1
|
Jeong K, Je J, Dusabimana T, Karekezi J, Nugroho TA, Ndahigwa EN, Kim HJ, Yun SP, Kim HJ, Kim H, Park SW. Deficiency of purinergic P2Y2 receptor impairs the recovery after renal ischemia-reperfusion injury and accelerates renal fibrosis and tubular senescence in mice. Sci Rep 2024; 14:31932. [PMID: 39738595 DOI: 10.1038/s41598-024-83411-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025] Open
Abstract
Chronic kidney disease is defined as a progressive loss of kidney function associated with impaired recovery after acute kidney injury. Renal ischemia-reperfusion (IR) induces oxidative stress and inflammatory responses leading to severe tissue damage, where incomplete or maladaptive repair accelerates renal fibrosis and aging. To investigate the role of the purinergic P2Y2 receptor (P2Y2R) in these processes, we used P2Y2R knockout (KO) mice subjected to IR. KO mice showed severe kidney dysfunction and structural damage compared to WT mice. KO mice showed higher senescence-associated β-galactosidase expression and shorter telomere length than WT mice. Consistently, interstitial collagen accumulation and fibrogenic mediators were significantly upregulated in KO mice. Renal apoptosis and inflammation were highly elevated in KO mice. Interestingly, cell proliferation as shown by Ki-67 and PCNA expression, was increased for 3 days after IR in WT mice, whereas it maintained increased for 14 days in KO mice. Cell cycle inhibitors, p16 and p21, and regulators JunB and cyclin E were significantly increased after IR in KO mice, suggesting that cell cycle progression was impaired during recovery after IR. Proximal tubular cells treated with JunB siRNA showed a reduced expression of fibrogenic mediators and proinflammatory cytokines, consistent with the mice treated with MRS2768, a P2Y2 agonist that downregulated JunB levels. In conclusion, P2Y2R reduces kidney tissue damage after IR and repairs the tissue properly by regulating JunB-mediated signaling during the recovery process.
Collapse
Affiliation(s)
- Kyuho Jeong
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea
- Department of Biochemistry, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Jihyun Je
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea
| | - Theodomir Dusabimana
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea
| | - Jacques Karekezi
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea
| | - Tatang Aldi Nugroho
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea
| | - Edvard Ntambara Ndahigwa
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea
| | - Hyun Joon Kim
- Department of Anatomy, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea
| | - Hwajin Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea.
| | - Sang Won Park
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea.
- Department of Anatomy, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.
| |
Collapse
|
2
|
Bartold M, Ivanovski S. Biological processes and factors involved in soft and hard tissue healing. Periodontol 2000 2024. [PMID: 38243683 DOI: 10.1111/prd.12546] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/12/2023] [Accepted: 11/23/2023] [Indexed: 01/21/2024]
Abstract
Wound healing is a complex and iterative process involving myriad cellular and biologic processes that are highly regulated to allow satisfactory repair and regeneration of damaged tissues. This review is intended to be an introductory chapter in a volume focusing on the use of platelet concentrates for tissue regeneration. In order to fully appreciate the clinical utility of these preparations, a sound understanding of the processes and factors involved in soft and hard tissue healing. This encompasses an appreciation of the cellular and biological mediators of both soft and hard tissues in general as well as specific consideration of the periodontal tissues. In light of good advances in this basic knowledge, there have been improvements in clinical strategies and therapeutic management of wound repair and regeneration. The use of platelet concentrates for tissue regeneration offers one such strategy and is based on the principles of cellular and biologic principles of wound repair discussed in this review.
Collapse
Affiliation(s)
- Mark Bartold
- University of Queensland, Brisbane, Queensland, Australia
| | - Saso Ivanovski
- University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
3
|
Effendi WI, Nagano T. A2B Adenosine Receptor in Idiopathic Pulmonary Fibrosis: Pursuing Proper Pit Stop to Interfere with Disease Progression. Int J Mol Sci 2023; 24:4428. [PMID: 36901855 PMCID: PMC10002355 DOI: 10.3390/ijms24054428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Purine nucleotides and nucleosides are involved in various human physiological and pathological mechanisms. The pathological deregulation of purinergic signaling contributes to various chronic respiratory diseases. Among the adenosine receptors, A2B has the lowest affinity such that it was long considered to have little pathophysiological significance. Many studies suggest that A2BAR plays protective roles during the early stage of acute inflammation. However, increased adenosine levels during chronic epithelial injury and inflammation might activate A2BAR, resulting in cellular effects relevant to the progression of pulmonary fibrosis.
Collapse
Affiliation(s)
- Wiwin Is Effendi
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga (UNAIR), Surabaya 60132, Indonesia
- Department of Pulmonology and Respiratory Medicine, Universitas Airlangga Teaching Hospital, Surabaya 60015, Indonesia
- Pulmonology and Respiratory Medicine of UNAIR (PaRU) Research Center, Universitas Airlangga Teaching Hospital, Surabaya 60015, Indonesia
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| |
Collapse
|
4
|
Yokota S, Chosa N, Matsumoto S, Satoh K, Ishisaki A. Extracellular adenosine 5'-diphosphate promotes MCP-1/CCL2 expression via the P2Y 13 purinergic receptor/ERK signaling axis in temporomandibular joint-derived mouse fibroblast-like synoviocytes. Mol Biol Rep 2023; 50:1595-1602. [PMID: 36526849 PMCID: PMC9889505 DOI: 10.1007/s11033-022-08125-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Temporomandibular joint osteoarthritis (TMJ-OA) causes cartilage degeneration, bone cavitation, and fibrosis of the TMJ. However, the mechanisms underlying the fibroblast-like synoviocyte (FLS)-mediated inflammatory activity in TMJ-OA remain unclear. METHODS AND RESULTS Reverse transcription-quantitative polymerase chain reaction analysis revealed that the P2Y1, P2Y12, and P2Y13 purinergic receptor agonist adenosine 5'-diphosphate (ADP) significantly induces monocyte chemotactic protein 1 (MCP-1)/ C-C motif chemokine ligand 2 (CCL2) expression in the FLS1 synovial cell line. In contrast, the uracil nucleotide UTP, which is a P2Y2 and P2Y4 agonist, has no significant effect on MCP-1/CCL2 production in FLS1 cells. In addition, the P2Y13 antagonist MRS 2211 considerably decreases the expression of ADP-induced MCP-1/CCL2, whereas ADP stimulation enhances extracellular signal-regulated kinase (ERK) phosphorylation. Moreover, it was found that the mitogen-activated protein kinase/ERK kinase (MEK) inhibitor U0126 reduces ADP-induced MCP-1/CCL2 expression. CONCLUSION ADP enhances MCP-1/CCL2 expression in TMJ FLSs via P2Y13 receptors in an MEK/ERK-dependent manner, thus resulting in inflammatory cell infiltration in the TMJ. Collectively, the findings of this study contribute to a partial clarification of the signaling pathway underlying the development of inflammation in TMJ-OA and can help identify potential therapeutic targets for suppressing ADP-mediated purinergic signaling in this disease.
Collapse
Affiliation(s)
- Seiji Yokota
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, 1-1-1 Idai-dori, Yahaba-cho, Shiwa-gun, 028-3694, Iwate, Japan.
| | - Naoyuki Chosa
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, 1-1-1 Idai-dori, Yahaba-cho, Shiwa-gun, 028-3694, Iwate, Japan
| | - Shikino Matsumoto
- Division of Orthodontics, Department of Developmental Oral Health Science, Iwate Medical University, 19-1 Uchimal, 020-8505, Morioka-shi, Iwate, Japan
| | - Kazuro Satoh
- Division of Orthodontics, Department of Developmental Oral Health Science, Iwate Medical University, 19-1 Uchimal, 020-8505, Morioka-shi, Iwate, Japan
| | - Akira Ishisaki
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, 1-1-1 Idai-dori, Yahaba-cho, Shiwa-gun, 028-3694, Iwate, Japan.
| |
Collapse
|
5
|
Huang Z, Sharma M, Dave A, Yang Y, Chen ZS, Radhakrishnan R. The Antifibrotic and the Anticarcinogenic Activity of Capsaicin in Hot Chili Pepper in Relation to Oral Submucous Fibrosis. Front Pharmacol 2022; 13:888280. [PMID: 35600864 PMCID: PMC9114457 DOI: 10.3389/fphar.2022.888280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/19/2022] [Indexed: 11/15/2022] Open
Abstract
A burning sensation on eating spicy foods purportedly supports the role of capsaicin, an active component of chili peppers, in the etiology of oral submucous fibrosis (OSF). Although the mast cell mediators and activated P2X receptors induce a constant burning sensation through an ATP-dependent mechanism, it is the activation of the transient receptor potential vanilloid 1 (TRPV-1) receptor by capsaicin that aggravates it. The molecular basis for the burning pain in OSF is thus attributable to the activation of TRPV1. There is overwhelming evidence that confirms capsaicin has more of a protective role in attenuating fibrosis and is potentially therapeutic in reversing conditions linked to collagen accumulation. The activation of TRPV-1 by capsaicin increases intracellular calcium ([Ca2+]i), upregulates AMP-activated protein kinase (AMPK) and Sirtuin-1 (SIRT-1), to enrich endothelium-dependent vasodilation via endothelial nitric oxide synthase (eNOS). The induction of vasodilation induces antifibrotic effects by alleviating hypoxia. The antifibrotic effects of capsaicin are mediated through the upregulation of antioxidant enzymes, downregulation of inflammatory genes and suppression of new collagen fibril formation. Capsaicin also demonstrates an anticarcinogenic effect by upregulating the cytotoxic T cells and downregulating regulatory T cells through the inhibition of angiogenesis and promotion of apoptosis. Judicious administration of capsaicin with an appropriate delivery mechanism may have therapeutic benefits in reducing pain sensation, rendering antifibrotic effects, and preventing the malignant transformation of OSF. This paper provides an overview of the molecular basis of capsaicin and its therapeutic application as an antifibrotic and anticarcinogenic agent for the treatment of OSF.
