and its receptors, V1a and V2. Recently, the V1a and V2 receptor blocker conivaptan has been attracting attention as a potential drug to reduce brain edema after stroke. However, animal models which involve conivaptan applications in stroke research need to be modified based on feasible routes of administration. Here the outcomes of 48 hr continuous intravenous (IV) are compared with intraperitoneal (IP) conivaptan treatments after experimental stroke in mice. We developed a protocol in which middle cerebral artery occlusion was combined with catheter installation into the jugular vein for IV treatment of conivaptan (0.2 mg) or vehicle. Different cohorts of animals were treated with 0.2 mg bolus of conivaptan or vehicle IP daily. Experimental stroke-evoked brain edema was evaluated in mice after continuous IV and IP treatments. Comparison of the results revealed that the continuous IV administration of conivaptan alleviates post-ischemic brain edema in mice, unlike the IP administration of conivaptan. We conclude that our model can be used for future studies of conivaptan applications in the context of stroke and brain edema.
Collapse
|
17
|
Jaggi AS, Kaur A, Bali A, Singh N. Expanding Spectrum of Sodium Potassium Chloride Co-transporters in the Pathophysiology of Diseases. Curr Neuropharmacol 2016; 13:369-88. [PMID: 26411965 PMCID: PMC4812803 DOI: 10.2174/1570159x13666150205130359] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Sodium potassium chloride co-transporter (NKCC) belongs to cation-dependent chloride co-transporter family, whose activation allows the entry of Na(+), K(+) and 2Cl(-) inside the cell. It acts in concert with K(+) Cl(-) co-transporter (KCC), which extrudes K(+) and Cl(-) ions from cell. NKCC1 is widely distributed throughout the body, while NKCC2 is exclusively present in kidney. Protein kinase A, protein kinase C, Ste20-related proline-alanine-rich kinase, oxidative stress responsive kinases, With No K=lysine kinase and protein phosphatase type 1 control the phosphorylation/dephosphorylation of key threonine residues of in regulatory domain of NKCC1. The selective inhibitors of NKCC1 including bumetanide and furosemide are conventionally employed as diuretics. However, recent studies have indicated that NKCC1 may be involved in the pathophysiology of anxiety, cerebral ischemia, epilepsy, neuropathic pain, fragile X syndrome, autism and schizophrenia. The inhibitors of NKCC1 are shown to produce anxiolytic effects; attenuate cerebral ischemia-induced neuronal injury; produce antiepileptic effects and attenuate neuropathic pain. In the early developing brain, GABAA activation primarily produces excitatory actions due to high NKCC1/KCC2 ratio. However, as the development progresses, the ratio of NKCC1/KCC2 ratio reverses and there is switch in the polarity of GABAA actions and latter acquires the inhibitory actions. The recapitulation of developmental-like state during pathological state may be associated with increase in the expression and functioning of NKCC1, which decreases the strength of inhibitory GABAergic neurotransmission. The present review describes the expanding role and mechanism of NKCC1 in the pathophysiology of different diseases.
Collapse
Affiliation(s)
- Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala- 147002.
| | | | | | | |
Collapse
|
18
|
Astrocyte Cultures Mimicking Brain Astrocytes in Gene Expression, Signaling, Metabolism and K + Uptake and Showing Astrocytic Gene Expression Overlooked by Immunohistochemistry and In Situ Hybridization. Neurochem Res 2016; 42:254-271. [PMID: 26818759 DOI: 10.1007/s11064-016-1828-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/01/2016] [Accepted: 01/04/2016] [Indexed: 01/31/2023]
Abstract
Based on differences in gene expression between cultured astrocytes and freshly isolated brain astrocytes it has been claimed that cultured astrocytes poorly reflect the characteristics of their in vivo counterparts. This paper shows that this is not the case with the cultures of mouse astrocytes we have used since 1978. The culture is prepared following guidelines provided by Drs. Monique Sensenbrenner and John Booher, with the difference that dibutyryl cyclic AMP is added to the culture medium from the beginning of the third week. This addition has only minor effects on glucose and glutamate metabolism, but it is crucial for effects by elevated K+ concentrations and for Ca2+ homeostasis, important aspects of astrocyte function. Work by Liang Peng and her colleagues has shown identity between not only gene expression but also drug-induced gene upregulations and editings in astrocytes cultured by this method and astrocytes freshly isolated from brains of drug-treated animals. Dr. Norenberg's laboratory has demonstrated identical upregulation of the cotransporter NKCC1 in ammonia-exposed astrocytes and rats with liver failure. Similarity between cultured and freshly isolated astrocytes has also been shown in metabolism, K+ uptake and several aspects of signaling. However, others have shown that the gene for the glutamate transporter GLT1 is not expressed, and rat cultures show some abnormalities in K+ effects. Nevertheless, the overall reliability of the cultured cells is important because immunohistochemistry and in situ hybridization poorly demonstrate many astrocytic genes, e.g., those of nucleoside transporters, and even microarray analysis of isolated cells can be misleading.
