1
|
Rashidi E, Tehrani FR, Valizadeh M, Niroomand M, Mahdavi M, Farahmand M, Abiri B, Azizi F, Hosseinpanah F. Association between lifetime endogenous estrogen exposure and body composition metrics in postmenopausal women: findings from the Tehran Lipid and Glucose Study. BMC Womens Health 2024; 24:648. [PMID: 39707384 DOI: 10.1186/s12905-024-03501-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND The role of endogenous estrogen exposure (EEE) in shaping body composition and its implications for cardiometabolic health remain understudied despite its potential significance. This cross-sectional study aimed to investigate the association between EEE and body composition indices among postmenopausal women. METHODS Data were obtained from the Tehran Lipid and Glucose Study (TLGS), including 960 women aged over 40 years. EEE was calculated based on reproductive events, and participants were categorized into tertiles. Anthropometric measurements and body composition were assessed using standardized protocols. Linear regression models were employed to evaluate associations, adjusting for potential confounders. RESULTS It was revealed significant differences in body composition indices across EEE tertiles, with increasing EEE associated with decreased fat mass, skeletal muscle mass, and fat-free mass. Moreover, women with higher EEE exhibited lower anthropometric and body composition measurements compared to those with lower EEE, even after adjusting for confounding factors. Specifically, for each year of increasing EEE, fat mass decreased by 0.12 kg, skeletal muscle mass by 0.04 kg, fat-free mass by 0.07 kg, and fat mass ratio decreased by 0.003. Comparing tertiles, women with the highest EEE demonstrated significantly lower anthropometric and body composition measurements compared to those with the lowest EEE. CONCLUSION These findings suggest a link between EEE and favorable changes in body composition, highlighting the importance of considering reproductive history in health assessment.
Collapse
Affiliation(s)
- Elahe Rashidi
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Valizadeh
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahtab Niroomand
- Endocrinology Division, Department of Internal Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Mahdavi
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Farahmand
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnaz Abiri
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhad Hosseinpanah
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Kumar TR, Reusch JEB, Kohrt WM, Regensteiner JG. Sex Differences Across the Lifespan: A Focus on Cardiometabolism. J Womens Health (Larchmt) 2024; 33:1299-1305. [PMID: 39056116 DOI: 10.1089/jwh.2024.0595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
Women's health and sex differences research remain understudied. In 2022, to address the topic of sex differences, the Ludeman Family Center for Women's Health Research (LFCWHR) at the University of Colorado (LudemanCenter.org) held its third National Conference, "Sex Differences Across the Lifespan: A Focus on Metabolism." The research presentations and discussions from the 2022 conference addressed cardiometabolic sex differences across the lifespan and included sessions focusing on scientific methods with which to study sex differences, effects of estrogen on metabolism, and sex differences in cardiovascular disease-implications for women and policy among others. Over 100 participants, including basic scientists, clinical scientists, policymakers, advocacy group leaders, and federal agency leadership participated. The meeting proceedings reveal that although exciting advances in the area of sex differences have taken place, significant questions and gaps remain about women's health and sex differences in critical areas of health. Identifying these gaps and the subsequent research that will result may lead to important breakthroughs.
Collapse
Affiliation(s)
- T Rajendra Kumar
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jane E B Reusch
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Ludeman Family Center for Women's Health Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Wendy M Kohrt
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Ludeman Family Center for Women's Health Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Judith G Regensteiner
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Ludeman Family Center for Women's Health Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
3
|
Emmert ME, Emmert AS, Goh Q, Cornwall R. Sexual dimorphisms in skeletal muscle: current concepts and research horizons. J Appl Physiol (1985) 2024; 137:274-299. [PMID: 38779763 PMCID: PMC11343095 DOI: 10.1152/japplphysiol.00529.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
The complex compositional and functional nature of skeletal muscle makes this organ an essential topic of study for biomedical researchers and clinicians. An additional layer of complexity is added with the consideration of sex as a biological variable. Recent research advances have revealed sexual dimorphisms in developmental biology, muscle homeostasis, adaptive responses, and disorders relating to skeletal muscle. Many of the observed sex differences have hormonal and molecular mechanistic underpinnings, whereas others have yet to be elucidated. Future research is needed to investigate the mechanisms dictating sex-based differences in the various aspects of skeletal muscle. As such, it is necessary that skeletal muscle biologists ensure that both female and male subjects are represented in biomedical and clinical studies to facilitate the successful testing and development of therapeutics for all patients.
