1
|
Kotlyarov S. Identification of Important Genes Associated with the Development of Atherosclerosis. Curr Gene Ther 2024; 24:29-45. [PMID: 36999180 DOI: 10.2174/1566523223666230330091241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/06/2022] [Accepted: 01/26/2023] [Indexed: 04/01/2023]
Abstract
Atherosclerosis is one of the most important medical problems due to its prevalence and significant contribution to the structure of temporary and permanent disability and mortality. Atherosclerosis is a complex chain of events occurring in the vascular wall over many years. Disorders of lipid metabolism, inflammation, and impaired hemodynamics are important mechanisms of atherogenesis. A growing body of evidence strengthens the understanding of the role of genetic and epigenetic factors in individual predisposition and development of atherosclerosis and its clinical outcomes. In addition, hemodynamic changes, lipid metabolism abnormalities, and inflammation are closely related and have many overlapping links in regulation. A better study of these mechanisms may improve the quality of diagnosis and management of such patients.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University Named After Academician I.P. Pavlov, Russian Federation
| |
Collapse
|
2
|
Wang W, Cheng W, Wang X, Li Z, Gao J. CircFKBP3 absence alleviates oxygen glucose deprivation-induced function loss of human brain microvascular endothelial cells in vitro via governing the miR-766-3p/TRAF3 axis. Int J Neurosci 2023:1-12. [PMID: 37982234 DOI: 10.1080/00207454.2023.2279506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/31/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Brain microvascular endothelial cell (BMEC) functions loss is a key event in the development of ischemic stroke, which may be affected by the dysregulation of circular RNAs (circRNAs). We aimed to unveil the role of circRNA FKBP Prolyl Isomerase 3 (circFKBP3) in cell models of ischemic stroke. METHODS Cell models of ischemic stroke were constructed in human BEMCs (HBMECs) with the treatment of oxygen glucose deprivation (OGD). Quantitative real-time PCR (qPCR) and western blotting were conducted for expression analysis of circFKBP3, miR-766-3p and TNF receptor associated factor 3 (TRAF3). CCK-8, transwell, wound healing, flow cytometry, tube formation and ELISA assays were implemented to monitor cell viability, migration, apoptosis, angiogenesis and inflammation production. The putative binding relationship between miR-766-3p and circFKBP3 or TRAF3 was validated by dual-luciferase, RIP and pull-down assays. RESULTS CircFKBP3 expression was elevated in OGD-treated HBMECs. OGD suppressed HBMEC viability, migration, angiogenesis, and provoked cell apoptosis and inflammation production, while knockdown of circFKBP3 attenuated these effects. CircFKBP3 interacted with miR-766-3p, and circFKBP3 absence-repressed HBMEC function loss and inflammation were recovered by miR-766-3p inhibition. CircFKBP3 targeted miR-766-3p to regulate TRAF3 expression. MiR-766-3p enrichment-repressed HBMEC function loss and inflammation were recovered by TRAF3 overexpression. CONCLUSION CircFKBP3 absence alleviated OGD-induced function loss and inflammatory responses of HBMECs via governing the miR-766-3p/TRAF3 axis.
Collapse
Affiliation(s)
- Wenyan Wang
- Department of Neurology, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Wei Cheng
- Department of Neurology, Wuhan Puren Hospital affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Xudong Wang
- Department of Neurology, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Zhixin Li
- Department of Neurology, Wuhan Puren Hospital affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jinli Gao
- Department of Neurology, Wuhan Puren Hospital affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
3
|
Fadaei R, Fallah S, Moradi MT, Rostampour M, Khazaie H. Circulating levels of miR125a, miR126, and miR146a-5p in patients with obstructive sleep apnea and their relation with markers of endothelial dysfunction. PLoS One 2023; 18:e0287594. [PMID: 37917636 PMCID: PMC10621836 DOI: 10.1371/journal.pone.0287594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/08/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND obstructive sleep apnea (OSA) is a prevalent sleep disorder that is associated with increased risk factors for cardiovascular diseases (CVDs). Oxidative stress, insulin resistance, inflammation, and endothelial dysfunction are increased in OSA patients and microRNAs (miRs) are regulatory elements that influence these pathological mechanisms. miR125a, miR126, and miR146a-5p play a role in these pathological mechanisms and have not been evaluated in patients with OSA. METHOD This case-control study was performed on 90 OSA patients and 34 controls. Circulating levels of miR125a, miR126, and miR146a-5 were determined using real-time PCR, and serum levels of hsCRP, ICAM-1, and VCAM-1 were evaluated using ELISA kits. RESULTS miR125a and miR146a were elevated in patients with OSA compared to controls while miR126 decreased significantly. All three miRs indicated a remarkable difference between the mild-OSA group compared to the severe-OSA group. Furthermore, patients with OSA showed elevated levels of hsCRP, ICAM-1, and VCAM-1. Multiple linear regression indicated an independent association of miR125a with ICAM-1 and hsCRP, miR126 associated with VCAM-1 and total cholesterol, and miR146a-5p represented an association with apnea-hypopnea index and ICAM-1. Furthermore, miR146a-5p illustrated a good diagnostic ability to differentiate between OSA and controls. CONCLUSIONS Circulating miR125a, miR126, and miR146a-5p fluctuations in patients with OSA and their relations with markers of endothelial dysfunction provide in vivo evidence and suggest a potential role for these miRs with endothelial dysfunction in patients with OSA.
Collapse
Affiliation(s)
- Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soudabeh Fallah
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Taher Moradi
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoumeh Rostampour
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Habibolah Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
4
|
Yu J, Jin Y, Xu C, Fang C, Zhang Z, Chen L, Xu G. Downregulation of miR-125a-5p Promotes Endothelial Progenitor Cell Migration and Angiogenesis and Alleviates Deep Vein Thrombosis in Mice Via Upregulation of MCL-1. Mol Biotechnol 2023; 65:1664-1678. [PMID: 36738360 DOI: 10.1007/s12033-023-00676-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023]
Abstract
Endothelial progenitor cells (EPCs) contribute to recanalization of deep vein thrombosis (DVT). MicroRNAs (miRNAs) play regulatory roles in functions of EPCs, which is becoming a promising therapeutic choice for thrombus resolution. The main purpose of this study was to explore the effect of miR-125a-5p on EPC functions in deep vein thrombosis (DVT). EPCs were isolated from the peripheral blood of patients with DVT. In DVT mouse models, DVT was induced by stenosis of the inferior vena cava (IVC). The levels of miR-125a-5p and myeloid cell leukemia sequence 1 (MCL-1) in EPCs and thrombi of DVT mice were detected by RT-qPCR. EPC migration, angiogenesis, and apoptosis were estimated by Transwell assay, tube formation assay, and flow cytometry analysis. Luciferase reporter assay was utilized for detecting the binding of miR-125a-5p and MCL-1. The phosphorylation of PI3K and AKT was estimated by western blot. DVT formation in vivo was observed through hematoxylin-eosin (H&E) staining. The expression of thrombus resolution marker, CD34 molecule (CD34), in the thrombi was measured by immunofluorescence staining. MiR-125a-5p upregulation repressed EPC migration and angiogenesis and facilitated apoptosis. MiR-125a-5p downregulation showed the opposite effect. MCL-1 was targeted and negatively regulated by miR-125a-5p. Additionally, miR-125a-5p inhibited the PI3K/AKT pathway in EPCs. Inhibition of MCL-1 or PI3K/AKT pathway reversed the effect of miR-125a-5p knockdown on EPC functions. The in vivo experiments revealed that miR-125a-5p downregulation repressed thrombus formation and promoted the homing capability of EPCs to the thrombosis site, thereby alleviating DVT mice. Downregulation of miR-125a-5p promotes EPC migration and angiogenesis by upregulating MCL-1, thereby enhancing EPC homing to thrombi and facilitating thrombus resolution.
Collapse
Affiliation(s)
- Jingfan Yu
- Department of Vascular Surgery and Intervention, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, 188 Guangji Road, Gusu District, Suzhou, 215000, Jiangsu, China
| | - Yiqi Jin
- Department of Vascular Surgery and Intervention, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, 188 Guangji Road, Gusu District, Suzhou, 215000, Jiangsu, China
| | - Chen Xu
- Department of Vascular Surgery and Intervention, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, 188 Guangji Road, Gusu District, Suzhou, 215000, Jiangsu, China
| | - Changwen Fang
- Department of Vascular Surgery and Intervention, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, 188 Guangji Road, Gusu District, Suzhou, 215000, Jiangsu, China
| | - Zhixuan Zhang
- Department of Vascular Surgery and Intervention, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, 188 Guangji Road, Gusu District, Suzhou, 215000, Jiangsu, China
| | - Lei Chen
- Department of Vascular Surgery and Intervention, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, 188 Guangji Road, Gusu District, Suzhou, 215000, Jiangsu, China.
