1
|
Irnaten M, Gaynor E, O'Brien C. The Role of αvβ3 Integrin in Lamina Cribrosa Cell Mechanotransduction in Glaucoma. Cells 2024; 13:1487. [PMID: 39273058 PMCID: PMC11394537 DOI: 10.3390/cells13171487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Purpose: Glaucoma, one of the leading causes of irreversible blindness, is a common progressive optic neuropathy characterised by visual field defects and structural changes to the optic nerve head (ONH). There is extracellular matrix (ECM) accumulation and fibrosis of the lamina cribrosa (LC) in the ONH, and consequently increased tissue stiffness of the LC connective tissue. Integrins are cell surface proteins that provide the key molecular link connecting cells to the ECM and serve as bidirectional sensors transmitting signals between cells and their environment to promote cell adhesion, proliferation, and remodelling of the ECM. Here, we investigated the expression of αVβ3 integrin in glaucoma LC cell, and its effect on stiffness-induced ECM gene transcription and cellular proliferation rate in normal (NLC) and glaucoma (GLC) LC cells, by down-regulating αVβ3 integrin expression using cilengitide (a known potent αVβ3 and αVβ5 inhibitor) and β3 integrin siRNA knockdown. Methods: GLC cells were compared to age-matched controls NLC to determine differential expression levels of αVβ3 integrin, ECM genes (Col1A1, α-SMA, fibronectin, vitronectin), and proliferation rates. The effects of αVβ3 integrin blockade (with cilengitide) and silencing (with a pool of four predesigned αVβ3 integrin siRNAs) on ECM gene expression and proliferation rates were evaluated using both reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting in the human NLC cells cultured on soft (4 kPa) and stiff (100 kPa) substrate and in GLC cells grown on standard plastic plates. Results: αVβ3 integrin gene and protein expression were enhanced (p < 0.05) in GLC cells as compared to NLC. Both cilengitide and siRNA significantly reduced αVβ3 expression in GLC. When NLC were grown in the stiff substrate, cilengitide and siRNA also significantly reduced the increased expression in αVβ3, ECM components, and proliferation rate. Conclusions: Here, we provide evidence of cilengitide- and siRNA-mediated silencing of αVβ3 integrin expression, and inhibition of ECM synthesis in LC cells. Therefore, αVβ3 integrin may be a promising target for the development of novel anti-fibrotic therapies for treating the LC cupping of the ONH in glaucoma.
Collapse
Affiliation(s)
- Mustapha Irnaten
- Clinical Research Centre, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Ellen Gaynor
- Clinical Research Centre, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Colm O'Brien
- Clinical Research Centre, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
- Department of Ophthalmology, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| |
Collapse
|
2
|
Overby DR, Ethier CR, Miao C, Kelly RA, Reina-Torres E, Stamer WD. The Factors Affecting the Stability of IOP Homeostasis. Invest Ophthalmol Vis Sci 2024; 65:4. [PMID: 38833261 PMCID: PMC11157970 DOI: 10.1167/iovs.65.6.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
Purpose Shear-induced nitric oxide (NO) production by Schlemm's canal (SC) endothelial cells provides a fast, IOP-sensitive feedback signal that normally contributes to IOP homeostasis. Our goal was to analyze the response of this homeostatic system under constant flow perfusion (as occurs in vivo) vs. constant pressure perfusion (as typical for laboratory perfusions). Methods A mathematical model of aqueous humor dynamics, including shear-mediated NO signaling, was formulated and analyzed for stability. The model includes Goldmann's equation, accounting for proximal and distal outflow resistance, and describes how elevated IOP causes narrowing of SC lumen that increases the shear stress on SC cells. Elevated shear stress stimulates NO production, which acts to reduce outflow resistance and relax trabecular meshwork cells to decrease trabecular meshwork stiffness, affecting the SC luminal caliber. Results During constant flow perfusion, the outflow system is typically stable, returning to baseline IOP after a perturbation. In contrast, during constant pressure perfusion, the outflow system can become unstable and exhibit a time-dependent change in outflow resistance that diverges from baseline. Conclusions The stability of shear mediated IOP homeostasis is predicted to differ critically between constant flow vs. constant pressure perfusion. Because outflow facility is typically measured at a constant pressure in the laboratory, this instability may contribute to the characteristic time-dependent increase in outflow facility, known as washout, observed in many nonhuman species. Studies of IOP homeostasis should consider how the outflow system may respond differently under constant pressure vs. constant flow perfusion.
Collapse
Affiliation(s)
- Darryl R. Overby
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - C. Ross Ethier
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology & Emory University School of Medicine, Atlanta, Georgia, United States
| | - Changxu Miao
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Ruth A. Kelly
- Department of Ophthalmology, Duke University Medical School, Durham, North Carolina, United States
| | - Ester Reina-Torres
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke University Medical School, Durham, North Carolina, United States
| |
Collapse
|
3
|
Johnstone M, Xin C, Martin E, Wang R. Trabecular Meshwork Movement Controls Distal Valves and Chambers: New Glaucoma Medical and Surgical Targets. J Clin Med 2023; 12:6599. [PMID: 37892736 PMCID: PMC10607137 DOI: 10.3390/jcm12206599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 10/29/2023] Open
Abstract
Herein, we provide evidence that human regulation of aqueous outflow is by a pump-conduit system similar to that of the lymphatics. Direct observation documents pulsatile aqueous flow into Schlemm's canal and from the canal into collector channels, intrascleral channels, aqueous veins, and episcleral veins. Pulsatile flow in vessels requires a driving force, a chamber with mobile walls and valves. We demonstrate that the trabecular meshwork acts as a deformable, mobile wall of a chamber: Schlemm's canal. A tight linkage between the driving force of intraocular pressure and meshwork deformation causes tissue responses in milliseconds. The link provides a sensory-motor baroreceptor-like function, providing maintenance of a homeostatic setpoint. The ocular pulse causes meshwork motion oscillations around the setpoint. We document valves entering and exiting the canal using real-time direct observation with a microscope and multiple additional modalities. Our laboratory-based high-resolution SD-OCT platform quantifies valve lumen opening and closing within milliseconds synchronously with meshwork motion; meshwork tissue stiffens, and movement slows in glaucoma tissue. Our novel PhS-OCT system measures nanometer-level motion synchronous with the ocular pulse in human subjects. Movement decreases in glaucoma patients. Our model is robust because it anchors laboratory studies to direct observation of physical reality in humans with glaucoma.
Collapse
Affiliation(s)
- Murray Johnstone
- Department of Ophthalmology, University of Washington, Seattle, WA 98195, USA;
| | - Chen Xin
- Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing 100730, China
- Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Elizabeth Martin
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Ruikang Wang
- Department of Ophthalmology, University of Washington, Seattle, WA 98195, USA;
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
4
|
Hodrea J, Tran MN, Besztercei B, Medveczki T, Szabo AJ, Őrfi L, Kovacs I, Fekete A. Sigma-1 Receptor Agonist Fluvoxamine Ameliorates Fibrotic Response of Trabecular Meshwork Cells. Int J Mol Sci 2023; 24:11646. [PMID: 37511406 PMCID: PMC10380218 DOI: 10.3390/ijms241411646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Primary open-angle glaucoma remains a global issue, lacking a definitive treatment. Increased intraocular pressure (IOP) is considered the primary risk factor of the disease and it can be caused by fibrotic-like changes in the trabecular meshwork (TM) such as increased tissue stiffness and outflow resistance. Previously, we demonstrated that the sigma-1 receptor (S1R) agonist fluvoxamine (FLU) has anti-fibrotic properties in the kidney and lung. In this study, the localization of the S1R in TM cells was determined, and the anti-fibrotic efficacy of FLU was examined in both mouse and human TM cells. Treatment with FLU reduced the F-actin rearrangement, inhibited cell proliferation and migration induced by the platelet-derived growth factor and decreased the levels of fibrotic proteins. The protective role of the S1R in fibrosis was confirmed by a more pronounced increase in alpha smooth muscle actin and F-actin bundle and clump formation in primary mouse S1R knockout TM cells. Furthermore, FLU demonstrated its protective effects by increasing the production of nitric oxide and facilitating the degradation of the extracellular matrix through the elevation of cathepsin K. These findings suggest that the S1R could be a novel target for the development of anti-fibrotic drugs and offer a new therapeutic approach for glaucoma.
Collapse
Affiliation(s)
- Judit Hodrea
- MTA-SE Lendület "Momentum" Diabetes Research Group, Semmelweis University, 1083 Budapest, Hungary
- Pediatric Center, MTA Center of Excellence, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Minh Ngoc Tran
- MTA-SE Lendület "Momentum" Diabetes Research Group, Semmelweis University, 1083 Budapest, Hungary
- Pediatric Center, MTA Center of Excellence, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
- Department of Biochemistry, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 72712, Vietnam
| | - Balazs Besztercei
- Institute of Clinical Experimental Research, Semmelweis University, 1094 Budapest, Hungary
| | - Timea Medveczki
- MTA-SE Lendület "Momentum" Diabetes Research Group, Semmelweis University, 1083 Budapest, Hungary
- Pediatric Center, MTA Center of Excellence, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Attila J Szabo
- Pediatric Center, MTA Center of Excellence, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Laszlo Őrfi
- Department of Pharmaceutical Chemistry, Semmelweis University, 1092 Budapest, Hungary
| | - Illes Kovacs
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary
- Department of Clinical Ophthalmology, Faculty of Health Sciences, Semmelweis University, 1085 Budapest, Hungary
| | - Andrea Fekete
- MTA-SE Lendület "Momentum" Diabetes Research Group, Semmelweis University, 1083 Budapest, Hungary
- Pediatric Center, MTA Center of Excellence, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|
5
|
Kelly RA, McDonnell FS, De Ieso ML, Overby DR, Stamer WD. Pressure Clamping During Ocular Perfusions Drives Nitric Oxide-Mediated Washout. Invest Ophthalmol Vis Sci 2023; 64:36. [PMID: 37358489 PMCID: PMC10297780 DOI: 10.1167/iovs.64.7.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/30/2023] [Indexed: 06/27/2023] Open
Abstract
Purpose The aim of this study was to test the hypothesis that nitric oxide (NO) mediates a pressure-dependent, negative feedback loop that maintains conventional outflow homeostasis and thus IOP. If true, holding pressure during ocular perfusions will result in uncontrolled production of NO, hyper-relaxation of the trabecular meshwork, and washout. Methods Paired porcine eyes were perfused at constant pressure of 15 mm Hg. After 1 hour acclimatization, one eye was exchanged with N5-[imino(nitroamino)methyl]-L-ornithine, methyl ester, monohydrochloride (L-NAME) (50 µm) and the contralateral eye with DBG, and perfused for 3 hours. In a separate group, one eye was exchanged with DETA-NO (100 nM) and the other with DBG and perfused for 30 minutes. Changes in conventional outflow tissue function and morphology were monitored. Results Control eyes exhibited a washout rate of 15% (P = 0.0026), whereas eyes perfused with L-NAME showed a 10% decrease in outflow facility from baseline over 3 hours (P < 0.01); with nitrite levels in effluent positively correlating with time and facility. Compared with L-NAME-treated eyes, significant morphological changes in control eyes included increased distal vessel size, number of giant vacuoles, and juxtacanalicular tissue separation from the angular aqueous plexi (P < 0.05). For 30-minute perfusions, control eyes showed a washout rate of 11% (P = 0.075), whereas DETA-NO-treated eyes showed an increased washout rate of 33% from baseline (P < 0.005). Compared with control eyes, significant morphological changes in DETA-NO-treated eyes also included increased distal vessel size, number of giant vacuoles and juxtacanalicular tissue separation (P < 0.05). Conclusions Uncontrolled NO production is responsible for washout during perfusions of nonhuman eyes where pressure is clamped.
Collapse
Affiliation(s)
- Ruth A. Kelly
- Ophthalmology Department, Duke University, Durham, North Carolina, United States
| | - Fiona S. McDonnell
- Ophthalmology Department, Duke University, Durham, North Carolina, United States
- Ophthalmology Department, University of Utah, Utah, United States
| | - Michael L. De Ieso
- Ophthalmology Department, Duke University, Durham, North Carolina, United States
| | - Darryl R. Overby
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - W. Daniel Stamer
- Ophthalmology Department, Duke University, Durham, North Carolina, United States
| |
Collapse
|
6
|
Lee J, Kim D, Park S, Baek S, Jung J, Kim T, Han DK. Nitric Oxide-Releasing Bioinspired Scaffold for Exquisite Regeneration of Osteoporotic Bone via Regulation of Homeostasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205336. [PMID: 36581472 PMCID: PMC9951336 DOI: 10.1002/advs.202205336] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Osteoporotic bone regeneration is a challenging process which involves the occurrence of sophisticated interactions. Although various polymeric scaffolds have been proposed for bone repair, research on osteoporotic bone regeneration remains practically limited. In particular, achieving satisfactory bone regeneration when using osteoporotic drugs is challenging including bisphosphonates. Here, a novel nitric oxide-releasing bioinspired scaffold with bioactive agents for the exquisite regeneration of osteoporotic bone is proposed. The bone-like biomimetic poly(lactic-co-glycolic acid) scaffold is first prepared in combination with organic/inorganic ECM and magnesium hydroxide as the base implant material. Nanoparticles containing bioactive agents of zinc oxide (ZO), alendronate, and BMP2 are incorporated to the biomimetic scaffold to impart multifunctionality such as anti-inflammation, angiogenesis, anti-osteoclastogenesis, and bone regeneration. Especially, nitric oxide (NO) generated from ZO stimulates the activity of cGMP and protein kinase G; in addition, ZO downregulates the RANKL/osteoprotegerin ratio by suppressing the Wnt/β-catenin signaling pathway. The new bone is formed much better in the osteoporotic rat model than in the normal model through the regulation of bone homeostasis via the scaffold. These synergistic effects suggest that such a bioinspired scaffold could be a comprehensive way to regenerate exceptionally osteoporotic bones.