Collapse
|
19
|
Ida KK, Otsuki DA, Sasaki ATC, Borges ES, Castro LUC, Sanches TR, Shimizu MHM, Andrade LC, Auler JOC, Dyson A, Smith KJ, Rocha Filho JA, Malbouisson LMS. Effects of terlipressin as early treatment for protection of brain in a model of haemorrhagic shock. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:107. [PMID: 25888229 PMCID: PMC4373118 DOI: 10.1186/s13054-015-0825-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 02/19/2015] [Indexed: 01/01/2023]
Abstract
Introduction We investigated whether treatment with terlipressin during recovery from hypotension due to haemorrhagic shock (HS) is effective in restoring cerebral perfusion pressure (CPP) and brain tissue markers of water balance, oxidative stress and apoptosis. Methods In this randomised controlled study, animals undergoing HS (target mean arterial pressure (MAP) 40 mmHg for 30 minutes) were randomised to receive lactated Ringer’s solution (LR group; n =14; volume equal to three times the volume bled), terlipressin (TERLI group; n =14; 2-mg bolus), no treatment (HAEMO group; n =12) or sham (n =6). CPP, systemic haemodynamics (thermodilution technique) and blood gas analyses were registered at baseline, shock and 5, 30, 60 (T60), 90 and 120 minutes after treatment (T120). After the animals were killed, brain tissue samples were obtained to measure markers of water balance (aquaporin-4 (AQP4)), Na+-K+-2Cl− co-transporter (NKCC1)), oxidative stress (thiobarbituric acid reactive substances (TBARS) and manganese superoxide dismutase (MnSOD)) and apoptotic damage (Bcl-x and Bax). Results Despite the HS-induced decrease in cardiac output (CO) and hyperlactataemia, resuscitation with terlipressin recovered MAP and resulted in restoration of CPP and in cerebral protection expressed by normalisation of AQP4, NKCC1, TBARS and MnSOD expression and Bcl-x/Bax ratio at T60 and T120 compared with sham animals. In the LR group, CO and blood lactate levels were recovered, but the CPP and MAP were significantly decreased and TBARS levels and AQP4, NKCC1 and MnSOD expression and Bcl-x/Bax ratio were significantly increased at T60 and T120 compared with the sham group. Conclusions During recovery from HS-induced hypotension, terlipressin was effective in normalising CPP and cerebral markers of water balance, oxidative damage and apoptosis. The role of this pressor agent on brain perfusion in HS requires further investigation.
Collapse
Affiliation(s)
- Keila Kazue Ida
- Laboratório de Investigação Médica (LIM-08), Disciplina de Anestesiologia, Faculdade de Medicina, Universidade de São Paulo, Avenida Doutor Arnaldo, 455, 2° andar, sala 2120, Cerqueira César, São Paulo, SP, 01246-903, Brazil. .,Department of Neuroinflammation, Institute of Neurology, University College London (UCL), 1 Wakefield Street, 2nd floor, WC1N 1PJ, London, UK.
| | - Denise Aya Otsuki
- Laboratório de Investigação Médica (LIM-08), Disciplina de Anestesiologia, Faculdade de Medicina, Universidade de São Paulo, Avenida Doutor Arnaldo, 455, 2° andar, sala 2120, Cerqueira César, São Paulo, SP, 01246-903, Brazil.