| | - Guoxiong Xu
- Department of Vascular Surgery and Intervention, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, 188 Guangji Road, Gusu District, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|
5
|
Pan Q, Wang Y, Liu J, Jin X, Xiang Z, Li S, Shi Y, Chen Y, Zhong W, Ma X. MiR-17-5p Mediates the Effects of ACE2-Enriched Endothelial Progenitor Cell-Derived Exosomes on Ameliorating Cerebral Ischemic Injury in Aged Mice. Mol Neurobiol 2023; 60:3534-3552. [PMID: 36892728 DOI: 10.1007/s12035-023-03280-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/16/2023] [Indexed: 03/10/2023]
Abstract
Aging is one of the key mechanisms of vascular dysfunction and contributes to the initiation and progression of ischemic stroke (IS). Our previous study demonstrated that ACE2 priming enhanced the protective effects of exosomes derived from endothelial progenitor cells (EPC-EXs) on hypoxia-induced injury in aging endothelial cells (ECs). Here, we aimed to investigate whether ACE2-enriched EPC-EXs (ACE2-EPC-EXs) could attenuate brain ischemic injury by inhibiting cerebral EC damage through their carried miR-17-5p and the underlying molecular mechanisms. The enriched miRs in ACE2-EPC-EXs were screened using the miR sequencing method. EPC-EXs, ACE2-EPC-EXs, and ACE2-EPC-EXs with miR-17-5p deficiency (ACE2-EPC-EXsantagomiR-17-5p) were administered to transient middle cerebral artery occlusion (tMCAO)-operated aged mice or coincubated with hypoxia/reoxygenation (H/R)-treated aging ECs. The results showed that (1) the level of brain EPC-EXs and their carried ACE2 were significantly decreased in aged mice compared to in young mice, and (2) after tMCAO, aged mice displayed increases in brain cell senescence, infarct volume, and neurological deficit score (NDS) and a decrease in cerebral blood flow (CBF). (3) Compared with EPC-EXs, ACE2-EPC-EXs were enriched with miR-17-5p and more effective in increasing ACE2 and miR-17-5p expression in cerebral microvessels, accompanied by obvious increases in cerebral microvascular density (cMVD) and cerebral blood flow (CBF) and decreases in brain cell senescence, infarct volume, neurological deficit score (NDS), cerebral EC ROS production, and apoptosis in tMCAO-operated aged mice. Moreover, silencing of miR-17-5p partially abolished the beneficial effects of ACE2-EPC-EXs. (4) In H/R-treated aging ECs, ACE2-EPC-EXs were more effective than EPC-EXs in decreasing cell senescence, ROS production, and apoptosis and increasing cell viability and tube formation. In a mechanistic study, ACE2-EPC-EXs more effectively inhibited PTEN protein expression and increased the phosphorylation of PI3K and Akt, which were partially abolished by miR-17-5p knockdown. Altogether, our data suggest that ACE-EPC-EXs have better protective effects on ameliorating aged IS mouse brain neurovascular injury by inhibiting cell senescence, EC oxidative stress, apoptosis, and dysfunction by activating the miR-17-5p/PTEN/PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Qunwen Pan
- Department of Neurology, Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yan Wang
- Department of Neurology, Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.,Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| | - Jinhua Liu
- Department of Neurology, Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xiaojuan Jin
- Department of Neurology, Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Zhi Xiang
- Department of Neurology, Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Suqing Li
- Department of Neurology, Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yumeng Shi
- Department of Neurology, Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yanfang Chen
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Wangtao Zhong
- Department of Neurology, Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Xiaotang Ma
- Department of Neurology, Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
6
|
Qiu J, Fang Y, Xiao S, Zeng F. AP2a-Mediated Upregulation of miR-125a-5p Ameliorates Radiation-Induced Oxidative Stress Injury via BRD4/Nrf2/HO-1 Signaling. Radiat Res 2023; 199:148-160. [PMID: 36469904 DOI: 10.1667/rade-22-00107.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/27/2022] [Indexed: 12/12/2022]
Abstract
Radiation therapy is widely used to restrain tumor progression, but it is always accompanied by damage to healthy tissues. We aimed to probe the impact and mechanism of activator protein 2a (AP2a) and miR-125a-5p in radiation-induced oxidative stress injury. Human umbilical vein endothelial cells (HUVECs) were treated with X rays to induce radiation injury in vitro. Cell viability was measured using MTT assays. Flow cytometry assay was employed to detect the apoptosis rate. Oxidative stress markers were evaluated by detection kits. Gene or protein levels were determined by RT-qPCR or Western blotting. Validation of the interaction of miR-125a-5p with BRD4 and AP2a was conducted by dual luciferase assay or ChIP. MiR-125a-5p and AP2a were decreased in irradiated HUVECs, whereas BRD4 was increased. MiR-125a-5p overexpression or BRD4 silencing alleviated the cell viability decline, apoptosis, and oxidative stress injury caused by radiation treatment. MiR-125a-5p repressed the BRD4 level. The protective effects of miR-125a-5p overexpression in the radiation-induced oxidative injury were impeded by BRD4 overexpression. Moreover, AP2a bound to the promoter of miR-125a-5p. MiR-125a-5p inhibition reversed the effects of AP2a overexpression on radiational oxidative injury by modulating Nrf2/HO-1 signaling. AP2a transcriptionally activated miR-125a-5p ameliorated oxidative stress injury of HUVECs caused by radiation through Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Jun Qiu
- The Second Tumor Ward, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha 410016, Hunan Province, P.R. China
| | - Yi Fang
- Department of Anesthesiology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410006, Hunan Province, P.R. China
| | - Shengyi Xiao
- The Second Tumor Ward, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha 410016, Hunan Province, P.R. China
| | - Furen Zeng
- The Second Tumor Ward, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha 410016, Hunan Province, P.R. China
| |
Collapse
|
7
|
Huang J, Wu X, Zhang Q, Yang L, Wan G, Zhang X, Wang Y, Zhao G. Depleted miR-125a-5p Causes Vascular Endothelial Cell Dysfunction in Deep Vein Thrombosis by Targeting Angiopoietin 2. Indian J Hematol Blood Transfus 2023; 39:116-122. [PMID: 36699421 PMCID: PMC9868214 DOI: 10.1007/s12288-022-01572-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/25/2022] [Indexed: 01/28/2023] Open
Abstract
Deep vein thrombosis (DVT) is a common and fatal disease with a pathology involving endothelial dysfunction. The present research aimed to address the potential clinical significance of miR-125a-5p in DVT and its effect on the dysfunction of Human umbilical vein endothelial cells (HUVECs). Serum miR-125a-5p levels were measured using RT-qPCR in 88 patients with DVT and 76 healthy controls. ROC was plotted to evaluate the diagnostic potential of miR-125a-5p. Spearman's correlation coefficient was performed to calculate the correlation between miR-125a-5p and clinical indicators. CCK-8, Transwell, and ELISA were employed to verify the effects of cell proliferation, migration, and inflammatory and adhesion molecules. Dual-luciferase reporter assay to analyze potential target for miR-125a-5p. Serum miR-125a-5p was reduced in patients with DVT compared with healthy controls (P < 0.001). ROC showed that miR-125a-5p significantly identified patients with DVT from the healthy controls (AUC = 0.834). Furthermore, serum miR-125a-5p was negatively correlated with inflammatory factors and coagulation factors. In in vitro studies, proliferation and migration of HUVECs were inhibited by suppressed miR-125a-5p, whereas inflammation and adhesion factors were considerably promoted (P < 0.05). Moreover, miR-125-5p directly targeted the 3'UTR of angiopoietin 2 (ANGPT2) and was negatively regulated. Finally, serum ANGPT2 was elevated in patients with DVT and was negatively correlated with serum miR-125a-5p. The current research demonstrated that decreased miR-125a-5p was a novel potential diagnostic biomarker for DVT and that it may be involved in DVT progression by targeting ANGPT2 to regulate endothelial dysfunction.
Collapse
Affiliation(s)
- Jianyuan Huang
- General Surgery (Thyroid Gland/Blood Vessel), The First People’s Hospital of Neijiang, Neijiang, 641099 China
| | - Xinning Wu
- Department of Cardiovascular Medicine, People’s Hospital of Rizhao, Rizhao, 276827 China
| | - Quan Zhang
- Department of Cardiovascular Medicine, Affiliated Hospital of Gansu Medical College, No. 296, Kongtong East Road, Kongtong District, Pingliang, 744000 Gansu China
| | - Lixia Yang
- Department of Cardiovascular Medicine, Affiliated Hospital of Gansu Medical College, No. 296, Kongtong East Road, Kongtong District, Pingliang, 744000 Gansu China
| | - Guozhen Wan
- Department of Cardiovascular Medicine, Affiliated Hospital of Gansu Medical College, No. 296, Kongtong East Road, Kongtong District, Pingliang, 744000 Gansu China
| | - Xiaoqiang Zhang
- Department of Cardiovascular Medicine, Affiliated Hospital of Gansu Medical College, No. 296, Kongtong East Road, Kongtong District, Pingliang, 744000 Gansu China
| | - Ying Wang
- Department of Cardiovascular Medicine, Affiliated Hospital of Gansu Medical College, No. 296, Kongtong East Road, Kongtong District, Pingliang, 744000 Gansu China
| | - Guannan Zhao
- Department of Dermatological, Pingliang Traditional Chinese Medicine Hospital, Pingliang, 744000 Gansu China
| |
Collapse
|
8
|
Ma X, Liao X, Liu J, Wang Y, Wang X, Chen Y, Yin X, Pan Q. Circulating endothelial microvesicles and their carried miR-125a-5p: potential biomarkers for ischaemic stroke. Stroke Vasc Neurol 2022; 8:89-102. [PMID: 36109098 PMCID: PMC10176997 DOI: 10.1136/svn-2021-001476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 09/02/2022] [Indexed: 11/04/2022] Open
Abstract
BackgroundEndothelial microvesicles (EMVs) are closely associated with the status of endothelial cells (ECs). Our earlier study has shown that EMVs could exert protective roles in ECs by transferring their carried miR-125a-5p. However, whether circulating EMVs and their carried miR-125a-5p can be used as biomarkers in ischaemic stroke (IS) are remain unknown.MethodsWe recruited 72 subjects with IS, 60 subjects with high stroke risk and 56 age-matched controls. The circulating EMVs and their carried miR-125a-5p (EMV-miR-125a-5p) levels were detected. We used microRNA (miR) array to study expression changes of miRs in plasma EMVs samples of three IS patients and three matched healthy controls. Transient middle cerebral artery occlusion (tMCAO) was used to establish IS mouse model.ResultsEMVs level was obviously elevated in IS patients, with the highest level in acute stage, and was positively related to carotid plaque, carotid intima–media thickness (IMT), National Institutes of Health Stroke Scale (NIHSS), infarct volume. On the contrary, we observed that EMV-miR-125a-5p level was obviously reduced in IS, with the lowest level in acute stage, and was negatively correlated with carotid plaque, IMT, NIHSS scores, infarct volume. EMVs and EMV-miR-125a-5p levels were closely related with large artery atherosclerosis subgroup. Importantly, EMVs and EMV-miR-125a-5p levels could serve as independent risk factors, and receiver operating characteristic curve achieved an area under curve (AUC) of 0.720 and 0.832 for IS, respectively, and elevated to 0.881 after their combination. In IS mouse model, control EMVs or n-EMVs administration could decrease the infarct volume and neurological deficit score, while increase the cerebral blood flow of IS mice compared with vehicle group, while IS EMVs or oxygen and glucose deprivation (OGD)-EMVs administration aggravated the tMCAO induced ischaemic injury. In addition, we observed that OGD EMVmiR-125a-5p could partially ameliorate the OGD EMVs induced brain injury after IS.ConclusionsThese findings demonstrate that circulating EMVs and EMV-miR-125a-5p are closely related with the occurrence, progress, subtypes and severity of IS, and they can serve as innovative biomarkers and therapeutic targets for IS, especially when they are combined.
