1
|
Guan X, Liu Y, An Y, Wang X, Wei L, Qi X. FAK Family Kinases: A Potential Therapeutic Target for Atherosclerosis. Diabetes Metab Syndr Obes 2024; 17:3151-3161. [PMID: 39220801 PMCID: PMC11363942 DOI: 10.2147/dmso.s465755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Atherosclerosis (AS) is a chronic progressive inflammatory disease of the vascular wall and the primary pathological basis of cardiovascular and cerebrovascular disease. Focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (Pyk2), two highly homologous members of the FAK family kinases, play critical roles in integrin signaling. They also serve as scaffolding proteins that contribute to the assembly of cellular signaling complexes that regulate cell survival, cell cycle progression, and cell motility. Research indicates that the FAK family kinases is involved in the gene regulation of vascular cells and that aberrant expression of this family is associated with pathological changes in vascular disease. These findings establish the FAK family kinases as a critical signaling mediator in atherosclerotic lesions and inhibition of its activity has the potential to attenuate the pathological progression of AS. This review highlights the indispensable role of the FAK family kinases in abnormal vascular smooth muscle cell proliferation, endothelial cell dysfunction, inflammation, and lipid metabolism associated with AS. We also summarize therapeutic targets against the FAK family kinases, providing valuable insights into therapeutic strategies for AS.
Collapse
Affiliation(s)
- Xiuju Guan
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Yue Liu
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, People’s Republic of China
| | - Yajuan An
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Xinshuang Wang
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Liping Wei
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, People’s Republic of China
| | - Xin Qi
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, People’s Republic of China
| |
Collapse
|
2
|
Jiang R, Zhou Y, Gao Q, Han L, Hong Z. ZC3H4 governs epithelial cell migration through ROCK/p-PYK2/p-MLC2 pathway in silica-induced pulmonary fibrosis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104301. [PMID: 37866415 DOI: 10.1016/j.etap.2023.104301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Increased epithelial migration capacity is a key step accompanying epithelial-mesenchymal transition (EMT). Our lab has described that ZC3H4 mediated EMT in silicosis. Here, we aimed to explore the mechanisms of ZC3H4 by which to stimulate epithelial cell migration. METHODS Silicon dioxide (SiO2)-induced pulmonary fibrosis (PF) animal models were administered by intratracheal instillation in C57BL/6 J mice. Pathological analysis and 2D migration assay were established to uncover the pulmonary fibrotic lesions and epithelial cell migration, respectively. Inhibitors targeting ROCK/p-PYK2/p-MLC2 and CRISPR/Cas9 plasmids targeting ZC3H4 were administrated to explore the signaling pathways. RESULTS 1) SiO2 upregulated epithelial migration in pulmonary fibrotic lesions. 2) ZC3H4 modulated SiO2-induced epithelial migration. 3) ZC3H4 governed epithelial migration through ROCK/p-PYK2/p-MLC2 signaling pathway. CONCLUSIONS ZC3H4 regulates epithelial migration through the ROCK/p-PYK2/p-MLC2 signaling pathway, providing the possibility that molecular drugs targeting ZC3H4-overexpression may exert effects on pulmonary fibrosis induced by silica.
Collapse
Affiliation(s)
- Rong Jiang
- Jiangsu Health Vocational College, Nanjing, Jiangsu Province, China
| | - Yichao Zhou
- Department of Occupation Disease Prevention and Cure, Changzhou Wujin District Center for Disease Control and Prevention, Changzhou, Jiangsu Province, China
| | - Qianqian Gao
- Department of Occupation Disease Prevention and Cure, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China; Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lei Han
- Department of Occupation Disease Prevention and Cure, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China.
| | - Zhen Hong
- Jiangsu Health Vocational College, Nanjing, Jiangsu Province, China.
| |
Collapse
|
3
|
Mechanism of Hypoxia-Mediated Smooth Muscle Cell Proliferation Leading to Vascular Remodeling. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3959845. [PMID: 36593773 PMCID: PMC9805398 DOI: 10.1155/2022/3959845] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/25/2022] [Accepted: 12/07/2022] [Indexed: 12/25/2022]
Abstract
Vascular remodeling refers to changes in the size, contraction, distribution, and flow rate of blood vessels and even changes in vascular function. Vascular remodeling can cause cardiovascular and cerebrovascular diseases. It can also lead to other systemic diseases, such as pulmonary hypertension, pulmonary atherosclerosis, chronic obstructive pulmonary disease, stroke, and ascites of broilers. Hypoxia is one of the main causes of vascular remodeling. Prolonged hypoxia or intermittent hypoxia can lead to loss of lung ventilation, causing respiratory depression, irregular respiratory rhythms, and central respiratory failure. Animals that are unable to adapt to the highland environment are also prone to sustained constriction of the small pulmonary arteries, increased resistance to pulmonary circulation, and impaired blood circulation, leading to pulmonary hypertension and right heart failure if they live in a highland environment for long periods of time. However, limited studies have been found on the relationship between hypoxia and vascular remodeling. Therefore, this review will explore the relationship between hypoxia and vascular remodeling from the aspects of endoplasmic reticulum stress, mitochondrial dysfunction, abnormal calcium channel, disordered cellular metabolism, abnormal expression of miRNA, and other factors. This will help to understand the detailed mechanism of hypoxia-mediated smooth muscle cell proliferation and vascular remodeling for the better treatment and management of diseases due to vascular remodeling.
Collapse
|
4
|
Lee D, Hong JH. Activated PyK2 and Its Associated Molecules Transduce Cellular Signaling from the Cancerous Milieu for Cancer Metastasis. Int J Mol Sci 2022; 23:ijms232415475. [PMID: 36555115 PMCID: PMC9779422 DOI: 10.3390/ijms232415475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
PyK2 is a member of the proline-rich tyrosine kinase and focal adhesion kinase families and is ubiquitously expressed. PyK2 is mainly activated by stimuli, such as activated Src kinases and intracellular acidic pH. The mechanism of PyK2 activation in cancer cells has been addressed extensively. The up-regulation of PyK2 through overexpression and enhanced phosphorylation is a key feature of tumorigenesis and cancer migration. In this review, we summarized the cancer milieu, including acidification and cancer-associated molecules, such as chemical reagents, interactive proteins, chemokine-related molecules, calcium channels/transporters, and oxidative molecules that affect the fate of PyK2. The inhibition of PyK2 leads to a beneficial strategy to attenuate cancer cell development, including metastasis. Thus, we highlighted the effect of PyK2 on various cancer cell types and the distribution of molecules that affect PyK2 activation. In particular, we underlined the relationship between PyK2 and cancer metastasis and its potential to treat cancer cells.
Collapse
|
5
|
Microglial Cytokines Induce Invasiveness and Proliferation of Human Glioblastoma through Pyk2 and FAK Activation. Cancers (Basel) 2021; 13:cancers13246160. [PMID: 34944779 PMCID: PMC8699228 DOI: 10.3390/cancers13246160] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Microglia infiltrate most gliomas and have been demonstrated to promote tumor growth, invasion, and treatment resistance. To develop improved treatment methods, that take into consideration the supporting role of microglia in tumor progression, the functional and mechanistic pathways of glioma–microglia interactions need to be identified and experimentally dissected. Our recent studies and literature reports revealed the overexpression of Pyk2 and FAK in glioblastomas. Pyk2 and FAK signaling pathways have been shown to regulate migration and proliferation in glioma cells, including microglia-promoted glioma cell migration. However, the specific factors released by microglia that modulate Pyk2 and FAK to promote glioma invasiveness and proliferation are poorly understood. The aim of this study was to identify key microglia-derived signaling molecules that induce the activation of Pyk2- and FAK-dependent glioma cell proliferation and invasiveness. Abstract Glioblastoma is the most aggressive brain tumor in adults. Multiple lines of evidence suggest that microglia create a microenvironment favoring glioma invasion and proliferation. Our previous studies and literature reports indicated the involvement of focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (Pyk2) in glioma cell proliferation and invasion, stimulated by tumor-infiltrating microglia. However, the specific microglia-released factors that modulate Pyk2 and FAK signaling in glioma cells are unknown. In this study, 20 human glioblastoma specimens were evaluated with the use of RT-PCR and western blotting. A Pierson correlation test demonstrated a correlation (0.6–1.0) between the gene expression levels for platelet-derived growth factor β(PDGFβ), stromal-derived factor 1α (SDF-1α), IL-6, IL-8, and epidermal growth factor (EGF) in tumor-purified microglia and levels of p-Pyk2 (Y579/Y580) and p-FAK(Y925) in glioma cells. siRNA knockdown against Pyk2 or FAK in three primary glioblastoma cell lines, developed from the investigated specimens, in combination with the cytokine receptor inhibitors gefitinib (1 μM), DMPQ (200 nM), and burixafor (1 μM) identified EGF, PDGFβ, and SDF-1α as key extracellular factors in the Pyk2- and FAK-dependent activation of invadopodia formation and the migration of glioma cells. EGF and IL-6 were identified as regulators of the Pyk2- and FAK-dependent activation of cell viability and mitosis.