| | - Adolfo Toshiro Cotarelli Sasaki
- Laboratório de Investigação Médica (LIM-08), Disciplina de Anestesiologia, Faculdade de Medicina, Universidade de São Paulo, Avenida Doutor Arnaldo, 455, 2° andar, sala 2120, Cerqueira César, São Paulo, SP, 01246-903, Brazil.
| | - Emilyn Silva Borges
- Laboratório de Investigação Médica (LIM-08), Disciplina de Anestesiologia, Faculdade de Medicina, Universidade de São Paulo, Avenida Doutor Arnaldo, 455, 2° andar, sala 2120, Cerqueira César, São Paulo, SP, 01246-903, Brazil.
| | - Letícia Urbano Cardoso Castro
- Disciplina de Nefrologia, Faculdade de Medicina, Universidade de São Paulo (LIM-12 HC-FMUSP), Avenida Doutor Arnaldo, 455, 3rd floor, Cerqueira César, São Paulo, SP, 01246-903, Brazil.
| | - Talita Rojas Sanches
- Disciplina de Nefrologia, Faculdade de Medicina, Universidade de São Paulo (LIM-12 HC-FMUSP), Avenida Doutor Arnaldo, 455, 3rd floor, Cerqueira César, São Paulo, SP, 01246-903, Brazil.
| | - Maria-Heloisa Massola Shimizu
- Disciplina de Nefrologia, Faculdade de Medicina, Universidade de São Paulo (LIM-12 HC-FMUSP), Avenida Doutor Arnaldo, 455, 3rd floor, Cerqueira César, São Paulo, SP, 01246-903, Brazil.
| | - Lúcia Conceição Andrade
- Disciplina de Nefrologia, Faculdade de Medicina, Universidade de São Paulo (LIM-12 HC-FMUSP), Avenida Doutor Arnaldo, 455, 3rd floor, Cerqueira César, São Paulo, SP, 01246-903, Brazil.
| | - José-Otávio Costa Auler
- Laboratório de Investigação Médica (LIM-08), Disciplina de Anestesiologia, Faculdade de Medicina, Universidade de São Paulo, Avenida Doutor Arnaldo, 455, 2° andar, sala 2120, Cerqueira César, São Paulo, SP, 01246-903, Brazil.
| | - Alex Dyson
- Division of Medicine, University College London (UCL), Gower Street, WC1E 6BT, London, UK.
| | - Kenneth John Smith
- Department of Neuroinflammation, Institute of Neurology, University College London (UCL), 1 Wakefield Street, 2nd floor, WC1N 1PJ, London, UK.
| | - Joel Avancini Rocha Filho
- Divisão de Anestesiologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), Av. Dr. Enéas de Carvalho Aguiar,155, 8th floor, 05403-000, São Paulo, SP, Brazil.
| | - Luiz-Marcelo Sá Malbouisson
- Laboratório de Investigação Médica (LIM-08), Disciplina de Anestesiologia, Faculdade de Medicina, Universidade de São Paulo, Avenida Doutor Arnaldo, 455, 2° andar, sala 2120, Cerqueira César, São Paulo, SP, 01246-903, Brazil.