Collapse
Affiliation(s)
- Jun‐Kyu Lee
- Department of Biomedical ScienceCHA University335 Pangyo‐ro, Bundang‐gu, Seongnam‐siGyeonggi‐do13488Republic of Korea
| | - Da‐Seul Kim
- Department of Biomedical ScienceCHA University335 Pangyo‐ro, Bundang‐gu, Seongnam‐siGyeonggi‐do13488Republic of Korea
- School of Integrative EngineeringChung‐Ang University84 Heukseok‐ro, Dongjak‐guSeoul06974Republic of Korea
| | - So‐Yeon Park
- Department of Biomedical ScienceCHA University335 Pangyo‐ro, Bundang‐gu, Seongnam‐siGyeonggi‐do13488Republic of Korea
- Division of BiotechnologyCollege of Life Sciences and BiotechnologyKorea UniversitySeongbuk‐guSeoul02841Republic of Korea
| | - Seung‐Woon Baek
- Department of Biomedical ScienceCHA University335 Pangyo‐ro, Bundang‐gu, Seongnam‐siGyeonggi‐do13488Republic of Korea
- Department of Biomedical EngineeringSKKU Institute for ConvergenceSungkyunkwan University (SKKU)2066 Seobu‐ro, Jangan‐gu, Suwon‐siGyeonggi‐do16419Republic of Korea
- Department of Intelligent Precision Healthcare ConvergenceSKKU Institute for ConvergenceSungkyunkwan University (SKKU)2066 Seobu‐ro, Jangan‐gu, Suwon‐siGyeonggi‐do16419Republic of Korea
| | - Ji‐Won Jung
- Department of Biomedical ScienceCHA University335 Pangyo‐ro, Bundang‐gu, Seongnam‐siGyeonggi‐do13488Republic of Korea
| | - Tae‐Hyung Kim
- School of Integrative EngineeringChung‐Ang University84 Heukseok‐ro, Dongjak‐guSeoul06974Republic of Korea
| | - Dong Keun Han
- Department of Biomedical ScienceCHA University335 Pangyo‐ro, Bundang‐gu, Seongnam‐siGyeonggi‐do13488Republic of Korea
| |
Collapse
|
7
|
Relationship between plasma amino acid and carnitine levels and primary angle-closure glaucoma based on mass spectrometry metabolomics. Exp Eye Res 2023; 227:109366. [PMID: 36592680 DOI: 10.1016/j.exer.2022.109366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023]
Abstract
World blindness is primarily caused by glaucoma. It has been predicted that by 2040, 118 million individuals will have glaucoma. Among Asians and Africans, primary angle-closure glaucoma (PACG) is the most prevalent type of glaucoma, for which treatment options are currently very limited. At present, lowering intraocular pressure (IOP) is the primary approach for PACG treatment. However, some PACG patients with decreased IOP measurements still advance. Additionally, because of the complicated pathophysiology, there are no biomarkers for diagnosis. Metabolomics is the study of the metabolites produced by all cellular processes in a biological sample, providing a method for identifying biomarkers and early diagnosis. Nevertheless, metabolomics has infrequently been applied to PACG. Previous research conducted by our lab on plasma metabolite fatty acids in PACG patients revealed reduced free fatty acid (FFA) levels, which may be connected to lipid peroxidation. To ascertain the relationship between other metabolites and PACG. We compared levels of amino acids and carnitine in patients with PACG (n = 147) and non-glaucoma (n = 340). Using metabolomics analysis, twenty-one amino acids and twenty-six carnitines (a total of ninety-six indicators) were examined. Odds ratios (OR) and 95% confidence intervals (CI) for these metabolites in relation to PACG were calculated. The relationship between ocular measures and metabolites was assessed by Spearman's rank correlation. Predictive performance was evaluated using the receiver operating characteristic (ROC). The C8/C2 level was comparable across patients with PACG and individuals without glaucoma based on the Wilcoxon rank-sum test. The PACG group had lower levels of Arginine (Arg), Ornithine (Orn), Arg/Orn, Orn/Cit, and C26/C20 than the nonglaucoma group, whereas Cit/Arg and C4/C2 ratios were greater. Both univariate and multivariate models showed a negative correlation between Orn and Orn/Cit and PACG. In the univariate model, palmitoylcarnitine (C16) had a negative correlation with PACG. According to our findings, metabolic profiles of plasma amino acids and carnitine between PACG patients and controls are different. The combination of amino acids and carnitine increased the predictive value of PACG. The Orn and Arg were negatively correlated with the local ocular neurodegenerative pathology. We speculate lipid peroxidation may explain the reduction in C16, and the decrease in Orn may be associated with hyperammonia neurotoxicity.
Collapse
|
8
|
Petrović N, Todorović D, Srećković S, Jovanović S, Petrović M, Stojadinović I, Šarenac Vulović T. IS A DECREASED NITRIC OXIDE CONCENTRATION AFTER TRIAMCINOLONE ACETONIDE INTRAVITREAL INJECTION ONE OF THE REASONS FOR INTRAOCULAR PRESSURE RISE? Acta Clin Croat 2022; 61:620-628. [PMID: 37868182 PMCID: PMC10588379 DOI: 10.20471/acc.2022.61.04.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 12/14/2021] [Indexed: 10/24/2023] Open
Abstract
Diabetic macular edema is the most common cause of vision loss in patients affected by diabetes mellitus. For eyes with persistent retinal thickening despite anti-VEGF therapy, treatment with intravitreal triamcinolone may be considered, especially in pseudophakic eyes. The aim of this study was to examine aqueous humor nitric oxide concentration changes in pseudophakic eyes with persistent diffuse diabetic macular edema after intravitreal injection of triamcinolone acetonide, as well as the potential impact of these changes on the intraocular pressure values. In 10 pseudophakic eyes with persistent diffuse diabetic macular edema, paracentesis of anterior chamber with aspiration of aqueous humor and nitric oxide concentration measurements were done on the day of the intravitreal application of 20 mg triamcinolone acetonide, and after 1, 3, 6 and 9 months. Also, we were recording intraocular pressure values before the intravitreal triamcinolone acetonide injection and during the next 9 months. One month after the intravitreal triamcinolone acetonide injection, we noticed a decrease of nitric oxide concentration (45.37±5.55 µmol/L) by 31.79% compared to the initial values (66.52±7.66 µmol/L). After that, nitric oxide concentrations began to rise slightly, and at the end of the ninth month the mean nitric oxide concentration was similar to that recorded at the beginning of the study. Intraocular pressure values had increasing trend one month after the intravitreal triamcinolone acetonide injection (23.70±4.08 mm Hg) compared to the initial values (16.21±1.55 mm Hg), but after nine months these values returned to normal levels. Decreased concentration of nitric oxide could be one of the reasons for increased intraocular pressure after intravitreal application of triamcinolone acetonide in the treatment of diffuse diabetic macular edema.
Collapse
Affiliation(s)
- Nenad Petrović
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Ophthalmology, Kragujevac Clinical Center, Kragujevac, Serbia
| | - Dušan Todorović
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Ophthalmology, Kragujevac Clinical Center, Kragujevac, Serbia
| | - Sunčica Srećković
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Ophthalmology, Kragujevac Clinical Center, Kragujevac, Serbia
| | - Svetlana Jovanović
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Ophthalmology, Kragujevac Clinical Center, Kragujevac, Serbia
| | - Marija Petrović
- Department of Laboratory Diagnostics, Kragujevac Clinical Center, Kragujevac, Serbia
| | - Ivan Stojadinović
- Department of Orthopedic Surgery and Traumatology, Kragujevac Clinical Center, Kragujevac, Serbia
| | - Tatjana Šarenac Vulović
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Ophthalmology, Kragujevac Clinical Center, Kragujevac, Serbia
| |
Collapse
|
9
|
Baek SW, Kim DS, Song DH, Lee S, Lee JK, Park SY, Kim JH, Kim TH, Park CG, Han DK. PLLA Composites Combined with Delivery System of Bioactive Agents for Anti-Inflammation and Re-Endothelialization. Pharmaceutics 2022; 14:pharmaceutics14122661. [PMID: 36559156 PMCID: PMC9782680 DOI: 10.3390/pharmaceutics14122661] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
The development of a biodegradable vascular scaffold (BVS) for the treatment of cardiovascular diseases (CVDs) still requires some improvement. Among them, re-endothelialization and anti-inflammation are clinically important to restore vascular function. In this study, we proposed a coating system to deliver hydrophilic bioactive agents to BVS using nanoemulsion and drop-casting methods. The poly(L-lactide) (PLLA) scaffold containing magnesium hydroxide (MH) was coated on the surface with bioactive molecules such as polydeoxyribonucleotide (PDRN), L-arginine (Arg, R), and mesenchymal stem cell-derived extracellular vesicles (EVs). PDRN upregulates the expression of VEGF as one of the A2A receptor agonists; and Arg, synthesized into nitric oxide by intracellular eNOS, induces endothelialization. In particular, EVs, which are composed of a lipid bilayer and transfer bioactive materials such as protein and nucleic acid, regulate homeostasis in blood vessels. Such a bioactive agent coating system and its PLLA composite suggest a new platform for the treatment of cardiovascular dysfunction.
Collapse
Affiliation(s)
- Seung-Woon Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Da-Seul Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Duck Hyun Song
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea
| | - Semi Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea
| | - Jun-Kyu Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea
| | - So-Yeon Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jun Hyuk Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea
- Correspondence:
| |
Collapse
|
10
|
Enyong EN, Gurley JM, De Ieso ML, Stamer WD, Elliott MH. Caveolar and non-Caveolar Caveolin-1 in ocular homeostasis and disease. Prog Retin Eye Res 2022; 91:101094. [PMID: 35729002 PMCID: PMC9669151 DOI: 10.1016/j.preteyeres.2022.101094] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
Caveolae, specialized plasma membrane invaginations present in most cell types, play important roles in multiple cellular processes including cell signaling, lipid uptake and metabolism, endocytosis and mechanotransduction. They are found in almost all cell types but most abundant in endothelial cells, adipocytes and fibroblasts. Caveolin-1 (Cav1), the signature structural protein of caveolae was the first protein associated with caveolae, and in association with Cavin1/PTRF is required for caveolae formation. Genetic ablation of either Cav1 or Cavin1/PTRF downregulates expression of the other resulting in loss of caveolae. Studies using Cav1-deficient mouse models have implicated caveolae with human diseases such as cardiomyopathies, lipodystrophies, diabetes and muscular dystrophies. While caveolins and caveolae are extensively studied in extra-ocular settings, their contributions to ocular function and disease pathogenesis are just beginning to be appreciated. Several putative caveolin/caveolae functions are relevant to the eye and Cav1 is highly expressed in retinal vascular and choroidal endothelium, Müller glia, the retinal pigment epithelium (RPE), and the Schlemm's canal endothelium and trabecular meshwork cells. Variants at the CAV1/2 gene locus are associated with risk of primary open angle glaucoma and the high risk HTRA1 variant for age-related macular degeneration is thought to exert its effect through regulation of Cav1 expression. Caveolins also play important roles in modulating retinal neuroinflammation and blood retinal barrier permeability. In this article, we describe the current state of caveolin/caveolae research in the context of ocular function and pathophysiology. Finally, we discuss new evidence showing that retinal Cav1 exists and functions outside caveolae.