Collapse
Affiliation(s)
- Zoufang Huang
- Ganzhou Key Laboratory of Hematology, Department of Hematology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Mohit Sharma
- Department of Oral Pathology, SGT Dental College Hospital and Research Institute, Gurugram, India
| | - Aparna Dave
- Department of Oral Pathology, SGT Dental College Hospital and Research Institute, Gurugram, India
| | - Yuqi Yang
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States,*Correspondence: Zhe-Sheng Chen, ; Raghu Radhakrishnan,
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, India,*Correspondence: Zhe-Sheng Chen, ; Raghu Radhakrishnan,
| |
Collapse
|
6
|
Moschetta D, Di Maria E, Valerio V, Massaiu I, Bozzi M, Songia P, D’alessandra Y, Myasoedova VA, Poggio P. Purinergic Receptor P2Y2 Stimulation Averts Aortic Valve Interstitial Cell Calcification and Myofibroblastic Activation. Biomedicines 2022; 10:biomedicines10020457. [PMID: 35203666 PMCID: PMC8962345 DOI: 10.3390/biomedicines10020457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/04/2022] Open
Abstract
Rationale—Calcific aortic valve stenosis (CAVS) is a pathological condition of the aortic valve with a prevalence of 3% in the general population. It is characterized by massive rearrangement of the extracellular matrix, mostly due to the accumulation of fibro-calcific deposits driven by valve interstitial cells (VIC), and no pharmacological treatment is currently available. The aim of this study was to evaluate the effects of P2Y2 receptor (P2RY2) activation on fibro-calcific remodeling of CAVS. Methods—We employed human primary VICs isolated from CAVS leaflets treated with 2-thiouridine-5′-triphosphate (2ThioUTP, 10 µM), an agonist of P2RY2. The calcification was induced by inorganic phosphate (2 mM) and ascorbic acid (50 µg/mL) for 7 or 14 days, while the 2ThioUTP was administered starting from the seventh day. 2ThioUTP was chronically administered for 5 days to evaluate myofibroblastic activation. Results—P2RY2 activation, under continuous or interrupted pro-calcific stimuli, led to a significant inhibition of VIC calcification potential (p < 0.01). Moreover, 2ThioUTP treatment was able to significantly reduce pro-fibrotic gene expression (p < 0.05), as well as that of protein α-smooth muscle actin (p = 0.004). Conclusions—Our data suggest that P2RY2 activation should be further investigated as a pharmacological target for the prevention of CAVS progression, acting on both calcification and myofibroblastic activation.
Collapse
Affiliation(s)
- Donato Moschetta
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (D.M.); (E.D.M.); (V.V.); (I.M.); (M.B.); (P.S.); (Y.D.); (V.A.M.)
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Enrico Di Maria
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (D.M.); (E.D.M.); (V.V.); (I.M.); (M.B.); (P.S.); (Y.D.); (V.A.M.)
| | - Vincenza Valerio
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (D.M.); (E.D.M.); (V.V.); (I.M.); (M.B.); (P.S.); (Y.D.); (V.A.M.)
| | - Ilaria Massaiu
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (D.M.); (E.D.M.); (V.V.); (I.M.); (M.B.); (P.S.); (Y.D.); (V.A.M.)
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Michele Bozzi
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (D.M.); (E.D.M.); (V.V.); (I.M.); (M.B.); (P.S.); (Y.D.); (V.A.M.)
| | - Paola Songia
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (D.M.); (E.D.M.); (V.V.); (I.M.); (M.B.); (P.S.); (Y.D.); (V.A.M.)
| | - Yuri D’alessandra
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (D.M.); (E.D.M.); (V.V.); (I.M.); (M.B.); (P.S.); (Y.D.); (V.A.M.)
| | - Veronika A. Myasoedova
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (D.M.); (E.D.M.); (V.V.); (I.M.); (M.B.); (P.S.); (Y.D.); (V.A.M.)
| | - Paolo Poggio
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (D.M.); (E.D.M.); (V.V.); (I.M.); (M.B.); (P.S.); (Y.D.); (V.A.M.)
- Correspondence: ; Tel.: +39-02-5800-2853
| |
Collapse
|
7
|
Du G, Bai F, Zhan X, Zhang W, Tong J, Wang Y, Xia X, Shi C. Citral mitigates inflammation of Caco-2 cells induced by Cronobacter sakazakii. Food Funct 2022; 13:3540-3550. [DOI: 10.1039/d2fo00098a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this study was to explore the anti-inflammatory effect and mechanism of citral in Cronobacter sakazakii-stimulated Caco-2 cells. Safe doses of citral were first determined in Caco-2 cells....
Collapse
|
8
|
Ramadoss R, Krishnan R, Vasanthi V, Bose D, Vijayalakshmi R, Padmanabhan R, Subramanian B. New Insights for Consummate Diagnosis and Management of Oral Submucous Fibrosis Using Reactive and Reparative Fibrotic Parameter Derived Algorithm. J Pharm Bioallied Sci 2021; 13:S323-S332. [PMID: 34447103 PMCID: PMC8375801 DOI: 10.4103/jpbs.jpbs_822_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 11/04/2022] Open
Abstract
Objective Reproducibility of qualitative changes in histopathological diagnosis involving narrow variation is often challenging. This study aims to characterize the histological fibrotic events in detail so as to derive an in-depth multiparametric algorithm with individually quantified histological parameters for effective monitoring of the. disease process in oral submucous fibrosis and for potential therapeutic targets for early intervention. Methods Formalin fixed paraffin embedded (FFPE) blocks of oral submucous fibrosis (OSMF), were taken and sections were stained with Hematoxylin & Eosin stain and Masson Trichrome stain. Photomicrographs were assessed for various morphometric parameters with Image J software version 1.8. Linear Regression was used to model the relationship using Inflammatory Cell Count, Extent of Inflammation collagen stained area, Epithelial thickness integrated density of collagen, MVPA, Area, Perimeter, were taken as variables. Result Inflammatory cell count and the extent of inflammation also decreased with increasing grades of OSMF. Collagen proportionate area, integrated collagen density and epithelial thickness were compared among different grades of OSMF. Grade IV OSMF had greatest mean collagen proportionate area , highest integrated collagen density and lowest epithelial thickness when compared to other grades of OSMF. Linear regression model revealed smaller variation between Grade I to Grade II. Whereas Grade II to Grade IV exhibited larger variation suggestive of increased growth rate and all the coefficients were found to lie within 95% confidence limits. Conclusion Diagnostic algorithm with multiparametric regression model were derived and combinatorial therapeutic approaches have been suggested for more effective management of oral submucous fibrosis.
Collapse
Affiliation(s)
- Ramya Ramadoss
- Department of Oral Pathology and Microbiology, SRM Dental College, SRMIST, Chennai, Tamil Nadu, India
| | - Rajkumar Krishnan
- Department of Oral Pathology and Microbiology, SRM Dental College, SRMIST, Chennai, Tamil Nadu, India
| | - V Vasanthi
- Department of Oral Pathology and Microbiology, SRM Dental College, SRMIST, Chennai, Tamil Nadu, India
| | - Divya Bose
- Department of Oral Pathology and Microbiology, SRM Dental College, SRMIST, Chennai, Tamil Nadu, India
| | - R Vijayalakshmi
- Department of Mathematics, SRM Institute of Science and Technology, Ramapuram, Chennai, Tamil Nadu, India
| | - Rajashree Padmanabhan
- CAS Crystallography and BioPhysics, University of Madras, Chennai, Tamil Nadu, India
| | - Balakumar Subramanian
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India
| |
Collapse
|
9
|
Abstract
Numerous individuals suffer from impaired wound healing, such as chronic ulcers, severe burns and immune disorders, resulting in both public health and economic burdens. Skin is the first line of defense and the largest organ of the human body, however, an incomplete understanding of underlying cellular and molecular mechanisms of dermal repair leads to a lack of effective therapy for healing impaired wounds. There are strong clinical and social needs for improved therapeutic approaches to enhance endogenous tissue repair and regenerative capacity. The purpose of this review is to illuminate the cellular and molecular aspects of the healing process and highlight potential therapeutic strategies to accelerate translational research and the development of clinical therapies in dermal wounds.
Collapse
Affiliation(s)
- Fan Yang
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xiangjun Bai
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xiaojing Dai
- MD Anderson Cancer Center, The Advanced Technology Genomics Core, Houston, TX 77030, USA
| | - Yong Li
- Department of Orthopedic Surgery & Biomedical Engineering, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI 49008, USA
| |
Collapse
|
10
|
Novak I, Yu H, Magni L, Deshar G. Purinergic Signaling in Pancreas-From Physiology to Therapeutic Strategies in Pancreatic Cancer. Int J Mol Sci 2020; 21:E8781. [PMID: 33233631 PMCID: PMC7699721 DOI: 10.3390/ijms21228781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
The purinergic signaling has an important role in regulating pancreatic exocrine secretion. The exocrine pancreas is also a site of one of the most serious cancer forms, the pancreatic ductal adenocarcinoma (PDAC). Here, we explore how the network of purinergic and adenosine receptors, as well as ecto-nucleotidases regulate normal pancreatic cells and various cells within the pancreatic tumor microenvironment. In particular, we focus on the P2X7 receptor, P2Y2 and P2Y12 receptors, as well as A2 receptors and ecto-nucleotidases CD39 and CD73. Recent studies indicate that targeting one or more of these candidates could present new therapeutic approaches to treat pancreatic cancer. In pancreatic cancer, as much as possible of normal pancreatic function should be preserved, and therefore physiology of purinergic signaling in pancreas needs to be considered.