Collapse
|
6
|
Kitowska K, Gorska-Arcisz M, Antoun D, Zarczynska I, Czaplinska D, Szczepaniak A, Skladanowski AC, Wieczorek M, Stanczak A, Skupinska M, Sadej R. MET-Pyk2 Axis Mediates Acquired Resistance to FGFR Inhibition in Cancer Cells. Front Oncol 2021; 11:633410. [PMID: 33898310 PMCID: PMC8059549 DOI: 10.3389/fonc.2021.633410] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/10/2021] [Indexed: 12/16/2022] Open
Abstract
Deregulation of fibroblast growth factor receptors (FGFRs) signaling, as a result of FGFR amplification, chromosomal translocation, or mutations, is involved in both initiation and progression of a wide range of human cancers. Clinical data demonstrating the dependence of cancer cells on FGFRs signaling clearly indicate these receptors as the molecular targets of anti-cancer therapies. Despite the increasing number of tyrosine kinase inhibitors (TKIs) being investigated in clinical trials, acquired resistance to these drugs poses a serious therapeutic problem. In this study, we focused on a novel pan-FGFR inhibitor-CPL304110, currently being investigated in phase I clinical trials in adults with advanced solid malignancies. We analyzed the sensitivity of 17 cell lines derived from cancers with aberrant FGFR signaling, i.e. non-small cell lung cancer, gastric and bladder cancer to CPL304110. In order to explore the mechanism of acquired resistance to this FGFR inhibitor, we developed from sensitive cell lines their variants resistant to CPL304110. Herein, for the first time we revealed that the process of acquired resistance to the novel FGFR inhibitor was associated with increased expression of MET in lung, gastric, and bladder cancer cells. Overexpression of MET in NCI-H1703, SNU-16, RT-112 cells as well as treatment with HGF resulted in the impaired response to inhibition of FGFR activity. Moreover, we demonstrated that cells with acquired resistance to FGFR inhibitor as well as cells overexpressing MET displayed enhanced migratory abilities what was accompanied with increased levels of Pyk2 expression. Importantly, inhibition of both MET and Pyk2 activity restored sensitivity to FGFR inhibition in these cells. Our results demonstrate that the HGF/MET-Pyk2 signaling axis confers resistance to the novel FGFR inhibitor, and this mechanism is common for lung, gastric, and bladder cancer cells. Our study suggests that targeting of MET/Pyk2 could be an approach to overcome resistance to FGFR inhibition.
Collapse
Affiliation(s)
- Kamila Kitowska
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Monika Gorska-Arcisz
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Dima Antoun
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Izabela Zarczynska
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Dominika Czaplinska
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Adrian Szczepaniak
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Andrzej C Skladanowski
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Maciej Wieczorek
- Innovative Drugs R&D Department, Celon Pharma, Lomianki/Kielpin, Poland
| | | | - Monika Skupinska
- Innovative Drugs R&D Department, Celon Pharma, Lomianki/Kielpin, Poland
| | - Rafal Sadej
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
7
|
Murphy JM, Jeong K, Lim STS. FAK Family Kinases in Vascular Diseases. Int J Mol Sci 2020; 21:ijms21103630. [PMID: 32455571 PMCID: PMC7279255 DOI: 10.3390/ijms21103630] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/10/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
In various vascular diseases, extracellular matrix (ECM) and integrin expression are frequently altered, leading to focal adhesion kinase (FAK) or proline-rich tyrosine kinase 2 (Pyk2) activation. In addition to the major roles of FAK and Pyk2 in regulating adhesion dynamics via integrins, recent studies have shown a new role for nuclear FAK in gene regulation in various vascular cells. In particular, FAK primarily localizes within the nuclei of vascular smooth muscle cells (VSMCs) of healthy arteries. However, vessel injury increased FAK localization back to adhesions and elevated FAK activity, leading to VSMC hyperplasia. The study suggested that abnormal FAK or Pyk2 activation in vascular cells may cause pathology in vascular diseases. Here we will review several studies of FAK and Pyk2 associated with integrin signaling in vascular diseases including restenosis, atherosclerosis, heart failure, pulmonary arterial hypertension, aneurysm, and thrombosis. Despite the importance of FAK family kinases in vascular diseases, comprehensive reviews are scarce. Therefore, we summarized animal models involving FAK family kinases in vascular diseases.
Collapse
|
8
|
Oono K, Ohtake K, Watanabe C, Shiba S, Sekiya T, Kasono K. Contribution of Pyk2 pathway and reactive oxygen species (ROS) to the anti-cancer effects of eicosapentaenoic acid (EPA) in PC3 prostate cancer cells. Lipids Health Dis 2020; 19:15. [PMID: 32005121 PMCID: PMC6993438 DOI: 10.1186/s12944-019-1122-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/30/2019] [Indexed: 01/04/2023] Open
Abstract
Background n-3 polyunsaturated fatty acids (n-3 PUFAs), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are thought to exert protective effects in cardiovascular diseases. In addition, n-3 PUFAs have demonstrated anti-cancer effects in vitro and in vivo. Objective We investigated the anti-cancer effects and mechanism of action of EPA on PC3 prostate cancer cells in vitro. Methods PC3 cells were treated with various concentrations of EPA, and cell survival and the abilities of migration and invasion were evaluated. The time course of the growth inhibitory effect of EPA on PC3 cells was also assessed. The mechanism underlying the anti-cancer effects of EPA was investigated by human phosphokinase and human apoptosis antibody arrays, and confirmed by western blot analysis. We also examined the contribution of reactive oxygen species (ROS) to the effects of EPA using the ROS inhibitor N-acetyl cysteine. Results EPA decreased the survival of PC3 cells in a dose-dependent manner within 3 h of application, with an effective concentration of 500 μmol/L. EPA inhibited proline-rich tyrosine kinase (Pyk)2 and extracellular signal-regulated kinase 1/2 phosphorylation as determined by western blotting and the antibody arrays. The growth of PC3 cells was inhibited by EPA, which was dependent on ROS induction, while EPA inhibited Pyk2 phosphorylation independent of ROS production. Conclusions Inhibition of Pyk2 phosphorylation and ROS production contribute to the anticancer effects of EPA on PC3 cells.
Collapse
Affiliation(s)
- Keiichi Oono
- Laboratory of Physiology, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Kazuo Ohtake
- Laboratory of Physiology, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Chie Watanabe
- Laboratory of Clinical Pathology, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Sachiko Shiba
- Laboratory of Physiology, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Takashi Sekiya
- Laboratory of Clinical Pathology, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Keizo Kasono
- Laboratory of Physiology, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan.
| |
Collapse
|
9
|
Lipopolysaccharide-Induced Matrix Metalloproteinase-9 Expression Associated with Cell Migration in Rat Brain Astrocytes. Int J Mol Sci 2019; 21:ijms21010259. [PMID: 31905967 PMCID: PMC6982104 DOI: 10.3390/ijms21010259] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/25/2019] [Accepted: 12/27/2019] [Indexed: 12/17/2022] Open
Abstract
Neuroinflammation is a landmark of neuroinflammatory and neurodegenerative diseases. Matrix metalloproteinase (MMP)-9, one member of MMPs, has been shown to contribute to the pathology of these brain diseases. Several experimental models have demonstrated that lipopolysaccharide (LPS) exerts a pathological role through Toll-like receptors (TLRs) in neuroinflammation and neurodegeneration. However, the mechanisms underlying LPS-induced MMP-9 expression in rat brain astrocytes (RBA-1) are not completely understood. Here, we applied pharmacological inhibitors and siRNA transfection to assess the levels of MMP-9 protein, mRNA, and promoter activity, as well as protein kinase phosphorylation in RBA-1 cells triggered by LPS. We found that LPS-induced expression of pro-form MMP-9 and cell migration were mediated through TLR4, proto-oncogene tyrosine-protein kinase (c-Src), proline-rich tyrosine kinase 2 (Pyk2), platelet-derived growth factor receptor (PDGFR), phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), p38 mitogen-activated protein kinase (MAPK), and Jun amino-terminal kinase (JNK)1/2 signaling molecules in RBA-1 cells. In addition, LPS-stimulated binding of c-Jun to the MMP-9 promoter was confirmed by chromatin immunoprecipitation (ChIP) assay, which was blocked by pretreatment with c-Src inhibitor II, PF431396, AG1296, LY294002, Akt inhibitor VIII, p38 MAP kinase inhibitor VIII, SP600125, and tanshinone IIA. These results suggest that in RBA-1 cells, LPS activates a TLR4/c-Src/Pyk2/PDGFR/PI3K/Akt/p38 MAPK and JNK1/2 pathway, which in turn triggers activator protein 1 (AP-1) activation and ultimately induces MMP-9 expression and cell migration.