Collapse
Affiliation(s)
- Eric N Enyong
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jami M Gurley
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael L De Ieso
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| | - W Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| | - Michael H Elliott
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
11
|
Wilcox PA, Strong TD, Sebbag L, Allbaugh RA. Effect of topical nitric oxide donors 0.03% nitroglycerin and 0.1% hydralazine on intraocular pressure in healthy canine eyes. Vet Med Sci 2022; 8:2367-2373. [DOI: 10.1002/vms3.945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Parker A. Wilcox
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine Iowa State University Ames Iowa
| | - Travis D. Strong
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine Iowa State University Ames Iowa
| | - Lionel Sebbag
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine Iowa State University Ames Iowa
| | - Rachel A. Allbaugh
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine Iowa State University Ames Iowa
| |
Collapse
|
12
|
Chen Y, Su Y, Wang F. The Piezo1 ion channel in glaucoma: a new perspective on mechanical stress. Hum Cell 2022; 35:1307-1322. [PMID: 35767143 DOI: 10.1007/s13577-022-00738-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022]
Abstract
Glaucomatous optic nerve damage caused by pathological intraocular pressure elevation is irreversible, and its course is often difficult to control. This group of eye diseases is closely related to biomechanics, and the correlation between glaucoma pathogenesis and mechanical stimulation has been studied in recent decades. The nonselective cation channel Piezo1, the most important known mechanical stress sensor, is a transmembrane protein widely expressed in various cell types. Piezo1 has been detected throughout the eye, and the close relationship between Piezo1 and glaucoma is being confirmed. Pathological changes in glaucoma occur in both the anterior and posterior segments of the eye, and it is of great interest for researchers to determine whether Piezo1 plays a role in these changes and how it functions. The elucidation of the mechanisms of Piezo1 action in nonocular tissues and the reported roles of similar mechanically activated ion channels in glaucoma will provide an appropriate basis for further investigation. From a new perspective, this review provides a detailed description of the current progress in elucidating the role of Piezo1 in glaucoma, including relevant questions and assumptions, the remaining challenging research directions and mechanism-related therapeutic potential.
Collapse
Affiliation(s)
- Yidan Chen
- Department of Ophthalmology, Fourth Affiliated Hospital, Harbin Medical University, Yiyuan Road, Harbin, 150001, China
| | - Ying Su
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Yiman Road, Harbin, 150007, China.
| | - Feng Wang
- Department of Ophthalmology, Fourth Affiliated Hospital, Harbin Medical University, Yiyuan Road, Harbin, 150001, China.
| |
Collapse
|
13
|
da Silva CN, Nunes KP, Dourado LFN, Vieira TO, Mariano XM, Cunha Junior ADS, de Lima ME. From the PnTx2-6 Toxin to the PnPP-19 Engineered Peptide: Therapeutic Potential in Erectile Dysfunction, Nociception, and Glaucoma. Front Mol Biosci 2022; 9:831823. [PMID: 35480885 PMCID: PMC9035689 DOI: 10.3389/fmolb.2022.831823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
The venom of the “armed” spider Phoneutria nigriventer comprises several potent toxins. One of the most toxic components from this venom is the neurotoxin PnTx2-6 (LD50 = ∼ 0.7 μg/mouse, 48 residues, five disulfide bridges, MW = 5,289.31 Da), which slows down the inactivation of various Na+ channels. In mice and rats, this toxin causes priapism, an involuntary and painful erection, similar to what is observed in humans bitten by P. nigriventer. While not completely elucidated, it is clear that PnTx2-6 potentiates erectile function via NO/cGMP signaling, but it has many off-target effects. Seeking to obtain a simpler and less toxic molecule able to retain the pharmacological properties of this toxin, we designed and synthesized the peptide PnPP-19 (19 residues, MW = 2,485.6 Da), representing a discontinuous epitope of PnTx2-6. This synthetic peptide also potentiates erectile function via NO/cGMP, but it does not target Na+ channels, and therefore, it displays nontoxic properties in animals even at high doses. PnPP-19 effectively potentiates erectile function not only after subcutaneous or intravenous administration but also following topical application. Surprisingly, PnPP-19 showed central and peripheral antinociceptive activity involving the opioid and cannabinoid systems, suggesting applicability in nociception. Furthermore, considering that PnPP-19 increases NO availability in the corpus cavernosum, this peptide was also tested in a model of induced intraocular hypertension, characterized by low NO levels, and it showed promising results by decreasing the intraocular pressure which prevents retinal damage. Herein, we discuss how was engineered this smaller active non-toxic peptide with promising results in the treatment of erectile dysfunction, nociception, and glaucoma from the noxious PnTx2-6, as well as the pitfalls of this ongoing journey.
Collapse
Affiliation(s)
- Carolina Nunes da Silva
- Departmentamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Maria Elena de Lima, ; Carolina Nunes da Silva, ; Kenia Pedrosa Nunes,
| | - Kenia Pedrosa Nunes
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States
- *Correspondence: Maria Elena de Lima, ; Carolina Nunes da Silva, ; Kenia Pedrosa Nunes,
| | | | - Thayllon Oliveira Vieira
- Programa de Pós-Graduação em Medicina e Biomedicina Faculdade Santa Casa de Belo Horizonte, Belo Horizonte, Brazil
| | - Xavier Maia Mariano
- Programa de Pós-Graduação em Medicina e Biomedicina Faculdade Santa Casa de Belo Horizonte, Belo Horizonte, Brazil
| | | | - Maria Elena de Lima
- Departmentamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Programa de Pós-Graduação em Medicina e Biomedicina Faculdade Santa Casa de Belo Horizonte, Belo Horizonte, Brazil
- *Correspondence: Maria Elena de Lima, ; Carolina Nunes da Silva, ; Kenia Pedrosa Nunes,
| |
Collapse
|
14
|
De Ieso ML, Kuhn M, Bernatchez P, Elliott MH, Stamer WD. A Role of Caveolae in Trabecular Meshwork Mechanosensing and Contractile Tone. Front Cell Dev Biol 2022; 10:855097. [PMID: 35372369 PMCID: PMC8969750 DOI: 10.3389/fcell.2022.855097] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Polymorphisms in the CAV1/2 gene loci impart increased risk for primary open-angle glaucoma (POAG). CAV1 encodes caveolin-1 (Cav1), which is required for biosynthesis of plasma membrane invaginations called caveolae. Cav1 knockout mice exhibit elevated intraocular pressure (IOP) and decreased outflow facility, but the mechanistic role of Cav1 in IOP homeostasis is unknown. We hypothesized that caveolae sequester/inhibit RhoA, to regulate trabecular meshwork (TM) mechanosensing and contractile tone. Using phosphorylated myosin light chain (pMLC) as a surrogate indicator for Rho/ROCK activity and contractile tone, we found that pMLC was elevated in Cav1-deficient TM cells compared to control (131 ± 10%, n = 10, p = 0.016). Elevation of pMLC levels following Cav1 knockdown occurred in cells on a soft surface (137 ± 7%, n = 24, p < 0.0001), but not on a hard surface (122 ± 17%, n = 12, p = 0.22). In Cav1-deficient TM cells where pMLC was elevated, Rho activity was also increased (123 ± 7%, n = 6, p = 0.017), suggesting activation of the Rho/ROCK pathway. Cyclic stretch reduced pMLC/MLC levels in TM cells (69 ± 7% n = 9, p = 0.002) and in Cav1-deficient TM cells, although not significantly (77 ± 11% n = 10, p = 0.059). Treatment with the Cav1 scaffolding domain mimetic, cavtratin (1 μM) caused a reduction in pMLC (70 ± 5% n = 7, p = 0.001), as did treatment with the scaffolding domain mutant cavnoxin (1 μM) (82 ± 7% n = 7, p = 0.04). Data suggest that caveolae differentially regulate RhoA signaling, and that caveolae participate in TM mechanotransduction. Cav1 regulation of these key TM functions provide evidence for underlying mechanisms linking polymorphisms in the Cav1/2 gene loci with increased POAG risk.
Collapse
Affiliation(s)
- Michael L. De Ieso
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, United States
| | - Megan Kuhn
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, United States
| | - Pascal Bernatchez
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Heart + Lung Innovation Centre, St. Paul’s Hospital, Vancouver, BC, Canada
| | - Michael H. Elliott
- Department of Ophthalmology, Dean McGee Eye Institute University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, United States
| |
Collapse
|
15
|
Han B, Song M, Li L, Sun X, Lei Y. The Application of Nitric Oxide for Ocular Hypertension Treatment. Molecules 2021; 26:molecules26237306. [PMID: 34885889 PMCID: PMC8659272 DOI: 10.3390/molecules26237306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 12/21/2022] Open
Abstract
Despite of various therapeutic methods for treating ocular hypertension and glaucoma, it still remains the leading cause of irreversible blindness. Intraocular pressure (IOP) lowering is the most effective way to slow disease progression and prevent blindness. Among the ocular hypotensive drugs currently in use, only a couple act on the conventional outflow system, which is the main pathway for aqueous humor outflow and the major lesion site resulting in ocular hypertension. Nitric oxide (NO) is a commendable new class of glaucoma drugs that acts on the conventional outflow pathway. An increasing number of nitric oxide donors have been developed for glaucoma and ocular hypertension treatment. Here, we will review how NO lowers IOP and the types of nitric oxide donors that have been developed. And a brief analysis of the advantages and challenges associated with the application will be made. The literature used in this review is based on Pubmed database search using ‘nitric oxide’ and ‘glaucoma’ as key words.
Collapse
|
16
|
Gasotransmitters: Potential Therapeutic Molecules of Fibrotic Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3206982. [PMID: 34594474 PMCID: PMC8478550 DOI: 10.1155/2021/3206982] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/31/2021] [Indexed: 02/06/2023]
Abstract
Fibrosis is defined as the pathological progress of excessive extracellular matrix (ECM), such as collagen, fibronectin, and elastin deposition, as the regenerative capacity of cells cannot satisfy the dynamic repair of chronic damage. The well-known features of tissue fibrosis are characterized as the presence of excessive activated and proliferated fibroblasts and the differentiation of fibroblasts into myofibroblasts, and epithelial cells undergo the epithelial-mesenchymal transition (EMT) to expand the number of fibroblasts and myofibroblasts thereby driving fibrogenesis. In terms of mechanism, during the process of fibrosis, the activations of the TGF-β signaling pathway, oxidative stress, cellular senescence, and inflammatory response play crucial roles in the activation and proliferation of fibroblasts to generate ECM. The deaths due to severe fibrosis account for almost half of the total deaths from various diseases, and few treatment strategies are available for the prevention of fibrosis as yet. Recently, numerous studies demonstrated that three well-defined bioactive gasotransmitters, including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), generally exhibited anti-inflammatory, antioxidative, antiapoptotic, and antiproliferative properties. Besides these effects, a number of studies have reported that low-dose exogenous and endogenous gasotransmitters can delay and interfere with the occurrence and development of fibrotic diseases, including myocardial fibrosis, idiopathic pulmonary fibrosis, liver fibrosis, renal fibrosis, diabetic diaphragm fibrosis, and peritoneal fibrosis. Furthermore, in animal and clinical experiments, the inhalation of low-dose exogenous gas and intraperitoneal injection of gaseous donors, such as SNAP, CINOD, CORM, SAC, and NaHS, showed a significant therapeutic effect on the inhibition of fibrosis through modulating the TGF-β signaling pathway, attenuating oxidative stress and inflammatory response, and delaying the cellular senescence, while promoting the process of autophagy. In this review, we first demonstrate and summarize the therapeutic effects of gasotransmitters on diverse fibrotic diseases and highlight their molecular mechanisms in the process and development of fibrosis.
Collapse
|
17
|
Fan W, Song M, Li L, Niu L, Chen Y, Han B, Sun X, Yang Z, Lei Y, Chen X. Endogenous dual stimuli-activated NO generation in the conventional outflow pathway for precision glaucoma therapy. Biomaterials 2021; 277:121074. [PMID: 34482086 DOI: 10.1016/j.biomaterials.2021.121074] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/07/2021] [Accepted: 08/15/2021] [Indexed: 12/28/2022]
Abstract
High intraocular pressure (IOP) has been regarded as a predominant risk factor for glaucoma. Nitric oxide (NO) is shown to lower IOP, but the magnitude and duration of IOP reduction are not satisfying due to the poor cornea penetration of NO drugs and limited NO generation in the trabecular meshwork (TM)/Schlemm's canal (SC) area. Herein, we introduce deep cornea penetrating biodegradable hollow mesoporous organosilica (HOS) nanocapsules for the efficient co-delivery of hydrophobic JS-K (JR) and hydrophilic l-Arginine (LO). The resulting HOS-JRLO can be reduced and oxidized by the ascorbic acid (AA) and catalysis of endothelial nitric oxide synthase (eNOS) in the TM/SC microenvironment to release NO for inducing appreciable IOP reduction in various glaucoma mouse models. In addition to developing an endogenous stimuli-responsive NO nanotherapeutic, this study is also expected to establish a versatile, non-invasive, and efficacious treatment paradigm for precision glaucoma therapy.
Collapse
Affiliation(s)
- Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Maomao Song
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia; Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Liping Li
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia; Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Liangliang Niu
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia; Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yue Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Binze Han
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia; Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia; Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Zhen Yang
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University, Fuzhou, 350117, China.
| | - Yuan Lei
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia; Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore; Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore; Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
18
|
Mrugacz M, Bryl A, Falkowski M, Zorena K. Integrins: An Important Link between Angiogenesis, Inflammation and Eye Diseases. Cells 2021; 10:1703. [PMID: 34359873 PMCID: PMC8305893 DOI: 10.3390/cells10071703] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 12/25/2022] Open
Abstract
Integrins belong to a group of cell adhesion molecules (CAMs) which is a large group of membrane-bound proteins. They are responsible for cell attachment to the extracellular matrix (ECM) and signal transduction from the ECM to the cells. Integrins take part in many other biological activities, such as extravasation, cell-to-cell adhesion, migration, cytokine activation and release, and act as receptors for some viruses, including severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2). They play a pivotal role in cell proliferation, migration, apoptosis, tissue repair and are involved in the processes that are crucial to infection, inflammation and angiogenesis. Integrins have an important part in normal development and tissue homeostasis, and also in the development of pathological processes in the eye. This review presents the available evidence from human and animal research into integrin structure, classification, function and their role in inflammation, infection and angiogenesis in ocular diseases. Integrin receptors and ligands are clinically interesting and may be promising as new therapeutic targets in the treatment of some eye disorders.