Collapse
MESH Headings
- 5'-Nucleotidase/genetics
- 5'-Nucleotidase/immunology
- Animals
- Antibodies, Monoclonal/therapeutic use
- Antineoplastic Agents, Immunological/therapeutic use
- Apyrase/genetics
- Apyrase/immunology
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/pathology
- Clinical Trials as Topic
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/immunology
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Immunotherapy/methods
- Pancreas/drug effects
- Pancreas/immunology
- Pancreas/pathology
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/pathology
- Pancreatic Stellate Cells/drug effects
- Pancreatic Stellate Cells/immunology
- Pancreatic Stellate Cells/pathology
- Receptors, Adenosine A2/genetics
- Receptors, Adenosine A2/immunology
- Receptors, Purinergic P2X7/genetics
- Receptors, Purinergic P2X7/immunology
- Receptors, Purinergic P2Y12/genetics
- Receptors, Purinergic P2Y12/immunology
- Receptors, Purinergic P2Y2/genetics
- Receptors, Purinergic P2Y2/immunology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Ivana Novak
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark; (H.Y.); (L.M.); (G.D.)
| | | | | | | |
Collapse
|
11
|
Trapero C, Martín-Satué M. Purinergic Signaling in Endometriosis-Associated Pain. Int J Mol Sci 2020; 21:E8512. [PMID: 33198179 PMCID: PMC7697899 DOI: 10.3390/ijms21228512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Endometriosis is an estrogen-dependent gynecological disease, with an associated chronic inflammatory component, characterized by the presence of endometrial tissue outside the uterine cavity. Its predominant symptom is pain, a condition notably altering the quality of life of women with the disease. This review is intended to exhaustively gather current knowledge on purinergic signaling in endometriosis-associated pain. Altered extracellular ATP hydrolysis, due to changes in ectonucleotidase activity, has been reported in endometriosis; the resulting accumulation of ATP in the endometriotic microenvironment points to sustained activation of nucleotide receptors (P2 receptors) capable of generating a persistent pain message. P2X3 receptor, expressed in sensory neurons, mediates nociceptive, neuropathic, and inflammatory pain, and is enrolled in endometriosis-related pain. Pharmacological inhibition of P2X3 receptor is under evaluation as a pain relief treatment for women with endometriosis. The role of other ATP receptors is also discussed here, e.g., P2X4 and P2X7 receptors, which are involved in inflammatory cell-nerve and microglia-nerve crosstalk, and therefore in inflammatory and neuropathic pain. Adenosine receptors (P1 receptors), by contrast, mainly play antinociceptive and anti-inflammatory roles. Purinome-targeted drugs, including nucleotide receptors and metabolizing enzymes, are potential non-hormonal therapeutic tools for the pharmacological management of endometriosis-related pain.
Collapse
Affiliation(s)
- Carla Trapero
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, Campus Bellvitge, Universitat de Barcelona, 08907 Barcelona, Spain;
- Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Oncobell Program, CIBERONC, 08908 Barcelona, Spain
| | - Mireia Martín-Satué
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, Campus Bellvitge, Universitat de Barcelona, 08907 Barcelona, Spain;
- Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Oncobell Program, CIBERONC, 08908 Barcelona, Spain
| |
Collapse
|
12
|
Hu G, Cheng P, Pan J, Wang S, Ding Q, Jiang Z, Cheng L, Shao X, Huang L, Huang J. An IL6-Adenosine Positive Feedback Loop between CD73 + γδTregs and CAFs Promotes Tumor Progression in Human Breast Cancer. Cancer Immunol Res 2020; 8:1273-1286. [PMID: 32847938 DOI: 10.1158/2326-6066.cir-19-0923] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/30/2020] [Accepted: 07/22/2020] [Indexed: 11/16/2022]
Abstract
The tumor microenvironment induces immunosuppression via recruiting and expanding suppressive immune cells such as regulatory T cells (Treg) to promote cancer progression. In this study, we documented that tumor-infiltrating CD73+ γδTregs were the predominant Tregs in human breast cancer and exerted more potent immunosuppressive activity than CD4+ or CD8+ Tregs. We further demonstrated that cancer-associated fibroblast (CAF)-derived IL6, rather than TGFβ1, induced CD73+ γδTreg differentiation from paired normal breast tissues via the IL6/STAT3 pathway to produce more adenosine and become potent immunosuppressive T cells. CD73+ γδTregs could in turn promote IL6 secretion by CAFs through adenosine/A2BR/p38MAPK signaling, thereby forming an IL6-adenosine positive feedback loop. CD73+ γδTreg infiltration also impaired the tumoricidal functions of CD8+ T cells and significantly correlated with worse prognosis of patients. The data indicate that the IL6-adenosine loop between CD73+ γδTregs and CAFs is important to promote immunosuppression and tumor progression in human breast cancer, which may be critical for tumor immunotherapy.
Collapse
Affiliation(s)
- Guoming Hu
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People's Hospital; Shaoxing Hospital, Zhejiang University School of Medicine, Zhejiang, China.
| | - Pu Cheng
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education; Provincial Key Laboratory of Molecular Biology in Medical Sciences), Zhejiang University, Hangzhou, China.,Department of Gynecology, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Pan
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education; Provincial Key Laboratory of Molecular Biology in Medical Sciences), Zhejiang University, Hangzhou, China
| | - Shimin Wang
- Department of Nephrology, Shaoxing People's Hospital; Shaoxing Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Qiannan Ding
- Medical Research Center, Shaoxing People's Hospital; Shaoxing Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Zhou Jiang
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education; Provincial Key Laboratory of Molecular Biology in Medical Sciences), Zhejiang University, Hangzhou, China
| | - Lu Cheng
- Department of Pathology, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Xuan Shao
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education; Provincial Key Laboratory of Molecular Biology in Medical Sciences), Zhejiang University, Hangzhou, China.,Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Liming Huang
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People's Hospital; Shaoxing Hospital, Zhejiang University School of Medicine, Zhejiang, China.
| | - Jian Huang
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education; Provincial Key Laboratory of Molecular Biology in Medical Sciences), Zhejiang University, Hangzhou, China. .,Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Zhejiang, China
| |
Collapse
|
13
|
Pereira JMS, Barreira AL, Gomes CR, Ornellas FM, Ornellas DS, Miranda LC, Cardoso LR, Coutinho-Silva R, Schanaider A, Morales MM, Leite M, Takiya CM. Brilliant blue G, a P2X7 receptor antagonist, attenuates early phase of renal inflammation, interstitial fibrosis and is associated with renal cell proliferation in ureteral obstruction in rats. BMC Nephrol 2020; 21:206. [PMID: 32471386 PMCID: PMC7260756 DOI: 10.1186/s12882-020-01861-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 05/21/2020] [Indexed: 01/10/2023] Open
Abstract
Background Previous study showed that purinergic P2X7 receptors (P2X7R) reach the highest expression in the first week after unilateral ureteral obstruction (UUO) in mice, and are involved in the process of inflammation, apoptosis and fibrosis of renal tissue. We, herein, document the role of purinergic P2X7 receptors activation on the third day of UUO, as assessed by means of BBG as its selective inhibitor. Methods We investigated the effects of brilliant blue G (BBG), a P2X7R antagonist, in the third day of kidney tissue response to UUO in rats. For this purpose, male Wistar rats submitted to UUO or sham operated, received BBG or vehicle (V), comprising four groups: UUO-BBG, UUO-V, sham-BBG and sham-V. The kidneys were harvested on day 3 UUO and prepared for histology, immunohistochemistry (P2X7R, PCNA, CD-68, α-sma, TGF-β1, Heat-shock protein-47, TUNEL assay), quantitative real-time PCR (IL-1β, procollagens type I, III, and IV) for mRNA quantification. Results The group UUO-V presented an enhancement in tubular cell P2X7-R expression, increase influx of macrophages and myofibroblasts, HSP-47 and TGF- β1 expression. Also, upregulation of procollagen types I, III, and IV, and IL-1β mRNAs were seen. On the other hand, group UUO-BBG showed lower expression of procollagens and IL-1β mRNAs, as well as less immunoreactivity of HSP-47, TGF-β, macrophages, myofibroblasts, and tubular apoptosis. This group also presented increased epithelial cell proliferation. Conclusion BBG, a known highly selective inhibitor of P2X7R, attenuated renal inflammation, collagen synthesis, renal cell apoptosis, and enhanced renal cell proliferation in the early phase of rat model of UUO.
Collapse
Affiliation(s)
- José Monteiro Sad Pereira
- Programa de Pós-Graduação em Ciências Cirúrgicas, Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Serviço de Urologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Luis Barreira
- Serviço de Nefrologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Conrado Rodrigues Gomes
- Serviço de Nefrologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe Mateus Ornellas
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Débora Santos Ornellas
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Carlos Miranda
- Programa de Pós-Graduação em Ciências Cirúrgicas, Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Serviço de Urologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucio Ronaldo Cardoso
- Serviço de Nefrologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alberto Schanaider
- Programa de Pós-Graduação em Ciências Cirúrgicas, Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro de Cirurgia Experimental, Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo M Morales
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maurilo Leite
- Serviço de Nefrologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Christina Maeda Takiya
- Programa de Pós-Graduação em Ciências Cirúrgicas, Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Chouiter A, Dali AR, Dellis O. [Purinergic receptors and hepatic fibrosis]. Med Sci (Paris) 2020; 36:525-528. [PMID: 32452377 DOI: 10.1051/medsci/2020086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Pour la cinquième année, dans le cadre du module d’enseignement « Physiopathologie de la signalisation » proposé par l’université Paris-sud, les étudiants du Master « Biologie Santé » de l’université Paris-Saclay se sont confrontés à l’écriture scientifique. Ils ont sélectionné une quinzaine d’articles scientifiques récents dans le domaine de la signalisation cellulaire présentant des résultats originaux, via des approches expérimentales variées, sur des thèmes allant des relations hôte-pathogène aux innovations thérapeutiques, en passant par la signalisation hépatique et le métabolisme. Après un travail préparatoire réalisé avec l’équipe pédagogique, les étudiants, organisés en binômes, ont ensuite rédigé, guidés par des chercheurs, une Nouvelle soulignant les résultats majeurs et l’originalité de l’article étudié. Ils ont beaucoup apprécié cette initiation à l’écriture d’articles scientifiques et, comme vous pourrez le lire, se sont investis dans ce travail avec enthousiasme ! Trois de ces Nouvelles sont publiées dans ce numéro, les autres le seront dans des prochains numéros.