| |
Collapse
|
20
|
Feng X, Zhang Y, Shao N, Wang Y, Zhuang Z, Wu P, Lee MJ, Liu Y, Wang X, Zhuang J, Delpire E, Gu D, Cai H. Aldosterone modulates thiazide-sensitive sodium chloride cotransporter abundance via DUSP6-mediated ERK1/2 signaling pathway. Am J Physiol Renal Physiol 2015; 308:F1119-27. [PMID: 25761881 DOI: 10.1152/ajprenal.00543.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 03/09/2015] [Indexed: 12/15/2022] Open
Abstract
Thiazide-sensitive sodium chloride cotransporter (NCC) plays an important role in maintaining blood pressure. Aldosterone is known to modulate NCC abundance. Previous studies reported that dietary salts modulated NCC abundance through either WNK4 [with no lysine (k) kinase 4]-SPAK (Ste20-related proline alanine-rich kinase) or WNK4-extracellular signal-regulated kinase-1 and -2 (ERK1/2) signaling pathways. To exclude the influence of SPAK signaling pathway on the role of the aldosterone-mediated ERK1/2 pathway in NCC regulation, we investigated the effects of dietary salt changes and aldosterone on NCC abundance in SPAK knockout (KO) mice. We found that in SPAK KO mice low-salt diet significantly increased total NCC abundance while reducing ERK1/2 phosphorylation, whereas high-salt diet decreased total NCC while increasing ERK1/2 phosphorylation. Importantly, exogenous aldosterone administration increased total NCC abundance in SPAK KO mice while increasing DUSP6 expression, an ERK1/2-specific phosphatase, and led to decreasing ERK1/2 phosphorylation without changing the ratio of phospho-T53-NCC/total NCC. In mouse distal convoluted tubule (mDCT) cells, aldosterone increased DUSP6 expression while reducing ERK1/2 phosphorylation. DUSP6 Knockdown increased ERK1/2 phosphorylation while reducing total NCC expression. Inhibition of DUSP6 by (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one increased ERK1/2 phosphorylation and reversed the aldosterone-mediated increments of NCC partly by increasing NCC ubiquitination. Therefore, these data suggest that aldosterone modulates NCC abundance via altering NCC ubiquitination through a DUSP6-dependent ERK1/2 signal pathway in SPAK KO mice and part of the effects of dietary salt changes may be mediated by aldosterone in the DCTs.
Collapse
Affiliation(s)
- Xiuyan Feng
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Yiqian Zhang
- Renal Division, the Second Affiliated Hospital, Wenzhou Medical University, Zhejiang, China; Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Ningjun Shao
- Renal Division, the Second Affiliated Hospital, Wenzhou Medical University, Zhejiang, China
| | - Yanhui Wang
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Renal Division, the First Affiliated Hospital, Wenzhou Medical University, Zhejiang, China
| | - Zhizhi Zhuang
- Renal Division, the Second Affiliated Hospital, Wenzhou Medical University, Zhejiang, China; Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Ping Wu
- Renal Division, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Matthew J Lee
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Yingli Liu
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Xiaonan Wang
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Jieqiu Zhuang
- Renal Division, the Second Affiliated Hospital, Wenzhou Medical University, Zhejiang, China
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| | - Dingying Gu
- Renal Division, the Second Affiliated Hospital, Wenzhou Medical University, Zhejiang, China
| | - Hui Cai
- Renal Division, the Second Affiliated Hospital, Wenzhou Medical University, Zhejiang, China; Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Section of Nephrology, Atlanta Veterans Administration Medical Center, Decatur, Georgia
| |
Collapse
|
21
|
Zou L, Qin H, He Y, Huang H, Lu Y, Chu X. Inhibiting p38 mitogen-activated protein kinase attenuates cerebral ischemic injury in Swedish mutant amyloid precursor protein transgenic mice. Neural Regen Res 2015; 7:1088-94. [PMID: 25722699 PMCID: PMC4340022 DOI: 10.3969/j.issn.1673-5374.2012.14.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 03/08/2012] [Indexed: 01/08/2023] Open
Abstract
Cerebral ischemia was induced using photothrombosis 1 hour after intraperitoneal injection of the p38 mitogen-activated protein kinase (MAPK) inhibitor SB239063 into Swedish mutant amyloid precursor protein (APP/SWE) transgenic and non-transgenic mice. The number of surviving neurons in the penumbra was quantified using Nissl staining, and the activity of p38 MAPKs was measured by western blotting. The number of surviving neurons in the penumbra was significantly reduced in APP/SWE transgenic mice compared with non-transgenic controls 7 days after cerebral ischemia, but the activity of p38 MAPKs was significantly elevated compared with the non-ischemic hemisphere in the APP/SWE transgenic mice. SB239063 prevented these changes. The APP/SWE mutation exacerbated ischemic brain injury, and this could be alleviated by inhibiting p38 MAPK activity.