Collapse
Affiliation(s)
- Małgorzata Mrugacz
- Department of Ophthalmology and Eye Rehabilitation, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | - Anna Bryl
- Department of Ophthalmology and Eye Rehabilitation, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | | | - Katarzyna Zorena
- Department of Immunobiology and Environmental Microbiology, Medical University of Gdansk, 80-211 Gdansk, Poland;
| |
Collapse
|
19
|
Myer C, Abdelrahman L, Banerjee S, Khattri RB, Merritt ME, Junk AK, Lee RK, Bhattacharya SK. Aqueous humor metabolite profile of pseudoexfoliation glaucoma is distinctive. Mol Omics 2021; 16:425-435. [PMID: 32149291 DOI: 10.1039/c9mo00192a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Pseudoexfoliation (PEX) is a known cause of secondary open angle glaucoma. PEX glaucoma is associated with structural and metabolic changes in the eye. Despite similarities, PEX and primary open angle glaucoma (POAG) may have differences in the composition of metabolites. We analyzed the metabolites of the aqueous humor (AH) of PEX subjects sequentially first using nuclear magnetic resonance (1H NMR: HSQC and TOCSY), and subsequently with liquid chromatography tandem mass spectrometry (LC-MS/MS) implementing isotopic ratio outlier analysis (IROA) quantification. The findings were compared with previous results for POAG and control subjects analyzed using identical sequential steps. We found significant differences in metabolites between the three conditions. Principle component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) indicated clear grouping based on the metabolomes of the three conditions. We used machine learning algorithms and a percentage set of the data to train, and utilized a different or larger dataset to test whether a trained model can correctly classify the test dataset as PEX, POAG or control. Three different algorithms: linear support vector machines (SVM), deep learning, and a neural network were used for prediction. They all accurately classified the test datasets based on the AH metabolome of the sample. We next compared the AH metabolome with known AH and TM proteomes and genomes in order to understand metabolic pathways that may contribute to alterations in the AH metabolome in PEX. We found potential protein/gene pathways associated with observed significant metabolite changes in PEX.
Collapse
Affiliation(s)
- Ciara Myer
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA. and Miami Integrative Metabolomics Research Center, University of Miami, Miami, Florida, USA
| | - Leila Abdelrahman
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA. and Miami Integrative Metabolomics Research Center, University of Miami, Miami, Florida, USA
| | - Santanu Banerjee
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA. and Miami Integrative Metabolomics Research Center, University of Miami, Miami, Florida, USA and Department of Surgery, University of Miami, Miami, Florida, USA
| | | | | | - Anna K Junk
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA. and Miami Integrative Metabolomics Research Center, University of Miami, Miami, Florida, USA and Miami Veterans Affairs Healthcare System, Miami, Florida, USA
| | - Richard K Lee
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA. and Miami Integrative Metabolomics Research Center, University of Miami, Miami, Florida, USA
| | - Sanjoy K Bhattacharya
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA. and Miami Integrative Metabolomics Research Center, University of Miami, Miami, Florida, USA
| |
Collapse
|
20
|
Dmuchowska DA, Pietrowska K, Krasnicki P, Kowalczyk T, Misiura M, Grochowski ET, Mariak Z, Kretowski A, Ciborowski M. Metabolomics Reveals Differences in Aqueous Humor Composition in Patients With and Without Pseudoexfoliation Syndrome. Front Mol Biosci 2021; 8:682600. [PMID: 34055894 PMCID: PMC8160430 DOI: 10.3389/fmolb.2021.682600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/04/2021] [Indexed: 02/02/2023] Open
Abstract
Pseudoexfoliation syndrome (XFS) is stress- or inflammation-induced elastosis accompanied by excessive production of microfibrils and their deposition in the anterior segment of the eye. Approximately 60–70 million people are affected by XFS worldwide. It is a component of a systemic disorder, considered a major risk factor for accelerated cataract formation, cataract surgery complications and development of glaucoma, which untreated or inadequately treated may lead to blindness. Moreover, XFS has been associated with cardiovascular and cerebrovascular morbidity, dementia, sensorineural hearing loss and pelvic organ prolapse. The pathogenesis of XFS has not been fully elucidated yet. Aqueous humor (AH) is a transparent fluid filling the anterior and posterior chambers of the eye. Determination of AH metabolites that are characteristic for XFS may provide valuable information about the molecular background of this ocular disorder. The aim of this study was to compare the composition of AH in XFS and non-XFS patients undergoing cataract surgery. The AH samples from 34 patients (15 with XFS and 19 without) were analyzed using liquid chromatography coupled to a Quadrupole Time-of-Flight mass spectrometer (LC-QTOF-MS). The obtained metabolic fingerprints were analyzed using multivariate statistics. Eleven statistically significant metabolites were identified. Compared with the non-XFS group, the AH of patients with XFS contained significantly lower levels of amino acids and their derivatives, for example, arginine (−31%, VIP = 2.38) and homo-arginine (−19%, VIP = 1.38). Also, a decrease in the levels of two acylcarnitines, hydroxybutyrylcarnitine (−29%, VIP = 1.24) and decatrienoylcarnitine (−46%, VIP = 1.89), was observed. However, the level of indoleacetaldehyde in XFS patients was significantly higher (+96%, VIP = 2.64). Other significant metabolites were two well-recognized antioxidants, ascorbic acid (−33%, VIP = 2.11) and hydroxyanthranilic acid (−33%, VIP = 2.25), as well as S-adenosylmethionine, a compound with anti-inflammatory properties (−29%, VIP = 1.93). Metabolic pathway analysis demonstrated that the identified metabolites belonged to eight metabolic pathways, with cysteine and methionine metabolism as well as arginine and proline metabolism being the most frequently represented. XFS can be associated with enhanced oxidative stress and inflammation, as well as with the disturbances of cellular respiration and mitochondrial energy production. Implementation of non-targeted metabolomics provided a better insight into the still not fully understood pathogenesis of XFS.
Collapse
Affiliation(s)
| | - Karolina Pietrowska
- Metabolomics Laboratory, Clinical Research Center, Medical University of Bialystok, Bialystok, Poland
| | - Pawel Krasnicki
- Department of Ophthalmology, Medical University of Bialystok, Bialystok, Poland
| | - Tomasz Kowalczyk
- Metabolomics Laboratory, Clinical Research Center, Medical University of Bialystok, Bialystok, Poland
| | - Magdalena Misiura
- Department of Pharmaceutical Analysis, Medical University of Bialystok, Bialystok, Poland
| | | | - Zofia Mariak
- Department of Ophthalmology, Medical University of Bialystok, Bialystok, Poland
| | - Adam Kretowski
- Metabolomics Laboratory, Clinical Research Center, Medical University of Bialystok, Bialystok, Poland.,Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Michal Ciborowski
- Metabolomics Laboratory, Clinical Research Center, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
21
|
Elevated dimethylarginine, ATP, cytokines, metabolic remodeling involving tryptophan metabolism and potential microglial inflammation characterize primary open angle glaucoma. Sci Rep 2021; 11:9766. [PMID: 33963197 PMCID: PMC8105335 DOI: 10.1038/s41598-021-89137-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/20/2021] [Indexed: 02/03/2023] Open
Abstract
Glaucoma of which primary open angle glaucoma (POAG) constitutes 75%, is the second leading cause of blindness. Elevated intra ocular pressure and Nitric oxide synthase (NOS) dysfunction are hallmarks of POAG. We analyzed clinical data, cytokine profile, ATP level, metabolomics and GEO datasets to identify features unique to POAG. N9 microglial cells are used to gain mechanistic insights. Our POAG cohort showed elevated ATP in aqueous humor and cytokines in plasma. Metabolomic analysis showed changes in 21 metabolites including Dimethylarginine (DMAG) and activation of tryptophan metabolism in POAG. Analysis of GEO data sets and previously published proteomic data sets bins genes into signaling and metabolic pathways. Pathways from reanalyzed metabolomic data from literature significantly overlapped with those from our POAG data. DMAG modulated purinergic signaling, ATP secretion and cytokine expression were inhibited by N-Ethylmaleimide, NO donors, BAPTA and purinergic receptor inhibitors. ATP induced elevated intracellular calcium level and cytokines expression were inhibited by BAPTA. Metabolomics of cell culture supernatant from ATP treated sets showed metabolic deregulation and activation of tryptophan metabolism. DMAG and ATP induced IDO1/2 and TDO2 were inhibited by N-Ethylmaleimide, sodium nitroprusside and BAPTA. Our data obtained from clinical samples and cell culture studies reveal a strong association of elevated DMAG, ATP, cytokines and activation of tryptophan metabolism with POAG. DMAG mediated ATP signaling, inflammation and metabolic remodeling in microglia might have implications in management of POAG.
Collapse
|
22
|
Tummanapalli SS, Kuppusamy R, Yeo JH, Kumar N, New EJ, Willcox MDP. The role of nitric oxide in ocular surface physiology and pathophysiology. Ocul Surf 2021; 21:37-51. [PMID: 33940170 DOI: 10.1016/j.jtos.2021.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/31/2022]
Abstract
Nitric oxide (NO) has a wide array of biological functions including the regulation of vascular tone, neurotransmission, immunomodulation, stimulation of proinflammatory cytokine expression and antimicrobial action. These functions may depend on the type of isoform that is responsible for the synthesis of NO. NO is found in various ocular tissues playing a pivotal role in physiological mechanisms, namely regulating vascular tone in the uvea, retinal blood circulation, aqueous humor dynamics, neurotransmission and phototransduction in retinal layers. Unregulated production of NO in ocular tissues may result in production of toxic superoxide free radicals that participate in ocular diseases such as endotoxin-induced uveitis, ischemic proliferative retinopathy and neurotoxicity of optic nerve head in glaucoma. However, the role of NO on the ocular surface in mediating physiology and pathophysiological processes is not fully understood. Moreover, methods used to measure levels of NO in the biological samples of the ocular surface are not well established due to its rapid oxidation. The purpose of this review is to highlight the role of NO in the physiology and pathophysiology of ocular surface and propose suitable techniques to measure NO levels in ocular surface tissues and tears. This will improve the understanding of NO's role in ocular surface biology and the development of new NO-based therapies to treat various ocular surface diseases. Further, this review summarizes the biochemistry underpinning NO's antimicrobial action.
Collapse
Affiliation(s)
| | - Rajesh Kuppusamy
- School of Optometry & Vision Science, University of New South Wales, Australia; School of Chemistry, University of New South Wales, Australia
| | - Jia Hao Yeo
- The University of Sydney, School of Chemistry, NSW, 2006, Australia
| | - Naresh Kumar
- School of Chemistry, University of New South Wales, Australia
| | - Elizabeth J New
- The University of Sydney, School of Chemistry, NSW, 2006, Australia; The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW, 2006, Australia
| | - Mark D P Willcox
- School of Optometry & Vision Science, University of New South Wales, Australia
| |
Collapse
|
23
|
Patel PD, Chen YL, Kasetti RB, Maddineni P, Mayhew W, Millar JC, Ellis DZ, Sonkusare SK, Zode GS. Impaired TRPV4-eNOS signaling in trabecular meshwork elevates intraocular pressure in glaucoma. Proc Natl Acad Sci U S A 2021; 118:e2022461118. [PMID: 33853948 PMCID: PMC8072326 DOI: 10.1073/pnas.2022461118] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Primary Open Angle Glaucoma (POAG) is the most common form of glaucoma that leads to irreversible vision loss. Dysfunction of trabecular meshwork (TM) tissue, a major regulator of aqueous humor (AH) outflow resistance, is associated with intraocular pressure (IOP) elevation in POAG. However, the underlying pathological mechanisms of TM dysfunction in POAG remain elusive. In this regard, transient receptor potential vanilloid 4 (TRPV4) cation channels are known to be important Ca2+ entry pathways in multiple cell types. Here, we provide direct evidence supporting Ca2+ entry through TRPV4 channels in human TM cells and show that TRPV4 channels in TM cells can be activated by increased fluid flow/shear stress. TM-specific TRPV4 channel knockout in mice elevated IOP, supporting a crucial role for TRPV4 channels in IOP regulation. Pharmacological activation of TRPV4 channels in mouse eyes also improved AH outflow facility and lowered IOP. Importantly, TRPV4 channels activated endothelial nitric oxide synthase (eNOS) in TM cells, and loss of eNOS abrogated TRPV4-induced lowering of IOP. Remarkably, TRPV4-eNOS signaling was significantly more pronounced in TM cells compared to Schlemm's canal cells. Furthermore, glaucomatous human TM cells show impaired activity of TRPV4 channels and disrupted TRPV4-eNOS signaling. Flow/shear stress activation of TRPV4 channels and subsequent NO release were also impaired in glaucomatous primary human TM cells. Together, our studies demonstrate a central role for TRPV4-eNOS signaling in IOP regulation. Our results also provide evidence that impaired TRPV4 channel activity in TM cells contributes to TM dysfunction and elevated IOP in glaucoma.