Collapse
Affiliation(s)
- Amelle Chouiter
- M1 Biologie-Santé et Magistère de Biologie, Université Paris-Saclay, 91405 Orsay, France
| | | | - Olivier Dellis
- Inserm U1174, Univ. Paris Sud, Université Paris Saclay, 91405 Orsay, France
| |
Collapse
|
15
|
Jacobson KA, Delicado EG, Gachet C, Kennedy C, von Kügelgen I, Li B, Miras-Portugal MT, Novak I, Schöneberg T, Perez-Sen R, Thor D, Wu B, Yang Z, Müller CE. Update of P2Y receptor pharmacology: IUPHAR Review 27. Br J Pharmacol 2020; 177:2413-2433. [PMID: 32037507 DOI: 10.1111/bph.15005] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/12/2020] [Accepted: 01/15/2020] [Indexed: 02/06/2023] Open
Abstract
Eight G protein-coupled P2Y receptor subtypes respond to extracellular adenine and uracil mononucleotides and dinucleotides. P2Y receptors belong to the δ group of rhodopsin-like GPCRs and contain two structurally distinct subfamilies: P2Y1 , P2Y2 , P2Y4 , P2Y6 , and P2Y11 (principally Gq protein-coupled P2Y1 -like) and P2Y12-14 (principally Gi protein-coupled P2Y12 -like) receptors. Brain P2Y receptors occur in neurons, glial cells, and vasculature. Endothelial P2Y1 , P2Y2 , P2Y4 , and P2Y6 receptors induce vasodilation, while smooth muscle P2Y2 , P2Y4 , and P2Y6 receptor activation leads to vasoconstriction. Pancreatic P2Y1 and P2Y6 receptors stimulate while P2Y13 receptors inhibits insulin secretion. Antagonists of P2Y12 receptors, and potentially P2Y1 receptors, are anti-thrombotic agents, and a P2Y2 /P2Y4 receptor agonist treats dry eye syndrome in Asia. P2Y receptor agonists are generally pro-inflammatory, and antagonists may eventually treat inflammatory conditions. This article reviews recent developments in P2Y receptor pharmacology (using synthetic agonists and antagonists), structure and biophysical properties (using X-ray crystallography, mutagenesis and modelling), physiological and pathophysiological roles, and present and potentially future therapeutic targeting.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Massachusetts
| | - Esmerilda G Delicado
- Dpto. Bioquimica y Biologia Molecular, Universidad Complutense de Madrid, Madrid, Spain
| | - Christian Gachet
- Université de Strasbourg INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Charles Kennedy
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Ivar von Kügelgen
- Biomedical Research Center, Department of Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Beibei Li
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | - Ivana Novak
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Raquel Perez-Sen
- Dpto. Bioquimica y Biologia Molecular, Universidad Complutense de Madrid, Madrid, Spain
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany.,IFB AdiposityDiseases, Leipzig University Medical Center, Leipzig, Germany
| | - Beili Wu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhenlin Yang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Christa E Müller
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| |
Collapse
|
16
|
Comparison of Extracellular Matrix (ECM) of Normal and D-Galactosamine-Induced Mice Model of Liver Injury Before and After Liver Decellularization. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-020-00153-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Yang G, Jin T, Yin S, Guo D, Zhang C, Xia X, Shi C. trans-Cinnamaldehyde mitigated intestinal inflammation induced by Cronobacter sakazakii in newborn mice. Food Funct 2019; 10:2986-2996. [PMID: 31074758 DOI: 10.1039/c9fo00410f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Necrotizing enterocolitis (NEC) is a serious intestinal disease associated with a high mortality (40-60%) in newborn infants. Cronobacter sakazakii is an important factor for NEC. However, studies regarding NEC pathogenesis and therapeutic treatments are still limited. Here, a C. sakazakii-induced mouse neonatal intestinal inflammation model was employed to determine the effects of trans-cinnamaldehyde (TC) on infections. TC treatment reduced the number of C. sakazakii colony-forming units in the ileal tissues and mitigated the morphological damage in intestinal tissues. Additionally, it reduced the mRNA transcription of inflammatory genes and production of interleukin 6 and tumor necrosis factor-α in mice infected with C. sakazakii. Moreover, TC treatment suppressed caspase-3 activity, modulated enterocyte apoptosis, and inhibited the nuclear factor-kappa B signaling pathway activation induced by C. sakazakii. These findings suggest that TC has protective effects on C. sakazakii-induced murine intestinal inflammation and that it may be a potential agent for preventing NEC.
Collapse
Affiliation(s)
- Gaoji Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Sekiguchi A, Motegi SI, Fujiwara C, Yamazaki S, Inoue Y, Uchiyama A, Akai R, Iwawaki T, Ishikawa O. Inhibitory effect of kaempferol on skin fibrosis in systemic sclerosis by the suppression of oxidative stress. J Dermatol Sci 2019; 96:8-17. [DOI: 10.1016/j.jdermsci.2019.08.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/30/2019] [Accepted: 08/14/2019] [Indexed: 02/06/2023]
|
19
|
Takemura N, Kurashima Y, Mori Y, Okada K, Ogino T, Osawa H, Matsuno H, Aayam L, Kaneto S, Park EJ, Sato S, Matsunaga K, Tamura Y, Ouchi Y, Kumagai Y, Kobayashi D, Suzuki Y, Yoshioka Y, Nishimura J, Mori M, Ishii KJ, Rothenberg ME, Kiyono H, Akira S, Uematsu S. Eosinophil depletion suppresses radiation-induced small intestinal fibrosis. Sci Transl Med 2019; 10:10/429/eaan0333. [PMID: 29467297 DOI: 10.1126/scitranslmed.aan0333] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 10/05/2017] [Accepted: 01/17/2018] [Indexed: 12/14/2022]
Abstract
Radiation-induced intestinal fibrosis (RIF) is a serious complication after abdominal radiotherapy for pelvic tumor or peritoneal metastasis. Herein, we show that RIF is mediated by eosinophil interactions with α-smooth muscle actin-positive (α-SMA+) stromal cells. Abdominal irradiation caused RIF especially in the submucosa (SM) of the small intestine, which was associated with the excessive accumulation of eosinophils in both human and mouse. Eosinophil-deficient mice showed markedly ameliorated RIF, suggesting the importance of eosinophils. After abdominal irradiation, chronic crypt cell death caused elevation of extracellular adenosine triphosphate, which in turn activated expression of C-C motif chemokine 11 (CCL11) by pericryptal α-SMA+ cells in the SM to attract eosinophils in mice. Inhibition of C-C chemokine receptor 3 (CCR3) by genetic deficiency or neutralizing antibody (Ab) treatment suppressed eosinophil accumulation in the SM after irradiation in mice, suggesting a critical role of the CCL11/CCR3 axis in the eosinophil recruitment. Activated α-SMA+ cells also expressed granulocyte-macrophage colony-stimulating factor (GM-CSF) to activate eosinophils. Transforming growth factor-β1 from GM-CSF-stimulated eosinophils promoted collagen expression by α-SMA+ cells. In translational studies, treatment with a newly developed interleukin-5 receptor α-targeting Ab, analogous to the human agent benralizumab, depleted intestinal eosinophils and suppressed RIF in mice. Collectively, we identified eosinophils as a crucial factor in the pathogenesis of RIF and showed potential therapeutic strategies for RIF by targeting eosinophils.
Collapse
Affiliation(s)
- Naoki Takemura
- Department of Mucosal Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.,Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yosuke Kurashima
- Department of Mucosal Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.,Division of Mucosal Immunology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Institute for Global Prominent Research, Chiba University, Chiba 260-8670, Japan.,Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan.,Division of Clinical Vaccinology, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yuki Mori
- Laboratory of Biofunctional Imaging, World Premier Institute (WPI) Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kazuki Okada
- Immunology and Allergy R&D Unit, R&D Division, Kyowa Hakko Kirin Co. Ltd., 3-6-6 Asahi-machi, Machida-shi, Tokyo 194-8533, Japan
| | - Takayuki Ogino
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan.,Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Obere Zahlbacher Strasse 67, Mainz 55131, Germany
| | - Hideki Osawa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hirosih Matsuno
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Lamichhane Aayam
- Division of Mucosal Immunology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Satoshi Kaneto
- Division of Mucosal Immunology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Eun Jeong Park
- Division of Mucosal Immunology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Department of Molecular Pathobiology and Cell Adhesion Biology, Basic Medical Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Shintaro Sato
- Division of Mucosal Immunology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Mucosal Vaccine Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Kouta Matsunaga
- Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yusuke Tamura
- Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yasuo Ouchi
- Department of Mucosal Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Yutaro Kumagai
- Quantitative Immunology Research Unit, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Daichi Kobayashi
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.,Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Yoshichika Yoshioka
- Laboratory of Biofunctional Imaging, World Premier Institute (WPI) Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Junichi Nishimura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, National Institute of Biomedical Innovation, 7-6-8 Asagi Saito, Ibaraki, Osaka 567-0085, Japan.,Laboratory of Vaccine Science, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Mark E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Division of Clinical Vaccinology, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan.,Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Satoshi Uematsu
- Department of Mucosal Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan. .,Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
20
|
Feng J, Armillei MK, Yu AS, Liang BT, Runnels LW, Yue L. Ca 2+ Signaling in Cardiac Fibroblasts and Fibrosis-Associated Heart Diseases. J Cardiovasc Dev Dis 2019; 6:E34. [PMID: 31547577 PMCID: PMC6956282 DOI: 10.3390/jcdd6040034] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022] Open
Abstract
Cardiac fibrosis is the excessive deposition of extracellular matrix proteins by cardiac fibroblasts and myofibroblasts, and is a hallmark feature of most heart diseases, including arrhythmia, hypertrophy, and heart failure. This maladaptive process occurs in response to a variety of stimuli, including myocardial injury, inflammation, and mechanical overload. There are multiple signaling pathways and various cell types that influence the fibrogenesis cascade. Fibroblasts and myofibroblasts are central effectors. Although it is clear that Ca2+ signaling plays a vital role in this pathological process, what contributes to Ca2+ signaling in fibroblasts and myofibroblasts is still not wholly understood, chiefly because of the large and diverse number of receptors, transporters, and ion channels that influence intracellular Ca2+ signaling. Intracellular Ca2+ signals are generated by Ca2+ release from intracellular Ca2+ stores and by Ca2+ entry through a multitude of Ca2+-permeable ion channels in the plasma membrane. Over the past decade, the transient receptor potential (TRP) channels have emerged as one of the most important families of ion channels mediating Ca2+ signaling in cardiac fibroblasts. TRP channels are a superfamily of non-voltage-gated, Ca2+-permeable non-selective cation channels. Their ability to respond to various stimulating cues makes TRP channels effective sensors of the many different pathophysiological events that stimulate cardiac fibrogenesis. This review focuses on the mechanisms of Ca2+ signaling in fibroblast differentiation and fibrosis-associated heart diseases and will highlight recent advances in the understanding of the roles that TRP and other Ca2+-permeable channels play in cardiac fibrosis.