Collapse
Affiliation(s)
- Marianne E Emmert
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Andrew S Emmert
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Qingnian Goh
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Roger Cornwall
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| |
Collapse
|
4
|
Aires I, Duarte JA, Vitorino R, Moreira-Gonçalves D, Oliveira P, Ferreira R. Restoring Skeletal Muscle Health through Exercise in Breast Cancer Patients and after Receiving Chemotherapy. Int J Mol Sci 2024; 25:7533. [PMID: 39062775 PMCID: PMC11277416 DOI: 10.3390/ijms25147533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Breast cancer (BC) stands out as the most commonly type of cancer diagnosed in women worldwide, and chemotherapy, a key component of treatment, exacerbates cancer-induced skeletal muscle wasting, contributing to adverse health outcomes. Notably, the impact of chemotherapy on skeletal muscle seems to surpass that of the cancer itself, with inflammation identified as a common trigger for muscle wasting in both contexts. In skeletal muscle, pro-inflammatory cytokines modulate pathways crucial for the delicate balance between protein synthesis and breakdown, as well as satellite cell activation and myonuclear accretion. Physical exercise consistently emerges as a crucial therapeutic strategy to counteract cancer and chemotherapy-induced muscle wasting, ultimately enhancing patients' quality of life. However, a "one size fits all" approach does not apply to the prescription of exercise for BC patients, with factors such as age, menopause and comorbidities influencing the response to exercise. Hence, tailored exercise regimens, considering factors such as duration, frequency, intensity, and type, are essential to maximize efficacy in mitigating muscle wasting and improving disease outcomes. Despite the well-established anti-inflammatory role of aerobic exercise, resistance exercise proves equally or more beneficial in terms of mass and strength gain, as well as enhancing quality of life. This review comprehensively explores the molecular pathways affected by distinct exercise regimens in the skeletal muscle of cancer patients during chemotherapy, providing critical insights for precise exercise implementation to prevent skeletal muscle wasting.
Collapse
Affiliation(s)
- Inês Aires
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (I.A.); (R.F.)
- CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - José Alberto Duarte
- CIAFEL, and Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto (FADEUP), 4200-450 Porto, Portugal; (J.A.D.); (D.M.-G.)
- UCIBIO-Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Rui Vitorino
- iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Daniel Moreira-Gonçalves
- CIAFEL, and Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto (FADEUP), 4200-450 Porto, Portugal; (J.A.D.); (D.M.-G.)
| | - Paula Oliveira
- CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (I.A.); (R.F.)
| |
Collapse
|
5
|
Holmes TC, Popp NM, Hintz CF, Dobrzycki I, Schmitz CJ, Schwichtenberg KA, Gonzalez-Rothi EJ, Sundberg CW, Streeter KA. Sex differences in spontaneous respiratory recovery following chronic C2 hemisection. J Appl Physiol (1985) 2024; 137:166-180. [PMID: 38867665 PMCID: PMC11381122 DOI: 10.1152/japplphysiol.00040.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/10/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
Respiratory deficits after C2 hemisection (C2Hx) have been well documented through single-sex investigations. Although ovarian sex hormones enable enhanced respiratory recovery observed in females 2 wk post-C2Hx, it remains unknown if sex impacts spontaneous respiratory recovery at chronic time points. We conducted a longitudinal study to provide a comprehensive sex-based characterization of respiratory neuromuscular recovery for 8 wk after C2Hx. We recorded ventilation and chronic diaphragm electromyography (EMG) output in awake, behaving animals, phrenic motor output in anesthetized animals, and performed diaphragm muscle histology in chronically injured male and female rodents. Our results show that females expressed a greater recovery of tidal volume and minute ventilation compared with males during subacute and chronic time points. Eupneic diaphragm EMG amplitude during wakefulness and phrenic motor amplitude are similar between sexes at all time points after injury. Our data also suggest that females have a greater reduction in ipsilateral diaphragm EMG amplitude during spontaneous deep breaths (e.g., sighs) compared with males. Finally, we show evidence for atrophy and remodeling of the fast, fatigable fibers ipsilateral to injury in females, but not in males. To our knowledge, the data presented here represent the first study to report sex-dependent differences in spontaneous respiratory recovery and diaphragm muscle morphology following chronic C2Hx. These data highlight the need to study both sexes to inform evidence-based therapeutic interventions in respiratory recovery after spinal cord injury (SCI).NEW & NOTEWORTHY In response to chronic C2 hemisection, female rodents display increased tidal volume during eupneic breathing compared with males. Females show a greater reduction in diaphragm electromyography (EMG) amplitude during spontaneous deep breaths (e.g., sighs) and atrophy and remodeling of fast, fatigable diaphragm fibers. Given that most rehabilitative interventions occur in the subacute to chronic stages of injury, these results highlight the importance of considering sex when developing and evaluating therapeutics after spinal cord injury.