Collapse
Affiliation(s)
- Pinkal D Patel
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107
| | - Yen-Lin Chen
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
| | - Ramesh B Kasetti
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107
| | - Prabhavathi Maddineni
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107
| | - William Mayhew
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107
| | - J Cameron Millar
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107
| | - Dorette Z Ellis
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107
| | - Swapnil K Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908;
- Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Gulab S Zode
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107;
| |
Collapse
|
24
|
Madekurozwa M, Stamer WD, Reina-Torres E, Sherwood JM, Overby DR. The ocular pulse decreases aqueous humor outflow resistance by stimulating nitric oxide production. Am J Physiol Cell Physiol 2021; 320:C652-C665. [PMID: 33439773 PMCID: PMC8260357 DOI: 10.1152/ajpcell.00473.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/21/2020] [Accepted: 01/12/2021] [Indexed: 11/22/2022]
Abstract
Intraocular pressure (IOP) is not static, but rather oscillates by 2-3 mmHg because of cardiac pulsations in ocular blood volume known as the ocular pulse. The ocular pulse induces pulsatile shear stress in Schlemm's canal (SC). We hypothesize that the ocular pulse modulates outflow facility by stimulating shear-induced nitric oxide (NO) production by SC cells. We confirmed that living mice exhibit an ocular pulse with a peak-to-peak (pk-pk) amplitude of 0.5 mmHg under anesthesia. Using iPerfusion, we measured outflow facility (flow/pressure) during alternating periods of steady or pulsatile IOP in both eyes of 16 cadaveric C57BL/6J mice (13-14 weeks). Eyes were retained in situ, with an applied mean pressure of 8 mmHg and 1.0 mmHg pk-pk pressure amplitude at 10 Hz to mimic the murine heart rate. One eye of each cadaver was perfused with 100 µM L-NAME to inhibit NO synthase, whereas the contralateral eye was perfused with vehicle. During the pulsatile period in the vehicle-treated eye, outflow facility increased by 16 [12, 20] % (P < 0.001) relative to the facility measured during the preceding and subsequent steady periods. This effect was partly inhibited by L-NAME, where pressure pulsations increased outflow facility by 8% [4, 12] (P < 0.001). Thus, the ocular pulse causes an immediate increase in outflow facility in mice, with roughly one-half of the facility increase attributable to NO production. These studies reveal a dynamic component to outflow function that responds instantly to the ocular pulse and may be important for outflow regulation and IOP homeostasis.
Collapse
Affiliation(s)
- Michael Madekurozwa
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, North Carolina
| | - Ester Reina-Torres
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Joseph M Sherwood
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Darryl R Overby
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
25
|
Lisi F, Zelikin AN, Chandrawati R. Nitric Oxide to Fight Viral Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003895. [PMID: 33850691 PMCID: PMC7995026 DOI: 10.1002/advs.202003895] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/23/2020] [Indexed: 05/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that has quickly and deeply affected the world, with over 60 million confirmed cases. There has been a great effort worldwide to contain the virus and to search for an effective treatment for patients who become critically ill with COVID-19. A promising therapeutic compound currently undergoing clinical trials for COVID-19 is nitric oxide (NO), which is a free radical that has been previously reported to inhibit the replication of several DNA and RNA viruses, including coronaviruses. Although NO has potent antiviral activity, it has a complex role in the immunological host responses to viral infections, i.e., it can be essential for pathogen control or detrimental for the host, depending on its concentration and the type of virus. In this Essay, the antiviral role of NO against SARS-CoV, SARS-CoV-2, and other human viruses is highlighted, current development of NO-based therapies used in the clinic is summarized, existing challenges are discussed and possible further developments of NO to fight viral infections are suggested.
Collapse
Affiliation(s)
- Fabio Lisi
- School of Chemical Engineering and Australian Centre for NanoMedicine (ACN)The University of New South Wales (UNSW Sydney)SydneyNSW2052Australia
| | - Alexander N. Zelikin
- Department of Chemistry and iNANO Interdisciplinary Nanoscience CenterAarhus UniversityAarhus8000Denmark
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for NanoMedicine (ACN)The University of New South Wales (UNSW Sydney)SydneyNSW2052Australia
| |
Collapse
|
26
|
Metal-organic frameworks for therapeutic gas delivery. Adv Drug Deliv Rev 2021; 171:199-214. [PMID: 33561450 DOI: 10.1016/j.addr.2021.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022]
Abstract
Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are gaseous signaling molecules (gasotransmitters) that regulate both physiological and pathological processes and offer therapeutic potential for the treatment of many diseases, such as cancer, cardiovascular disease, renal disease, bacterial and viral infections. However, the inherent labile nature of therapeutic gases results in difficulties in direct gases administration and their controlled delivery at clinically relevant ranges. Metal-organic frameworks (MOFs) with highly porous, stable, and easy-to-tailor properties have shown promising therapeutic gas delivery potential. Herein, we highlight the recent advances of MOF-based platforms for therapeutic gas delivery, either by endogenous (i.e., direct transfer of gases to targets) or exogenous (i.e., stimulating triggered release of gases) means. Reports that involve in vitro and/or in vivo studies are highlighted due to their high potential for clinical translation. Current challenges for clinical requirements and possible future innovative designs to meet variable healthcare needs are discussed.
Collapse
|
27
|
Tan C, Jia F, Zhang P, Sun X, Qiao Y, Chen X, Wang Y, Chen J, Lei Y. A miRNA stabilizing polydopamine nano-platform for intraocular delivery of miR-21-5p in glaucoma therapy. J Mater Chem B 2021; 9:3335-3345. [PMID: 33881417 DOI: 10.1039/d0tb02881a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The elevation of intraocular pressure (IOP) is an important risk factor in the development of primary open angle glaucoma (POAG), which is the main cause of irreversible vision loss. miRNAs are promising new anti-glaucoma therapeutic agents. However, the low stability and cellular transfection of miRNA in vivo hinder its further application. This study aims to investigate the use of polydopamine-polyethylenimine nanoparticles (PDA/PEI NPs) as miRNA carriers in the treatment of ocular hypertension and glaucoma. The in vitro study proves that the carrier preserves the activity of nucleic acid for a long period. Besides, it has comparable transfection efficiency with commercially available vehicles, while having lower cytotoxicity. It has been demonstrated in the animal model that PDA/PEI NPs successfully reach the target tissues without an obvious inflammatory response. PDA/PEI NPs/miR-21-5p increases the permeability of porcine angular aqueous plexus cells, thereby reducing IOP by facilitating the conventional outflow pathway at least partially through the pathway involving endothelial nitric oxide synthase. Our results indicate that PDA/PEI NPs/miR-21-5p is a promising anti-glaucoma drug for treating POAG. And the delivery strategy may be extended to other gene therapy in treating intraocular diseases.
Collapse
Affiliation(s)
- Chen Tan
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kondkar AA. Updates on Genes and Genetic Mechanisms Implicated in Primary Angle-Closure Glaucoma. APPLICATION OF CLINICAL GENETICS 2021; 14:89-112. [PMID: 33727852 PMCID: PMC7955727 DOI: 10.2147/tacg.s274884] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/18/2021] [Indexed: 12/29/2022]
Abstract
Primary angle-closure glaucoma (PACG) is estimated to affect over 30 million people worldwide by 2040 and is highly prevalent in the Asian population. PACG is more severe and carries three times the higher risk of blindness than primary open-angle glaucoma, thus representing a significant public health concern. High heritability and ethnic-specific predisposition to PACG suggest the involvement of genetic factors in disease development. In the recent past, genetic studies have led to the successful identification of several genes and loci associated with PACG across different ethnicities. The precise cellular and molecular roles of these multiple loci in the development and progression of PACG remains to be elucidated. Nonetheless, these studies have significantly increased our understanding of the emerging cellular processes and biological pathways that might provide more significant insights into the disease’s genetic etiology and may be valuable for future clinical applications. This review aims to summarize and update the current knowledge of PACG genetics analysis research.
Collapse
Affiliation(s)
- Altaf A Kondkar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
29
|
Mao YJ, Wu JB, Yang ZQ, Zhang YH, Huang ZJ. Nitric oxide donating anti-glaucoma drugs: advances and prospects. Chin J Nat Med 2021; 18:275-283. [PMID: 32402405 DOI: 10.1016/s1875-5364(20)30035-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Indexed: 12/11/2022]
Abstract
Glaucoma is a disease that causes irreversible blindness. Reducing intraocular pressure (IOP) is the main treatment at present. Nitric oxide (NO), an endogenous gas signaling molecule, can increase aqueous humor outflow facility, inhibit aqueous humor production thereby reducing IOP, as well as regulate eye blood flow and protect the optic nerve. Therefore, NO donating anti-glaucoma drugs have broad research prospects. In this review, we summarize NO-mediated therapy for glaucoma, and the state of the art of some NO donating molecules, including latanoprostene bunod in market and some other candidate compounds, for the intervention of glaucoma, as well as prospects and challenges ahead in this field.
Collapse
Affiliation(s)
- Yu-Jie Mao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Jian-Bing Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Ze-Qiu Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Yi-Hua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Zhang-Jian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
30
|
Reina-Torres E, Boussommier-Calleja A, Sherwood JM, Overby DR. Aqueous Humor Outflow Requires Active Cellular Metabolism in Mice. Invest Ophthalmol Vis Sci 2021; 61:45. [PMID: 32845955 PMCID: PMC7452856 DOI: 10.1167/iovs.61.10.45] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose Conventional wisdom posits that aqueous humor leaves the eye by passive bulk flow without involving energy-dependent processes. However, recent studies have shown that active processes, such as cell contractility, contribute to outflow regulation. Here, we examine whether inhibiting cellular metabolism affects outflow facility in mice. Methods We measured outflow facility in paired enucleated eyes from C57BL/6J mice using iPerfusion. We had three Experimental Sets: ES1, perfused at 35°C versus 22°C; ES2, perfused with metabolic inhibitors versus vehicle at 35°C; and ES3, perfused at 35°C versus 22°C in the presence of metabolic inhibitors. Inhibitors targeted glycolysis and oxidative phosphorylation (2-deoxy-D-glucose, 3PO and sodium azide). We also measured adenosine triphosphate (ATP) levels in separate murine anterior segments treated like ES1 and ES2. Results Reducing temperature decreased facility by 63% [38%, 78%] (mean [95% confidence interval (CI)], n = 10 pairs; P = 0.002) in ES1 after correcting for changes in viscosity. Metabolic inhibitors reduced facility by 21% [9%, 31%] (n = 9, P = 0.006) in ES2. In the presence of inhibitors, temperature reduction decreased facility by 44% [29%, 56%] (n = 8, P < 0.001) in ES3. Metabolic inhibitors reduced anterior segment adenosine triphosphate (ATP) levels by 90% [83%, 97%] (n = 5, P<<0.001), but reducing temperature did not affect ATP. Conclusions Inhibiting cellular metabolism decreases outflow facility within minutes. This implies that outflow is not entirely passive, but depends partly on energy-dependent cellular processes, at least in mice. This study also suggests that there is a yet unidentified mechanism, which is strongly temperature-dependent but metabolism-independent, that is necessary for nearly half of normal outflow function in mice.
Collapse
Affiliation(s)
- Ester Reina-Torres
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | | | - Joseph M Sherwood
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Darryl R Overby
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
31
|
Reina-Torres E, De Ieso ML, Pasquale LR, Madekurozwa M, van Batenburg-Sherwood J, Overby DR, Stamer WD. The vital role for nitric oxide in intraocular pressure homeostasis. Prog Retin Eye Res 2020; 83:100922. [PMID: 33253900 DOI: 10.1016/j.preteyeres.2020.100922] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Catalyzed by endothelial nitric oxide (NO) synthase (eNOS) activity, NO is a gaseous signaling molecule maintaining endothelial and cardiovascular homeostasis. Principally, NO regulates the contractility of vascular smooth muscle cells and permeability of endothelial cells in response to either biochemical or biomechanical cues. In the conventional outflow pathway of the eye, the smooth muscle-like trabecular meshwork (TM) cells and Schlemm's canal (SC) endothelium control aqueous humor outflow resistance, and therefore intraocular pressure (IOP). The mechanisms by which outflow resistance is regulated are complicated, but NO appears to be a key player as enhancement or inhibition of NO signaling dramatically affects outflow function; and polymorphisms in NOS3, the gene that encodes eNOS modifies the relation between various environmental exposures and glaucoma. Based upon a comprehensive review of past foundational studies, we present a model whereby NO controls a feedback signaling loop in the conventional outflow pathway that is sensitive to changes in IOP and its oscillations. Thus, upon IOP elevation, the outflow pathway tissues distend, and the SC lumen narrows resulting in increased SC endothelial shear stress and stretch. In response, SC cells upregulate the production of NO, relaxing neighboring TM cells and increasing permeability of SC's inner wall. These IOP-dependent changes in the outflow pathway tissues reduce the resistance to aqueous humor drainage and lower IOP, which, in turn, diminishes the biomechanical signaling on SC. Similar to cardiovascular pathogenesis, dysregulation of the eNOS/NO system leads to dysfunctional outflow regulation and ocular hypertension, eventually resulting in primary open-angle glaucoma.