Collapse
|
10
|
Tong L, Ao JP, Lu HL, Huang X, Zang JY, Liu SH, Song NN, Huang SQ, Lu C, Chen J, Xu WX. Tyrosine Kinase Pyk2 is Involved in Colonic Smooth Muscle Contraction via the RhoA/ROCK Pathway. Physiol Res 2018; 68:89-98. [PMID: 30433799 DOI: 10.33549/physiolres.933857] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The contraction of gastrointestinal (GI) smooth muscles is regulated by both Ca(2+)-dependent and Ca(2+) sensitization mechanisms. Proline-rich tyrosine kinase 2 (Pyk2) is involved in the depolarization-induced contraction of vascular smooth muscle via a Ca(2+) sensitization pathway. However, the role of Pyk2 in GI smooth muscle contraction is unclear. The spontaneous contraction of colonic smooth muscle was measured by using isometric force transducers. Protein and phosphorylation levels were determined by using western blotting. Pyk2 protein was expressed in colonic tissue, and spontaneous colonic contractions were inhibited by PF-431396, a Pyk2 inhibitor, in the presence of tetrodotoxin (TTX). In cultured colonic smooth muscle cells (CSMCs), PF-431396 decreased the levels of myosin light chain (MLC20) phosphorylated at Ser19 and ROCK2 protein expression, but myosin light chain kinase (MLCK) expression was not altered. However, Y-27632, a Rho kinase inhibitor, increased phosphorylation of Pyk2 at Tyr402 and concomitantly decreased ROCK2 levels; the expression of MLCK in CSMCs did not change. The expression of P(Tyr402)-Pyk2 and ROCK2 was increased when CSMCs were treated with Ach. Pyk2 is involved in the process of colonic smooth muscle contraction through the RhoA/ROCK pathway. These pathways may provide very important targets for investigating GI motility disorders.
Collapse
Affiliation(s)
- Ling Tong
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Ping Ao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Hong-Li Lu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Huang
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-Yu Zang
- Department of Pediatric Surgery, Xin Hua Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shao-Hua Liu
- Department of Anesthesiology, Soth Renji Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ni-Na Song
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shi-Qi Huang
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Lu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Wen-Xie Xu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Qiu M, Yang Z, Guo XH, Song YT, An M, Zhao GJ, Song M, Zhao XM, Zhao YS, Liu QL. Trichosanthin attenuates vascular injury-induced neointimal hyperplasia following balloon catheter injury in rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:1212-1221. [PMID: 28910587 DOI: 10.1080/15287394.2017.1367140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Trichosanthin (TCS), isolated from the root tuber of Trichosantheskirilowii, a well-known traditional Chinese medicinal plant, belonging to the Cucurbitaceae family, was found to exhibit numerous biological and pharmacological activities including anti-inflammatory. However, the effects of TCS on arterial injury induced neointimal hyperplasia and inflammatory cell infiltration remains poorly understood. The aim of study was to examine the effectiveness of TCS on arterial injury-mediated inflammatory processes and underlying mechanisms. A balloon-injured carotid artery induced injury in vivo in rats was established as a model of vascular injury. After 1 day TCS at 20, 40, or 80 mg/kg/day was administered intraperitoneally, daily for 14 days. Subsequently, the carotid artery was excised and taken for immunohistochemical staining. Data showed that TCS significantly dose-dependently reduced balloon injury-induced neointima formation in the carotid artery model rat, accompanied by markedly decreased positive expression percentage proliferating cell nuclear antigen (PCNA). In the in vitro study vascular smooth muscle cells (VSMC) were cultured, proliferation stimulated with platelet-derived growth factor-BB (PDGF-BB) (20 ng/ml) and TCS at 1, 2, or 4 μM added. Data demonstrated that TCS inhibited proliferation and cell cycle progression of VSMC induced by PDGF-BB. Further, TCS significantly lowered mRNA expression of cyclinD1, cyclinE1, and c-fos, and protein expression levels of Akt1, Akt2, and mitogen-activated protein kinase MAPK (ERK1) signaling pathway mediated by PDGF-BB. These findings indicate that TCS inhibits vascular neointimal hyperplasia induced by vascular injury in rats by suppression of VSMC proliferation and migration, which may involve inhibition of Akt/MAPK/ERK signal pathway.
Collapse
Affiliation(s)
- Min Qiu
- a Department of Pharmacy , Baotou Medical College , Baotou , Inner Mongolia , China
- b Institute of Bioactive Substance and Function of Mongolian Medicine and Chinese Materia Medica , Baotou Medical College , Baotou , Inner Mongolia , China
| | - Zheng Yang
- c Department of Cardivascular Diseases , First Affiliated Hospital of Baotou Medical College , Baotou , Inner Mongolia , China
| | - Xiao-Hua Guo
- c Department of Cardivascular Diseases , First Affiliated Hospital of Baotou Medical College , Baotou , Inner Mongolia , China
| | - Yu-Ting Song
- c Department of Cardivascular Diseases , First Affiliated Hospital of Baotou Medical College , Baotou , Inner Mongolia , China
| | - Ming An
- a Department of Pharmacy , Baotou Medical College , Baotou , Inner Mongolia , China
- b Institute of Bioactive Substance and Function of Mongolian Medicine and Chinese Materia Medica , Baotou Medical College , Baotou , Inner Mongolia , China
| | - Guo-Jun Zhao
- d Department of Pharmacy , Fourth People's Hospital of Baotou City , Baotou , Inner Mongolia , China
| | - Miao Song
- a Department of Pharmacy , Baotou Medical College , Baotou , Inner Mongolia , China
| | - Xiao-Min Zhao
- e Undergraduate of 2013 grades in Department of Pharmacy , Baotou Medical College , Baotou , Inner Mongolia , China
| | - Yun-Shan Zhao
- a Department of Pharmacy , Baotou Medical College , Baotou , Inner Mongolia , China
- b Institute of Bioactive Substance and Function of Mongolian Medicine and Chinese Materia Medica , Baotou Medical College , Baotou , Inner Mongolia , China
| | - Quan-Li Liu
- a Department of Pharmacy , Baotou Medical College , Baotou , Inner Mongolia , China
- b Institute of Bioactive Substance and Function of Mongolian Medicine and Chinese Materia Medica , Baotou Medical College , Baotou , Inner Mongolia , China
| |
Collapse
|
12
|
Wang H, Luo J, Carlton C, McGinnis LK, Kinsey WH. Sperm-oocyte contact induces outside-in signaling via PYK2 activation. Dev Biol 2017; 428:52-62. [PMID: 28527703 PMCID: PMC5539980 DOI: 10.1016/j.ydbio.2017.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 01/20/2023]
Abstract
Fertilization is a multi-step process that begins with plasma membrane interactions that enable sperm - oocyte binding followed by fusion of the sperm and oocyte plasma membranes. Once membrane fusion has occurred, sperm incorporation involves actin remodeling events within the oocyte cortex that allow the sperm head to penetrate the cortical actin layer and gain access to the ooplasm. Despite the significance for reproduction, the control mechanisms involved in gamete binding, fusion, and sperm incorporation are poorly understood. While it is known that proline - rich tyrosine kinase 2 (PYK2 or PTK2b) kinase activity plays an important role in fertilization, its specific function has not been addressed. The present study made use of a zona-free mouse oocyte fertilization assay to investigate the relationship between PYK2 activity and sperm - oocyte binding and fusion, as well as localized changes in actin polymerization and sperm incorporation. In this assay, the majority of bound sperm had no apparent effect on the oocyte and only a few became incorporated into the ooplasm. However, a subset of bound sperm were associated with a localized response in which PYK2 was recruited to the oocyte cortex where it frequently co-localized with a ring or disk of f-actin. The frequency of sperm-oocyte binding sites that exhibited this actin response was reduced in pyk2-/- oocytes and the pyk2-/- oocytes proved less efficient at incorporating sperm, indicating that this protein kinase may have an important role in sperm incorporation. The response of PYK2 to sperm-oocyte interaction appeared unrelated to gamete fusion since PYK2 was recruited to sperm - binding sites under conditions where sperm - oocyte fusion was prevented and since PYK2 suppression or ablation did not prevent sperm - oocyte fusion. While a direct correlation between the PYK2 response in the oocyte and the successful incorporation of individual bound sperm remains to be established, these findings suggest a model in which the oocyte is not a passive participant in fertilization, but instead responds to sperm contact by localized PYK2 signaling that promotes actin remodeling events required to physically incorporate the sperm head into the ooplasm.