Collapse
Affiliation(s)
- Taylor C Holmes
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
| | - Nicole M Popp
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
| | - Carley F Hintz
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
| | - Isabell Dobrzycki
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
- Athletic and Human Performance Research Center, Marquette University, Milwaukee, Wisconsin, United States
| | - Carolyn J Schmitz
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
| | - Kaylyn A Schwichtenberg
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
| | - Elisa J Gonzalez-Rothi
- Department of Physical Therapy, University of Florida, Gainesville, Florida, United States
| | - Christopher W Sundberg
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
- Athletic and Human Performance Research Center, Marquette University, Milwaukee, Wisconsin, United States
| | - Kristi A Streeter
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
| |
Collapse
|
6
|
Park MA, Whelan CJ, Ahmed S, Boeringer T, Brown J, Crowder SL, Gage K, Gregg C, Jeong DK, Jim HSL, Judge AR, Mason TM, Parker N, Pillai S, Qayyum A, Rajasekhara S, Rasool G, Tinsley SM, Schabath MB, Stewart P, West J, McDonald P, Permuth JB. Defining and Addressing Research Priorities in Cancer Cachexia through Transdisciplinary Collaboration. Cancers (Basel) 2024; 16:2364. [PMID: 39001427 PMCID: PMC11240731 DOI: 10.3390/cancers16132364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
For many patients, the cancer continuum includes a syndrome known as cancer-associated cachexia (CAC), which encompasses the unintended loss of body weight and muscle mass, and is often associated with fat loss, decreased appetite, lower tolerance and poorer response to treatment, poor quality of life, and reduced survival. Unfortunately, there are no effective therapeutic interventions to completely reverse cancer cachexia and no FDA-approved pharmacologic agents; hence, new approaches are urgently needed. In May of 2022, researchers and clinicians from Moffitt Cancer Center held an inaugural retreat on CAC that aimed to review the state of the science, identify knowledge gaps and research priorities, and foster transdisciplinary collaborative research projects. This review summarizes research priorities that emerged from the retreat, examples of ongoing collaborations, and opportunities to move science forward. The highest priorities identified include the need to (1) evaluate patient-reported outcome (PRO) measures obtained in clinical practice and assess their use in improving CAC-related outcomes; (2) identify biomarkers (imaging, molecular, and/or behavioral) and novel analytic approaches to accurately predict the early onset of CAC and its progression; and (3) develop and test interventions (pharmacologic, nutritional, exercise-based, and through mathematical modeling) to prevent CAC progression and improve associated symptoms and outcomes.
Collapse
Affiliation(s)
- Margaret A. Park
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Christopher J. Whelan
- Department of Metabolism and Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Sabeen Ahmed
- Department of Machine Learning, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (S.A.); (G.R.)
| | - Tabitha Boeringer
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (T.B.); (S.P.)
| | - Joel Brown
- Department of Cancer Biology and Evolution, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (J.B.); (J.W.)
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Sylvia L. Crowder
- Department of Health Outcomes and Behavior, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (S.L.C.); (H.S.L.J.); (N.P.); (S.M.T.)
| | - Kenneth Gage
- Department of Diagnostic Imaging and Interventional Radiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (K.G.); (D.K.J.); (A.Q.)
| | - Christopher Gregg
- School of Medicine, University of Utah, Salt Lake City, UT 84113, USA;
| | - Daniel K. Jeong
- Department of Diagnostic Imaging and Interventional Radiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (K.G.); (D.K.J.); (A.Q.)
| | - Heather S. L. Jim
- Department of Health Outcomes and Behavior, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (S.L.C.); (H.S.L.J.); (N.P.); (S.M.T.)
| | - Andrew R. Judge
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA;
| | - Tina M. Mason
- Department of Nursing Research, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Nathan Parker
- Department of Health Outcomes and Behavior, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (S.L.C.); (H.S.L.J.); (N.P.); (S.M.T.)
| | - Smitha Pillai
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (T.B.); (S.P.)
| | - Aliya Qayyum
- Department of Diagnostic Imaging and Interventional Radiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (K.G.); (D.K.J.); (A.Q.)
| | - Sahana Rajasekhara
- Department of Supportive Care Medicine, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Ghulam Rasool
- Department of Machine Learning, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (S.A.); (G.R.)
| | - Sara M. Tinsley
- Department of Health Outcomes and Behavior, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (S.L.C.); (H.S.L.J.); (N.P.); (S.M.T.)
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Matthew B. Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Paul Stewart
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Jeffrey West
- Department of Cancer Biology and Evolution, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (J.B.); (J.W.)