Collapse
Affiliation(s)
- Liangyu Zou
- Department of Neurology, Shenzhen People's Hospital, Second Clinical College, Jinan University, Shenzhen 518020, Guangdong Province, China
| | - Haiyan Qin
- Department of Neurology, Shenzhen People's Hospital, Second Clinical College, Jinan University, Shenzhen 518020, Guangdong Province, China
| | - Yitao He
- Department of Neurology, Shenzhen People's Hospital, Second Clinical College, Jinan University, Shenzhen 518020, Guangdong Province, China
| | - Heming Huang
- Department of Neurology, Shenzhen People's Hospital, Second Clinical College, Jinan University, Shenzhen 518020, Guangdong Province, China
| | - Yi Lu
- Department of Neurology, Shenzhen People's Hospital, Second Clinical College, Jinan University, Shenzhen 518020, Guangdong Province, China
| | - Xiaofan Chu
- Department of Neurology, Shenzhen People's Hospital, Second Clinical College, Jinan University, Shenzhen 518020, Guangdong Province, China
| |
Collapse
|
22
|
Kaur A, Bali A, Singh N, Jaggi AS. Investigating the stress attenuating potential of furosemide in immobilization and electric foot-shock stress models in mice. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:497-507. [PMID: 25604076 DOI: 10.1007/s00210-015-1084-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 01/07/2015] [Indexed: 10/24/2022]
Abstract
The present study was designed to investigate the antistress effect of furosemide (sodium potassium chloride co-transporter inhibitor) in immobilization and foot-shock stress-induced behavioral alterations in the mice. Acute stress was induced in Swiss albino mice either by applying electric foot shocks of 0.6-mA intensity of 1-s duration with 30-s inter-shock interval for 1 h or immobilizing for 150 min. The acute stress-induced behavioral changes were assessed by using actophotometer, hole board, open-field, and social interaction tests. Biochemically, the corticosterone levels were estimated in the serum as a biomarker of hypothalamus-pituitary-adrenal (HPA) axis. Acute stress resulted in the development of behavioral alterations and elevation of the corticosterone levels. Intraperitoneal administration of furosemide (25 and 50 mg/kg) significantly attenuated immobilization and foot-shock stress-induced behavioral changes along with normalization of the corticosterone levels. It may be concluded that furosemide produces beneficial effects in reestablishing the behavioral and biochemical alterations in immobilization and foot-shock-induced acute stress in mice.
Collapse
Affiliation(s)
- Aalamjeet Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, India
| | | | | | | |
Collapse
|
23
|
Blood-brain barrier Na transporters in ischemic stroke. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 71:113-46. [PMID: 25307215 DOI: 10.1016/bs.apha.2014.06.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blood-brain barrier (BBB) endothelial cells form a barrier that is highly restrictive to passage of solutes between blood and brain. Many BBB transport mechanisms have been described that mediate transcellular movement of solutes across the barrier either into or out of the brain. One class of BBB transporters that is all too often overlooked is that of the ion transporters. The BBB has a rich array of ion transporters and channels that carry Na, K, Cl, HCO3, Ca, and other ions. Many of these are asymmetrically distributed between the luminal and abluminal membranes, giving BBB endothelial cells the ability to perform vectorial transport of ions across the barrier between blood and brain. In this manner, the BBB performs the important function of regulating the volume and composition of brain interstitial fluid. Through functional coupling of luminal and abluminal transporters and channels, the BBB carries Na, Cl, and other ions from blood into brain, producing up to 30% of brain interstitial fluid in healthy brain. During ischemic stroke cerebral edema forms by processes involving increased activity of BBB luminal Na transporters, resulting in "hypersecretion" of Na, Cl, and water into the brain interstitium. This review discusses the roles of luminal BBB Na transporters in edema formation in stroke, with an emphasis on Na-K-Cl cotransport and Na/H exchange. Evidence that these transporters provide effective therapeutic targets for reduction of edema in stroke is also discussed, as are recent findings regarding signaling pathways responsible for ischemia stimulation of the BBB Na transporters.