Collapse
Affiliation(s)
| | | | - Louis R Pasquale
- Eye and Vision Research Institute of New York Eye and Ear Infirmary at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Darryl R Overby
- Department of Bioengineering, Imperial College London, London, UK.
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, NC, USA.
| |
Collapse
|
32
|
Li Y, Wang C, Wang P, Li X, Zhou L. Effects of febrile seizures in mesial temporal lobe epilepsy with hippocampal sclerosis on gene expression using bioinformatical analysis. ACTA EPILEPTOLOGICA 2020. [DOI: 10.1186/s42494-020-00027-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractBackgroundTo investigate the effect of long-term febrile convulsions on gene expression in mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) and explore the molecular mechanism of MTLE-HS.MethodsMicroarray data of MTLE-HS were obtained from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between MTLE-HS with and without febrile seizure history were screened by the GEO2R software. Pathway enrichment and gene ontology of the DEGs were analyzed using the DAVID online database and FunRich software. Protein–protein interaction (PPI) networks among DEGs were constructed using the STRING database and analyzed by Cytoscape.ResultsA total of 515 DEGs were identified in MTLE-HS samples with a febrile seizure history compared to MTLE-HS samples without febrile seizure, including 25 down-regulated and 490 up-regulated genes. These DEGs were expressed mostly in plasma membrane and synaptic vesicles. The major molecular functions of those genes were voltage-gated ion channel activity, extracellular ligand-gated ion channel activity and calcium ion binding. The DEGs were mainly involved in biological pathways of cell communication signal transduction and transport. Five genes (SNAP25, SLC32A1, SYN1, GRIN1,andGRIA1) were significantly expressed in the MTLE-HS with prolonged febrile seizures.ConclusionThe pathogenesis of MTLE-HS involves multiple genes, and prolonged febrile seizures could cause differential expression of genes. Thus, investigations of those genes may provide a new perspective into the mechanism of MTLE-HS.
Collapse
|
33
|
Hu C, Zhang Y, Song M, Deng Y, Sun X, Lei Y. Prolonged use of nitric oxide donor sodium nitroprusside induces ocular hypertension in mice. Exp Eye Res 2020; 202:108280. [PMID: 33069697 DOI: 10.1016/j.exer.2020.108280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/02/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) donors are promising therapeutic candidates for treating intraocular hypertension (IOP) and glaucoma. This study aims to investigate the effect of prolonged use of NO donor sodium nitroprusside (SNP) on IOP. Since SNP has a short biological half-life, a nanoparticle drug delivery system (mesoporous silica nanoparticles) has been used to deliver SNP to the target tissues (trabecular meshwork and Schlemm's canal). We find that the sustained use of NO donor initially reduced IOP followed, surprisingly, by IOP elevation, which could not recover by drug withdraw but could be reversed by the antioxidant MnTMPyP application. The IOP elevation and normalization coincide with increased and reduced protein nitration in the mouse conventional outflow tissue. These findings suggest that the prolonged use of NO donor SNP may be problematic as it can cause outflow tissue damage by protein nitration. MnTMPyP is protective of the nitrative damage which could be considered to be co-applied with NO donors.
Collapse
Affiliation(s)
- Chunchun Hu
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China; Key Laboratory of Myopia, NHFPC (Fudan University), and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China
| | - Yu Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Maomao Song
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China; Key Laboratory of Myopia, NHFPC (Fudan University), and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China
| | - Yonghui Deng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China; Key Laboratory of Myopia, NHFPC (Fudan University), and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| | - Yuan Lei
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China; Key Laboratory of Myopia, NHFPC (Fudan University), and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China.
| |
Collapse
|
34
|
Abstract
Spaceflight-associated neuro-ocular syndrome (SANS) describes a series of morphologic and functional ocular changes in astronauts first reported by Mader and colleagues in 2011. SANS is currently clinically defined by the development of optic disc edema during prolonged exposure to the weightless (microgravity) environment, which currently occurs on International Space Station (ISS). However, as improvements in our understanding of the ocular changes emerge, the definition of SANS is expected to evolve. Other ocular SANS signs that arise during and after ISS missions include hyperopic shifts, globe flattening, choroidal/retinal folds, and cotton wool spots. Over the last 10 years, ~1 in 3 astronauts flying long-duration ISS missions have presented with ≥1 of these ocular findings. Commensurate with research that combines disparate specialties (vision biology and spaceflight medicine), lessons from SANS investigations may also yield insight into ground-based ocular disorders, such as glaucomatous optic neuropathy that may have the potential to lessen the burden of this irreversible cause of vision loss on Earth.
Collapse
|
35
|
Bertrand JA, Schicht M, Stamer WD, Baker D, Sherwood JM, Lütjen-Drecoll E, Selwood DL, Overby DR. The β4-Subunit of the Large-Conductance Potassium Ion Channel KCa1.1 Regulates Outflow Facility in Mice. Invest Ophthalmol Vis Sci 2020; 61:41. [PMID: 32203982 PMCID: PMC7401454 DOI: 10.1167/iovs.61.3.41] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Purpose The large-conductance calcium-activated potassium channel KCa1.1 (BKCa, maxi-K) influences aqueous humor outflow facility, but the contribution of auxiliary β-subunits to KCa1.1 activity in the outflow pathway is unknown. Methods Using quantitative polymerase chain reaction, we measured expression of β-subunit genes in anterior segments of C57BL/6J mice (Kcnmb1-4) and in cultured human trabecular meshwork (TM) and Schlemm's canal (SC) cells (KCNMB1-4). We also measured expression of Kcnma1/KCNMA1 that encodes the pore-forming α-subunit. Using confocal immunofluorescence, we visualized the distribution of β4 in the conventional outflow pathway of mice. Using iPerfusion, we measured outflow facility in enucleated mouse eyes in response to 100 or 500 nM iberiotoxin (IbTX; N = 9) or 100 nM martentoxin (MarTX; N = 12). MarTX selectively blocks β4-containing KCa1.1 channels, whereas IbTX blocks KCa1.1 channels that lack β4. Results Kcnmb4 was the most highly expressed β-subunit in mouse conventional outflow tissues, expressed at a level comparable to Kcnma1. β4 was present within the juxtacanalicular TM, appearing to label cellular processes connecting to SC cells. Accordingly, KCNMB4 was the most highly expressed β-subunit in human TM cells, and the sole β-subunit in human SC cells. To dissect functional contribution, MarTX decreased outflow facility by 35% (27%, 42%; mean, 95% confidence interval) relative to vehicle-treated contralateral eyes, whereas IbTX reduced outflow facility by 16% (6%, 25%). Conclusions The β4-subunit regulates KCa1.1 activity in the conventional outflow pathway, significantly influencing outflow function. Targeting β4-containing KCa1.1 channels may be a promising approach to lower intraocular pressure to treat glaucoma.
Collapse
|
36
|
Yang T, Fruergaard AS, Winther AK, Zelikin AN, Chandrawati R. Zinc Oxide Particles Catalytically Generate Nitric Oxide from Endogenous and Exogenous Prodrugs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906744. [PMID: 32141238 DOI: 10.1002/smll.201906744] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/25/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Nitric oxide (NO) is a potent biological molecule that contributes to a wide spectrum of physiological processes. However, the full potential of NO as a therapeutic agent is significantly complicated by its short half-life and limited diffusion distance in human tissues. Current strategies for NO delivery focus on encapsulation of NO donors into prefabricated scaffolds or an enzyme-prodrug therapy approach. The former is limited by the finite pool of NO donors available, while the latter is challenged by the inherent low stability of natural enzymes. Zinc oxide (ZnO) particles with innate glutathione peroxidase and glycosidase activities, a combination that allows to catalytically decompose both endogenous (S-nitrosoglutathione) and exogenous (β-gal-NONOate) donors to generate NO at physiological conditions are reported. By tuning the concentration of ZnO particles and NO prodrugs, physiologically relevant NO levels are achieved. ZnO preserves its catalytic property for at least 6 months and the activity of ZnO in generating NO from prodrugs in human serum is demonstrated. The ZnO catalytic activity will be beneficial toward generating stable NO release for long-term biomedical applications.
Collapse
Affiliation(s)
- Tao Yang
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Anne Sofie Fruergaard
- Department of Chemistry and iNANO Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, C 8000, Denmark
| | - Anna K Winther
- Department of Chemistry and iNANO Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, C 8000, Denmark
| | - Alexander N Zelikin
- Department of Chemistry and iNANO Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, C 8000, Denmark
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| |
Collapse
|
37
|
Patel PD, Kasetti RB, Sonkusare SK, Zode GS. Technical brief: Direct, real-time electrochemical measurement of nitric oxide in ex vivo cultured human corneoscleral segments. Mol Vis 2020; 26:434-444. [PMID: 32565671 PMCID: PMC7300198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/08/2020] [Indexed: 11/30/2022] Open
Abstract
Chronic elevation of intraocular pressure (IOP) is a major risk factor associated with primary open angle glaucoma (POAG), a common form of progressive optic neuropathy that can lead to debilitating loss of vision. Recent studies have identified the role of nitric oxide (NO) in the regulation of IOP, and as a result, several therapeutic ventures are currently targeting enhancement of NO signaling in the eye. Although a low level of NO is important for ocular physiology, excess exogenous NO can be detrimental. Therefore, the ability to directly measure NO in real time is essential for determining the role of NO signaling in glaucomatous pathophysiology. Historically, NO activity in human tissues has been determined by indirect methods that measure levels of NO metabolites (nitrate/nitrite) or downstream components of the NO signaling pathway (cGMP). In this proof-of-concept work, we assess the feasibility of direct, real-time measurement of NO in ex vivo cultured human corneoscleral segments using electrochemistry. A NO-selective electrode (ISO-NOPF200) paired to a free radical analyzer (TBR1025) was placed on the trabecular meshwork (TM) rim for real-time measurement of NO released from cells. Exogenous NO produced within cells was measured after treatment of corneoscleral segments with esterase-dependent NO-donor O2-acetoxymethylated diazeniumdiolate (DETA-NONOate/AM; 20 μM) and latanoprostene bunod (5-20 μM). A fluorescent NO-binding dye DAF-FM (4-Amino-5-methylamino- 2',7'-difluorofluorescein diacetate) was used for validation. A linear relationship was observed between the electric currents measured by the NO-sensing electrode and the NO standard concentrations, establishing a robust calibration curve. Treatment of ex vivo cultured human donor corneoscleral segments with DETA-NONOate/AM and latanoprostene bunod led to a significant increase in NO production compared with vehicle-treated controls, as detected electrochemically. Furthermore, the DAF-FM fluorescence intensity was higher in outflow pathway tissues of corneoscleral segments treated with DETA-NONOate/AM and latanoprostene bunod compared with vehicle-treated controls. In conclusion, these results demonstrate that NO-sensing electrodes can be used to directly measure NO levels in real time from the tissues of the outflow pathway.
Collapse
Affiliation(s)
- Pinkal D. Patel
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, TX
| | - Ramesh B. Kasetti
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, TX
| | - Swapnil K. Sonkusare
- Molecular Physiology and Biological Physics, University of Virginia - School of Medicine, Charlottesville, VA
| | - Gulab S. Zode
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, TX
| |
Collapse
|
38
|
Shear Stress in Schlemm's Canal as a Sensor of Intraocular Pressure. Sci Rep 2020; 10:5804. [PMID: 32242066 PMCID: PMC7118084 DOI: 10.1038/s41598-020-62730-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 03/13/2020] [Indexed: 11/23/2022] Open
Abstract
Elevated intraocular pressure (IOP) narrows Schlemm’s canal (SC), theoretically increasing luminal shear stress. Using engineered adenoviruses containing a functional fragment of the shear-responsive endothelial nitric oxide synthase (eNOS) promoter, we tested effects of shear stress and elevated flow rate on reporter expression in vitro and ex vivo. Cultured human umbilical vein endothelial cells (HUVECs) and SC cells were transduced with adenovirus containing eNOS promoter driving secreted alkaline phosphatase (SEAP) or green fluorescent protein (GFP) and subjected to shear stress. In parallel, human anterior segments were perfused under controlled flow. After delivering adenoviruses to the SC lumen by retroperfusion, the flow rate in one anterior segment of pair was increased to double pressure. In response to high shear stress, HUVECs and SC cells expressed more SEAP and GFP than control. Similarly, human anterior segments perfused at higher flow rates released significantly more nitrites and SEAP into perfusion effluent, and SC cells expressed increased GFP near collector channel ostia compared to control. These data establish that engineered adenoviruses have the capacity to quantify and localize shear stress experienced by endothelial cells. This is the first in situ demonstration of shear-mediated SC mechanobiology as a key IOP-sensing mechanism necessary for IOP homeostasis.