Collapse
Affiliation(s)
- Xiaotang Ma
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaorong Liao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiehong Liu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yan Wang
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiang Wang
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yanfang Chen
- Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
| | - Xiaojian Yin
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qunwen Pan
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
9
|
Kotlyarov S. Genetic and Epigenetic Regulation of Lipoxygenase Pathways and Reverse Cholesterol Transport in Atherogenesis. Genes (Basel) 2022; 13:1474. [PMID: 36011386 PMCID: PMC9408222 DOI: 10.3390/genes13081474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Atherosclerosis is one of the most important medical and social problems of modern society. Atherosclerosis causes a large number of hospitalizations, disability, and mortality. A considerable amount of evidence suggests that inflammation is one of the key links in the pathogenesis of atherosclerosis. Inflammation in the vascular wall has extensive cross-linkages with lipid metabolism, and lipid mediators act as a central link in the regulation of inflammation in the vascular wall. Data on the role of genetics and epigenetic factors in the development of atherosclerosis are of great interest. A growing body of evidence is strengthening the understanding of the significance of gene polymorphism, as well as gene expression dysregulation involved in cross-links between lipid metabolism and the innate immune system. A better understanding of the genetic basis and molecular mechanisms of disease pathogenesis is an important step towards solving the problems of its early diagnosis and treatment.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
10
|
Ma X, Wang Y, Shi Y, Li S, Liu J, Li X, Zhong W, Pan Q. Exosomal miR-132-3p from mesenchymal stromal cells improves synaptic dysfunction and cognitive decline in vascular dementia. Stem Cell Res Ther 2022; 13:315. [PMID: 35841005 PMCID: PMC9284820 DOI: 10.1186/s13287-022-02995-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/26/2022] [Indexed: 12/28/2022] Open
Abstract
Background/aims Vascular dementia (VD) results in cognition and memory deficit. Exosomes and their carried microRNAs (miRs) contribute to the neuroprotective effects of mesenchymal stromal cells, and miR-132-3p plays a key role in neuron plasticity. Here, we investigated the role and underlying mechanism of MSC EX and their miR-132-3p cargo in rescuing cognition and memory deficit in VD mice. Methods Bilateral carotid artery occlusion was used to generate a VD mouse model. MiR-132-3p and MSC EX levels in the hippocampus and cortex were measured. At 24-h post-VD induction, mice were administered with MSC EX infected with control lentivirus (EXCon), pre-miR-132-3p-expressing lentivirus (EXmiR-132-3p), or miR-132-3p antago lentivirus (EXantagomiR-132-3p) intravenously. Behavioral and cognitive tests were performed, and the mice were killed in 21 days after VD. The effects of MSC EX on neuron number, synaptic plasticity, dendritic spine density, and Aβ and p-Tau levels in the hippocampus and cortex were determined. The effects of MSC EX on oxygen–glucose deprivation (OGD)-injured neurons with respect to apoptosis, and neurite elongation and branching were determined. Finally, the expression levels of Ras, phosphorylation of Akt, GSK-3β, and Tau were also measured. Results Compared with normal mice, VD mice exhibited significantly decreased miR-132-3p and MSC EX levels in the cortex and hippocampus. Compared with EXCon treatment, the infusion of EXmiR-132-3p was more effective at improving cognitive function and increasing miR-132-3p level, neuron number, synaptic plasticity, and dendritic spine density, while decreasing Aβ and p-Tau levels in the cortex and hippocampus of VD mice. Conversely, EXantagomiR-132-3p treatment significantly decreased miR-132-3p expression in cortex and hippocampus, as well as attenuated EXmiR-132-3p treatment-induced functional improvement. In vitro, EXmiR-132-3p treatment inhibited RASA1 protein expression, but increased Ras and the phosphorylation of Akt and GSK-3β, and decreased p-Tau levels in primary neurons by delivering miR-132-3p, which resulted in reduced apoptosis, and increased neurite elongation and branching in OGD-injured neurons. Conclusions Our studies suggest that miR-132-3p cluster-enriched MSC EX promotes the recovery of cognitive function by improving neuronal and synaptic dysfunction through activation of the Ras/Akt/GSK-3β pathway induced by downregulation of RASA1. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02995-w.
Collapse
Affiliation(s)
- Xiaotang Ma
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yan Wang
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, 524001, China
| | - Yumeng Shi
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Suqing Li
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Jinhua Liu
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xiangyong Li
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, 524001, China
| | - Wangtao Zhong
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Qunwen Pan
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
11
|
Wu Z, Wei W, Fan H, Gu Y, Li L, Wang H. Integrated Analysis of Competitive Endogenous RNA Networks in Acute Ischemic Stroke. Front Genet 2022; 13:833545. [PMID: 35401659 PMCID: PMC8990852 DOI: 10.3389/fgene.2022.833545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/25/2022] [Indexed: 12/28/2022] Open
Abstract
Background: Acute ischemic stroke (AIS) is a severe neurological disease with complex pathophysiology, resulting in the disability and death. The goal of this study is to explore the underlying molecular mechanisms of AIS and search for new potential biomarkers and therapeutic targets. Methods: Integrative analysis of mRNA and miRNA profiles downloaded from Gene Expression Omnibus (GEO) was performed. We explored differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMirs) after AIS. Target mRNAs of DEMirs and target miRNAs of DEGs were predicted with target prediction tools, and the intersections between DEGs and target genes were determined. Subsequently, Gene Ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses, Gene set enrichment analysis (GSEA), Gene set variation analysis (GSVA), competitive endogenous RNA (ceRNA) (lncRNA-miRNA-mRNA) network, protein–protein interaction (PPI) network, and gene transcription factors (TFs) network analyses were performed to identify hub genes and associated pathways. Furthermore, we obtained AIS samples with evaluation of immune cell infiltration and used CIBERSORT to determine the relationship between the expression of hub genes and infiltrating immune cells. Finally, we used the Genomics of Drug Sensitivity in Cancer (GDSC) database to predict the effect of the identified targets on drug sensitivity. Result: We identified 293 DEGs and 26 DEMirs associated with AIS. DEGs were found to be mainly enriched in inflammation and immune-related signaling pathways through enrichment analysis. The ceRNA network included nine lncRNAs, 13 miRNAs, and 21 mRNAs. We used the criterion AUC >0.8, to screen a 3-gene signature (FBL, RPS3, and RPS15) and the aberrantly expressed miRNAs (hsa-miR-125a-5p, hsa-miR-125b-5p, hsa-miR-148b-3p, and hsa-miR-143-3p) in AIS, which were verified by a method of quantitative PCR (qPCR) in HT22 cells. T cells CD8, B cells naïve, and activated NK cells had statistical increased in number compared with the acute cerebral infarction group. By predicting the IC50 of the patient to the drug, AZD0530, Z.LLNle.CHO and NSC-87877 with significant differences between the groups were screened out. AIS demonstrated heterogeneity in immune infiltrates that correlated with the occurrence and development of diseases. Conclusion: These findings may contribute to a better understanding of the molecular mechanisms of AIS and provide the basis for the development of novel treatment targets in AIS.
Collapse
Affiliation(s)
- Zongkai Wu
- Department of Neurology, Hebei Medical University, Shijiazhuang, China
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Wanyi Wei
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Hongzhen Fan
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Yongsheng Gu
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Litao Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Hebo Wang
- Department of Neurology, Hebei Medical University, Shijiazhuang, China
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
- *Correspondence: Hebo Wang, , https://orcid.org/0000-0002-0598-5772
| |
Collapse
|
12
|
Qiu J, Ma C, Dai W, Fang E, Li W, Yang F. Ghrelin attenuates transforming growth factor-β1-induced pulmonary fibrosis via the miR-125a-5p/Kruppel-like factor 13 axis. Arch Biochem Biophys 2022; 715:109082. [PMID: 34767797 DOI: 10.1016/j.abb.2021.109082] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 10/24/2021] [Accepted: 11/05/2021] [Indexed: 12/22/2022]
Abstract
Pulmonary fibrosis is a severe condition with limited therapeutic options and characterized by increased fibroblast activation and progressive accumulation of extracellular matrix. Ghrelin, a gastrointestinal hormone, has been reported to possess protective roles in lung diseases including pulmonary fibrosis. However, the precise mechanisms underlying the protective effects of ghrelin remain unknown. The present study was designed to investigate the effects of ghrelin on transforming growth factor-β1 (TGF-β1)-induced pulmonary fibrosis in vitro and in vivo and the possible mechanism of action. It was found that ghrelin significantly attenuated TGF-β1-induced fibrotic responses in human lung fibroblast (IMR-90) cells and bleomycin (BLM)-induced fibrotic lung tissues. Meanwhile, ghrelin decreased the expressions of miR-125a-5p and phosphorylated smad2/3 and increased protein expressions of Kruppel-like factor 13 (KLF13) in vivo and in vitro. Ghrelin-induced anti-fibrotic effects and smad2/3 downregulation in TGF-β1-stimulated IMR-90 cells were markedly reversed by miR-125a-5p mimics and KLF13 siRNA. Furthermore, miR-125a-5p directly targeted KLF13 in IMR-90 cells. Our findings suggest that ghrelin attenuates TGF-β1-induced pulmonary fibrosis via the miR-125a-5p/KLF13 axis, which supports ghrelin as a new therapeutic agent against pulmonary fibrosis by antagonizing the TGF-β1 signaling pathway.