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Patricia McDonald
- Department of Metabolism and Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
- Lexicon Pharmaceuticals, Inc., Woodlands, TX 77381, USA
| | - Jennifer B. Permuth
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| |
Collapse
|
7
|
Rosa-Caldwell ME, Mortreux M, Wadhwa A, Kaiser UB, Sung DM, Bouxsein ML, Rutkove SB. Sex differences in muscle health in simulated micro- and partial-gravity environments in rats. SPORTS MEDICINE AND HEALTH SCIENCE 2023; 5:319-328. [PMID: 38314043 PMCID: PMC10831389 DOI: 10.1016/j.smhs.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/22/2023] [Accepted: 09/06/2023] [Indexed: 02/06/2024] Open
Abstract
Skeletal muscle size and strength are important for overall health for astronauts. However, how male and female muscle may respond differently to micro- and partial-gravity environments is not fully understood. The purpose of this study was to determine how biological sex and sex steroid hormones influence the progression of muscle atrophy after long term exposure to micro and partial gravity environments in male and female rats. Male and female Fisher rats (n = 120) underwent either castration/ovariectomy or sham surgeries. After two weeks recovery, animals were divided into microgravity (0g), partial-gravity (40% of weight bearing, 0.4g), or full weight bearing (1g) interventions for 28 days. Measurements of muscle size and strength were evaluated prior to and after interventions. At 0g, females lost more dorsiflexion strength, plantar flexion strength, and other metrics of muscle size compared to males; castration/ovariectomy did not influence these differences. Additionally, at 0.4g, females lost more dorsiflexion strength, plantar flexion strength, and other metrics of muscle strength compared to males; castration/ovariectomy did not influence these differences. Females have greater musculoskeletal aberrations during exposure to both microgravity and partial-gravity environments; these differences are not dependent on the presence of sex steroid hormones. Correspondingly, additional interventions may be necessary to mitigate musculoskeletal loss in female astronauts to protect occupational and overall health.
Collapse
Affiliation(s)
- Megan E. Rosa-Caldwell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Marie Mortreux
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
- Department of Nutrition and Food Sciences, University of Rhode Island, Kingston, RI, 02881, USA
| | - Anna Wadhwa
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Ursula B. Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Womenʼs Hospital and Harvard Medical School, Boston, MA, 02215, USA
| | - Dong-Min Sung
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Mary L. Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Seward B. Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| |
Collapse
|
8
|
Jomard C, Gondin J. Influence of sexual dimorphism on satellite cell regulation and inflammatory response during skeletal muscle regeneration. Physiol Rep 2023; 11:e15798. [PMID: 37798097 PMCID: PMC10555529 DOI: 10.14814/phy2.15798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 10/07/2023] Open
Abstract
After injury, skeletal muscle regenerates thanks to the key role of satellite cells (SC). The regeneration process is supported and coordinated by other cell types among which immune cells. Among the mechanisms involved in skeletal muscle regeneration, a sexual dimorphism, involving sex hormones and more particularly estrogens, has been suggested. However, the role of sexual dimorphism on skeletal muscle regeneration is not fully understood, likely to the use of various experimental settings in both animals and human. This review aims at addressing how sex and estrogens regulate both the SC and the inflammatory response during skeletal muscle regeneration by considering the different experimental designs used in both animal models (i.e., ovarian hormone deficiency, estrogen replacement or supplementation, treatments with estrogen receptors agonists/antagonists and models knockout for estrogen receptors) and human (hormone therapy replacement, pre vs. postmenopausal, menstrual cycle variation…).
Collapse
Affiliation(s)
- Charline Jomard
- Institut NeuroMyoGène (INMG), Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Université Claude Bernard LyonLyonFrance
| | - Julien Gondin
- Institut NeuroMyoGène (INMG), Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Université Claude Bernard LyonLyonFrance
| |
Collapse
|
9
|
Dong G, Moparthy C, Thome T, Kim K, Yue F, Ryan TE. IGF-1 Therapy Improves Muscle Size and Function in Experimental Peripheral Arterial Disease. JACC Basic Transl Sci 2023; 8:702-719. [PMID: 37426532 PMCID: PMC10322901 DOI: 10.1016/j.jacbts.2022.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 03/11/2023]
Abstract
Lower-extremity peripheral arterial disease (PAD) has increased in prevalence, yet therapeutic development has remained stagnant. Skeletal muscle health and function has been strongly linked to quality of life and medical outcomes in patients with PAD. Using a rodent model of PAD, this study demonstrates that treatment of the ischemic limb with insulin-like growth factor (IGF)-1 significantly increases muscle size and strength without improving limb hemodynamics. Interestingly, the effect size of IGF1 therapy was larger in female mice than in male mice, highlighting the need to carefully examine sex-dependent effects in experimental PAD therapies.