Collapse
Affiliation(s)
- Huizhen Wang
- Department of Anatomy & Cell Biology, Univ. of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jinping Luo
- Department of Anatomy & Cell Biology, Univ. of Kansas Medical Center, Kansas City, KS 66160, USA; Applied StemCell Inc., Milpitas, CA 95035, USA
| | - Carol Carlton
- Department of Anatomy & Cell Biology, Univ. of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Lynda K McGinnis
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of Southern California, Los Angeles, CA 90033, USA
| | - William H Kinsey
- Department of Anatomy & Cell Biology, Univ. of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
13
|
Grossi M, Bhattachariya A, Nordström I, Turczyńska KM, Svensson D, Albinsson S, Nilsson BO, Hellstrand P. Pyk2 inhibition promotes contractile differentiation in arterial smooth muscle. J Cell Physiol 2017; 232:3088-3102. [PMID: 28019664 DOI: 10.1002/jcp.25760] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 01/12/2023]
Abstract
Modulation from contractile to synthetic phenotype of vascular smooth muscle cells is a central process in disorders involving compromised integrity of the vascular wall. Phenotype modulation has been shown to include transition from voltage-dependent toward voltage-independent regulation of the intracellular calcium level, and inhibition of non-voltage dependent calcium influx contributes to maintenance of the contractile phenotype. One possible mediator of calcium-dependent signaling is the FAK-family non-receptor protein kinase Pyk2, which is activated by a number of stimuli in a calcium-dependent manner. We used the Pyk2 inhibitor PF-4594755 and Pyk2 siRNA to investigate the role of Pyk2 in phenotype modulation in rat carotid artery smooth muscle cells and in cultured intact arteries. Pyk2 inhibition promoted the expression of smooth muscle markers at the mRNA and protein levels under stimulation by FBS or PDGF-BB and counteracted phenotype shift in cultured intact carotid arteries and balloon injury ex vivo. During long-term (24-96 hr) treatment with PF-4594755, smooth muscle markers increased before cell proliferation was inhibited, correlating with decreased KLF4 expression and differing from effects of MEK inhibition. The Pyk2 inhibitor reduced Orai1 and preserved SERCA2a expression in carotid artery segments in organ culture, and eliminated the inhibitory effect of PDGF stimulation on L-type calcium channel and large-conductance calcium-activated potassium channel expression in carotid cells. Basal intracellular calcium level, calcium wave activity, and store-operated calcium influx were reduced after Pyk2 inhibition of growth-stimulated cells. Pyk2 inhibition may provide an interesting approach for preserving vascular smooth muscle differentiation under pathophysiological conditions.
Collapse
Affiliation(s)
- Mario Grossi
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Ina Nordström
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Daniel Svensson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Bengt-Olof Nilsson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Per Hellstrand
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
14
|
McMasters J, Panitch A. Collagen-binding nanoparticles for extracellular anti-inflammatory peptide delivery decrease platelet activation, promote endothelial migration, and suppress inflammation. Acta Biomater 2017; 49:78-88. [PMID: 27840254 PMCID: PMC5253112 DOI: 10.1016/j.actbio.2016.11.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/26/2016] [Accepted: 11/10/2016] [Indexed: 11/16/2022]
Abstract
Peripheral artery disease is an atherosclerotic stenosis in the peripheral vasculature that is typically treated via percutaneous transluminal angioplasty. Deployment of the angioplasty balloon damages the endothelial layer, exposing the underlying collagen and allowing for the binding and activation of circulating platelets which initiate an inflammatory cascade leading to eventual restenosis. Here, we report on collagen-binding sulfated poly(N-isopropylacrylamide) nanoparticles that are able to target to the denuded endothelium. Once bound, these nanoparticles present a barrier that reduces cellular and platelet adhesion to the collagenous surface by 67% in whole blood and 59% in platelet-rich plasma under biologically relevant shear rates. In vitro studies indicate that the collagen-binding nanoparticles are able to load and release therapeutic quantities of anti-inflammatory peptides, with the particles reducing inflammation in endothelial and smooth muscle cells by 30% and 40% respectively. Once bound to collagen, the nanoparticles increased endothelial migration while avoiding uptake by smooth muscle cells, indicating that they may promote regeneration of the damaged endothelium while remaining anchored to the collagenous matrix and locally releasing anti-inflammatory peptides into the injured area. Combined, these collagen-binding nanoparticles have the potential to reduce inflammation, and the subsequent restenosis, while simultaneously promoting endothelial regeneration following balloon angioplasty. STATEMENT OF SIGNIFICANCE In this manuscript, we present our work on the development and characterization of a novel temperature sensitive collagen-binding nanoparticle system. We demonstrate that when bound to a collagenous matrix, the nanoparticles are able to promote endothelial migration while avoiding cellular uptake. We also show that the nanoparticles are able to reduce inflammation via the release of anti-inflammatory peptides which, when combined with its ability to inhibit platelet binding, could lead to reduced intimal hyperplasia following balloon angioplasty. The drug delivery platform presented represents a unique dual therapy biomaterial wherein the nanoparticle itself plays a crucial role in the system's overall therapeutic potential while simultaneously releasing anti-inflammatory peptides.
Collapse
Affiliation(s)
- James McMasters
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47906, United States
| | - Alyssa Panitch
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47906, United States.
| |
Collapse
|
15
|
Bijli KM, Kang BY, Sutliff RL, Hart CM. Proline-rich tyrosine kinase 2 downregulates peroxisome proliferator-activated receptor gamma to promote hypoxia-induced pulmonary artery smooth muscle cell proliferation. Pulm Circ 2016; 6:202-10. [PMID: 27252847 DOI: 10.1086/686012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Hypoxia stimulates pulmonary hypertension (PH), in part by increasing the proliferation of human pulmonary artery smooth muscle cells (HPASMCs) via sustained activation of mitogen-activated protein kinase, extracellular signal-regulated kinases 1 and 2 (ERK 1/2), and nuclear factor-kappa B (NF-κB); elevated expression of NADPH oxidase 4 (Nox4); and downregulation of peroxisome proliferator-activated receptor gamma (PPARγ) levels. However, the upstream mediators that control these responses remain largely unknown. We hypothesized that proline-rich tyrosine kinase 2 (Pyk2) plays a critical role in the mechanism of hypoxia-induced HPASMC proliferation. To test this hypothesis, HPASMCs were exposed to normoxia or hypoxia (1% O2) for 72 hours. Hypoxia activated Pyk2 (detected as Tyr402 phosphorylation), and inhibition of Pyk2 with small interfering RNA (siRNA) or tyrphostin A9 attenuated hypoxia-induced HPASMC proliferation. Pyk2 inhibition attenuated ERK 1/2 activation as early as 24 hours after the onset of hypoxia, suggesting a proximal role for Pyk2 in this response. Pyk2 inhibition also attenuated hypoxia-induced NF-κB activation, reduced HPASMC PPARγ messenger RNA levels and activity, and increased NF-κB-mediated Nox4 levels. The siRNA-mediated PPARγ knockdown enhanced Pyk2 activation, whereas PPARγ overexpression reduced Pyk2 activation in HPASMCs, confirming a reciprocal relationship between Pyk2 and PPARγ. Pyk2 depletion also attenuated hypoxia-induced NF-κB p65 activation and reduced PPARγ protein levels in human pulmonary artery endothelial cells. These in vitro findings suggest that Pyk2 plays a central role in the proliferative phenotype of pulmonary vascular wall cells under hypoxic conditions. Coupled with recent reports that hypoxia-induced PH is attenuated in Pyk2 knockout mice, these findings suggest that Pyk2 may represent a novel therapeutic target in PH.
Collapse
Affiliation(s)
- Kaiser M Bijli
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, Georgia, USA
| | - Bum-Yong Kang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, Georgia, USA
| | - Roy L Sutliff
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, Georgia, USA
| | - C Michael Hart
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, Georgia, USA
| |
Collapse
|
16
|
McMasters J, Panitch A. Prevention of Collagen-Induced Platelet Binding and Activation by Thermosensitive Nanoparticles. AAPS J 2015; 17:1117-25. [PMID: 26070443 PMCID: PMC4540739 DOI: 10.1208/s12248-015-9794-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/30/2015] [Indexed: 01/12/2023] Open
Abstract
Peripheral artery disease is an atherosclerotic occlusion in the peripheral vasculature that is typically treated via percutaneous transluminal angioplasty. Unfortunately, deployment of the angioplasty balloon damages the endothelial layer, exposing the underlying collagen and allowing for the binding and activation of circulating platelets, which initiate an inflammatory cascade leading to eventual restenosis. Here, we report on the development of poly(NIPAm-MBA-AMPS-AAc) nanoparticles that have a collagen I-binding peptide crosslinked to their surface allowing them to bind to exposed collagen. Once bound, these particles mask the exposed collagen from circulating platelets, effectively reducing collagen-mediated platelet activation. Using collagen I-coated plates, we demonstrate that these particles are able to bind to collagen at concentrations above 0.5 mg/mL. Once bound, these particles inhibit collagen-mediated platelet activation by over 60%. Using light scattering and zeta potential measurements, we investigated the potential of the nanoparticles as a drug delivery platform. We have verified that the collagen-binding nanoparticles retain the temperature sensitivity common to poly(NIPAm)-based nanoparticles while remaining colloidally stable in aqueous environments. We also demonstrate that they are able to passively load and release anti-inflammatory cell penetrating peptides. Combined, we have developed a collagen-binding nanoparticle that has dual therapy potential, preventing collagen-mediated platelet activation while delivering water-soluble therapeutics directly to the damaged area.