Collapse
|
24
|
Dong HJ, Shang CZ, Peng DW, Xu J, Xu PX, Zhan L, Wang P. Curcumin attenuates ischemia-like injury induced IL-1β elevation in brain microvascular endothelial cells via inhibiting MAPK pathways and nuclear factor-κB activation. Neurol Sci 2014; 35:1387-92. [DOI: 10.1007/s10072-014-1718-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/10/2014] [Indexed: 11/24/2022]
|
25
|
Yuen N, Lam TI, Wallace BK, Klug NR, Anderson SE, O'Donnell ME. Ischemic factor-induced increases in cerebral microvascular endothelial cell Na/H exchange activity and abundance: evidence for involvement of ERK1/2 MAP kinase. Am J Physiol Cell Physiol 2014; 306:C931-42. [PMID: 24647544 DOI: 10.1152/ajpcell.00021.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brain edema forms rapidly in the early hours of ischemic stroke by increased secretion of Na, Cl, and water into the brain across an intact blood-brain barrier (BBB), together with swelling of astrocytes as they take up the ions and water crossing the BBB. Our previous studies provide evidence that luminal BBB Na-K-Cl cotransport (NKCC) and Na/H exchange (NHE) participate in ischemia-induced edema formation. NKCC1 and two NHE isoforms, NHE1 and NHE2, reside predominantly at the luminal BBB membrane. NKCC and NHE activities of cerebral microvascular endothelial cells (CMEC) are rapidly stimulated by the ischemic factors hypoxia, aglycemia, and AVP, and inhibition of NKCC and NHE activities by bumetanide and HOE642, respectively, reduces brain Na uptake and edema in the rat middle cerebral artery occlusion model of stroke. The present study was conducted to further explore BBB NHE responses to ischemia. We examined whether ischemic factor-stimulated NHE activity is sustained over several hours, when the majority of edema forms during stroke. We also examined whether ischemic factors alter NHE1 and/or NHE2 protein abundance. Finally, we conducted initial studies of ERK1/2 MAP kinase involvement in BBB NHE and NKCC responses to ischemic factors. We found that hypoxia, aglycemia, and AVP increase CMEC NHE activity through 5 h and that NHE1, but not NHE2, abundance is increased by 1- to 5-h exposures to these factors. Furthermore, we found that these factors rapidly increase BBB ERK1/2 activity and that ERK1/2 inhibition reduces or abolishes ischemic factor stimulation of NKCC and NHE activities.
Collapse
Affiliation(s)
- Natalie Yuen
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Tina I Lam
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Breanna K Wallace
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Nicholas R Klug
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Steven E Anderson
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Martha E O'Donnell
- Department of Physiology and Membrane Biology, University of California, Davis, California
| |
Collapse
|
26
|
Lu Q, Harris VA, Sun X, Hou Y, Black SM. Ca²⁺/calmodulin-dependent protein kinase II contributes to hypoxic ischemic cell death in neonatal hippocampal slice cultures. PLoS One 2013; 8:e70750. [PMID: 23976956 PMCID: PMC3747161 DOI: 10.1371/journal.pone.0070750] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 06/27/2013] [Indexed: 01/23/2023] Open
Abstract
We have recently shown that p38MAP kinase (p38MAPK) stimulates ROS generation via the activation of NADPH oxidase during neonatal hypoxia-ischemia (HI) brain injury. However, how p38MAPK is activated during HI remains unresolved and was the focus of this study. Ca²⁺/calmodulin-dependent protein kinase II (CaMKII) plays a key role in brain synapse development, neural transduction and synaptic plasticity. Here we show that CaMKII activity is stimulated in rat hippocampal slice culture exposed to oxygen glucose deprivation (OGD) to mimic the condition of HI. Further, the elevation of CaMKII activity, correlated with enhanced p38MAPK activity, increased superoxide generation from NADPH oxidase as well as necrotic and apoptotic cell death. All of these events were prevented when CaMKII activity was inhibited with KN93. In a neonatal rat model of HI, KN93 also reduced brain injury. Our results suggest that CaMKII activation contributes to the oxidative stress associated with neural cell death after HI.