Collapse
Affiliation(s)
- Gengfu Dong
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Chatick Moparthy
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Trace Thome
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Kyoungrae Kim
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Feng Yue
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
- Myology Institute, University of Florida, Gainesville, Florida, USA
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
- Center for Exercise Science, University of Florida, Gainesville, Florida, USA
- Myology Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
10
|
Rosa-Caldwell ME, Mortreux M, Wadhwa A, Kaiser UB, Sung DM, Bouxsein ML, Rutkove SB. Influence of gonadectomy on muscle health in micro- and partial-gravity environments in rats. J Appl Physiol (1985) 2023; 134:1438-1449. [PMID: 37102698 PMCID: PMC10228673 DOI: 10.1152/japplphysiol.00023.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 04/28/2023] Open
Abstract
Gonadal hormones, such as testosterone and estradiol, modulate muscle size and strength in males and females. However, the influence of sex hormones on muscle strength in micro- and partial-gravity environments (e.g., the Moon or Mars) is not fully understood. The purpose of this study was to determine the influence of gonadectomy (castration/ovariectomy) on progression of muscle atrophy in both micro- and partial-gravity environments in male and female rats. Male and female Fischer rats (n = 120) underwent castration/ovariectomy (CAST/OVX) or sham surgery (SHAM) at 11 wk of age. After 2 wk of recovery, rats were exposed to hindlimb unloading (0 g), partial weight bearing at 40% of normal loading (0.4 g, Martian gravity), or normal loading (1.0 g) for 28 days. In males, CAST did not exacerbate body weight loss or other metrics of musculoskeletal health. In females, OVX animals tended to have greater body weight loss and greater gastrocnemius loss. Within 7 days of exposure to either microgravity or partial gravity, females had detectable changes to estrous cycle, with greater time spent in low-estradiol phases diestrus and metestrus (∼47% in 1 g vs. 58% in 0 g and 72% in 0.4 g animals, P = 0.005). We conclude that in males testosterone deficiency at the initiation of unloading has little effect on the trajectory of muscle loss. In females, initial low estradiol status may result in greater musculoskeletal losses.NEW & NOTEWORTHY We find that removal of gonadal hormones does not exacerbate muscle loss in males or females during exposure to either simulated microgravity or partial-gravity environments. However, simulated micro- and partial gravity did affect females' estrous cycles, with more time spent in low-estrogen phases. Our findings provide important data on the influence of gonadal hormones on the trajectory of muscle loss during unloading and will help inform NASA for future crewed missions to space and other planets.
Collapse
Affiliation(s)
- Megan E Rosa-Caldwell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
| | - Marie Mortreux
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
- Department of Nutrition and Food Sciences, University of Rhode Island, Kingston, Rhode Island, United States
| | - Anna Wadhwa
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Dong-Min Sung
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
| | - Mary L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
| | - Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
11
|
Rosa-Caldwell ME, Eddy KT, Rutkove SB, Breithaupt L. Anorexia nervosa and muscle health: A systematic review of our current understanding and future recommendations for study. Int J Eat Disord 2023; 56:483-500. [PMID: 36529682 DOI: 10.1002/eat.23878] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Conduct a systematic review on muscle size and strength in individuals with anorexia nervosa (AN). METHOD In accordance with PRISMA guidelines, we searched Pubmed for articles published between 1995 and 2022 using a combination of search terms related to AN and muscle size, strength, or metabolism. After two authors screened articles and extracted data, 30 articles met inclusion criteria. Data were coded, and a risk bias was conducted for each study. RESULTS The majority of studies focused on muscle size/lean mass (60%, n = 18) and energy expenditure (33%, n = 9), with few studies (17%, n = 5) investigating muscle function or possible mechanisms underlying muscle size (20%, n = 6). Studies supported that individuals with AN have smaller muscle size and reduced energy expenditure relative to controls. In some studies (33%, n = 10) recovery from AN was not sufficient to restore muscle mass or function. Mechanisms underlying short and long-term musculoskeletal alterations have not been thoroughly explored. DISCUSSION Muscle mass and strength loss may be an unexplored component of physiological deterioration during and after AN. More research is necessary to understand intramuscular alterations during AN and interventions to facilitate muscle mass and functional gain following weight restoration in AN. PUBLIC SIGNIFICANCE Muscle health is important for optimal health and is reduced in individuals with AN. However, we do not understand how muscle is altered at the cellular level throughout the course of AN. Here we review what is currently known regarding muscle health during AN and with weight restoration.