Collapse
Affiliation(s)
- James McMasters
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr., West Lafayette, Indiana 47907 USA
| | - Alyssa Panitch
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr., West Lafayette, Indiana 47907 USA
| |
Collapse
|
17
|
Fukai K, Nakamura A, Hoshino A, Nakanishi N, Okawa Y, Ariyoshi M, Kaimoto S, Uchihashi M, Ono K, Tateishi S, Ikeda K, Ogata T, Ueyama T, Matoba S. Pyk2 aggravates hypoxia-induced pulmonary hypertension by activating HIF-1α. Am J Physiol Heart Circ Physiol 2015; 308:H951-9. [PMID: 25659487 DOI: 10.1152/ajpheart.00770.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/01/2015] [Indexed: 01/27/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a refractory disease characterized by uncontrolled vascular remodeling and elevated pulmonary arterial pressure. Although synthetic inhibitors of some tyrosine kinases have been used to treat PAH, their therapeutic efficacies and safeties remain controversial. Thus, the establishment of novel therapeutic targets based on the molecular pathogenesis underlying PAH is a clinically urgent issue. In the present study, we demonstrated that proline-rich tyrosine kinase 2 (Pyk2), a nonreceptor type protein tyrosine kinase, plays a crucial role in the pathogenesis of pulmonary hypertension (PH) using an animal model of hypoxia-induced PH. Resistance to hypoxia-induced PH was markedly higher in Pyk2-deficient mice than in wild-type mice. Pathological investigations revealed that medial thickening of the pulmonary arterioles, which is a characteristic of hypoxia-induced PH, was absent in Pyk2-deficient mice, suggesting that Pyk2 is involved in the hypoxia-induced aberrant proliferation of vascular smooth muscle cells in hypoxia-induced PH. In vitro experiments using human pulmonary smooth muscle cells showed that hypoxic stress increased the proliferation and migration of cells in a Pyk2-dependent manner. We also demonstrated that Pyk2 plays a crucial role in ROS generation during hypoxic stress and that this Pyk2-dependent generation of ROS is necessary for the activation of hypoxia-inducible factor-1α, a key molecule in the pathogenesis of hypoxia-induced PH. In summary, the results of the present study reveal that Pyk2 plays an important role in the pathogenesis of hypoxia-induced PH. Therefore, Pyk2 may represent a promising therapeutic target for PAH in a clinical setting.
Collapse
Affiliation(s)
- Kuniyoshi Fukai
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akihiro Nakamura
- Department of Pediatric Cardiology and Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan; and
| | - Atsushi Hoshino
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naohiko Nakanishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshifumi Okawa
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Makoto Ariyoshi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Kaimoto
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Motoki Uchihashi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazunori Ono
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shuhei Tateishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koji Ikeda
- Clinical Pharmacy, Kobe Pharmaceutical University, Hyogo, Japan
| | - Takehiro Ogata
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomomi Ueyama
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan;
| |
Collapse
|
18
|
Liu P, Feng J, Kong F, Lu Q, Xu H, Meng J, Jiang Y. Gax inhibits perivascular preadipocyte biofunction mediated by IGF-1 induced FAK/Pyk2 and ERK2 cooperative pathways. Cell Signal 2014; 26:3036-45. [DOI: 10.1016/j.cellsig.2014.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/25/2014] [Indexed: 02/06/2023]
|
19
|
Bhattachariya A, Turczyńska KM, Grossi M, Nordström I, Buckbinder L, Albinsson S, Hellstrand P. PYK2 selectively mediates signals for growth versus differentiation in response to stretch of spontaneously active vascular smooth muscle. Physiol Rep 2014; 2:2/7/e12080. [PMID: 25347863 PMCID: PMC4187569 DOI: 10.14814/phy2.12080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Stretch of vascular smooth muscle stimulates growth and proliferation as well as contraction and expression of contractile/cytoskeletal proteins, all of which are also regulated by calcium‐dependent signals. We studied the role of the calcium‐ and integrin‐activated proline‐rich tyrosine kinase 2 (PYK2) in stretch‐induced responses of the rat portal vein loaded by a hanging weight ex vivo. PYK2 phosphorylation at Tyr‐402 was increased both by a 10‐min stretch and by organ culture with load over several days. Protein and DNA synthesis were reduced by the novel PYK2 inhibitor PF‐4594755 (0.5–1 μmol/L), while still sensitive to stretch. In 3‐day organ culture, PF‐4594755 caused maintained myogenic spontaneous activity but did not affect contraction in response to high‐K+ (60 mmol/L) or to α1‐adrenergic stimulation by cirazoline. Basal and stretch‐induced PYK2 phosphorylation in culture were inhibited by PF‐4594755, closely mimicking inhibition of non‐voltage‐dependent calcium influx by 2‐APB (30 μmol/L). In contrast, the L‐type calcium channel blocker, nifedipine (1 μmol/L) eliminated stretch‐induced but not basal PYK2 phosphorylation. Stretch‐induced Akt and ERK1/2 phosphorylation was eliminated by PF‐4594755. PYK2 inhibition had no effect on mRNA expression of several smooth muscle markers, and stretch‐sensitive SM22α synthesis was preserved. Culture of portal vein with the Ang II inhibitor losartan (1 μmol/L) eliminated stretch sensitivity of PYK2 and Akt phosphorylation, but did not affect mRNA expression of smooth muscle markers. The results suggest that PYK2 signaling functionally distinguishes effects of voltage‐ and non‐voltage‐dependent calcium influx. A small‐molecule inhibitor of PYK2 reduces growth and DNA synthesis but does not affect contractile differentiation of vascular smooth muscle. We studied the role of the calcium‐ and integrin‐activated proline‐rich tyrosine kinase 2 (PYK2) in stretch‐induced responses of the rat portal ex vivo. PYK2 phosphorylation at Tyr‐402 was increased both by a 10‐min stretch and by organ culture under stretch for 3 days. Protein and DNA synthesis were reduced by the novel PYK2 inhibitor PF‐4594755 (0.5–1 μmol/L), but contractile differentiation was not affected. Basal and stretch‐induced PYK2 phosphorylation in culture were inhibited by PF‐4594755, closely mimicking inhibition of non‐voltage‐dependent calcium influx by 2‐APB (30 μmol/L). In contrast, the L‐type calcium channel blocker, nifedipine (1 μmol/L) eliminated stretch‐induced but not basal PYK2 phosphorylation. The results suggest that PYK2 signaling functionally distinguishes effects of voltage‐ and non‐voltage‐dependent calcium influx.
Collapse
Affiliation(s)
| | | | - Mario Grossi
- Department of Experimental Medical Science, Lund University, Lund, SE-22184, Sweden
| | - Ina Nordström
- Department of Experimental Medical Science, Lund University, Lund, SE-22184, Sweden
| | | | - Sebastian Albinsson
- Department of Experimental Medical Science, Lund University, Lund, SE-22184, Sweden
| | - Per Hellstrand
- Department of Experimental Medical Science, Lund University, Lund, SE-22184, Sweden
| |
Collapse
|
20
|
Ravi Y, Selvendiran K, Meduru S, Citro L, Naidu S, Khan M, Rivera BK, Sai-Sudhakar CB, Kuppusamy P. Dysregulation of PTEN in cardiopulmonary vascular remodeling induced by pulmonary hypertension. Cell Biochem Biophys 2014; 67:363-72. [PMID: 22205501 DOI: 10.1007/s12013-011-9332-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pulmonary hypertension (PH) is a disorder of lung vasculature characterized by arterial narrowing. Phosphatase-and-tensin homolog on chromosome 10 (PTEN), associated in the progression of multiple cancers, is implicated in arterial remodeling. However, the involvement of PTEN in PH remains unclear. The objective of the present study was to determine the role of PTEN in pulmonary vascular remodeling using established models of PH. The study used rat models of PH, induced by monocrotaline (MCT) administration (60 mg/kg) or continuous hypoxic exposure (10% oxygen) for 3 weeks. Pulmonary artery smooth muscle cells (SMCs) were used for in vitro confirmation. Development of PH was verified by hemodynamic, morphological and histopathology analyses. PTEN and key downstream proteins in pulmonary and cardiac tissues were analyzed by western blotting and RT-PCR. PTEN was significantly decreased (MCT, 53%; Hypoxia, 40%), pAkt was significantly increased (MCT, 42%; Hypoxia, 55%) in tissues of rats with PH. Similar results were observed in SMCs exposed to hypoxia (1% oxygen) for 48 h. Ubiquitination assay showed that PTEN degradation occurs via proteasomal degradation pathway. Western blotting demonstrated a significant downregulation of cell-cycle regulatory proteins p53 and p27, and upregulation of cyclin-D1 in the lungs of both models. The results showed that PTEN-mediated modulation of PI3K pathway was independent of the focal adhesion kinase and fatty acid synthase. The study, for the first time, established that PTEN plays a key role in the progression of pulmonary hypertension. The findings may have potential for the treatment of pulmonary hypertension using PTEN as a target.