Collapse
Affiliation(s)
- Jianlin Feng
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Maria K Armillei
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Albert S Yu
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Bruce T Liang
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Loren W Runnels
- Department of Pharmacology, Rutgers, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Lixia Yue
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
21
|
Perera LMB, Sekiguchi A, Uchiyama A, Uehara A, Fujiwara C, Yamazaki S, Yokoyama Y, Ogino S, Torii R, Hosoi M, Ishikawa O, Motegi SI. The Regulation of Skin Fibrosis in Systemic Sclerosis by Extracellular ATP via P2Y 2 Purinergic Receptor. J Invest Dermatol 2018; 139:890-899. [PMID: 30404019 DOI: 10.1016/j.jid.2018.10.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/26/2018] [Accepted: 10/15/2018] [Indexed: 12/15/2022]
Abstract
Tissue injury/hypoxia and oxidative stress induced-extracellular adenosine triphosphate (ATP) can act as damage-associated molecular pattern molecules, which initiate inflammatory response. Our objective was to elucidate the role of extracellular ATP in skin fibrosis in systemic sclerosis (SSc). We identified that hypoxia enhanced ATP release and that extracellular ATP enhanced IL-6 production more significantly in SSc fibroblasts than in normal fibroblasts. There were no significant differences of P2X and P2Y receptor expression levels between normal and SSc fibroblasts. Nonselective P2 receptor antagonist and selective P2Y2 receptor antagonists, kaempferol and AR-C118925XX, significantly inhibited ATP-induced IL-6 production and phosphorylation of p38 in SSc fibroblasts. ATP-induced IL-6 production was significantly inhibited by p38 inhibitors, SB203580, and doramapimod. Collagen type I production in SSc fibroblasts by ATP-induced IL-6/IL-6 receptor trans-signaling was inhibited by kaempferol and SB203580. The amount of ATP in bleomycin-treated skin was increased, and administration of AR-C118925XX significantly inhibited bleomycin-induced dermal fibrosis in mice. These results suggest that vasculopathy-induced hypoxia and oxidative stress might enhance ATP release in the dermis in SSc and that extracellular ATP-induced phosphorylation of p38 via P2Y2 receptor might enhance IL-6 and collagen type I production in SSc fibroblasts. P2Y2 receptor antagonist therapy could be a treatment for skin sclerosis in patients with SSc.
Collapse
Affiliation(s)
| | - Akiko Sekiguchi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akihiko Uchiyama
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akihito Uehara
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Chisako Fujiwara
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sahori Yamazaki
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoko Yokoyama
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sachiko Ogino
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ryoko Torii
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Mari Hosoi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Osamu Ishikawa
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sei-Ichiro Motegi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan.
| |
Collapse
|
22
|
The P2X4 purinergic receptor regulates hepatic myofibroblast activation during liver fibrogenesis. J Hepatol 2018; 69:644-653. [PMID: 29802948 DOI: 10.1016/j.jhep.2018.05.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/07/2018] [Accepted: 05/14/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Liver fibrosis is characterized by the accumulation of extracellular matrix produced by hepatic myofibroblasts (hMF), the activation of which is critical to the fibrogenic process. Extracellular ATP, released by dying or stressed cells, and its purinergic receptors, constitute a powerful signaling network after injury. Although the purinergic receptor P2X4 (P2RX4) is highly expressed in the liver, its functions in hMF had never been investigated during liver fibrogenesis. METHODS In vivo, bile duct ligation was performed and methionine- and choline-deficient diet administered in wild-type and P2x4 knock-out (P2x4-KO) mice. In vitro, hMF were isolated from mouse (wild-type and P2x4-KO) and human liver. P2X4 pharmacological inhibition (in vitro and in vivo) and P2X4 siRNAs (in vitro) were used. Histological, biochemical and cell culture analysis allowed us to study P2X4 expression and its involvement in the regulation of fibrogenic and fibrolytic factors, as well as of hMF activation markers and properties. RESULTS P2X4 genetic invalidation or pharmacological inhibition protected mice from liver fibrosis and hMF accumulation after bile duct ligation or methionine- and choline-deficient diet. Human and mouse hMFs expressed P2X4, mainly in lysosomes. Invalidation of P2X4 in human and mouse hMFs blunted their activation marker expression and their fibrogenic properties. Finally, we showed that P2X4 regulates calcium entry and lysosomal exocytosis in hMF, impacting on ATP release, profibrogenic secretory profile, and transcription factor activation. CONCLUSION P2X4 expression and activation is critical for hMF to sustain their activated and fibrogenic phenotype. Therefore, the inactivation of P2X4 may be of therapeutic interest during liver fibrotic diseases. LAY SUMMARY During chronic injury, the liver often repairs with fibrotic tissue, which impairs liver function, and for which there is currently no treatment. We found that a previously unexplored pathway involving the purinergic receptor P2X4, can modulate fibrotic liver repair. Therefore, this receptor could be of interest in the development of novel therapies for fibrotic liver diseases.
Collapse
|
23
|
Liu Y, Pejchinovski M, Wang X, Fu X, Castelletti D, Watnick TJ, Arcaro A, Siwy J, Mullen W, Mischak H, Serra AL. Dual mTOR/PI3K inhibition limits PI3K-dependent pathways activated upon mTOR inhibition in autosomal dominant polycystic kidney disease. Sci Rep 2018; 8:5584. [PMID: 29615724 PMCID: PMC5882886 DOI: 10.1038/s41598-018-22938-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/27/2018] [Indexed: 12/17/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the development of kidney cysts leading to kidney failure in adulthood. Inhibition of mammalian target of rapamycin (mTOR) slows polycystic kidney disease (PKD) progression in animal models, but randomized controlled trials failed to prove efficacy of mTOR inhibitor treatment. Here, we demonstrate that treatment with mTOR inhibitors result in the removal of negative feedback loops and up-regulates pro-proliferative phosphatidylinositol 3-kinase (PI3K)-Akt and PI3K-extracellular signal-regulated kinase (ERK) signaling in rat and mouse PKD models. Dual mTOR/PI3K inhibition with NVP-BEZ235 abrogated these pro-proliferative signals and normalized kidney morphology and function by blocking proliferation and fibrosis. Our findings suggest that multi-target PI3K/mTOR inhibition may represent a potential treatment for ADPKD.
Collapse
Affiliation(s)
- Yang Liu
- Institute of Physiology, University of Zürich, Zürich, Switzerland.,Department of Biomedicine, Cancer Immunology Laboratory, University Hospital Basel, Basel, Switzerland
| | | | - Xueqi Wang
- Department of Nephrology, Second Military Medical University, Shanghai, China
| | - Xuebin Fu
- Department of Chemistry and Applied Biosciences, Molecular Pharmacology Unit, Swiss Federal Institute of Technology Zürich, Zürich, Switzerland
| | | | - Terry J Watnick
- Division of Nephrology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Alexandre Arcaro
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | | | - William Mullen
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Harald Mischak
- Mosaiques Diagnostics GmbH, Hanover, Germany.,Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Andreas L Serra
- Epidemiology, Biostatistics and Prevention Institute, University of Zürich, and Suisse ADPKD, Klinik Hirslanden Zürich, Switzerland.
| |
Collapse
|
24
|
Infant cardiopulmonary bypass: CD73 kinetics, association with clinical outcomes, and influence on serum adenosine production capacity. Pediatr Res 2018; 83:858-865. [PMID: 29278640 PMCID: PMC5935543 DOI: 10.1038/pr.2017.325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/04/2017] [Indexed: 12/20/2022]
Abstract
BackgroundExtracellular adenine nucleotides contribute to ischemia-reperfusion injury following infant cardiopulmonary bypass (CPB), whereas conversion to adenosine may be protective. Alkaline phosphatase (AP), a key enzyme responsible for this conversion, decreases after infant CPB. Indirect evidence suggests that soluble CD73 may simultaneously increase and partially offset this loss of AP. We sought to measure CD73 levels in infants undergoing CPB and determine its association with adenosine production capacity and postoperative support requirements.MethodsA prospective cohort study of infants ≤120 days of age undergoing CPB. CD73 was measured before CPB and during rewarming. Multivariable modeling evaluated the contributions of CD73/AP to adenosine production capacity and postoperative support requirements.ResultsSerum samples from 85 subjects were analyzed. The median CD73 concentration increased following CPB (95.2 vs. 179.8 ng/ml; P<0.0001). Rewarming CD73 was independently inversely associated with vasoactive inotropic support (P<0.005) and length of intensive care unit stay (P<0.005). Combined AP activity and CD73 concentration predicted adenosine production capacity (P<0.0001).ConclusionsSerum CD73 increases following infant CPB. Low rewarming CD73 is independently associated with increased postoperative support requirements. CD73 and AP together predict serum adenosine production capacity and may represent potential therapeutic targets to clear extracellular adenine nucleotides and improve outcomes following infant CPB.