Collapse
Affiliation(s)
- Jing Qiu
- Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu, 610500, Sichuan, China; Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Avenue, Xindu District, Chengdu, 610500, Sichuan, China; Key Laboratory of Geriatic Respiratory Diseases of Sichuan Higher Education Institutes, No. 278, Baoguang Avenue, Xindu District, Chengdu , 610500, Sichuan, China
| | - Chunlan Ma
- Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu, 610500, Sichuan, China; Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Avenue, Xindu District, Chengdu, 610500, Sichuan, China; Key Laboratory of Geriatic Respiratory Diseases of Sichuan Higher Education Institutes, No. 278, Baoguang Avenue, Xindu District, Chengdu , 610500, Sichuan, China
| | - Wenjing Dai
- Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu, 610500, Sichuan, China; Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Avenue, Xindu District, Chengdu, 610500, Sichuan, China; Key Laboratory of Geriatic Respiratory Diseases of Sichuan Higher Education Institutes, No. 278, Baoguang Avenue, Xindu District, Chengdu , 610500, Sichuan, China
| | - Enrong Fang
- Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu, 610500, Sichuan, China; Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Avenue, Xindu District, Chengdu, 610500, Sichuan, China; Key Laboratory of Geriatic Respiratory Diseases of Sichuan Higher Education Institutes, No. 278, Baoguang Avenue, Xindu District, Chengdu , 610500, Sichuan, China
| | - Wancheng Li
- Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu, 610500, Sichuan, China; Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Avenue, Xindu District, Chengdu, 610500, Sichuan, China; Key Laboratory of Geriatic Respiratory Diseases of Sichuan Higher Education Institutes, No. 278, Baoguang Avenue, Xindu District, Chengdu , 610500, Sichuan, China
| | - Fan Yang
- Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu, 610500, Sichuan, China; Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Avenue, Xindu District, Chengdu, 610500, Sichuan, China; Key Laboratory of Geriatic Respiratory Diseases of Sichuan Higher Education Institutes, No. 278, Baoguang Avenue, Xindu District, Chengdu , 610500, Sichuan, China.
| |
Collapse
|
13
|
Kianmehr A, Qujeq D, Bagheri A, Mahrooz A. Oxidized LDL-regulated microRNAs for evaluating vascular endothelial function: molecular mechanisms and potential biomarker roles in atherosclerosis. Crit Rev Clin Lab Sci 2021; 59:40-53. [PMID: 34523391 DOI: 10.1080/10408363.2021.1974334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
As a simple monolayer, vascular endothelial cells can respond to physicochemical stimuli. In addition to promoting the formation of foam cells, oxidized low-density lipoprotein (ox-LDL) contributes to the atherosclerotic process through different mechanisms, including endothelial cell dysfunction. As conserved noncoding RNAs, microRNAs (miRNAs) naturally lie in different genomic positions and post-transcriptionally regulate the expression of many genes. They participate in integrated networks formed under stress to maintain cellular homeostasis, vascular inflammation, and metabolism. These small RNAs constitute therapeutic targets in different diseases, including atherosclerosis, and their role as biomarkers is crucial given their detectability even years before the emergence of diseases. This review was performed to investigate the role of ox-LDL-regulated miRNAs in atherosclerosis, their molecular mechanisms, and their application as biomarkers of vascular endothelial cell dysfunction.
Collapse
Affiliation(s)
- Anvarsadat Kianmehr
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Abouzar Bagheri
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdolkarim Mahrooz
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
14
|
Zingg JM, Vlad A, Ricciarelli R. Oxidized LDLs as Signaling Molecules. Antioxidants (Basel) 2021; 10:antiox10081184. [PMID: 34439432 PMCID: PMC8389018 DOI: 10.3390/antiox10081184] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022] Open
Abstract
Levels of oxidized low-density lipoproteins (oxLDLs) are usually low in vivo but can increase whenever the balance between formation and scavenging of free radicals is impaired. Under normal conditions, uptake and degradation represent the physiological cellular response to oxLDL exposure. The uptake of oxLDLs is mediated by cell surface scavenger receptors that may also act as signaling molecules. Under conditions of atherosclerosis, monocytes/macrophages and vascular smooth muscle cells highly exposed to oxLDLs tend to convert to foam cells due to the intracellular accumulation of lipids. Moreover, the atherogenic process is accelerated by the increased expression of the scavenger receptors CD36, SR-BI, LOX-1, and SRA in response to high levels of oxLDL and oxidized lipids. In some respects, the effects of oxLDLs, involving cell proliferation, inflammation, apoptosis, adhesion, migration, senescence, and gene expression, can be seen as an adaptive response to the rise of free radicals in the vascular system. Unlike highly reactive radicals, circulating oxLDLs may signal to cells at more distant sites and possibly trigger a systemic antioxidant defense, thus elevating the role of oxLDLs to that of signaling molecules with physiological relevance.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Correspondence: (J.-M.Z.); (R.R.); Tel.: +1-(305)-2433531 (J.-M.Z.); +39-010-3538831 (R.R.)
| | - Adelina Vlad
- Physiology Department, “Carol Davila” UMPh, 020021 Bucharest, Romania;
| | - Roberta Ricciarelli
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Correspondence: (J.-M.Z.); (R.R.); Tel.: +1-(305)-2433531 (J.-M.Z.); +39-010-3538831 (R.R.)
| |
Collapse
|
15
|
Alterations in Circulating MicroRNAs and the Relation of MicroRNAs to Maximal Oxygen Consumption and Intima-Media Thickness in Ultra-Marathon Runners. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147234. [PMID: 34299680 PMCID: PMC8307599 DOI: 10.3390/ijerph18147234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022]
Abstract
The impact of long-term training on cardiovascular disease (CVD) is not clear. Carotid intima-media thickness (CIMT) test is recommended as a useful measure to diagnose the early stages of atherosclerosis. MicroRNAs (miRNAs) are altered due to endurance exercise and can be promising biomarkers of pathophysiological changes. We aimed to evaluate the association of circulating miRNAs with physical fitness and markers of atherosclerosis in ultra-marathon runners. Ultra-marathon runners had 28-fold upregulation of miR-125a-5p expressions compared to control individuals (p = 0.002), whereas let-7e and miR-126 did not differ statistically between ultra-marathon runners and controls. In the ultra-marathon runners' group, negative correlations were observed between VO2max/kg and relative expression of miR-125a-5p and miR-126 (r = -0.402, p = 0.028; r = -0.438, p = 0.032, respectively). Positive correlations were observed between CIMT and miR-125a-5p and miR-126 (r = 0.388, p = 0.050; r = 0.504, p = 0.023, respectively) in ultra-marathon runners. Individuals with the highest quartile of VO2max/kg had 23-fold lower miR-126 expression in comparison to subgroups with lower VO2max/kg (p = 0.017). Our results may indicate that both miRNAs may serve as a biomarker for early pathological changes leading to atherosclerosis burden in athletes. Furthermore, the association between miRNAs and traditional risk factors for CVD indicate a possible use of these molecules as early biomarkers of future cardiovascular health.
Collapse
|
16
|
An Insight into the microRNAs Associated with Arteriovenous and Cavernous Malformations of the Brain. Cells 2021; 10:cells10061373. [PMID: 34199498 PMCID: PMC8227573 DOI: 10.3390/cells10061373] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Brain arteriovenous malformations (BAVMs) and cerebral cavernous malformations (CCMs) are rare developmental anomalies of the intracranial vasculature, with an irregular tendency to rupture, and as of yet incompletely deciphered pathophysiology. Because of their variety in location, morphology, and size, as well as unpredictable natural history, they represent a management challenge. MicroRNAs (miRNAs) are strands of non-coding RNA of around 20 nucleotides that are able to modulate the expression of target genes by binding completely or partially to their respective complementary sequences. Recent breakthroughs have been made on elucidating their contribution to BAVM and CCM occurrence, growth, and evolution; however, there are still countless gaps in our understanding of the mechanisms involved. Methods: We have searched the Medline (PubMed; PubMed Central) database for pertinent articles on miRNAs and their putative implications in BAVMs and CCMs. To this purpose, we employed various permutations of the terms and idioms: ‘arteriovenous malformation’, ‘AVM’, and ‘BAVM’, or ‘cavernous malformation’, ‘cavernoma’, and ‘cavernous angioma’ on the one hand; and ‘microRNA’, ‘miRNA’, and ‘miR’ on the other. Using cross-reference search; we then investigated additional articles concerning the individual miRNAs identified in other cerebral diseases. Results: Seven miRNAs were discovered to play a role in BAVMs, three of which were downregulated (miR-18a, miR-137, and miR-195*) and four upregulated (miR-7-5p, miR-199a-5p, miR-200b-3p, and let-7b-3p). Similarly, eight miRNAs were identified in CCM in humans and experimental animal models, two being upregulated (miR-27a and mmu-miR-3472a), and six downregulated (miR-125a, miR-361-5p, miR-370-3p, miR-181a-2-3p, miR-95-3p, and let-7b-3p). Conclusions: The following literature review endeavored to address the recent discoveries related to the various implications of miRNAs in the formation and growth of BAVMs and CCMs. Additionally, by presenting other cerebral pathologies correlated with these miRNAs, it aimed to emphasize the potential directions of upcoming research and biological therapies.
Collapse
|
17
|
Qu M, Zhao Y, Qing X, Zhang X, Li H. Androgen-dependent miR-125a-5p targets LYPLA1 and regulates global protein palmitoylation level in late-onset hypogonadism males. J Cell Physiol 2021; 236:4738-4749. [PMID: 33284463 DOI: 10.1002/jcp.30195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/23/2022]
Abstract
Late-onset hypogonadism (LOH) is defined as a clinical and biochemical syndrome with multiple symptoms caused by testosterone deficiency in aging males. An in-depth exploration of the molecular mechanism underlying LOH development is insufficient. We previously identified miR-125a-5p as a dysregulated microRNA in LOH patients and potential diagnostic biomarker for LOH. The present study demonstrated that plasma miR-125a-5p was upregulated after testosterone supplementation in both LOH patients and castrated mice, and positively associated with the testosterone concentrations, suggesting direct regulation of miR-125a-5p expression by testosterone. Androgen response element in the promoter of miR-125a-5p was subsequently identified. Target gene screening and confirmation verified that LYPLA1, encoding acyl-protein thioesterase 1 which catalyzed protein depalmitoylation process, was a target gene of miR-125a-5p. Furthermore, in cells cultured with testosterone deprivation and organs from castrated mice, testosterone deficiency led to decreased global protein palmitoylation level. In aging males, global protein palmitoylation in peripheral blood showed a notable decline in LOH patients contrast to the normal elderly males. And the palmitoylation level was positively correlative with serum testosterone concentrations. Our results suggested that testosterone could regulate global palmitoylation level through miR-125a-5p/LYPLA1 signaling pathway. Given that protein palmitoylation is pivotal for protein function and constitutes the pathogenesis of various diseases, testosterone/miR-125a-5p/LYPLA1 may contribute to the molecular mechanism underlying multiple symptoms caused by testosterone deficiency in LOH patients, and aberrant global palmitoylation could be a potential biomarker for LOH.