Collapse
Affiliation(s)
- Megan E Rosa-Caldwell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Kamryn T Eddy
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Lauren Breithaupt
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Della Peruta C, Lozanoska-Ochser B, Renzini A, Moresi V, Sanchez Riera C, Bouché M, Coletti D. Sex Differences in Inflammation and Muscle Wasting in Aging and Disease. Int J Mol Sci 2023; 24:ijms24054651. [PMID: 36902081 PMCID: PMC10003083 DOI: 10.3390/ijms24054651] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Only in recent years, thanks to a precision medicine-based approach, have treatments tailored to the sex of each patient emerged in clinical trials. In this regard, both striated muscle tissues present significant differences between the two sexes, which may have important consequences for diagnosis and therapy in aging and chronic illness. In fact, preservation of muscle mass in disease conditions correlates with survival; however, sex should be considered when protocols for the maintenance of muscle mass are designed. One obvious difference is that men have more muscle than women. Moreover, the two sexes differ in inflammation parameters, particularly in response to infection and disease. Therefore, unsurprisingly, men and women respond differently to therapies. In this review, we present an up-to-date overview on what is known about sex differences in skeletal muscle physiology and disfunction, such as disuse atrophy, age-related sarcopenia, and cachexia. In addition, we summarize sex differences in inflammation which may underly the aforementioned conditions because pro-inflammatory cytokines deeply affect muscle homeostasis. The comparison of these three conditions and their sex-related bases is interesting because different forms of muscle atrophy share common mechanisms; for instance, those responsible for protein dismantling are similar although differing in terms of kinetics, severity, and regulatory mechanisms. In pre-clinical research, exploring sexual dimorphism in disease conditions could highlight new efficacious treatments or recommend implementation of an existing one. Any protective factors discovered in one sex could be exploited to achieve lower morbidity, reduce the severity of the disease, or avoid mortality in the opposite sex. Thus, the understanding of sex-dependent responses to different forms of muscle atrophy and inflammation is of pivotal importance to design innovative, tailored, and efficient interventions.
Collapse
Affiliation(s)
- Chiara Della Peruta
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Roma, Italy
| | - Biliana Lozanoska-Ochser
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Roma, Italy
- Department of Medicine and Surgery, LUM University, 70010 Bari, Italy
| | - Alessandra Renzini
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Roma, Italy
| | - Viviana Moresi
- Institute of Nanotechnology (Nanotec), National Research Council (CNR), c/o Sapienza University of Rome, 00185 Roma, Italy
| | - Carles Sanchez Riera
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Roma, Italy
| | - Marina Bouché
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Roma, Italy
- Correspondence:
| | - Dario Coletti
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Roma, Italy
- Biological Adaptation and Ageing (B2A), Institut de Biologie Paris-Seine, Sorbonne Université, CNRS UMR 8256, Inserm U1164, 75005 Paris, France
| |
Collapse
|
13
|
Coffey VG, McGlory C, Phillips SM, Doering TM. Does initial skeletal muscle size or sex affect the magnitude of muscle loss in response to 14 days immobilization? Appl Physiol Nutr Metab 2023; 48:411-416. [PMID: 36802453 DOI: 10.1139/apnm-2022-0458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
We aimed to determine whether there was a relationship between pre-immobilization skeletal muscle size and the magnitude of muscle atrophy following 14 days of unilateral lower limb immobilization. Our findings (n = 30) show that pre-immobilization leg fat-free mass and quadriceps cross-sectional area (CSA) were unrelated to the magnitude of muscle atrophy. However, sex-based differences may be present, but confirmatory work is required. In women, pre-immobilization leg fat-free mass and CSA were associated with changes in quadriceps CSA after immobilization (n = 9, r2 = 0.54-0.68; P < 0.05). The extent of muscle atrophy is not affected by initial muscle mass, but there is potential for sex-based differences.
Collapse
Affiliation(s)
- Vernon G Coffey
- Bond Institute of Health and Sport and Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Chris McGlory
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada.,Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Thomas M Doering
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia
| |
Collapse
|
14
|
Hart DA. Sex differences in musculoskeletal injury and disease risks across the lifespan: Are there unique subsets of females at higher risk than males for these conditions at distinct stages of the life cycle? Front Physiol 2023; 14:1127689. [PMID: 37113695 PMCID: PMC10126777 DOI: 10.3389/fphys.2023.1127689] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Sex differences have been reported for diseases of the musculoskeletal system (MSK) as well as the risk for injuries to tissues of the MSK system. For females, some of these occur prior to the onset of puberty, following the onset of puberty, and following the onset of menopause. Therefore, they can occur across the lifespan. While some conditions are related to immune dysfunction, others are associated with specific tissues of the MSK more directly. Based on this life spectrum of sex differences in both risk for injury and onset of diseases, a role for sex hormones in the initiation and progression of this risk is somewhat variable. Sex hormone receptor expression and functioning can also vary with life events such as the menstrual cycle in females, with different tissues being affected. Furthermore, some sex hormone receptors can affect gene expression independent of sex hormones and some transitional events such as puberty are accompanied by epigenetic alterations that can further lead to sex differences in MSK gene regulation. Some of the sex differences in injury risk and the post-menopausal disease risk may be "imprinted" in the genomes of females and males during development and sex hormones and their consequences only modulators of such risks later in life as the sex hormone milieu changes. The purpose of this review is to discuss some of the relevant conditions associated with sex differences in risks for loss of MSK tissue integrity across the lifespan, and further discuss several of the implications of their variable relationship with sex hormones, their receptors and life events.