Collapse
|
25
|
Giacomelli C, Daniele S, Romei C, Tavanti L, Neri T, Piano I, Celi A, Martini C, Trincavelli ML. The A 2B Adenosine Receptor Modulates the Epithelial- Mesenchymal Transition through the Balance of cAMP/PKA and MAPK/ERK Pathway Activation in Human Epithelial Lung Cells. Front Pharmacol 2018; 9:54. [PMID: 29445342 PMCID: PMC5797802 DOI: 10.3389/fphar.2018.00054] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/15/2018] [Indexed: 12/12/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a complex process in which cell phenotype switches from the epithelial to mesenchymal one. The deregulations of this process have been related with the occurrence of different diseases such as lung cancer and fibrosis. In the last decade, several efforts have been devoted in understanding the mechanisms that trigger and sustain this transition process. Adenosine is a purinergic signaling molecule that has been involved in the onset and progression of chronic lung diseases and cancer through the A2B adenosine receptor subtype activation, too. However, the relationship between A2BAR and EMT has not been investigated, yet. Herein, the A2BAR characterization was carried out in human epithelial lung cells. Moreover, the effects of receptor activation on EMT were investigated in the absence and presence of transforming growth factor-beta (TGF-β1), which has been known to promote the transition. The A2BAR activation alone decreased and increased the expression of epithelial markers (E-cadherin) and the mesenchymal one (Vimentin, N-cadherin), respectively, nevertheless a complete EMT was not observed. Surprisingly, the receptor activation counteracted the EMT induced by TGF-β1. Several intracellular pathways regulate the EMT: high levels of cAMP and ERK1/2 phosphorylation has been demonstrated to counteract and promote the transition, respectively. The A2BAR stimulation was able to modulated these two pathways, cAMP/PKA and MAPK/ERK, shifting the fine balance toward activation or inhibition of EMT. In fact, using a selective PKA inhibitor, which blocks the cAMP pathway, the A2BAR-mediated EMT promotion were exacerbated, and conversely the selective inhibition of MAPK/ERK counteracted the receptor-induced transition. These results highlighted the A2BAR as one of the receptors involved in the modulation of EMT process. Nevertheless, its activation is not enough to trigger a complete transition, its ability to affect different intracellular pathways could represent a mechanism at the basis of EMT maintenance/inhibition based on the extracellular microenvironment. Despite further investigations are needed, herein for the first time the A2BAR has been related to the EMT process, and therefore to the different EMT-related pathologies.
Collapse
Affiliation(s)
| | | | - Chiara Romei
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy.,Radiology Unit, University Hospital of Pisa, Pisa, Italy
| | - Laura Tavanti
- Pneumology Unit, Cardio-Thoracic Department, University Hospital of Pisa, Pisa, Italy
| | - Tommaso Neri
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Ilaria Piano
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Alessandro Celi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | | | | |
Collapse
|
26
|
Roy C, Tabiasco J, Caillon A, Delneste Y, Merot J, Favre J, Guihot AL, Martin L, Nascimento DC, Ryffel B, Robson SC, Sévigny J, Henrion D, Kauffenstein G. Loss of vascular expression of nucleoside triphosphate diphosphohydrolase-1/CD39 in hypertension. Purinergic Signal 2017; 14:73-82. [PMID: 29236227 DOI: 10.1007/s11302-017-9597-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 11/29/2017] [Indexed: 12/21/2022] Open
Abstract
Ectonucleoside triphosphate diphosphohydrolase-1, the major vascular/immune ectonucleotidase, exerts anti-thrombotic and immunomodulatory actions by hydrolyzing extracellular nucleotides (danger signals). Hypertension is characterized by vascular wall remodeling, endothelial dysfunction, and immune infiltration. Here our aim was to investigate the impact of arterial hypertension on CD39 expression and activity in mice. Arterial expression of CD39 was determined by reverse transcription quantitative real-time PCR in experimental models of hypertension, including angiotensin II (AngII)-treated mice (1 mg/kg/day, 21 days), deoxycorticosterone acetate-salt mice (1% salt and uninephrectomy, 21 days), and spontaneously hypertensive rats. A decrease in CD39 expression occurred in the resistance and conductance arteries of hypertensive animals with no effect on lymphoid organs. In AngII-treated mice, a decrease in CD39 protein levels (Western blot) was corroborated by reduced arterial nucleotidase activity, as evaluated by fluorescent (etheno)-ADP hydrolysis. Moreover, serum-soluble ADPase activity, supported by CD39, was significantly decreased in AngII-treated mice. Experiments were conducted in vitro on vascular cells to determine the elements underlying this downregulation. We found that CD39 transcription was reduced by proinflammatory cytokines interleukin (IL)-1β and tumor necrosis factor alpha on vascular smooth muscle cells and by IL-6 and anti-inflammatory and profibrotic cytokine transforming growth factor beta 1 on endothelial cells. In addition, CD39 expression was downregulated by mechanical stretch on vascular cells. Arterial expression and activity of CD39 were decreased in hypertension as a result of both a proinflammatory environment and mechanical strain exerted on vascular cells. Reduced ectonucleotidase activity may alter the vascular condition, thus enhancing arterial damage, remodeling, or thrombotic events.
Collapse
Affiliation(s)
- Charlotte Roy
- MITOVASC Institute - UMR CNRS 6015 INSERM U1083 University of Angers, Angers, France
| | - Julie Tabiasco
- CNRS UMR 6299, INSERM 892, CRCNA, University of Angers, Angers, France
| | - Antoine Caillon
- MITOVASC Institute - UMR CNRS 6015 INSERM U1083 University of Angers, Angers, France
| | - Yves Delneste
- CNRS UMR 6299, INSERM 892, CRCNA, University of Angers, Angers, France.,University Hospital of Angers, Angers, France
| | - Jean Merot
- L'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Julie Favre
- MITOVASC Institute - UMR CNRS 6015 INSERM U1083 University of Angers, Angers, France
| | - Anne Laure Guihot
- MITOVASC Institute - UMR CNRS 6015 INSERM U1083 University of Angers, Angers, France
| | - Ludovic Martin
- MITOVASC Institute - UMR CNRS 6015 INSERM U1083 University of Angers, Angers, France.,University Hospital of Angers, Angers, France
| | - Daniele C Nascimento
- CNRS, UMR 7355, Orleans, France.,CNRS UMR 7355, INEM, University of Orleans, Orleans, France
| | - Bernhard Ryffel
- CNRS, UMR 7355, Orleans, France.,CNRS UMR 7355, INEM, University of Orleans, Orleans, France
| | - Simon C Robson
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Jean Sévigny
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec City, QC, G1V 0A6, Canada.,Centre de recherche du CHU de Québec - Université Laval, Québec City, QC, G1V 4G2, Canada
| | - Daniel Henrion
- MITOVASC Institute - UMR CNRS 6015 INSERM U1083 University of Angers, Angers, France.,University Hospital of Angers, Angers, France
| | - Gilles Kauffenstein
- MITOVASC Institute - UMR CNRS 6015 INSERM U1083 University of Angers, Angers, France. .,University Hospital of Angers, Angers, France.
| |
Collapse
|
27
|
Zuccarini M, Giuliani P, Buccella S, Di Liberto V, Mudò G, Belluardo N, Carluccio M, Rossini M, Condorelli DF, Rathbone MP, Caciagli F, Ciccarelli R, Di Iorio P. Modulation of the TGF-β1-induced epithelial to mesenchymal transition (EMT) mediated by P1 and P2 purine receptors in MDCK cells. Purinergic Signal 2017; 13:429-442. [PMID: 28616713 PMCID: PMC5714834 DOI: 10.1007/s11302-017-9571-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/29/2017] [Indexed: 12/17/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) occurs during embryogenesis or under pathological conditions such as hypoxia, injury, chronic inflammation, or tissue fibrosis. In renal tubular epithelial cells (MDCK), TGF-β1 induces EMT by reducing or increasing epithelial or mesenchymal marker expression, respectively. In this study, we confirmed that the cAMP analogues, 8-CPT-cAMP or N6-Ph-cAMP, inhibited the TGF-β1-driven overexpression of the mesenchymal markers ZEB-1, Slug, Fibronectin, and α-SMA. Furthermore, we showed that A1, A2A, P2Y1, P2Y11, and P2X7 purine receptor agonists modulated the TGF-β1-induced EMT through the involvement of PKA and/or MAPK/ERK signaling. The stimulation of A2A receptor reduced the overexpression of the EMT-related markers, mainly through the cAMP-dependent PKA pathway, as confirmed by cell pre-treatment with Myr-PKI. Both A1 and P2Y1 receptor stimulation exacerbated the TGF-β1-driven effects, which were reduced by cell pre-treatment with the MAPK inhibitor PD98059, according to the increased ERK1/2 phosphorylation upon receptor activation. The effects induced by P2Y11 receptor activation were oppositely modulated by PKA or MAPK inhibition, in line with the dual nature of the Gs- and Gq-coupled receptor. Differently, P2X7 receptor induced, per se, similar and not additive effects compared to TGF-β1, after prolonged cell exposure to BzATP. These results suggest a putative role of purine receptors as target for anti-fibrotic agents.