Collapse
Affiliation(s)
- Mengyuan Qu
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunhan Zhao
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingrong Qing
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinzong Zhang
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - Honggang Li
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Tongji Reproductive Medicine Hospital, Wuhan, China
| |
Collapse
|
18
|
Wang J, Polaki V, Chen S, Bihl JC. Exercise Improves Endothelial Function Associated with Alleviated Inflammation and Oxidative Stress of Perivascular Adipose Tissue in Type 2 Diabetic Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8830537. [PMID: 33425218 PMCID: PMC7781720 DOI: 10.1155/2020/8830537] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/03/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
Perivascular adipose tissue (PVAT), a type of adipose tissue that surrounds the blood vessels, has been considered an active component of the blood vessel walls and involved in vascular homeostasis. Recent evidence shows that increased inflammation and oxidative stress in PVAT contribute to endothelial dysfunction in type 2 diabetes (T2D). Exercise is an important nonpharmacological approach for vascular diseases. However, there is limited information regarding whether the beneficial effects of exercise on vascular function is related to the PVAT status. In this study, we investigated whether exercise can decrease oxidative stress and inflammation of PVAT and promote the improvement of endothelial function in a T2D mouse model. Diabetic db/db (5-week old) mice performed treadmill exercise (10 m/min) or keep sedentary for 8 weeks. Body weight, fasting blood glucose levels, glucose, and insulin tolerance were determined. The cytokines (IL-6, IL-10, IFN-γ, and TNF-a) and adiponectin levels, macrophage polarization and adipocyte type in PVAT, oxidative stress, and nitric oxide (NO) expression in the vascular wall were evaluated. The adhesion ability of primary aorta endothelial cells was analyzed. Our data showed that (1) diabetic db/db mice had increased body weight and fasting blood glucose level, compromised glucose tolerance, and insulin sensitivity, which were decreased/improved by exercise intervention. (2) Exercise intervention increased the percentage of multilocular brown adipocytes, promoted M1 to M2 macrophage polarization, associating with an increase of adiponectin and IL-10 levels and decrease of IFN-γ, IL-6, and TNF-a levels in PVAT. (3) Exercise decreased superoxide production in PVAT and the vascular wall of diabetic mice, accompanied with increased NO level. (4) The adhesion ability of aorta endothelial cells to leukocytes was decreased in exercised db/db mice, accompanied by decreased intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) expressions. Of interesting, coculture with PVAT-culture medium from exercised db/db mice could also reduce ICAM-1 and VCAM-1 expressions in primary endothelial cells. In conclusion, our data suggest that exercise improved endothelial function by attenuating the inflammation and oxidative stress in PVAT.
Collapse
Affiliation(s)
- Jinju Wang
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Venkata Polaki
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Shuzhen Chen
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Ji C. Bihl
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
19
|
miR-132-3p priming enhances the effects of mesenchymal stromal cell-derived exosomes on ameliorating brain ischemic injury. Stem Cell Res Ther 2020; 11:260. [PMID: 32600449 PMCID: PMC7322840 DOI: 10.1186/s13287-020-01761-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Backgrounds/aims Mesenchymal stromal cell-derived exosomes (MSC-EXs) could exert protective effects on recipient cells by transferring the contained microRNAs (miRs), and miR-132-3p is one of angiogenic miRs. However, whether the combination of MSC-EXs and miR-132-3p has better effects in ischemic cerebrovascular disease remains unknown. Methods Mouse MSCs transfected with scrambler control or miR-132-3p mimics were used to generate MSC-EXs and miR-132-3p-overexpressed MSC-EXs (MSC-EXsmiR-132-3p). The effects of EXs on hypoxia/reoxygenation (H/R)-injured ECs in ROS generation, apoptosis, and barrier function were analyzed. The levels of RASA1, Ras, phosphorylations of PI3K, Akt and endothelial nitric oxide synthesis (eNOS), and tight junction proteins (Claudin-5 and ZO-1) were measured. Ras and PI3K inhibitors were used for pathway analysis. In transient middle cerebral artery occlusion (tMCAO) mouse model, the effects of MSC-EXs on the cerebral vascular ROS production and apoptosis, cerebral vascular density (cMVD), Evans blue extravasation, brain water content, neurological deficit score (NDS), and infarct volume were determined. Results MSC-EXs could deliver their carried miR-132-3p into target ECs, which functionally downregulated the target protein RASA1, while upregulated the expression of Ras and the downstream PI3K phosphorylation. Compared to MSC-EXs, MSC-EXsmiR-132-3p were more effective in decreasing ROS production, apoptosis, and tight junction disruption in H/R-injured ECs. These effects were associated with increased levels of phosphorylated Akt and eNOS, which could be abolished by PI3K inhibitor (LY294002) or Ras inhibitor (NSC 23766). In the tMCAO mouse model, the infusion of MSC-EXsmiR-132-3p was more effective than MSC-EXs in reducing cerebral vascular ROS production, BBB dysfunction, and brain injury. Conclusion Our results suggest that miR-132-3p promotes the beneficial effects of MSC-EXs on brain ischemic injury through protecting cerebral EC functions.
Collapse
|
20
|
Zhang H, Pan Q, Xie Z, Chen Y, Wang J, Bihl J, Zhong W, Chen Y, Zhao B, Ma X. Implication of MicroRNA503 in Brain Endothelial Cell Function and Ischemic Stroke. Transl Stroke Res 2020; 11:1148-1164. [PMID: 32285355 DOI: 10.1007/s12975-020-00794-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022]
Abstract
The role of miR-503 in brain endothelium and ischemic stroke (IS) remains unclear. We aimed to study the relationship between plasma miR-503 and the onset time, severity, subtypes, and von Willebrand Factor (vWF) level in IS patients and to investigate the roles and underlying mechanisms of miR-503 in middle cerebral artery occlusion (MCAO) mice and cultured cerebral vascular endothelial cells (ECs). In MCAO mice, the effects of plasma from acute severe IS patients (ASS) with or without miR-503 antagomir on brain and ECs damage were determined. In cultured human ECs, the effects of miR-503 overexpression or knockdown on the monolayer permeability, apoptosis, ROS, and NO generation were investigated. For mechanism study, the PI3K/Akt/eNOS pathway, cleaved caspase-3, and bcl-2 were analyzed. Results showed that plasma miR-503 was significantly increased in IS patients, especially in acute period and severe cases and subtypes of LAA and TACI, and was positively correlated with vWF. Logistic analysis indicated that miR-503 was an independent risk factor for IS, with the area under curve of 0.796 in ROC analysis. In MCAO mice, ASS pretreatment aggravated neurological injury, BBB damage, brain edema, CBF reduction, and decreased NO production while increased apoptosis and ROS generation in brain ECs, which were partly abolished by miR-503 antagomir. In cultured ECs, miR-503 overexpression and knockdown confirmed its effects on regulating monolayer permeability, cell apoptosis, NO, and ROS generation via PI3K/Akt/eNOS pathway or bcl-2 and cleaved caspase-3 proteins. These together indicate that miR-503 is a promising biomarker and novel therapeutic target for IS.
Collapse
Affiliation(s)
- Huiting Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, 57 South Renmin Road, Zhanjiang, 524001, China
| | - Qunwen Pan
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, 57 South Renmin Road, Zhanjiang, 524001, China
| | - Zi Xie
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, 57 South Renmin Road, Zhanjiang, 524001, China
| | - Yanyu Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, 57 South Renmin Road, Zhanjiang, 524001, China
| | - Jinju Wang
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45430, USA
| | - Ji Bihl
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45430, USA
| | - Wangtao Zhong
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, 57 South Renmin Road, Zhanjiang, 524001, China
| | - Yanfang Chen
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45430, USA
| | - Bin Zhao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, 57 South Renmin Road, Zhanjiang, 524001, China.
| | - Xiaotang Ma
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, 57 South Renmin Road, Zhanjiang, 524001, China.
| |
Collapse
|
21
|
Gusev EY, Zotova NV. Cellular Stress and General Pathological Processes. Curr Pharm Des 2020; 25:251-297. [PMID: 31198111 DOI: 10.2174/1381612825666190319114641] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/13/2019] [Indexed: 02/06/2023]
Abstract
From the viewpoint of the general pathology, most of the human diseases are associated with a limited number of pathogenic processes such as inflammation, tumor growth, thrombosis, necrosis, fibrosis, atrophy, pathological hypertrophy, dysplasia and metaplasia. The phenomenon of chronic low-grade inflammation could be attributed to non-classical forms of inflammation, which include many neurodegenerative processes, pathological variants of insulin resistance, atherosclerosis, and other manifestations of the endothelial dysfunction. Individual and universal manifestations of cellular stress could be considered as a basic element of all these pathologies, which has both physiological and pathophysiological significance. The review examines the causes, main phenomena, developmental directions and outcomes of cellular stress using a phylogenetically conservative set of genes and their activation pathways, as well as tissue stress and its role in inflammatory and para-inflammatory processes. The main ways towards the realization of cellular stress and its functional blocks were outlined. The main stages of tissue stress and the classification of its typical manifestations, as well as its participation in the development of the classical and non-classical variants of the inflammatory process, were also described. The mechanisms of cellular and tissue stress are structured into the complex systems, which include networks that enable the exchange of information with multidirectional signaling pathways which together make these systems internally contradictory, and the result of their effects is often unpredictable. However, the possible solutions require new theoretical and methodological approaches, one of which includes the transition to integral criteria, which plausibly reflect the holistic image of these processes.