Collapse
|
15
|
Dos’Santos T, Stebbings GK, Morse C, Shashidharan M, Daniels KAJ, Sanderson A. Effects of the menstrual cycle phase on anterior cruciate ligament neuromuscular and biomechanical injury risk surrogates in eumenorrheic and naturally menstruating women: A systematic review. PLoS One 2023; 18:e0280800. [PMID: 36701354 PMCID: PMC9879429 DOI: 10.1371/journal.pone.0280800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Eumenorrheic women experience cyclic variations in sex hormones attributed to the menstrual cycle (MC) which can impact anterior cruciate ligament (ACL) properties, knee laxity, and neuromuscular function. This systematic review aimed to examine the effects of the MC on ACL neuromuscular and biomechanical injury risk surrogates during dynamic tasks, to establish whether a particular MC phase predisposes women to greater ACL injury risk. METHODS PubMed, Medline, SPORTDiscus, and Web of Science were searched (May-July 2021) for studies that investigated the effects of the MC on ACL neuromuscular and biomechanical injury risk surrogates. Inclusion criteria were: 1) injury-free women (18-40 years); 2) verified MC phases via biochemical analysis and/or ovulation kits; 3) examined neuromuscular and/or biomechanical injury risk surrogates during dynamic tasks; 4) compared ≥1 outcome measure across ≥2 defined MC phases. RESULTS Seven of 418 articles were included. Four studies reported no significant differences in ACL injury risk surrogates between MC phases. Two studies showed evidence the mid-luteal phase may predispose women to greater risk of non-contact ACL injury. Three studies reported knee laxity fluctuated across the MC; two of which demonstrated MC attributed changes in knee laxity were associated with changes in knee joint loading (KJL). Study quality (Modified Downs and Black Checklist score: 7-9) and quality of evidence were low to very low (Grading of Recommendations Assessment Development and Evaluation: very low). CONCLUSION It is inconclusive whether a particular MC phase predisposes women to greater non-contact ACL injury risk based on neuromuscular and biomechanical surrogates. Practitioners should be cautious manipulating their physical preparation, injury mitigation, and screening practises based on current evidence. Although variable (i.e., magnitude and direction), MC attributed changes in knee laxity were associated with changes in potentially hazardous KJLs. Monitoring knee laxity could therefore be a viable strategy to infer possible ACL injury risk.
Collapse
Affiliation(s)
- Thomas Dos’Santos
- Department of Sport and Exercise Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, United Kingdom
- Manchester Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
- * E-mail:
| | - Georgina K. Stebbings
- Department of Sport and Exercise Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, United Kingdom
- Manchester Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
| | - Christopher Morse
- Department of Sport and Exercise Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, United Kingdom
- Manchester Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
| | - Medha Shashidharan
- Department of Sport and Exercise Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, United Kingdom
- Manchester Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
| | - Katherine A. J. Daniels
- Department of Sport and Exercise Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, United Kingdom
- Manchester Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
| | - Andy Sanderson
- Department of Sport and Exercise Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, United Kingdom
- Manchester Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
16
|
Neuropathic-like Pain Symptoms and Their Association with Muscle Strength in Patients with Chronic Musculoskeletal Pain. J Clin Med 2022; 11:jcm11185471. [PMID: 36143118 PMCID: PMC9503957 DOI: 10.3390/jcm11185471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
The relationship between sarcopenia and pain remains unclear; thus, this study evaluated whether muscle strength is independently associated with neuropathic-like pain symptoms in patients with chronic musculoskeletal pain. A cut-off score of painDETECT ≥13 was used to indicate a possible neuropathic component. Handgrip strength was measured, and muscle mass was estimated. A total of 2599 patients, including 439 patients who reported neuropathic-like pain symptoms (16.9%), were included for analysis. Handgrip strength was significantly lower in patients experiencing neuropathic-like pain symptoms (23.23 ± 10.57 vs. 24.82 ± 10.43 kg, p < 0.001), and this result was chiefly found in female patients. However, there was no difference in estimated muscle mass. Shorter duration of pain, opioid usage, pain in lower limbs, sleep disturbance, and lower handgrip strength were significantly associated with neuropathic-like pain symptoms. In patients with handgrip strength below the reference values by sex, experiencing radiating pain and at least moderate sensory symptoms by light touch and thermal stimulation were more frequently reported. In conclusion, lower handgrip strength appeared to be an independent factor associated with symptoms suggestive of neuropathic pain in this population. Interventional studies are required to determine whether improvement in muscle strength can reduce the neuropathic pain component in chronic musculoskeletal pain.