Collapse
Affiliation(s)
- Mariachiara Zuccarini
- Department of Medical and Oral Sciences and Biotechnologies, "G.d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - Patricia Giuliani
- Department of Medical and Oral Sciences and Biotechnologies, "G.d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Silvana Buccella
- Department of Medical and Oral Sciences and Biotechnologies, "G.d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Valentina Di Liberto
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Giuseppa Mudò
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Natale Belluardo
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Marzia Carluccio
- Department of Medical and Oral Sciences and Biotechnologies, "G.d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Margherita Rossini
- Department of Medical and Oral Sciences and Biotechnologies, "G.d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | - Michel Piers Rathbone
- Department of Medicine, Division of Neurology, McMaster University, Hamilton, ON, Canada
| | - Francesco Caciagli
- Department of Medical and Oral Sciences and Biotechnologies, "G.d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Renata Ciccarelli
- Department of Medical and Oral Sciences and Biotechnologies, "G.d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical and Oral Sciences and Biotechnologies, "G.d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
28
|
Feldbrügge L, Jiang ZG, Csizmadia E, Mitsuhashi S, Tran S, Yee EU, Rothweiler S, Vaid KA, Sévigny J, Schmelzle M, Popov YV, Robson SC. Distinct roles of ecto-nucleoside triphosphate diphosphohydrolase-2 (NTPDase2) in liver regeneration and fibrosis. Purinergic Signal 2017; 14:37-46. [PMID: 29134411 DOI: 10.1007/s11302-017-9590-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/11/2017] [Indexed: 12/16/2022] Open
Abstract
Ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) are cell surface-located transmembrane ecto-enzymes of the CD39 superfamily which regulate inflammation and tissue repair by catalyzing the phosphohydrolysis of extracellular nucleotides and modulating purinergic signaling. In the liver, NTPDase2 is reportedly expressed on portal fibroblasts, but its functional role in regulating tissue regeneration and fibrosis is incompletely understood. Here, we studied the role of NTPDase2 in several models of liver injury using global knockout mice. Liver regeneration and severity of fibrosis were analyzed at different time points after exposure to carbon tetrachloride (CCl4) or 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) or partial hepatectomy in C57BL/6 wild-type and globally NTPDase2-deficient (Entpd2 null) mice. After chronic CCl4 intoxication, Entpd2 null mice exhibit significantly more severe liver fibrosis, as assessed by collagen content and histology. In contrast, deletion of NTPDase2 does not have a substantial effect on biliary-type fibrosis in the setting of DDC feeding. In injured livers, NTPDase2 expression extends from the portal areas to fibrotic septae in pan-lobular (CCl4-induced) liver fibrosis; the same pattern was observed, albeit to a lesser extent in biliary-type (DDC-induced) fibrosis. Liver regeneration after partial hepatectomy is not substantively impaired in global Entpd2 null mice. NTPDase2 protects from liver fibrosis resulting from hepatocellular injury induced by CCl4. In contrast, Entpd2 deletion does not significantly impact fibrosis secondary to DDC injury or liver regeneration after partial hepatectomy. Our observations highlight mechanisms relating to purinergic signaling in the liver and indicate possible therapeutic avenues and new cellular targets to test in the management of hepatic fibrosis.
Collapse
Affiliation(s)
- Linda Feldbrügge
- Department of Surgery, Charité Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353, Berlin, Germany. .,Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA.
| | - Z Gordon Jiang
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Eva Csizmadia
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Shuji Mitsuhashi
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Stephanie Tran
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Eric U Yee
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Sonja Rothweiler
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Kahini A Vaid
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Jean Sévigny
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, QC, Québec, G1V 0A6, Canada.,Centre de Recherche du CHU de Québec, Université Laval, QC, Québec, G1V 4G2, Canada
| | - Moritz Schmelzle
- Department of Surgery, Charité Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353, Berlin, Germany
| | - Yury V Popov
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Simon C Robson
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
29
|
Martínez-Ramírez AS, Díaz-Muñoz M, Battastini AM, Campos-Contreras A, Olvera A, Bergamin L, Glaser T, Jacintho Moritz CE, Ulrich H, Vázquez-Cuevas FG. Cellular Migration Ability Is Modulated by Extracellular Purines in Ovarian Carcinoma SKOV-3 Cells. J Cell Biochem 2017; 118:4468-4478. [PMID: 28464260 DOI: 10.1002/jcb.26104] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 04/28/2017] [Indexed: 12/14/2022]
Abstract
Extracellular nucleotides and nucleosides have emerged as important elements regulating tissue homeostasis. Acting through specific receptors, have the ability to control gene expression patterns to direct cellular fate. We observed that SKOV-3 cells express the ectonucleotidases: ectonucleotide pyrophosphatase 1 (ENPP1), ecto-5'-nucleotidase (NT5E), and liver alkaline phosphatase (ALPL). Strikingly, in pulse and chase experiments supplemented with ATP, SKOV-3 cells exhibited low catabolic efficiency in the conversion of ADP into AMP, but they were efficient in converting AMP into adenosine. Since these cells release ATP, we proposed that the conversion of ADP into AMP is a regulatory node associated with the migratory ability and the mesenchymal characteristics shown by SKOV-3 cells under basal conditions. The landscape of gene expression profiles of SKOV-3 cell cultures treated with apyrase or adenosine demonstrated similarities (e.g., decrease FGF16 transcript) and differences (e.g., the negative regulation of Wnt 2, and 10B by adenosine). Thus, in SKOV-3 we analyzed the migratory ability and the expression of epithelium to mesenchymal transition (EMT) markers in response to apyrase. Apyrase-treatment favored the epithelial-like phenotype, as revealed by the re-location of E-cadherin to the cell to cell junctions. Pharmacological approaches strongly suggested that the effect of Apyrase involved the accumulation of extracellular adenosine; this notion was strengthened when the incubation of the SKOV-3 cell with α,β-methylene ADP (CD73 inhibitor) or adenosine deaminase was sufficient to abolish the effect of apyrase on cell migration. Overall, adenosine signaling is a fine tune mechanism in the control of cell phenotype in cancer. J. Cell. Biochem. 118: 4468-4478, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- A S Martínez-Ramírez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla Querétaro, CP 76230, Querétaro, México
| | - M Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla Querétaro, CP 76230, Querétaro, México
| | - A M Battastini
- Departamento de Bioquímica, Instituto de Ciências Básicas e da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - A Campos-Contreras
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla Querétaro, CP 76230, Querétaro, México
| | - A Olvera
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla Querétaro, CP 76230, Querétaro, México
| | - L Bergamin
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, Sao Paulo, 05508-900, Brazil
| | - T Glaser
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, Sao Paulo, 05508-900, Brazil
| | - C E Jacintho Moritz
- Departamento de Bioquímica, Instituto de Ciências Básicas e da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - H Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, Sao Paulo, 05508-900, Brazil
| | - F G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla Querétaro, CP 76230, Querétaro, México
| |
Collapse
|
30
|
Vecchio EA, White PJ, May LT. Targeting Adenosine Receptors for the Treatment of Cardiac Fibrosis. Front Pharmacol 2017; 8:243. [PMID: 28529484 PMCID: PMC5418340 DOI: 10.3389/fphar.2017.00243] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/18/2017] [Indexed: 12/15/2022] Open
Abstract
Adenosine is a ubiquitous molecule with key regulatory and cytoprotective mechanisms at times of metabolic imbalance in the body. Among a plethora of physiological actions, adenosine has an important role in attenuating ischaemia-reperfusion injury and modulating the ensuing fibrosis and tissue remodeling following myocardial damage. Adenosine exerts these actions through interaction with four adenosine G protein-coupled receptors expressed in the heart. The adenosine A2B receptor (A2BAR) is the most abundant adenosine receptor (AR) in cardiac fibroblasts and is largely responsible for the influence of adenosine on cardiac fibrosis. In vitro and in vivo studies demonstrate that acute A2BAR stimulation can decrease fibrosis through the inhibition of fibroblast proliferation and reduction in collagen synthesis. However, in contrast, there is also evidence that chronic A2BAR antagonism reduces tissue fibrosis. This review explores the opposing pro- and anti-fibrotic activity attributed to the activation of cardiac ARs and investigates the therapeutic potential of targeting ARs for the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Elizabeth A Vecchio
- Monash Institute of Pharmaceutical Sciences, Monash University, ParkvilleVIC, Australia.,Department of Pharmacology, Monash University, ParkvilleVIC, Australia
| | - Paul J White
- Monash Institute of Pharmaceutical Sciences, Monash University, ParkvilleVIC, Australia
| | - Lauren T May
- Monash Institute of Pharmaceutical Sciences, Monash University, ParkvilleVIC, Australia.,Department of Pharmacology, Monash University, ParkvilleVIC, Australia
| |
Collapse
|
31
|
Cong X, Hubmayr RD, Li C, Zhao X. Plasma membrane wounding and repair in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 2017; 312:L371-L391. [PMID: 28062486 PMCID: PMC5374305 DOI: 10.1152/ajplung.00486.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 12/12/2022] Open
Abstract
Various pathophysiological conditions such as surfactant dysfunction, mechanical ventilation, inflammation, pathogen products, environmental exposures, and gastric acid aspiration stress lung cells, and the compromise of plasma membranes occurs as a result. The mechanisms necessary for cells to repair plasma membrane defects have been extensively investigated in the last two decades, and some of these key repair mechanisms are also shown to occur following lung cell injury. Because it was theorized that lung wounding and repair are involved in the pathogenesis of acute respiratory distress syndrome (ARDS) and idiopathic pulmonary fibrosis (IPF), in this review, we summarized the experimental evidence of lung cell injury in these two devastating syndromes and discuss relevant genetic, physical, and biological injury mechanisms, as well as mechanisms used by lung cells for cell survival and membrane repair. Finally, we discuss relevant signaling pathways that may be activated by chronic or repeated lung cell injury as an extension of our cell injury and repair focus in this review. We hope that a holistic view of injurious stimuli relevant for ARDS and IPF could lead to updated experimental models. In addition, parallel discussion of membrane repair mechanisms in lung cells and injury-activated signaling pathways would encourage research to bridge gaps in current knowledge. Indeed, deep understanding of lung cell wounding and repair, and discovery of relevant repair moieties for lung cells, should inspire the development of new therapies that are likely preventive and broadly effective for targeting injurious pulmonary diseases.