Collapse
Affiliation(s)
- Yazhini Ravi
- Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Magnone M, Scarfì S, Sturla L, Guida L, Cuzzocrea S, Di Paola R, Bruzzone S, Salis A, De Flora A, Zocchi E. Fluridone as a new anti-inflammatory drug. Eur J Pharmacol 2013; 720:7-15. [PMID: 24211328 DOI: 10.1016/j.ejphar.2013.10.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 10/21/2013] [Accepted: 10/30/2013] [Indexed: 12/28/2022]
Abstract
Fluridone is a herbicide extensively utilized in agriculture for its documented safety in animals. Fluridone contains a 4(1H)-pyridone and a trifluoromethyl-benzene moiety, which are also present in molecules with analgesic and anti-inflammatory properties. The established absence of adverse effects of Fluridone on animals prompted us to investigate whether it could represent a new anti-inflammatory compound targeting human cells. In stimulated human monocytes, micromolar Fluridone inhibited cyclooxygenase-2 expression and the release of monocyte chemoattractant protein-1 and prostaglandin-E2, to a similar extent as Acetylsalicylic acid. Fluridone also inhibited the proliferation of aortic smooth muscle cells and reduced proliferation and cytokine release by human activated lymphocytes. The mechanism of Fluridone seems to rely on the dose-dependent inhibition of the nuclear translocation of nuclear factor-κB, a transcription factor playing a pivotal role in inflammation. Fluridone also inhibited the release from stimulated human monocytes of abscisic acid, a plant stress hormone recently discovered also in mammalian cells, where it stimulates pro-inflammatory responses. Interestingly, the mechanism of Fluridone's toxicity in plants relies on the inhibition of the enzyme phytoene desaturase, involved in the biosynthetic pathway of ß-carotene, the precursor of absciscic acid in plants. Finally, administration of Fluridone reduced peritoneal inflammation in Zymosan-treated mice. These results suggest that Fluridone could represent a new prototype of anti-inflammatory drug, also active on abscisic acid pro-inflammatory pathway.
Collapse
Affiliation(s)
- Mirko Magnone
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ellagic acid inhibits PDGF-BB-induced vascular smooth muscle cell proliferation and prevents atheroma formation in streptozotocin-induced diabetic rats. J Nutr Biochem 2013; 24:1830-9. [DOI: 10.1016/j.jnutbio.2013.04.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/13/2013] [Accepted: 04/01/2013] [Indexed: 01/14/2023]
|
23
|
Abstract
At least 468 individual genes have been manipulated by molecular methods to study their effects on the initiation, promotion, and progression of atherosclerosis. Most clinicians and many investigators, even in related disciplines, find many of these genes and the related pathways entirely foreign. Medical schools generally do not attempt to incorporate the relevant molecular biology into their curriculum. A number of key signaling pathways are highly relevant to atherogenesis and are presented to provide a context for the gene manipulations summarized herein. The pathways include the following: the insulin receptor (and other receptor tyrosine kinases); Ras and MAPK activation; TNF-α and related family members leading to activation of NF-κB; effects of reactive oxygen species (ROS) on signaling; endothelial adaptations to flow including G protein-coupled receptor (GPCR) and integrin-related signaling; activation of endothelial and other cells by modified lipoproteins; purinergic signaling; control of leukocyte adhesion to endothelium, migration, and further activation; foam cell formation; and macrophage and vascular smooth muscle cell signaling related to proliferation, efferocytosis, and apoptosis. This review is intended primarily as an introduction to these key signaling pathways. They have become the focus of modern atherosclerosis research and will undoubtedly provide a rich resource for future innovation toward intervention and prevention of the number one cause of death in the modern world.
Collapse
Affiliation(s)
- Paul N Hopkins
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
24
|
Engineering of an ω-3 polyunsaturated fatty acid-containing nanoemulsion system for combination C6-ceramide and 17β-estradiol delivery and bioactivity in human vascular endothelial and smooth muscle cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:885-94. [DOI: 10.1016/j.nano.2013.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 01/26/2013] [Accepted: 02/19/2013] [Indexed: 12/14/2022]
|
25
|
Coëffier M, Claeyssens S, Bôle-Feysot C, Guérin C, Maurer B, Lecleire S, Lavoinne A, Donnadieu N, Cailleux AF, Déchelotte P. Enteral delivery of proteins stimulates protein synthesis in human duodenal mucosa in the fed state through a mammalian target of rapamycin-independent pathway. Am J Clin Nutr 2013; 97:286-94. [PMID: 23283505 DOI: 10.3945/ajcn.112.046946] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Glutamine modulates duodenal protein metabolism in fasted healthy humans, but its effects in a fed state remain unknown. OBJECTIVE We aimed to assess the effects of either glutamine or an isonitrogenous protein mixture on duodenal protein metabolism in humans in the fed state. DESIGN Twenty-four healthy volunteers were randomly included in 2 groups. Each volunteer was studied on 2 occasions in a random order and received, during 5 h, either an enteral infusion of maltodextrins alone (0.25 g · kg⁻¹ · h⁻¹; both groups) that mimicked a carbohydrate fed state or maltodextrins with glutamine (group 1) or an isonitrogenous (22.4 mg N · kg⁻¹ · h⁻¹) protein powder (group 2). Simultaneously, a continuous intravenous infusion of ¹³C-leucine and ²H₅-phenylalanine (both 9 μmol · kg⁻¹ · h⁻¹) was performed. Endoscopic duodenal biopsies were taken. Leucine and phenylalanine enrichments were assessed by using gas chromatography-mass spectrometry in duodenal proteins and the intracellular free amino acids pool to calculate the mucosal fractional synthesis rate (FSR). Proteasome proteolytic activities and phosphokinase expression were assessed by using specific fluorogenic substrates and macroarrays, respectively. RESULTS The FSR and proteasome activity were not different after the glutamine supply compared with after maltodextrins alone. In contrast, the FSR increased (1.7-fold increase; P < 0.05) after protein-powder delivery without modification of total proteasome activity. The protein powder increased insulinemia, PI3 kinase, and erk phosphorylation but did not affect the mammalian target of rapamycin (mTOR) pathway and mitogen-activated protein kinase signal-integrating kinase 1 phosphorylation. A trend for an increase of eukaryotic translation initiation factor 4E phosphorylation was observed (P = 0.07). CONCLUSION In the carbohydrate fed state, enteral proteins but not glutamine increased duodenal protein synthesis through an mTOR independent pathway in humans.
Collapse
Affiliation(s)
- Moïse Coëffier
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unit 1073, Rouen University Hospital, Rouen, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hsu CL, Yang UC. Discovering pathway cross-talks based on functional relations between pathways. BMC Genomics 2012; 13 Suppl 7:S25. [PMID: 23282018 PMCID: PMC3521217 DOI: 10.1186/1471-2164-13-s7-s25] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background In biological systems, pathways coordinate or interact with one another to achieve a complex biological process. Studying how they influence each other is essential for understanding the intricacies of a biological system. However, current methods rely on statistical tests to determine pathway relations, and may lose numerous biologically significant relations. Results This study proposes a method that identifies the pathway relations by measuring the functional relations between pathways based on the Gene Ontology (GO) annotations. This approach identified 4,661 pathway relations among 166 pathways from Pathway Interaction Database (PID). Using 143 pathway interactions from PID as testing data, the function-based approach (FBA) is able to identify 93% of pathway interactions, better than the existing methods based on the shared components and protein-protein interactions. Many well-known pathway cross-talks are only identified by FBA. In addition, the false positive rate of FBA is significantly lower than others via pathway co-expression analysis. Conclusions This function-based approach appears to be more sensitive and able to infer more biologically significant and explainable pathway relations.
Collapse
Affiliation(s)
- Chia-Lang Hsu
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | | |
Collapse
|
27
|
Gharibi B, Ghuman MS, Hughes FJ. Akt- and Erk-mediated regulation of proliferation and differentiation during PDGFRβ-induced MSC self-renewal. J Cell Mol Med 2012; 16:2789-801. [PMID: 22805337 PMCID: PMC4118247 DOI: 10.1111/j.1582-4934.2012.01602.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 07/09/2012] [Indexed: 01/24/2023] Open
Abstract
Understanding the mechanisms that direct mesenchymal stem cell (MSC) self-renewal fate decisions is a key to most tissue regenerative approaches. The aim of this study here was to investigate the mechanisms of action of platelet-derived growth factor receptor β (PDGFRβ) signalling on MSC proliferation and differentiation. MSC were cultured and stimulated with PDGF-BB together with inhibitors of second messenger pathways. Cell proliferation was assessed using ethynyl-2'-deoxyuridine and phosphorylation status of signalling molecules assessed by Western Blots. To assess differentiation potentials, cells were transferred to adipogenic or osteogenic media, and differentiation assessed by expression of differentiation association genes by qRT-PCR, and by long-term culture assays. Our results showed that distinct pathways with opposing actions were activated by PDGF. PI3K/Akt signalling was the main contributor to MSC proliferation in response to activation of PDGFRβ. We also demonstrate a negative feedback mechanism between PI3K/Akt and PDGFR-β expression. In addition, PI3K/Akt downstream signal cascades, mTOR and its associated proteins p70S6K and 4E-BP1 were involved. These pathways induced the expression of cyclin D1, cyclin D3 and CDK6 to promote cell cycle progression and MSC proliferation. In contrast, activation of Erk by PDGFRβ signalling potently inhibited the adipocytic differentiation of MSCs by blocking PPARγ and CEBPα expression. The data suggest that PDGFRβ-induced Akt and Erk pathways regulate opposing fate decisions of proliferation and differentiation to promote MSC self-renewal. Thus, activation of multiple intracellular cascades is required for successful and sustainable MSC self-renewal strategies.