Collapse
Affiliation(s)
- Eugeny Yu Gusev
- Laboratory of the Immunology of Inflammation, Institute of Immunology and Physiology, Yekaterinburg, Russian Federation
| | - Natalia V Zotova
- Laboratory of the Immunology of Inflammation, Institute of Immunology and Physiology, Yekaterinburg, Russian Federation.,Department of Medical Biochemistry and Biophysics, Ural Federal University named after B.N.Yeltsin, Yekaterinburg, Russian Federation
| |
Collapse
|
22
|
Noncoding RNAs in Vascular Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7914957. [PMID: 31998442 PMCID: PMC6969641 DOI: 10.1155/2020/7914957] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/20/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
Increases in age are accompanied by vascular aging, which can lead to a variety of chronic diseases, including atherosclerosis and hypertension. Noncoding RNAs (ncRNAs) have become a research hotspot in different fields of life sciences in recent years. For example, these molecules have been found to have regulatory roles in many physiological and pathological processes. Many studies have shown that microRNAs (miRNAs) and long ncRNAs (lncRNAs) also play a regulatory role in vascular aging. Endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are important components of blood vessels, and the senescence of both cell types promotes the occurrence of vascular aging. This review provides a contemporary update on the molecular mechanisms underlying the senescence of ECs and VSMCs and the regulatory role of miRNAs and lncRNAs in this process.
Collapse
|
23
|
Liang Z, Pan Q, Zhang Z, Huang C, Yan Z, Zhang Y, Li J. MicroRNA‑125a‑5p controls the proliferation, apoptosis, migration and PTEN/MEK1/2/ERK1/2 signaling pathway in MCF‑7 breast cancer cells. Mol Med Rep 2019; 20:4507-4514. [PMID: 31702027 PMCID: PMC6797945 DOI: 10.3892/mmr.2019.10704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/04/2019] [Indexed: 12/31/2022] Open
Abstract
MicroRNA (miR)-125a-5p has shown the potential for suppressing tumorigenesis and development; however, the effects of miR-125a-5p on breast cancer cells remains unknown. The aim of this study was to evaluate the effects and underlying mechanisms of miR-125a-5p in MCF-7 breast cancer cells. MCF-7 cells were transfected with miR-125a-5p mimic or miR-125a-5p small interfering RNA to produce miR-125a-5p overexpressing/knockdown cells. Cell proliferation was assessed by an MTT assay, and cell migration ability was determined by an in vitro scratch assay. Hoechst 33258 staining and flow cytometry were performed to assess the effects of miR-125a-5p on MCF-7 apoptosis. Western blotting and reverse transcription-quantitative polymerase chain reaction were used for measuring phosphatase and tensin homolog (PTEN), phosphorylated (p)-mitogen-activated protein kinase kinase (MEK1/2)/MEK1/2, p-ERK1/2/ERK1/2, B-cell lymphoma-2 (Bcl-2), cleaved caspase-3, and miR-125a-5p expression. miR-125a-5p overexpression inhibited the proliferation and migration, but promoted the apoptosis of MCF-7 cells. These effects were associated with increases in PTEN and cleaved caspase-3 expression, and decreases in p-MEK1/2/MEK1/2, p-ERK1/2/ERK1/2, and Bcl-2. Silencing of miR-125a-5p exhibited opposing effects on MCF-7 cells. These observations suggested that miR-125a-5p participates in the regulation of multiple functions of MCF-7 cells by promoting the expression of PTEN tumor suppressor genes, activating MEK1/2/ERK1/2 signaling, and regulating caspase-3/Bcl-2 signaling. Thus, it may be a suitable target for breast cancer gene therapy.
Collapse
Affiliation(s)
- Zhongzeng Liang
- Department of Vascular Thyroid Breast Surgery, Institute of Neurology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Qunwen Pan
- Guangdong Key Laboratory of Age‑Related Cardiac and Cerebral Diseases, Institute of Neurology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Zhi Zhang
- Department of Vascular Thyroid Breast Surgery, Institute of Neurology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Chaosheng Huang
- Department of Vascular Thyroid Breast Surgery, Institute of Neurology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Zeming Yan
- Department of Vascular Thyroid Breast Surgery, Institute of Neurology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yuanqi Zhang
- Department of Vascular Thyroid Breast Surgery, Institute of Neurology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Jianwen Li
- Department of Vascular Thyroid Breast Surgery, Institute of Neurology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| |
Collapse
|
24
|
Zhang Q, Liu C, Li Q, Li J, Wu Y, Liu J. MicroRNA-25-5p counteracts oxidized LDL-induced pathological changes by targeting neuronal growth regulator 1 (NEGR1) in human brain micro-vessel endothelial cells. Biochimie 2019; 165:141-149. [PMID: 31365884 DOI: 10.1016/j.biochi.2019.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/26/2019] [Indexed: 12/13/2022]
Abstract
MicroRNA-25-5p (miR-25-5p) may be involved in the pathogenesis and processes of vascular diseases. The aim of this study was to investigate the role of miR-25-5p in oxidized low-density lipoprotein (ox-LDL)-treated human brain microvessel endothelial cells (HBMECs) and the underlying mechanisms. RT-qPCR and/or Western blot were used to detect the expression levels of miR-25-5p and neuronal growth regulator 1 (NEGR1). The effect of miR-25-5p overexpression and NEGR1 silencing on cell proliferation, migration, apoptosis and reactive oxygen species (ROS) production of HBMECs were measured by using CCK-8 assay, transwell assay and flow cytometry, respectively. The expression levels of apoptosis-related protein (cleaved caspase-3 and pro-caspase-3) were detected using Western blot, and the nitric oxide (NO) production was measured by a nitric oxide assay kit. The expression level of miR-25-5p was decreased in HBMECs treated with ox-LDL. Compared with the control group, miR-25-5p overexpression significantly promoted the proliferation and migration of HBMECs treated with ox-LDL (p < 0.01). Overexpression of miR-25-5p significantly suppressed cell apoptosis, ROS production and NO reduction of ox-LDL-induced HBMECs (p < 0.01). In addition, the target gene of miR-25-5p was predicted to be NEGR1 through Targetscan online analysis. The effect of NEGR1 silencing on cell proliferation, migration, apoptosis, ROS and NO production of ox-LDL-induced HBMECs was similar to that of miR-25-5p overexpression. Furthermore, miR-25-5p overexpression and NEGR1 silencing significantly downregulated the protein expression levels of JAK2 and STAT3. Thus, miR-25-5p neutralizes the effects of ox-LDL on multiple functions of HBMECs through suppressing the expression of NEGR1 via regulating the JAK/STA signaling pathway.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Cerebrovascular Diseases, Blue Cross Brain Hospital Affiliated to Tongji University, Shanghai, 201101, China.
| | - Chun Liu
- Department of Cerebrovascular Diseases, Blue Cross Brain Hospital Affiliated to Tongji University, Shanghai, 201101, China
| | - Qiang Li
- Department of Neurosurgery, Changhai Hospital of Shanghai Affiliated to Naval Military Medical University, Shanghai, 200433, China
| | - Jianan Li
- Department of Neurosurgery, Changhai Hospital of Shanghai Affiliated to Naval Military Medical University, Shanghai, 200433, China
| | - Yina Wu
- Department of Neurosurgery, Changhai Hospital of Shanghai Affiliated to Naval Military Medical University, Shanghai, 200433, China
| | - Jianmin Liu
- Department of Neurosurgery, Changhai Hospital of Shanghai Affiliated to Naval Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
25
|
Liang Y, Pan Q, Wang R, Ye Z, Li Z, Zeng L, Chen Y, Ma X, Li M, Miao H. Microvesicles Derived from TGF-β1 Stimulated Hepatic Stellate Cells Aggravate Hepatocellular Injury. Stem Cells Dev 2019; 28:1128-1139. [PMID: 31140359 DOI: 10.1089/scd.2019.0032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatic stellate cells (HSCs) are liver-specific cells playing critical roles in liver physiological and pathophysiological processes. Transforming growth factor-β1 (TGF-β1) is an inflammatory cytokine secreted by both hepatocytes and HSCs. We have previously shown that microvesicles (MVs) derived from quiescent HSCs protect hepatocyte functions. In this study, we investigated the effects of MVs released from TGF-β1-stimulated HSCs (HSC-MVs) on xenobiotic-injured hepatocytes. Two hepatocyte cell lines (BRL-3A and HL-7702) were treated with N-acetyl-p-aminophenol or H2O2 to build the injury models. Different concentrations of HSC-MVs were used to coculture with injured hepatocytes. MTT, Hochest33258 staining, and flow cytometry were used to determine their effects on the viability and apoptosis of hepatocytes. Liver injury indicators, alanine aminotransferase (ALT) and aspartate amino transferase (AST), were assessed by enzyme-linked immune sorbent assay kits. The phosphoinositide 3-kinase (PI3K) activator (740Y-P) and extracelluar signal regulated kinase (Erk)1/2 activator (platelet-derived growth factor-BB) were used for pathway analysis. The expression levels of p-PI3K/PI3K, p-Akt/Akt, and activated caspase-3 were measured by western blot. Results showed that (i) HSC-MVs dose dependently impaired the viability of hepatocytes in both injury models, (ii) moreover, HSC-MVs dose dependently increased the apoptosis in those cell models, (iii) HSC-MVs also elevated the levels of ALT and AST in the coculture media, and (iv) these effects were accompanied by a decrease in p-PI3K/PI3K and p-Akt/Akt, which could be partially abolished by 740Y-P. Meanwhile, the proapoptotic effect of HSC-MVs was associated with p-Erk1/2/Erk1/2 downregulation and activated caspase-3 upregulation, and could be inhibited by Erk1/2 activation. Our findings demonstrate that HSC-MVs are involved in inflammatory hepatocytes injury probably through the PI3K/Akt, Erk1/2, and caspase-3 pathways.