Collapse
|
39
|
Kars ME, Toklu Y, Arıkan Yorgun M, Neşelioğlu S, Eren F. Electrolyte, Nitric Oxide and Oxidative Stress Levels of Aqueous Humor in Patients with Retinal Detachment and Silicone Oil Tamponade. Curr Eye Res 2020; 45:1443-1450. [PMID: 32228105 DOI: 10.1080/02713683.2020.1749668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Purpose: To enlighten the pathogenesis of silicone oil (SiO)-related complications via measuring aqueous humor levels of electrolytes, nitric oxide (NO), and oxidative stress in SiO, retinal detachment (RD), and control groups. Materials and Methods: In this prospective study, 56 patients were grouped as SiO (n = 29), RD (n = 12), and control (n = 15). The results of pre- and post-operative ophthalmological examinations, aqueous humor electrolyte and NO levels, total antioxidant and oxidant status (TAS, TOS) and oxidative stress index (OSI) were analyzed. Results: SiO group had a higher mean Na+ level compared to controls (144.77 ± 11.48 vs 137.56 ± 6.57 mmol/kg, p = .02). Also, the mean Na+ and Cl- levels of RD group were higher than controls (149.04 ± 12.05 vs. 137.56 ± 6.57 mmol/kg, p = .02, 115.2 ± 7.79 vs 106.23 ± 8.99 mmol/kg, p = .031 for Na+ and Cl-, respectively). The mean NO level of RD group was higher than that of SiO group (51.07 ± 19.56 vs. 34.07 ± 13.84 μM, p = .009). The mean TAS and TOS were lower in SiO group compared to controls (1.92 ± 0.64 vs. 2.49 ± 0.56 μmolTroloxEqv./L, p = .021, 34.98 ± 26.55 vs. 61.46 ± 22.69 μmolH2O2Eqv./L, p = .004 for TAS and TOS, respectively). Intraocular retention time of SiO demonstrated positive correlation with post-operative visual acuity (logMAR) and negative correlation with TOS. Conclusions: Elevated aqueous humor Na+ and Cl- in RD patients might reflect abolished function of ion channels on detached retina. Increased Na+ and lack of NO response to elevated intraocular pressure in SiO-filled eyes might contribute to secondary cataract and glaucoma formation. SiO is associated with low levels of oxidative stress in aqueous humor; however, increased intraocular retention time of SiO is related to a poor visual outcome.
Collapse
Affiliation(s)
- Meltem Ece Kars
- Department of Ophthalmology, Yıldırım Beyazıt University, Ankara Atatürk Training and Research Hospital , Ankara, Turkey
| | - Yasin Toklu
- Department of Ophthalmology, Yıldırım Beyazıt University, Ankara Atatürk Training and Research Hospital , Ankara, Turkey
| | - Mücella Arıkan Yorgun
- Department of Ophthalmology, Ankara Atatürk Training and Research Hospital , Ankara, Turkey
| | - Salim Neşelioğlu
- Department of Biochemistry, Yıldırım Beyazıt University, Ankara Atatürk Training and Research Hospital , Ankara, Turkey
| | - Funda Eren
- Department of Biochemistry, Ankara Atatürk Training and Research Hospital , Ankara, Turkey
| |
Collapse
|
40
|
Papaefthymiou A, Doulberis M, Katsinelos P, Liatsos C, Polyzos SA, Kotronis G, Papanikolaou K, Kountouras J. Impact of nitric oxide's bidirectional role on glaucoma: focus onHelicobacter pylori–related nitrosative stress. Ann N Y Acad Sci 2020; 1465:10-28. [DOI: 10.1111/nyas.14253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/07/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022]
Affiliation(s)
| | - Michael Doulberis
- Department of Gastroenterology and HepatologyUniversity of Zurich Zurich Switzerland
- Department of Internal Medicine, Second Medical Clinic, Ippokration HospitalAristotle University of Thessaloniki Thessaloniki Macedonia Greece
| | - Panagiotis Katsinelos
- Department of Internal Medicine, Second Medical Clinic, Ippokration HospitalAristotle University of Thessaloniki Thessaloniki Macedonia Greece
| | - Christos Liatsos
- Department of Gastroenterology401 General Military Hospital of Athens Athens Greece
| | - Stergios A. Polyzos
- Department of Internal Medicine, Second Medical Clinic, Ippokration HospitalAristotle University of Thessaloniki Thessaloniki Macedonia Greece
- First Department of Pharmacology, School of MedicineAristotle University of Thessaloniki Thessaloniki Macedonia Greece
| | - Georgios Kotronis
- Department of Internal MedicineAgios Pavlos General Hospital Thessaloniki Macedonia Greece
| | - Katerina Papanikolaou
- Department of Internal Medicine, Second Medical Clinic, Ippokration HospitalAristotle University of Thessaloniki Thessaloniki Macedonia Greece
| | - Jannis Kountouras
- Department of Internal Medicine, Second Medical Clinic, Ippokration HospitalAristotle University of Thessaloniki Thessaloniki Macedonia Greece
| |
Collapse
|
41
|
Myer C, Perez J, Abdelrahman L, Mendez R, Khattri RB, Junk AK, Bhattacharya SK. Differentiation of soluble aqueous humor metabolites in primary open angle glaucoma and controls. Exp Eye Res 2020; 194:108024. [PMID: 32246983 DOI: 10.1016/j.exer.2020.108024] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 01/06/2023]
Abstract
We report an analysis of the aqueous humor (AH) metabolome of primary open angle glaucoma (POAG) in comparison to normal controls. The AH samples were obtained from human donors [control (n = 35), POAG (n = 23)]. The AH samples were subjected to one-dimensional 1H nuclear magnetic resonance (NMR) analyses on a Bruker Avance 600 MHz instrument with a 1.7 mM NMR probe. The same samples were then subjected to isotopic ratio outlier analysis (IROA) using a Q Exactive orbitrap mass spectrometer after chromatography on an Accela 600 HPLC. Clusterfinder Build 3.1.10 was used for identification and quantification based on long-term metabolite matrix standards. In total, 278 metabolites were identified in control samples and 273 in POAG AH. The metabolites identified were fed into previously reported proteome and genome information and the OmicsNet interaction network generator to construct a protein-metabolite interactions network with an embedded protein-protein network. Significant differences in metabolite composition in POAG compared to controls were identified indicating potential protein/gene pathways associated with these metabolites. These results will expand our previous understanding of the impeded AH metabolite composition, provide new insight into the regulation of AH outflow, and likely aid in future AH and trabecular meshwork multi-omics network analyses.
Collapse
Affiliation(s)
- Ciara Myer
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA; Miami Integrative Metabolomics Research Center, University of Miami, Miami, FL, USA
| | - Jordan Perez
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA; Miami Integrative Metabolomics Research Center, University of Miami, Miami, FL, USA; Case Western Reserve University, Cleveland, OH, USA
| | - Leila Abdelrahman
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA; Miami Integrative Metabolomics Research Center, University of Miami, Miami, FL, USA
| | - Roberto Mendez
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA; Miami Integrative Metabolomics Research Center, University of Miami, Miami, FL, USA; Department of Surgery, University of Miami, Miami, FL, USA
| | - Ram B Khattri
- Department of Biochemistry and Molecular Biochemistry, University of Florida, Gainesville, FL, USA
| | - Anna K Junk
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA; Miami Integrative Metabolomics Research Center, University of Miami, Miami, FL, USA; Miami Veterans Affairs Health Care System, Miami, FL, USA
| | - Sanjoy K Bhattacharya
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA; Miami Integrative Metabolomics Research Center, University of Miami, Miami, FL, USA.
| |
Collapse
|
42
|
Lu SY, Rong SS, Wu Z, Huang C, Matsushita K, Ng TK, Leung CKS, Kawashima R, Usui S, Tam POS, Tsujikawa M, Young AL, Zhang M, Wiggs JL, Nishida K, Tham CC, Pang CP, Chen LJ. Association of the CAV1-CAV2 locus with normal-tension glaucoma in Chinese and Japanese. Clin Exp Ophthalmol 2020; 48:658-665. [PMID: 32162426 DOI: 10.1111/ceo.13744] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/10/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND The CAV1-CAV2 locus has been associated with primary open-angle glaucoma (POAG) and intraocular pressure. However, its association with normal-tension glaucoma (NTG) was inconclusive. Therefore, we evaluated this association in Chinese and Japanese. METHODS Two single-nucleotide polymorphisms (SNPs, rs4236601 and rs1052990) from previous genome-wide association studies of POAG were genotyped in a total of 2220 study subjects: a Hong Kong Chinese cohort of 537 NTG patients and 490 controls, a Shantou Chinese cohort of 102 NTG and 731 controls and an Osaka Japanese cohort of 153 NTG and 207 controls. Subgroup analysis by gender was conducted. Outcomes from different cohorts were combined using meta-analysis. RESULTS SNP rs4236601 was significantly associated with NTG in the two Chinese cohorts (Pmeta = .0019, OR = 4.55, I2 = 0). In contrast, rs4236601 was monomorphic in the Osaka cohort. The association of rs1052990 was insignificant in a meta-analysis combining Chinese and Japanese cohorts (Pmeta = .81, OR = 1.05; I2 = 64%), and the OR tended towards opposite directions between Chinese (OR = 1.26) and Japanese (OR = 0.69). Gender-specific effects of the SNPs were not statistically significant in the logistic regression or Breslow-day tests of ORs (P > .05), although rs4236601 was significant in males (P = .0068; OR = 10.30) but not in females (P = .14; OR = 2.65) in the meta-analysis of Chinese subjects. CONCLUSIONS In this study, we confirmed the association of rs4236601 at the CAV1-CAV2 locus with NTG in Chinese. SNP rs4236601 is monomorphic, and rs1052990 tends towards a different direction in the Japanese cohort. Further studies are warranted to verify the ethnic difference and gender-specific effects of this locus.
Collapse
Affiliation(s)
- Shi Yao Lu
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Shi Song Rong
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhenggen Wu
- Joint Shantou International Eye Center of Shantou University, and the Chinese University of Hong Kong, Shantou, China
| | - Chukai Huang
- Joint Shantou International Eye Center of Shantou University, and the Chinese University of Hong Kong, Shantou, China
| | - Kenji Matsushita
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tsz Kin Ng
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong, China.,Joint Shantou International Eye Center of Shantou University, and the Chinese University of Hong Kong, Shantou, China
| | - Christopher K S Leung
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong, China.,Hong Kong Eye Hospital, the Chinese University of Hong Kong, Hong Kong, China
| | - Rumi Kawashima
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinichi Usui
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Pancy O S Tam
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Motokazu Tsujikawa
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Alvin L Young
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| | - Mingzhi Zhang
- Joint Shantou International Eye Center of Shantou University, and the Chinese University of Hong Kong, Shantou, China
| | - Janey L Wiggs
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Clement C Tham
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong, China.,Hong Kong Eye Hospital, the Chinese University of Hong Kong, Hong Kong, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong, China.,Joint Shantou International Eye Center of Shantou University, and the Chinese University of Hong Kong, Shantou, China
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| |
Collapse
|
43
|
Sherwood JM, Stamer WD, Overby DR. A model of the oscillatory mechanical forces in the conventional outflow pathway. J R Soc Interface 2020; 16:20180652. [PMID: 30958169 PMCID: PMC6364644 DOI: 10.1098/rsif.2018.0652] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Intraocular pressure is regulated by mechanosensitive cells within the conventional outflow pathway, the primary route of aqueous humour drainage from the eye. However, the characteristics of the forces acting on those cells are poorly understood. We develop a model that describes flow through the conventional outflow pathway, including the trabecular meshwork (TM) and Schlemm’s canal (SC). Accounting for the ocular pulse, we estimate the time-varying shear stress on SC endothelium and strain on the TM. We consider a range of outflow resistances spanning normotensive to hypertensive conditions. Over this range, the SC shear stress increases significantly and becomes highly oscillatory. TM strain also increases, but with negligible oscillations. Interestingly, TM strain responds more to changes in outflow resistance around physiological values, while SC shear stress responds more to elevated levels of resistance. A modest increase in TM stiffness, as observed in glaucoma, suppresses TM strain and practically eliminates the influence of outflow resistance on SC shear stress. As SC and TM cells respond to mechanical stimulation by secreting factors that modulate outflow resistance, our model provides insight regarding the potential role of SC shear and TM strain as mechanosensory cues for homeostatic regulation of outflow resistance and hence intraocular pressure.