Collapse
Affiliation(s)
- Borzo Gharibi
- Periodontology, Dental Institute, King's College LondonLondon, UK
| | - Mandeep S Ghuman
- Periodontology, Dental Institute, King's College LondonLondon, UK
| | - Francis J Hughes
- Periodontology, Dental Institute, King's College LondonLondon, UK
| |
Collapse
|
28
|
Gadepalli R, Singh NK, Kundumani-Sridharan V, Heckle MR, Rao GN. Novel role of proline-rich nonreceptor tyrosine kinase 2 in vascular wall remodeling after balloon injury. Arterioscler Thromb Vasc Biol 2012; 32:2652-61. [PMID: 22922962 DOI: 10.1161/atvbaha.112.253112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To investigate the role of Pyk2, a proline-rich nonreceptor tyrosine kinase, in G protein-coupled receptor agonist, thrombin-induced human aortic smooth muscle cell growth and migration, and injury-induced vascular wall remodeling. METHODS AND RESULTS Thrombin, a G protein-coupled receptor agonist, activated Pyk2 in a time-dependent manner and inhibition of its stimulation attenuated thrombin-induced human aortic smooth muscle cell migration and proliferation. Thrombin also activated Grb2-associated binder protein 1, p115 Rho guanine nucleotide exchange factor, Rac1, RhoA, and p21-activated kinase 1 (Pak1) and interference with stimulation of these molecules attenuated thrombin-induced human aortic smooth muscle cell migration and proliferation. In addition, adenovirus-mediated expression of dominant negative Pyk2 inhibited thrombin-induced Grb2-associated binder protein 1, p115 rho guanine nucleotide exchange factor, Rac1, RhoA and Pak1 stimulation. Balloon injury also caused activation of Pyk2, Grb2-associated binder protein 1, p115 rho guanine nucleotide exchange factor, Rac1, RhoA, and Pak1 in the carotid artery of rat, and these responses were sensitive to inhibition by the dominant negative Pyk2. Furthermore, inhibition of Pyk2 activation resulted in reduced recruitment of smooth muscle cells onto the luminal surface and their proliferation in the intimal region leading to suppression of neointima formation. CONCLUSIONS Together, these results demonstrate for the first time that Pyk2 plays a crucial role in G protein-coupled receptor agonist thrombin-induced human aortic smooth muscle cell growth and migration, as well as balloon injury-induced neointima formation.
Collapse
Affiliation(s)
- Ravisekhar Gadepalli
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis, TN 38163, USA
| | | | | | | | | |
Collapse
|
29
|
Kacena MA, Eleniste PP, Cheng YH, Huang S, Shivanna M, Meijome TE, Mayo LD, Bruzzaniti A. Megakaryocytes regulate expression of Pyk2 isoforms and caspase-mediated cleavage of actin in osteoblasts. J Biol Chem 2012; 287:17257-17268. [PMID: 22447931 DOI: 10.1074/jbc.m111.309880] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proliferation and differentiation of osteoblast (OB) precursors are essential for elaborating the bone-forming activity of mature OBs. However, the mechanisms regulating OB proliferation and function are largely unknown. We reported that OB proliferation is enhanced by megakaryocytes (MKs) via a process that is regulated in part by integrin signaling. The tyrosine kinase Pyk2 has been shown to regulate cell proliferation and survival in a variety of cells. Pyk2 is also activated by integrin signaling and regulates actin remodeling in bone-resorbing osteoclasts. In this study, we examined the role of Pyk2 and actin in the MK-mediated increase in OB proliferation. Calvarial OBs were cultured in the presence of MKs for various times, and Pyk2 signaling cascades in OBs were examined by Western blotting, subcellular fractionation, and microscopy. We found that MKs regulate the temporal expression of Pyk2 and its subcellular localization. We also found that MKs regulate the expression of two alternatively spliced isoforms of Pyk2 in OBs, which may regulate OB differentiation and proliferation. MKs also induced cytoskeletal reorganization in OBs, which was associated with the caspase-mediated cleavage of actin, an increase in focal adhesions, and the formation of apical membrane ruffles. Moreover, BrdU incorporation in MK-stimulated OBs was blocked by the actin-polymerizing agent, jasplakinolide. Collectively, our studies reveal that Pyk2 and actin play an important role in MK-regulated signaling cascades that control OB proliferation and may be important for therapeutic interventions aimed at increasing bone formation in metabolic diseases of the skeleton.
Collapse
Affiliation(s)
- Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Dentistry, Indianapolis, Indiana 46202.
| | - Pierre P Eleniste
- Department of Oral Biology, Indiana University School of Dentistry, Indianapolis, Indiana 46202
| | - Ying-Hua Cheng
- Department of Orthopaedic Surgery, Indiana University School of Dentistry, Indianapolis, Indiana 46202
| | - Su Huang
- Department of Oral Biology, Indiana University School of Dentistry, Indianapolis, Indiana 46202
| | - Mahesh Shivanna
- Department of Oral Biology, Indiana University School of Dentistry, Indianapolis, Indiana 46202
| | - Tomas E Meijome
- Department of Orthopaedic Surgery, Indiana University School of Dentistry, Indianapolis, Indiana 46202
| | - Lindsey D Mayo
- Herman B. Wells Center for Pediatric Research, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana University School of Dentistry, Indianapolis, Indiana 46202
| | - Angela Bruzzaniti
- Department of Oral Biology, Indiana University School of Dentistry, Indianapolis, Indiana 46202.
| |
Collapse
|
30
|
Restenosis and therapy. Int J Vasc Med 2012; 2012:406236. [PMID: 22489270 PMCID: PMC3303576 DOI: 10.1155/2012/406236] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/11/2011] [Accepted: 12/05/2011] [Indexed: 01/03/2023] Open
Abstract
The vascular disease involves imbalanced function of the blood vessels. Risk factors playing a role in development of impaired vessel functions will be briefly discussed. In ischemia/reperfusion (I/R), ischemic hypoxia is one of the cardinal risk factors of restenosis. Various insults are shown to initiate the phenotype switch of VSMCs. The pathological process, leading to activated inflammatory process, complement activation, and release of growth factors, initiate the proliferation of VSMCs in the media and cause luminal narrowing and impaired vascular function. The review summarizes the alteration process and demonstrates some of the clinical genetic background showing the role of complement and the genotypes of mannose-binding lectin (MBL2). Those could be useful markers of carotid restenosis after stent implantation. Gene therapy and therapeutic angiogenesis is proposed for therapy in restenosis. We suggest a drug candidate (iroxanadine), which ensures a noninvasive treatment by reverse regulation of the highly proliferating VSMCs and the disturbed function of ECs.
Collapse
|
31
|
Jia L, Wang R, Tang DD. Abl regulates smooth muscle cell proliferation by modulating actin dynamics and ERK1/2 activation. Am J Physiol Cell Physiol 2012; 302:C1026-34. [PMID: 22301057 DOI: 10.1152/ajpcell.00373.2011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abl is a nonreceptor tyrosine kinase that has a role in regulating migration and adhesion of nonmuscle cells as well as smooth muscle contraction. The role of Abl in smooth muscle cell proliferation has not been investigated. In this study, treatment with endothelin-1 (ET-1) and platelet-derived growth factor (PDGF) increased Abl phosphorylation at Tyr(412) (an indication of Abl activation) in vascular smooth muscle cells. To assess the role of Abl in smooth muscle cell proliferation, we generated stable Abl knockdown cells by using lentivirus-mediated RNA interference. ET-1- and PDGF-induced cell proliferation was attenuated in Abl knockdown cells compared with cells expressing control shRNA and uninfected cells. Abl silencing also arrested cell cycle progression from G(0)/G(1) to S phase. Furthermore, activation of smooth muscle cells with ET-1 and PDGF induced phosphorylation of ERK1/2 and Akt. Abl knockdown attenuated ERK1/2 phosphorylation in smooth muscle cells stimulated with ET-1 and PDGF. However, Akt phosphorylation upon stimulation with ET-1 and PDGF was not reduced. Because Abl is known to regulate actin polymerization in smooth muscle, we also evaluated the effects of inhibition of actin polymerization on phosphorylation of ERK1/2. Pretreatment with the actin polymerization inhibitor latrunculin-A also blocked ERK1/2 phosphorylation during activation with ET-1 and PDGF. The results suggest that Abl may regulate smooth muscle cell proliferation by modulating actin dynamics and ERK1/2 phosphorylation during mitogenic activation.