Collapse
Affiliation(s)
- Yaolong Liang
- 1Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qunwen Pan
- 2Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Rongfeng Wang
- 1Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhirong Ye
- 1Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zitao Li
- 1Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lingdiao Zeng
- 1Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yanfang Chen
- 2Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaotang Ma
- 2Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Mingyi Li
- 1Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huilai Miao
- 1Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
26
|
Exosomes Derived from Mesenchymal Stem Cells Ameliorate Hypoxia/Reoxygenation-Injured ECs via Transferring MicroRNA-126. Stem Cells Int 2019; 2019:2831756. [PMID: 31281371 PMCID: PMC6589209 DOI: 10.1155/2019/2831756] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/30/2019] [Accepted: 05/02/2019] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) show protective effects on ischemia/reperfusion- (I/R-) induced endothelial cell (EC) injury and vascular damage. Stem cell-released exosomes (EXs) could modulate target cell functions by delivering their cargos, and exert therapeutic effects as their mother cells. miR-126 is an important regulator of EC functions and angiogenesis. In this study, we determined whether EXs released from MSC-EXs provided beneficial effects on hypoxia/reoxygenation- (H/R-) injured ECs by transferring miR-126. MSCs were transfected with a miR-126 mimic or miR-126 short hairpin RNA to obtain miR-126-overexpressing MSC-EXs (MSC-EXsmiR-126) and miR-126 knockdown MSC-EXs (MSC-EXsSimiR-126). For functional studies, H/R-injured ECs were coincubated with various MSC-EXs. The viability, migration, tube formation ability, and apoptosis of ECs were measured. miR-126 and proangiogenic/growth factor (VEGF, EGF, PDGF, and bFGF) expressions were detected by qRT-PCR. Akt, p-Akt, p-eNOS, and cleaved caspase-3 expressions were examined by western blot. The PI3K inhibitor (LY294002) was used in pathway analysis. We found that overexpression/knockdown of miR-126 increased/decreased the proliferation of MSCs, as well as miR-126 expression in their derived MSC-EXs. MSC-EXsmiR-126 were more effective in promoting proliferation, migration, and tube formation ability of H/R-injured ECs than MSC-EXs. These effects were associated with the increase in p-Akt/Akt and p-eNOS, which could be abolished by LY294002. Besides, MSC-EXsmiR-126 were more effective than MSC-EXs in reducing the apoptosis of ECs, coupled with the decrease in cleaved caspase-3. Moreover, compared to MSC-EXs, MSC-EXsmiR-126 significantly upregulated the level of VEGF, EGF, PDGF, and bFGF in H/R-injured ECs. Downregulation of miR-126 in MSC-EXs inhibited these effects of MSC-EXs. The results suggest that MSC-EXs could enhance the survival and angiogenic function of H/R-injured ECs via delivering miR-126 to ECs and subsequently activate the PI3K/Akt/eNOS pathway, decrease cleaved caspase-3 expression, and increase angiogenic and growth factors.
Collapse
|
27
|
Willson C, Watanabe M, Tsuji-Hosokawa A, Makino A. Pulmonary vascular dysfunction in metabolic syndrome. J Physiol 2018; 597:1121-1141. [PMID: 30125956 DOI: 10.1113/jp275856] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
Metabolic syndrome is a critically important precursor to the onset of many diseases, such as cardiovascular disease, and cardiovascular disease is the leading cause of death worldwide. The primary risk factors of metabolic syndrome include hyperglycaemia, abdominal obesity, dyslipidaemia, and high blood pressure. It has been well documented that metabolic syndrome alters vascular endothelial and smooth muscle cell functions in the heart, brain, kidney and peripheral vessels. However, there is less information available regarding how metabolic syndrome can affect pulmonary vascular function and ultimately increase an individual's risk of developing various pulmonary vascular diseases, such as pulmonary hypertension. Here, we review in detail how metabolic syndrome affects pulmonary vascular function.
Collapse
Affiliation(s)
- Conor Willson
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Makiko Watanabe
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | | | - Ayako Makino
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
28
|
Pan Q, Ma C, Wang Y, Wang J, Zheng J, Du D, Liao X, Chen Y, Chen Y, Bihl J, Chen C, Yang Y, Ma X. Microvesicles-mediated communication between endothelial cells modulates, endothelial survival, and angiogenic function via transferring of miR-125a-5p. J Cell Biochem 2018; 120:3160-3172. [PMID: 30272818 DOI: 10.1002/jcb.27581] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/08/2018] [Indexed: 12/12/2022]
Abstract
Endothelial cells (ECs) released microvesicles (EMVs) could modulate the functions of target cells by transferring their microRNAs (miRs). We have reported that miR-125a-5p protected EC function. In this study, we determined whether EMVs provided beneficial effects on ECs by transferring miR-125a-5p. Human brain microvessel ECs were transfected with miR-125a-5p mimic or miR-125a-5p short hairpin RNA to obtain miR-125a-5p overexpressing ECs and miR-125a-5p knockdown ECs, and their derived EMVs. For the functional study, ECs or hypoxia/reoxygenation injured ECs were coincubated with various EMVs. The survival and angiogenic function of ECs were measured. Western blot and quantitative real time polymerase chain reaction (qRT-PCR) were used for measuring the levels of phosphoinositide 3-kinase (PI3K), phosphorylation-Akt (p-Akt)/Akt, p-endothelial nitric oxide synthase (p-eNOS), cleaved caspase-3, and miR-125a-5p. PI3K inhibitor was used for pathway analysis. EMVs promoted the proliferation, migration, and tube formation ability of ECs, and alleviated the apoptotic rate of ECs. These effects were associated by an increase in p-Akt/Akt and p-eNOS, and a decrease in cleaved caspase-3 could be abolished by LY294002. Overexpression or downregulation of miR-125a-5p in EMVs promoted or inhibited those effects of EMVs. EMVs could enhance the survival and angiogenic function of ECs via delivering miR-125a-5p to modulate the expression of PI3K/Akt/eNOS pathway and caspase-3.
Collapse
Affiliation(s)
- Qunwen Pan
- Department of Guangdong Key Laboratory of Age Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chunlian Ma
- Department of Health Science, Wuhan Sports University, Wuhan, China
| | - Yan Wang
- Department of Guangdong Key Laboratory of Age Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jinju Wang
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio
| | - Jieyi Zheng
- Department of Guangdong Key Laboratory of Age Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Donghui Du
- Department of Guangdong Key Laboratory of Age Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaorong Liao
- Department of Guangdong Key Laboratory of Age Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yusen Chen
- Department of Guangdong Key Laboratory of Age Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yanfang Chen
- Department of Guangdong Key Laboratory of Age Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio
| | - Ji Bihl
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio
| | - Can Chen
- Department of Guangdong Key Laboratory of Age Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yi Yang
- Department of Health Science, Wuhan Sports University, Wuhan, China
| | - Xiaotong Ma
- Department of Guangdong Key Laboratory of Age Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
29
|
MicroRNA-126 Priming Enhances Functions of Endothelial Progenitor Cells under Physiological and Hypoxic Conditions and Their Therapeutic Efficacy in Cerebral Ischemic Damage. Stem Cells Int 2018; 2018:2912347. [PMID: 29760722 PMCID: PMC5924971 DOI: 10.1155/2018/2912347] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 01/09/2018] [Indexed: 02/07/2023] Open
Abstract
Endothelial progenitor cells (EPCs) have shown the potential for treating ischemic stroke (IS), while microRNA-126 (miR-126) is reported to have beneficial effects on endothelial function and angiogenesis. In this study, we investigated the effects of miR-126 overexpression on EPCs and explore the efficacy of miR-126-primed EPCs (EPCmiR-126) in treating IS. The effects of miR-126 overexpression on EPC proliferation, migratory, tube formation capacity, reactive oxygen species (ROS) production, and nitric oxide (NO) generation were determined. In in vivo study, the effects of EPCmiR-126 on the cerebral blood flow (CBF), neurological deficit score (NDS), infarct volume, cerebral microvascular density (cMVD), and angiogenesis were determined. Moreover, the levels of circulating EPCs (cEPCs) and their contained miR-126 were measured. We found (1) miR-126 overexpression promoted the proliferation, migration, and tube formation abilities of EPCs; decreased ROS; and increased NO production of EPCs via activation of PI3K/Akt/eNOS pathway; (2) EPCmiR-126 was more effective than EPCs in attenuating infarct volume and NDS and enhancing cMVD, CBF, and angiogenesis; and (3) infusion of EPCmiR-126 increased the number and the level of miR-126 in cEPCs. Our data indicate that miR-126 overexpression enhanced the function of EPCs in vitro and in vivo.
Collapse
|
30
|
Zhong L, Simard MJ, Huot J. Endothelial microRNAs regulating the NF-κB pathway and cell adhesion molecules during inflammation. FASEB J 2018; 32:4070-4084. [PMID: 29565737 DOI: 10.1096/fj.201701536r] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The surface of endothelial cells is covered with cell adhesion molecules, including E-selectin, intercellular adhesion molecule 1 (ICAM-1), and vascular cell adhesion molecule 1 (VCAM- 1) , that mediate the adhesion and extravasation of leukocytes and play pivotal roles in inflammatory response. microRNAs (miRNAs) regulate the expression of these important cell adhesion molecules through two distinct major mechanisms, namely via modulating the proinflammatory NF-κB pathway, which controls their transcription, and via directly targeting them. The present review highlights the role of various miRNAs in controlling the expression of E-selectin, ICAM-1, and VCAM-1: a type of regulation that can be harnessed for therapeutic prevention of inflammation-associated diseases such as atherosclerosis and sepsis. The roles of secreted miRNAs as paracrine regulators, and cell adhesion molecule-based miRNA delivery are also addressed.-Zhong, L., Simard, M. J., Huot, J. Endothelial microRNAs regulating the NF-κB pathway and cell adhesion molecules during inflammation.