Collapse
|
17
|
Holder ER, Alibhai FJ, Caudle SL, McDermott JC, Tobin SW. The importance of biological sex in cardiac cachexia. Am J Physiol Heart Circ Physiol 2022; 323:H609-H627. [PMID: 35960634 DOI: 10.1152/ajpheart.00187.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac cachexia is a catabolic muscle wasting syndrome observed in approximately 1 in 10 heart failure patients. Increased skeletal muscle atrophy leads to frailty and limits mobility which impacts quality of life, exacerbates clinical care, and is associated with higher rates of mortality. Heart failure is known to exhibit a wide range of prevalence and severity when examined across individuals of different ages and with co-morbidities related to diabetes, renal failure and pulmonary dysfunction. It is also recognized that men and women exhibit striking differences in the pathophysiology of heart failure as well as skeletal muscle homeostasis. Given that both skeletal muscle and heart failure physiology are in-part sex dependent, the diagnosis and treatment of cachexia in heart failure patients may depend on a comprehensive examination of how these organs interact. In this review we explore the potential for sex-specific differences in cardiac cachexia. We summarize advantages and disadvantages of clinical methods used to measure muscle mass and function and provide alternative measurements that should be considered in preclinical studies. Additionally, we summarize sex-dependent effects on muscle wasting in preclinical models of heart failure, disuse, and cancer. Lastly, we discuss the endocrine function of the heart and outline unanswered questions that could directly impact patient care.
Collapse
|
18
|
Estradiol and Estrogen-like Alternative Therapies in Use: The Importance of the Selective and Non-Classical Actions. Biomedicines 2022; 10:biomedicines10040861. [PMID: 35453610 PMCID: PMC9029610 DOI: 10.3390/biomedicines10040861] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/17/2022] Open
Abstract
Estrogen is one of the most important female sex hormones, and is indispensable for reproduction. However, its role is much wider. Among others, due to its neuroprotective effects, estrogen protects the brain against dementia and complications of traumatic injury. Previously, it was used mainly as a therapeutic option for influencing the menstrual cycle and treating menopausal symptoms. Unfortunately, hormone replacement therapy might be associated with detrimental side effects, such as increased risk of stroke and breast cancer, raising concerns about its safety. Thus, tissue-selective and non-classical estrogen analogues have become the focus of interest. Here, we review the current knowledge about estrogen effects in a broader sense, and the possibility of using selective estrogen-receptor modulators (SERMs), selective estrogen-receptor downregulators (SERDs), phytoestrogens, and activators of non-genomic estrogen-like signaling (ANGELS) molecules as treatment.
Collapse
|
19
|
Soto ME, Pérez-Torres I, Rubio-Ruiz ME, Manzano-Pech L, Guarner-Lans V. Interconnection between Cardiac Cachexia and Heart Failure—Protective Role of Cardiac Obesity. Cells 2022; 11:cells11061039. [PMID: 35326490 PMCID: PMC8946995 DOI: 10.3390/cells11061039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/25/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Cachexia may be caused by congestive heart failure, and it is then called cardiac cachexia, which leads to increased morbidity and mortality. Cardiac cachexia also worsens skeletal muscle degradation. Cardiac cachexia is the loss of edema-free muscle mass with or without affecting fat tissue. It is mainly caused by a loss of balance between protein synthesis and degradation, or it may result from intestinal malabsorption. The loss of balance in protein synthesis and degradation may be the consequence of altered endocrine mediators such as insulin, insulin-like growth factor 1, leptin, ghrelin, melanocortin, growth hormone and neuropeptide Y. In contrast to many other health problems, fat accumulation in the heart is protective in this condition. Fat in the heart can be divided into epicardial, myocardial and cardiac steatosis. In this review, we describe and discuss these topics, pointing out the interconnection between heart failure and cardiac cachexia and the protective role of cardiac obesity. We also set the basis for possible screening methods that may allow for a timely diagnosis of cardiac cachexia, since there is still no cure for this condition. Several therapeutic procedures are discussed including exercise, nutritional proposals, myostatin antibodies, ghrelin, anabolic steroids, anti-inflammatory substances, beta-adrenergic agonists, medroxyprogesterone acetate, megestrol acetate, cannabinoids, statins, thalidomide, proteasome inhibitors and pentoxifylline. However, to this date, there is no cure for cachexia.
Collapse
Affiliation(s)
- María Elena Soto
- Department of Immunology, Instituto Nacional de Cardiología “Ignacio Chávez”, México City 14080, Mexico;
| | - Israel Pérez-Torres
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología “Ignacio Chávez”, México City 14080, Mexico; (I.P.-T.); (L.M.-P.)
| | - María Esther Rubio-Ruiz
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, México City 14080, Mexico;
| | - Linaloe Manzano-Pech
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología “Ignacio Chávez”, México City 14080, Mexico; (I.P.-T.); (L.M.-P.)
| | - Verónica Guarner-Lans
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, México City 14080, Mexico;
- Correspondence:
| |
Collapse
|