Collapse
Affiliation(s)
- Li Jia
- Center for Cardiovascular Sciences, Albany Medical College, NY 12208, USA
| | | | | |
Collapse
|
32
|
Li XW, Hu CP, Wu WH, Zhang WF, Zou XZ, Li YJ. Inhibitory effect of calcitonin gene-related peptide on hypoxia-induced rat pulmonary artery smooth muscle cells proliferation: role of ERK1/2 and p27. Eur J Pharmacol 2012; 679:117-26. [PMID: 22306243 DOI: 10.1016/j.ejphar.2012.01.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 01/05/2012] [Accepted: 01/13/2012] [Indexed: 11/29/2022]
Abstract
Calcitonin gene-related peptide (CGRP) inhibits angiotensin II-induced proliferation of aortic smooth muscle cells via inactivation of extracellular signal-regulated protein kinase 1/2 (ERK1/2). ERK1/2 is necessary for the degradation or down-regulation of the cell cycle inhibitor p27, and is also crucial in mediating proliferation of pulmonary artery smooth muscle cells (PASMCs). Whether ERK1/2/p27 signal pathway is involved in CGRP-mediated pathogenesis of pulmonary hypertension and vascular remodeling remains unknown. Pulmonary hypertension was induced by hypoxia in rats, and capsaicin (50 mg/kg, s.c.) was used to deplete endogenous CGRP. Proliferation of cultured PASMCs was determined by BrdU incorporation method and flow cytometry. The expression/level of CGRP, p27, ERK1/2, c-fos and c-myc was analyzed by radioimmunoassay, immunohistochemistry, real-time PCR or Western blot. Sensory CGRP depletion by capsaicin exacerbated hypoxia-induced pulmonary hypertension in rats, as shown by an increase in right ventricle systolic pressure, mean pulmonary artery pressure and vascular hypertrophy, accompanied with decreased p27 expression and increased expression of phosphorylated ERK1/2, c-fos and c-myc. Exogenous application of CGRP significantly inhibited hypoxia-induced proliferation of PASMCs concomitantly with increased p27 expression and decreased expression of phosphorylated ERK1/2, c-fos and c-myc. These effects of CGRP were abolished in the presence of CGRP(8-37). Knockdown of p27 also reversed the inhibitory effect of CGRP on proliferation of PASMCs and expression of c-fos and c-myc, but not on ERK1/2 phosphorylation. These results suggest that CGRP inhibits hypoxia-induced proliferation of PASMCs via ERK1/2/p27/c-fos/c-myc pathway. Down-regulation of CGRP may contribute to remodeling of pulmonary arteries in hypoxia-induced pulmonary hypertension.
Collapse
Affiliation(s)
- Xian-Wei Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | | | | | | | | | | |
Collapse
|
33
|
Lee JG, Song JS, Smith RE, Kay EP. Human corneal endothelial cells employ phosphorylation of p27(Kip1) at both Ser10 and Thr187 sites for FGF-2-mediated cell proliferation via PI 3-kinase. Invest Ophthalmol Vis Sci 2011; 52:8216-23. [PMID: 21948550 DOI: 10.1167/iovs.11-8213] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE FGF-2 stimulates cell proliferation of rabbit corneal endothelial cells (rCECs) by degrading the cyclin-dependent kinase inhibitor p27(Kip1) (p27) through its phosphorylation mechanism. The authors investigated whether the cell proliferation of human CECs (hCECs) is also induced by FGF-2 stimulation through the p27 phosphorylation pathway. METHODS Expression and activation of protein were analyzed by immunoblotting. Cell proliferation was measured by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay. Transfection of hCECs with small interference RNA (siRNA) was performed using a transfection reagent. RESULTS FGF-2 stimulated cell proliferation in hCECs; the FGF-2 action was completely blocked by pathway-specific inhibitors for PI 3-kinase (LY294002) and MEK1/2 (U0126), respectively. Using immunoblotting, the authors showed that FGF-2 induced phosphorylation of p27 at both serine 10 (Ser10) and threonine 187 (Thr187) sites. These effects were also completely blocked by LY294002 or U0126. The authors then determined cross-talk between PI 3-kinase and extracellular signal-regulated kinase (ERK)1/2; blocking of ERK1/2 activation by LY294002 indicated that in hCECs ERK1/2 works as a downstream effector to PI 3-kinase for cell proliferation induced by FGF-2, whereas the ERK1/2 pathway in rCECs is parallel to the PI 3-kinase pathway. However, the downstream mechanism involved in cell cycle progression in hCECs is identical to that of rCECs: phosphorylation of p27 at Ser10 was mediated by kinase-interacting stathmin (KIS), confirmed with siRNA to KIS, and phosphorylation of p27 at Thr187 was mediated by cell division cycle 25A (Cdc25A), confirmed using Cdc25A inhibitor. CONCLUSIONS; FGF-2 stimulates proliferation of hCECs through PI 3-kinase and its downstream target ERK1/2 pathways. This linear signal transduction significantly downregulates p27 through its phosphorylation at both Ser10 and Thr187 sites mediated by KIS and Cdc25A, respectively.
Collapse
Affiliation(s)
- Jeong Goo Lee
- Doheny Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA
| | | | | | | |
Collapse
|
34
|
Farooqi AA, Waseem S, Riaz AM, Dilawar BA, Mukhtar S, Minhaj S, Waseem MS, Daniel S, Malik BA, Nawaz A, Bhatti S. PDGF: the nuts and bolts of signalling toolbox. Tumour Biol 2011; 32:1057-70. [PMID: 21769672 DOI: 10.1007/s13277-011-0212-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 07/07/2011] [Indexed: 12/16/2022] Open
Abstract
PDGF is a growth factor and is extensively involved in multi-dimensional cellular dynamics. It switches on a plethora of molecules other than its classical pathway. It is engaged in various transitions of development; however, if the unleashed potentials lead astray, it brings forth tumourigenesis. Conventionally, it has been assumed that the components of this signalling pathway show fidelity and act with a high degree of autonomy. However, as illustrated by the PDGF signal transduction, reinterpretation of recent data suggests that machinery is often shared between multiple pathways, and other components crosstalk to each other through multiple mechanisms. It is important to note that metastatic cascade is an intricate process that we have only begun to understand in recent years. Many of the early steps of this PDGF cascade are not readily targetable in the clinic. In this review, we will unravel the paradoxes with reference to mitrons and cellular plasticity and discuss how disruption of signalling cascade triggers cellular proliferation phase transition and metastasis. We will also focus on the therapeutic interventions to counteract resultant molecular disorders.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, 1 km defence road, Lahore, Pakistan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhao W, Zhao T, Huang V, Chen Y, Ahokas RA, Sun Y. Platelet-derived growth factor involvement in myocardial remodeling following infarction. J Mol Cell Cardiol 2011; 51:830-8. [PMID: 21767547 DOI: 10.1016/j.yjmcc.2011.06.023] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/15/2011] [Accepted: 06/30/2011] [Indexed: 12/31/2022]
Abstract
Cardiac remodeling occurs in the infarcted heart (MI). The underlying regulatory mechanisms are under investigation. Platelet-derived growth factor (PDGF) is a family of growth factors that stimulates cell growth, differentiation and migration. Herein, we sought to determine whether PDGF is involved in cardiac repair/remodeling following MI. The temporal and spatial expressions of PDGF isoforms (A, B, C and D) and PDGF receptor (PDGFR)-α and β as well as cell types expressing PDGF were examined in the infarcted rat heart. Sham-operated rats served as controls. We found that the normal myocardium expressed all PDGF isoforms, and cell types expressing PDGF were primarily interstitial cells. Following MI, PDGF-A and D were significantly increased in the infarcted myocardium during 6 weeks of the observation period and cells expressing PDGF-A and D were primarily endothelial cells, macrophages and myofibroblasts (myoFb). PDGF-B and C expressions were, however, reduced in the infarcted heart. In the noninfarcted myocardium, PDGF-D expression was increased in the late stage of MI and cells expressing PDGF-D were predominantly fibroblasts. Both PDGFR-α and β were significantly increased in the infarcted myocardium in the early and late stages of MI and in the noninfarcted myocardium in the late stage of MI. Enhanced PDGF-A, PDGF-D and PDGFR are coincident with angiogenesis, and inflammatory and fibrogenic responses in the infarcted myocardium, suggesting their regulation on cardiac repair. Elevated PDGF-D in the noninfarcted myocardium suggests its involvement in the development of interstitial fibrosis that appears in the late stage of MI.
Collapse
Affiliation(s)
- Wenyuan Zhao
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | |
Collapse
|