Collapse
Affiliation(s)
- Qing Lu
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Valerie A. Harris
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Xutong Sun
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Yali Hou
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Stephen M. Black
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| |
Collapse
|
27
|
Üllen A, Singewald E, Konya V, Fauler G, Reicher H, Nusshold C, Hammer A, Kratky D, Heinemann A, Holzer P, Malle E, Sattler W. Myeloperoxidase-derived oxidants induce blood-brain barrier dysfunction in vitro and in vivo. PLoS One 2013; 8:e64034. [PMID: 23691142 PMCID: PMC3653856 DOI: 10.1371/journal.pone.0064034] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 04/10/2013] [Indexed: 12/24/2022] Open
Abstract
Peripheral leukocytes can exacerbate brain damage by release of cytotoxic mediators that disrupt blood-brain barrier (BBB) function. One of the oxidants released by activated leukocytes is hypochlorous acid (HOCl) formed via the myeloperoxidase (MPO)-H2O2-Cl(-) system. In the present study we examined the role of leukocyte activation, leukocyte-derived MPO and MPO-generated oxidants on BBB function in vitro and in vivo. In a mouse model of lipopolysaccharide (LPS)-induced systemic inflammation, neutrophils that had become adherent released MPO into the cerebrovasculature. In vivo, LPS-induced BBB dysfunction was significantly lower in MPO-deficient mice as compared to wild-type littermates. Both, fMLP-activated leukocytes and the MPO-H2O2-Cl(-) system inflicted barrier dysfunction of primary brain microvascular endothelial cells (BMVEC) that was partially rescued with the MPO inhibitor 4-aminobenzoic acid hydrazide. BMVEC treatment with the MPO-H2O2-Cl(-) system or activated neutrophils resulted in the formation of plasmalogen-derived chlorinated fatty aldehydes. 2-chlorohexadecanal (2-ClHDA) severely compromised BMVEC barrier function and induced morphological alterations in tight and adherens junctions. In situ perfusion of rat brain with 2-ClHDA increased BBB permeability in vivo. 2-ClHDA potently activated the MAPK cascade at physiological concentrations. An ERK1/2 and JNK antagonist (PD098059 and SP600125, respectively) protected against 2-ClHDA-induced barrier dysfunction in vitro. The current data provide evidence that interference with the MPO pathway could protect against BBB dysfunction under (neuro)inflammatory conditions.
Collapse
Affiliation(s)
- Andreas Üllen
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Evelin Singewald
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| | - Viktoria Konya
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| | - Günter Fauler
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Austria
| | - Helga Reicher
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Christoph Nusshold
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Astrid Hammer
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria
| | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| | - Peter Holzer
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| |
Collapse
|
28
|
Ronaldson PT, Davis TP. Blood-brain barrier integrity and glial support: mechanisms that can be targeted for novel therapeutic approaches in stroke. Curr Pharm Des 2012; 18:3624-44. [PMID: 22574987 DOI: 10.2174/138161212802002625] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/06/2012] [Indexed: 12/31/2022]
Abstract
The blood-brain barrier (BBB) is a critical regulator of brain homeostasis. Additionally, the BBB is the most significant obstacle to effective CNS drug delivery. It possesses specific charcteristics (i.e., tight junction protein complexes, influx and efflux transporters) that control permeation of circulating solutes including therapeutic agents. In order to form this "barrier," brain microvascular endothelial cells require support of adjacent astrocytes and microglia. This intricate relationship also occurs between endothelial cells and other cell types and structures of the CNS (i.e., pericytes, neurons, extracellular matrix), which implies existence of a "neurovascular unit." Ischemic stroke can disrupt the neurovascular unit at both the structural and functional level, which leads to an increase in leak across the BBB. Recent studies have identified several pathophysiological mechanisms (i.e., oxidative stress, activation of cytokine-mediated intracellular signaling systems) that mediate changes in the neurovascular unit during ischemic stroke. This review summarizes current knowledge in this area and emphasizes pathways (i.e., oxidative stress, cytokine-mediated intracellular signaling, glial-expressed receptors/targets) that can be manipulated pharmacologically for i) preservation of BBB and glial integrity during ischemic stroke and ii) control of drug permeation and/or transport across the BBB. Targeting these pathways present a novel opportunity for optimization of CNS delivery of therapeutics in the setting of ischemic stroke.
Collapse
Affiliation(s)
- Patrick T Ronaldson
- Department of Medical Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ 85724-5050, USA.
| | | |
Collapse
|