Collapse
Affiliation(s)
- Joseph M Sherwood
- 1 Department of Bioengineering, Imperial College London , London , UK
| | - W Daniel Stamer
- 2 Department of Ophthalmology, Duke University , Durham, NC , USA
| | - Darryl R Overby
- 1 Department of Bioengineering, Imperial College London , London , UK
| |
Collapse
|
44
|
Tan C, Yang Y, Song M, Cao Z, Sun X, Lei Y, Chen J. Cell senescence altered the miRNA expression profile in porcine angular aqueous plexus cells. Mol Vis 2020; 26:76-90. [PMID: 32165828 PMCID: PMC7043640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 02/21/2020] [Indexed: 11/09/2022] Open
Abstract
Purpose This study investigates the impact of aging on the miRNA expression profile in porcine angular aqueous plexus (AAP) cells, which are the porcine equivalent of human Schlemm's canal endothelial cells. Methods AAP endothelial cells were isolated and cultured in physiologic (5% O2) or hyperoxic condition (40% O2) for 14 days to induce cell senescence. miRNA and protein expression profiles of control and senescent cells were analyzed with miRNA microarray and isobaric tags for relative and absolute quantification (iTRAQ), respectively. Results The miRNA microarray identified 33 differentially expressed miRNAs in senescent cells compared with controls (p<0.05), and quantitative real-time PCR (qRT-PCR) confirmed 12 of them (p<0.05). iTRAQ analysis identified 148 upregulated and 222 downregulated proteins (p<0.05, fold change>1.2). Bioinformatics analysis of miRNA microarray and proteomics data predicted that six out of seven miRNAs are associated with aqueous humor outflow by targeting integrin and the downstream pathways (Src/Rho kinase, focal adhesion kinase (FAK)/NO-cGMP), and one miRNA might influence gap junction by targeting the Inositol trisphosphate receptor (IP3R) /Protein kinase C (PKC) pathway. Conclusions This study identified miRNAs in senescent AAP cells that might regulate aqueous humor outflow by targeting proteins involved in focal adhesion, cytoskeleton, NO-cGMP signaling, and gap junction.
Collapse
Affiliation(s)
- Chen Tan
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yiyan Yang
- Bioinformatics, School of Life Sciences and Biotechnology, Tongji University
| | - Maomao Song
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China,Key Laboratory of Myopia, NHFPC (Fudan University), Shanghai, China
| | - Zhiwei Cao
- Bioinformatics, School of Life Sciences and Biotechnology, Tongji University
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China,Key Laboratory of Myopia, NHFPC (Fudan University), Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yuan Lei
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China,Key Laboratory of Myopia, NHFPC (Fudan University), Shanghai, China
| | - Junyi Chen
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China,Key Laboratory of Myopia, NHFPC (Fudan University), Shanghai, China
| |
Collapse
|
45
|
Song M, Li L, Lei Y, Sun X. NOS3 Deletion in Cav1 Deficient Mice Decreases Drug Sensitivity to a Nitric Oxide Donor and Two Nitric Oxide Synthase Inhibitors. Invest Ophthalmol Vis Sci 2020; 60:4002-4007. [PMID: 31560766 DOI: 10.1167/iovs.19-27582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose This study aims to investigate the pharmacologic consequence of genetic deletion of nitric oxide synthase 3 (NOS3) in caveolin 1 (Cav1)-/- mice (double knockout [DKO]) in response to a nitric oxide (NO) donor and two NOS inhibitors. Methods NO donor sodium nitroprusside (SNP; 10-40 mg/mL), NOS inhibitor L-NG-nitroarginine methyl ester (L-NAME; 10-200 μM), and cavtratin (10-75 μM ) was administered topically to the eye while the contralateral eyes were vehicle controls. Intraocular pressure (IOP) was measured in both eyes by tonometry. Cyclic guanosine monophosphate (cGMP) level in outflow tissue was measured by ELISA assay. Protein expression were analyzed by western blot. Results Inducible NOS (iNOS) expression significantly increased in the DKO mice compared with the wild type (WT), Cav1 knockout (Cav1 KO), and NOS3 KO mice. In contrast to WT, Cav1 KO and NOS3 KO mice, SNP concentration of up to 30 mg/mL did not significantly affect IOP in DKO mice. However, higher concentration (40 mg/mL) SNP significantly reduced IOP by 14% (n = 8, P < 0.01). Similarly, only 200 μM L-NAME produced a significant increase in IOP (n = 10, P < 0.05). Cavtratin did not significantly change IOP in DKO and NOS3 KO mice. cGMP activity in DKO mice was significantly lower than Cav1 KO mice (n = 4, P < 0.05). Conclusions In conclusion, our results demonstrated that genetic deletion of NOS3 in Cav1 deficient mice resulted in reduced sensitivity to the NO donor SNP and the two NOS inhibitors possibly due to compromised NOS and cGMP activity.
Collapse
Affiliation(s)
- Maomao Song
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liping Li
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuan Lei
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
46
|
Kondkar AA, Azad TA, Sultan T, Osman EA, Almobarak FA, Al-Obeidan SA. Association of endothelial nitric oxide synthase (NOS3) gene polymorphisms with primary open-angle glaucoma in a Saudi cohort. PLoS One 2020; 15:e0227417. [PMID: 31914149 PMCID: PMC6948740 DOI: 10.1371/journal.pone.0227417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/18/2019] [Indexed: 01/25/2023] Open
Abstract
Aim To investigate the association of endothelial nitric oxide synthase (NOS3) gene polymorphisms in patients with primary open-angle glaucoma (POAG) of Saudi origin. Methods This case-control study included 173 patients with POAG (94 men and 79 women) and 171 controls (98 men and 73 women). Genotyping of rs2070744 (T-786C) and rs1799983 (G894T) variants of the NOS3 gene was performed using TaqMan® assay. Results Rs1799983 genotypes showed a significant association with POAG but did not survive Bonferroni correction (pcorrection = 0.01). The minor ‘T’ allele was significantly associated with the risk of POAG among men (p = 0.025, odds ratio (OR) = 1.77, 95% confidence interval (CI) = 1.07–2.94). Likewise, the genotypes were significantly associated with POAG among men in dominant (p = 0.030, OR = 1.92, 95% CI = 1.06–3.48) and log-additive models (p = 0.022, OR = 1.82, 95% CI = 1.08–3.07), and after adjustment for age and smoking. Genotype and allele frequencies of rs2070744 were not significantly different between POAG cases and controls, and after sex stratification. CG haplotype was significantly protective (p = 0.011, OR = 0.52, 95% CI = 0.32–0.87) and CT haplotype conferred significantly increased risk of POAG (p = 0.016, OR = 2.60, 95% CI = 1.16–5.82) among men. Rs1799983 showed trend (p = 0.054) towards risk of POAG independent of age, gender, smoking, and rs2070744 polymorphism in logistic regression analysis. Both the polymorphisms showed no association with POAG phenotypes such as intraocular pressure and cup/disc ratio. Conclusion Our results suggest that the polymorphism rs1799983 and the haplotypes of rs20707440 and rs1799983 in the NOS3 gene may significantly modulate the risk of POAG in Saudi’s, particularly among men. Further larger studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Altaf A. Kondkar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- * E-mail:
| | - Taif A. Azad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Tahira Sultan
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Essam A. Osman
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Faisal A. Almobarak
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A. Al-Obeidan
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
47
|
Waxman S, Wang C, Dang Y, Hong Y, Esfandiari H, Shah P, Lathrop KL, Loewen RT, Loewen NA. Structure-Function Changes of the Porcine Distal Outflow Tract in Response to Nitric Oxide. Invest Ophthalmol Vis Sci 2019; 59:4886-4895. [PMID: 30347083 PMCID: PMC6181305 DOI: 10.1167/iovs.18-24943] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose To correlate outflow function and outflow tract vessel diameter changes induced by nitric oxide (NO). Methods In a porcine anterior segment perfusion model, the effects of a nitric oxide donor (100 μM DETA-NO) on outflow facility were compared with controls (n = 8 per group) with trabecular meshwork (TM) and after circumferential ab interno trabeculectomy (AIT). Outflow structures were assessed with spectral-domain optical coherence tomography (SD-OCT) before and after NO, or an NO synthase inhibitor (100 μM L-NAME) and the vasoconstrictor, endothelin-1 (100 pg/mL ET-1). Scans were processed with a custom macroscript and aligned for automated reslicing and quantification of cross-sectional outflow tract areas (CSA). Results The facility increased after DETA-NO (Δ of 0.189 ± 0.081 μL/min·mm Hg, P = 0.034) and AIT (Δ of 0.251 ± 0.094 μL/min·mm Hg, P = 0.009), respectively. Even after AIT, DETA-NO increased the facility by 61.5% (Δ of 0.190 ± 0.074 μL/min·mm Hg, P = 0.023) and CSA by 13.9% (P < 0.001). L-NAME + ET-1 decreased CSA by -8.6% (P < 0.001). NO increased the diameter of focal constrictions 5.0 ± 3.8-fold. Conclusions NO can dilate vessels of the distal outflow tract and increase outflow facility in a TM-independent fashion. There are short, focally constricting vessel sections that display large diameter changes and may have a substantial impact on outflow.
Collapse
Affiliation(s)
- Susannah Waxman
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
| | - Chao Wang
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States.,Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yalong Dang
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
| | - Ying Hong
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States.,Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Hamed Esfandiari
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
| | - Priyal Shah
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
| | - Kira L Lathrop
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
| | - Ralitsa T Loewen
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
| | - Nils A Loewen
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
48
|
Sumirtanurdin R, Thalib AY, Cantona K, Abdulah R. Effect of genetic polymorphisms on Alzheimer's disease treatment outcomes: an update. Clin Interv Aging 2019; 14:631-642. [PMID: 30992661 PMCID: PMC6445219 DOI: 10.2147/cia.s200109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Genetic variations in individuals may cause differences in the response to cholinesterase inhibitor drugs used in the treatment of Alzheimer's disease (AD). Through this review, we aimed to understand the potential relationship between genetic polymorphisms and treatment response in AD. We conducted a systematic review of the studies published from 2006 to 2018 that assessed the relationship between genetic polymorphisms and the pharmacotherapeutic outcomes of patients with AD. Via several possible mechanisms, genetic polymorphisms of many genes, including ABCA1, ApoE3, CYP2D6, CHAT, CHRNA7, and ESR1, appear to have strong correlations with the treatment response of patients with AD. Indeed, these genetic polymorphisms, either in the form of single nucleotide polymorphisms or direct changes to one or more amino acids, have been shown to cause differences in the therapeutic response. In summary, our findings indicate that genetic polymorphisms should be considered in the management of AD to achieve both effective and efficient treatment outcomes in terms of cost and prognosis.
Collapse
Affiliation(s)
- Riyadi Sumirtanurdin
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia,
| | - Amirah Y Thalib
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia,
| | - Kelvin Cantona
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia,
| | - Rizky Abdulah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia, .,Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia,
| |
Collapse
|
49
|
Xie X, Akiyama G, Bogarin T, Saraswathy S, Huang AS. Visual Assessment of Aqueous Humor Outflow. Asia Pac J Ophthalmol (Phila) 2019; 8:126-134. [PMID: 30916496 PMCID: PMC7028348 DOI: 10.22608/apo.201911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In the past decade, many new pharmacological and surgical treatments have become available to lower intraocular pressure (IOP) for glaucoma. The majority of these options have targeted improving aqueous humor outflow (AHO). At the same time, in addition to new treatments, research advances in AHO assessment have led to the development of new tools to structurally assess AHO pathways and to visualize where aqueous is flowing in the eye. These new imaging modalities have uncovered novel AHO observations that challenge traditional AHO concepts. New behaviors including segmental, pulsatile, and dynamic AHO may have relevance to the disease and the level of therapeutic response for IOP-lowering treatments. By better understanding the regulation of segmental, pulsatile, and dynamic AHO, it may be possible to find new and innovative treatments for glaucoma aiming at these new AHO behaviors.
Collapse
Affiliation(s)
- Xiaobin Xie
- From the Eye Hospital of China Academy of Chinese Medical Sciences, Beijing, China; and UCLA Department of Ophthalmology, Doheny Eye Institute, Los Angeles, CA, United States
| | | | | | | | | |
Collapse
|
50
|
Zhou Y, Lin M, Wang J, Chen F, Li F, Chen W, Han L, Wang C, Chen J, Shao JW, Jia L. A novel S-nitrosocaptopril monohydrate for pulmonary arterial hypertension: H 2O and -SNO intermolecular stabilization chemistry. Free Radic Biol Med 2018; 129:107-115. [PMID: 30227269 DOI: 10.1016/j.freeradbiomed.2018.09.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 09/14/2018] [Indexed: 12/19/2022]
Abstract
S-nitrosocaptopril (CapNO) possesses dual capacities of both Captopril and an NO donor with enhanced efficacy and reduced side effects. CapNO crystals are difficult to make due to its unstable S-NO bond. Here, we report a novel stable S-nitrosocaptopril monohydrate (CapNO·H2O) that is stabilized by intermolecular five-membered structure, where one H of H2O forms a hydrogen bond with O- of the stable resonance zwitterion Cap-S+=N-O-, and the O in H2O forms the dipole-dipole interaction with S+ through two unpaired electrons. With the chelation and common ion effect, we synthesized and characterized CapNO·H2O that is stable at 4 °C for 180 days and thereafter without significant degradation. Compared to Captopril, CapNO showed direct vasorelaxation and beneficial effect on PAH rats, and could be self-assembled in rat stomach when Captopril and NaNO2 were given separately. This novel CapNO·H2O with low entropy paves an avenue for its clinical trials and commercialization.
Collapse
Affiliation(s)
- Yuyang Zhou
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Min Lin
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jie Wang
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Fan Chen
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Feiyang Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Wenge Chen
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Longyu Han
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Chiahung Wang
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jianming Chen
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, China
| | - Jing-Wei Shao
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China; Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, China.
| |
Collapse
|