Collapse
Affiliation(s)
- Liang Zhong
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Centre (L'Hôtel-Dieu de Québec), Laval University Cancer Research Centre, Québec City, Québec, Canada
| | - Martin J Simard
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Centre (L'Hôtel-Dieu de Québec), Laval University Cancer Research Centre, Québec City, Québec, Canada
| | - Jacques Huot
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Centre (L'Hôtel-Dieu de Québec), Laval University Cancer Research Centre, Québec City, Québec, Canada
| |
Collapse
|
31
|
Cao J, Wang T, Wang M. Investigation of the anti-cataractogenic mechanisms of curcumin through in vivo and in vitro studies. BMC Ophthalmol 2018; 18:48. [PMID: 29454324 PMCID: PMC5816369 DOI: 10.1186/s12886-018-0711-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 02/08/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Cataract is the leading cause of blindness in elderly people worldwide, especially in developing countries. Studies to identify strategies that can prevent or retard cataract formation are urgently required. This study aimed to investigate the potential mechanism of the cytoprotective effects of curcumin in in vivo and in vitro experiments. METHODS Male Wistar rats were randomly divided into three groups: the control group, the model group (administered 20 μmol/kg sodium selenite), and the curcumin group (pretreated with 75 mg/kg body weight curcumin 24 h prior to the administration of sodium selenite). The expression levels of heat shock protein 70 (HSP70), the activities of 8-hydroxy-2-deoxyguanosine (8-OHdG), catalase (CAT), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were assessed by using RT-PCR assay and ELISA. In addition, the cell viability, cell apoptosis, and cell cycle were assessed using a CCK-8 assay and flow cytometry in in vitro studies, followed by RT-PCR analysis to identify the mRNA expression levels of caspase 3, Bcl-2 associated X (Bax), B-cell lymphoma 2 (Bcl-2), cyclooxygenase (Cox-2), c-met, and Slug. RESULTS Cataract was successfully established in rats of the model group and the curcumin group through intraperitoneal injection of sodium selenite. The expression levels of HSP70 and the activities of 8-OHdG and MDA in the curcumin group were decreased compared with those in the model group, whereas the activities of CAT, SOD, and GSH-Px were significantly higher than those in the model group (P < 0.05). In the in vitro studies, the cell viability and cell apoptosis significantly increased and decreased, respectively, in the curcumin group compared with the model group. Correspondingly, the mRNA expression of caspase-3, Bax, and Cox-2 was lower in the curcumin group than in the model group (P < 0.05). CONCLUSIONS This study suggested that curcumin attenuated selenite-induced cataract through the reduction of the intracellular production of reactive oxygen species and the protection of cells from oxidative damage.
Collapse
Affiliation(s)
- Jing Cao
- Department of pharmacy, Linyi People's hospital of Shandong University, LinYi, 276003, China
| | - Tao Wang
- Department of Ophthalmology, Linyi People's hospital of Shandong University, No. 27, Jiefang road, LinYi, Shandong, 276003, China
| | - Meng Wang
- Department of Ophthalmology, Linyi People's hospital of Shandong University, No. 27, Jiefang road, LinYi, Shandong, 276003, China.
| |
Collapse
|
32
|
Dalvi P, Sun B, Tang N, Pulliam L. Immune activated monocyte exosomes alter microRNAs in brain endothelial cells and initiate an inflammatory response through the TLR4/MyD88 pathway. Sci Rep 2017; 7:9954. [PMID: 28855621 PMCID: PMC5577170 DOI: 10.1038/s41598-017-10449-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/08/2017] [Indexed: 12/22/2022] Open
Abstract
The host immune response is critical for homeostasis; however, when chronic low level activation of the immune response with or without the driver continues, a cascade of events can trigger immunological dysfunction. Monocytes are key peripheral sensors of the immune response and their activation is instrumental in the development of cognitive impairment. Here, we show that monocytes activated by interferon alpha, lipopolysaccharide or a combination of both generate exosomes carrying significantly altered microRNA profiles compared to non-activated monocytes. These exosomes alone can activate human brain microvascular endothelial cells to stimulate adhesion molecules, CCL2, ICAM1, VCAM1 and cytokines, IL1β and IL6. This activation is through the toll like receptor 4 (TLR4)/myeloid differentiation primary response gene 88 (MyD88) pathway that activates nuclear factor-κB and increases monocyte chemotaxis. Inhibition of monocyte exosome release reverses endothelial cell activation and monocyte chemotaxis. Our study suggests that activated monocytes have an impact on brain vascular function through intercellular exosome signaling.
Collapse
Affiliation(s)
- Pranjali Dalvi
- Department of Laboratory Medicine, Veterans Administration Medical Center, San Francisco, CA, USA
| | - Bing Sun
- Department of Laboratory Medicine, Veterans Administration Medical Center, San Francisco, CA, USA
| | - Norina Tang
- Department of Laboratory Medicine, Veterans Administration Medical Center, San Francisco, CA, USA
| | - Lynn Pulliam
- Department of Laboratory Medicine, Veterans Administration Medical Center, San Francisco, CA, USA. .,Departments of Laboratory Medicine and Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
33
|
MicroRNA Regulation of Oxidative Stress-Induced Cellular Senescence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2398696. [PMID: 28593022 PMCID: PMC5448073 DOI: 10.1155/2017/2398696] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/31/2017] [Accepted: 04/11/2017] [Indexed: 12/18/2022]
Abstract
Aging is a time-related process of functional deterioration at cellular, tissue, organelle, and organismal level that ultimately brings life to end. Cellular senescence, a state of permanent cell growth arrest in response to cellular stress, is believed to be the driver of the aging process and age-related disorders. The free radical theory of aging, referred to as oxidative stress (OS) theory below, is one of the most studied aging promoting mechanisms. In addition, genetics and epigenetics also play large roles in accelerating and/or delaying the onset of aging and aging-related diseases. Among various epigenetic events, microRNAs (miRNAs) turned out to be important players in controlling OS, aging, and cellular senescence. miRNAs can generate rapid and reversible responses and, therefore, are ideal players for mediating an adaptive response against stress through their capacity to fine-tune gene expression. However, the importance of miRNAs in regulating OS in the context of aging and cellular senescence is largely unknown. The purpose of our article is to highlight recent advancements in the regulatory role of miRNAs in OS-induced cellular senescence.
Collapse
|
34
|
Gareri C, Iaconetti C, Sorrentino S, Covello C, De Rosa S, Indolfi C. miR-125a-5p Modulates Phenotypic Switch of Vascular Smooth Muscle Cells by Targeting ETS-1. J Mol Biol 2017; 429:1817-1828. [PMID: 28502794 DOI: 10.1016/j.jmb.2017.05.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 05/06/2017] [Accepted: 05/07/2017] [Indexed: 12/29/2022]
Abstract
MicroRNAs are key regulators of vascular smooth muscle cells (VSMCs) phenotypic switch, one of the main events responsible for bare metal in-stent restenosis after percutaneous coronary intervention. miR-125a-5p is an important modulator of differentiation, proliferation, and migration in different cell types; however, its role in VSMCs is still unknown. The aim of this study was to evaluate the role of miR-125a-5p in VSMCs phenotypic switch. Our results suggest that miR-125a-5p is highly expressed in VSMCs, but it is down-regulated after vascular injury in vivo. Its overexpression is sufficient to reduce VSMCs proliferation and migration, and it is able to promote the expression of selective VSMCs markers such as alpha smooth muscle actin, myosin heavy chain 11, and smooth muscle 22 alpha. Interestingly, miR-125a-5p directly targets ETS-1, a transcription factor implicated in cell proliferation and migration and is crucial in PDGF-BB pathway in VSMCs. Thus, miR-125a-5p in this context inhibits PDGF-BB pathway and is therefore a potential regulator of VSMCs phenotypic switch.
Collapse
Affiliation(s)
- C Gareri
- Division of Cardiology, Department of Medical and Surgical Science, "Magna Graecia" University, Viale Europa, Catanzaro 88100, Italy; Department of Medicine, Duke University, Durham, 27710, NC, USA
| | - C Iaconetti
- Division of Cardiology, Department of Medical and Surgical Science, "Magna Graecia" University, Viale Europa, Catanzaro 88100, Italy
| | - S Sorrentino
- Division of Cardiology, Department of Medical and Surgical Science, "Magna Graecia" University, Viale Europa, Catanzaro 88100, Italy
| | - C Covello
- Division of Cardiology, Department of Medical and Surgical Science, "Magna Graecia" University, Viale Europa, Catanzaro 88100, Italy
| | - S De Rosa
- Division of Cardiology, Department of Medical and Surgical Science, "Magna Graecia" University, Viale Europa, Catanzaro 88100, Italy
| | - C Indolfi
- Division of Cardiology, Department of Medical and Surgical Science, "Magna Graecia" University, Viale Europa, Catanzaro 88100, Italy; URT-CNR, Department of Medicine, Consiglio Nazionale delle Ricerche of IFC.
| |
Collapse
|
35
|
Terasaka T, Adakama ME, Li S, Kim T, Terasaka E, Li D, Lawson MA. Reactive Oxygen Species Link Gonadotropin-Releasing Hormone Receptor Signaling Cascades in the Gonadotrope. Front Endocrinol (Lausanne) 2017; 8:286. [PMID: 29163358 PMCID: PMC5671645 DOI: 10.3389/fendo.2017.00286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/10/2017] [Indexed: 12/31/2022] Open
Abstract
Biological rhythms lie at the center of regulatory schemes that control many aspects of living systems. At the cellular level, meaningful responses to external stimuli depend on propagation and quenching of a signal to maintain vigilance for subsequent stimulation or changes that serve to shape and modulate the response. The hypothalamus-pituitary-gonad endocrine axis that controls reproductive development and function relies on control through rhythmic stimulation. Central to this axis is the pulsatile stimulation of the gonadotropes by hypothalamic neurons through episodic release of the neuropeptide gonadotropin-releasing hormone. Alterations in pulsatile stimulation of the gonadotropes result in differential synthesis and secretion of the gonadotropins LH and FSH and changes in the expression of their respective hormone subunit genes. The requirement to amplify signals arising from activation of the gonadotropin-releasing hormone (GnRH) receptor and to rapidly quench the resultant signal to preserve an adaptive response suggests the need for rapid activation and feedback control operating at the level of intracellular signaling. Emerging data suggest that reactive oxygen species (ROS) can fulfill this role in the GnRH receptor signaling through activation of MAP kinase signaling cascades, control of negative feedback, and participation in the secretory process. Results obtained in gonadotrope cell lines or other cell models indicate that ROS can participate in each of these regulatory cascades. We discuss the potential advantage of reactive oxygen signaling for modulating the gonadotrope response to GnRH stimulation and the potential mechanisms for this action. These observations suggest further targets of study for regulation in the gonadotrope.
Collapse
Affiliation(s)
- Tomohiro Terasaka
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Mary E. Adakama
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Song Li
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, United States
- Neonatal Intensive Care Unit, Dongguan Eighth People’s Hospital Dongguan City, Dongguan, China
| | - Taeshin Kim
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Eri Terasaka
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Danmei Li
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Mark A. Lawson
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, United States
- *Correspondence: Mark A. Lawson,
| |
Collapse
|