Collapse
Affiliation(s)
- Xiaofei Cong
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - Rolf D Hubmayr
- Emerius, Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota; and
| | - Changgong Li
- Department of Pediatrics, University of Southern California, Los Angeles, California
| | - Xiaoli Zhao
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia;
| |
Collapse
|
32
|
Martínez-Ramírez AS, Díaz-Muñoz M, Butanda-Ochoa A, Vázquez-Cuevas FG. Nucleotides and nucleoside signaling in the regulation of the epithelium to mesenchymal transition (EMT). Purinergic Signal 2017; 13:1-12. [PMID: 27900516 PMCID: PMC5334205 DOI: 10.1007/s11302-016-9550-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/21/2016] [Indexed: 12/18/2022] Open
Abstract
The epithelium-mesenchymal transition (EMT) is an important process of cell plasticity, consisting in the loss of epithelial identity and the gain of mesenchymal characteristics through the coordinated activity of a highly regulated informational program. Although it was originally described in the embryonic development, an important body of information supports its role in pathology, mainly in cancerous and fibrotic processes. The purinergic system of inter-cellular communication, mainly based in ATP and adenosine acting throughout their specific receptors, has emerged as a potent regulator of the EMT in several pathological entities. In this context, cellular signaling associated to purines is opening the understanding of a new element in the complex regulatory network of this phenotypical differentiation process. In this review, we have summarized recent information about the role of ATP and adenosine in EMT, as a growing field with high therapeutic potential.
Collapse
Affiliation(s)
- A S Martínez-Ramírez
- Departamento de Neurobiología Celular y Molecular. Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla, 3001, CP 76230, Juriquilla Querétaro, Mexico
| | - M Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular. Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla, 3001, CP 76230, Juriquilla Querétaro, Mexico
| | - A Butanda-Ochoa
- Departamento de Biología Celular y del Desarrollo. Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México, D.F., Mexico
| | - F G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular. Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla, 3001, CP 76230, Juriquilla Querétaro, Mexico.
| |
Collapse
|
33
|
Taylor BD, Zheng X, Darville T, Zhong W, Konganti K, Abiodun-Ojo O, Ness RB, O'Connell CM, Haggerty CL. Whole-Exome Sequencing to Identify Novel Biological Pathways Associated With Infertility After Pelvic Inflammatory Disease. Sex Transm Dis 2017; 44:35-41. [PMID: 27898568 PMCID: PMC5145761 DOI: 10.1097/olq.0000000000000533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Ideal management of sexually transmitted infections (STI) may require risk markers for pathology or vaccine development. Previously, we identified common genetic variants associated with chlamydial pelvic inflammatory disease (PID) and reduced fecundity. As this explains only a proportion of the long-term morbidity risk, we used whole-exome sequencing to identify biological pathways that may be associated with STI-related infertility. METHODS We obtained stored DNA from 43 non-Hispanic black women with PID from the PID Evaluation and Clinical Health Study. Infertility was assessed at a mean of 84 months. Principal component analysis revealed no population stratification. Potential covariates did not significantly differ between groups. Sequencing kernel association test was used to examine associations between aggregates of variants on a single gene and infertility. The results from the sequencing kernel association test were used to choose "focus genes" (P < 0.01; n = 150) for subsequent Ingenuity Pathway Analysis to identify "gene sets" that are enriched in biologically relevant pathways. RESULTS Pathway analysis revealed that focus genes were enriched in canonical pathways including, IL-1 signaling, P2Y purinergic receptor signaling, and bone morphogenic protein signaling. CONCLUSIONS Focus genes were enriched in pathways that impact innate and adaptive immunity, protein kinase A activity, cellular growth, and DNA repair. These may alter host resistance or immunopathology after infection. Targeted sequencing of biological pathways identified in this study may provide insight into STI-related infertility.
Collapse
Affiliation(s)
- Brandie D Taylor
- From the *Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX; †Department of Pediatrics, ‡Department of Biostatistics, University of North Carolina Chapel Hill, Chapel Hill, NC; §Institute for Genome Sciences and Society, Texas A&M University, College Station, TX; ¶University of Texas School of Public Health, Houston, TX; and ∥Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gicquel T, Le Daré B, Boichot E, Lagente V. Purinergic receptors: new targets for the treatment of gout and fibrosis. Fundam Clin Pharmacol 2016; 31:136-146. [PMID: 27885718 DOI: 10.1111/fcp.12256] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/02/2016] [Accepted: 11/18/2016] [Indexed: 12/11/2022]
Abstract
Adenosine triphosphate is involved in many metabolic reactions, but it has also a role as a cellular danger signal transmitted through purinergic receptors (PRs). Indeed, adenosine 5'-triphosphate (ATP) can bind to PRs which are found in the membrane of many cell types, although the relative proportions of the receptor subtypes differ. PRs are classified according to genetic and pharmacological criteria and especially their affinities for agonists and their transduction mechanism (i.e. as metabotropic P2YRs or ionotropic P2XRs). Extracellular ATP release by activated or necrotic cells may activate various PRs and especially P2X7R, the best-characterized PR, on immune cells. P2X7R is known to regulate the activation of the Nod-like receptor (NLR)-family protein, NLRP3 inflammasome, which permit the release of IL-1β, a potent pro-inflammatory cytokine. The P2X7R/NLRP3 pathway is involved in many inflammatory diseases, such as gout, and in fibrosis diseases associated with inflammatory process, liver or lung fibrosis. Some authors imaging also a real promising therapeutic potential of P2X7R blockage. Thus, several pharmaceutical companies have developed P2X7R antagonists as novel anti-inflammatory drug candidates. Clinical trials of the efficacy of these antagonists are now underway. A better understanding of the P2X7R/NLRP3 signalling pathways permits the identification of targets and the development of a new class of drugs able to inhibit the fibrogenesis process and collagen deposition.
Collapse
Affiliation(s)
- Thomas Gicquel
- Laboratoire de toxicologie biologique et médico-légale, CHU Rennes, F-35033, Rennes, France.,UMR991 INSERM, Faculté de Pharmacie, Université Rennes 1, F-35043, Rennes, France
| | - Brendan Le Daré
- UMR991 INSERM, Faculté de Pharmacie, Université Rennes 1, F-35043, Rennes, France.,CHU Rennes, Pôle Pharmacie, F-35033, Rennes, France
| | - Elisabeth Boichot
- UMR991 INSERM, Faculté de Pharmacie, Université Rennes 1, F-35043, Rennes, France
| | - Vincent Lagente
- UMR991 INSERM, Faculté de Pharmacie, Université Rennes 1, F-35043, Rennes, France
| |
Collapse
|
35
|
Certal M, Vinhas A, Barros-Barbosa A, Ferreirinha F, Costa MA, Correia-de-Sá P. ADP-Induced Ca 2+ Signaling and Proliferation of Rat Ventricular Myofibroblasts Depend on Phospholipase C-Linked TRP Channels Activation Within Lipid Rafts. J Cell Physiol 2016; 232:1511-1526. [PMID: 27755650 DOI: 10.1002/jcp.25656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 10/17/2016] [Indexed: 01/23/2023]
Abstract
Nucleotides released during heart injury affect myocardium electrophysiology and remodeling through P2 purinoceptors activation in cardiac myofibroblasts. ATP and UTP endorse [Ca2+ ]i accumulation and growth of DDR-2/α-SMA-expressing myofibroblasts from adult rat ventricles via P2Y4 and P2Y2 receptors activation, respectively. Ventricular myofibroblasts also express ADP-sensitive P2Y1 , P2Y12 , and P2Y13 receptors as demonstrated by immunofluorescence confocal microscopy and western blot analysis, but little information exists on ADP effects in these cells. ADP (0.003-3 mM) and its stable analogue, ADPßS (100 μM), caused fast [Ca2+ ]i transients originated from thapsigargin-sensitive internal stores, which partially declined to a plateau sustained by capacitative Ca2+ entry through transient receptor potential (TRP) channels inhibited by 2-APB (50 μM) and flufenamic acid (100 μM). Hydrophobic interactions between Gq/11 -coupled P2Y purinoceptors and TRP channels were suggested by prevention of the ADP-induced [Ca2+ ]i plateau following PIP2 depletion with LiCl (10 mM) and cholesterol removal from lipid rafts with methyl-ß-cyclodextrin (2 mM). ADP [Ca2+ ]i transients were insensitive to P2Y1 , P2Y12 , and P2Y13 receptor antagonists, MRS2179 (10μM), AR-C66096 (0.1 μM), and MRS2211 (10μM), respectively, but were attenuated by suramin and reactive blue-2 (100 μM) which also blocked P2Y4 receptors activation by UTP. Cardiac myofibroblasts growth and type I collagen production were favored upon activation of MRS2179-sensitive P2Y1 receptors with ADP or ADPßS (30 μM). In conclusion, ADP exerts a dual role on ventricular myofibroblasts: [Ca2+ ]i transients are mediated by fast-desensitizing P2Y4 receptors, whereas the pro-fibrotic effect of ADP involves the P2Y1 receptor activation. Data also show that ADP-induced capacitative Ca2+ influx depends on phospholipase C-linked TRP channels opening in lipid raft microdomains. J. Cell. Physiol. 232: 1511-1526, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mariana Certal
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Adriana Vinhas
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Aurora Barros-Barbosa
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Maria Adelina Costa
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal.,Departamento de Química, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| |
Collapse
|
36
|
Menzies RI, Tam FW, Unwin RJ, Bailey MA. Purinergic signaling in kidney disease. Kidney Int 2016; 91:315-323. [PMID: 27780585 DOI: 10.1016/j.kint.2016.08.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/10/2016] [Accepted: 08/15/2016] [Indexed: 02/04/2023]
Abstract
Nucleotides are key subunits for nucleic acids and provide energy for intracellular metabolism. They can also be released from cells to act physiologically as extracellular messengers or pathologically as danger signals. Extracellular nucleotides stimulate membrane receptors in the P2 and P1 family. P2X are ATP-activated cation channels; P2Y and P1 are G-protein coupled receptors activated by ATP, ADP, UTP, and UDP in the case of P2 or adenosine for P1. Renal P2 receptors influence both vascular contractility and tubular function. Renal cells also express ectonucleotidases that rapidly hydrolyze extracellular nucleotides. These enzymes integrate this multireceptor purinergic-signaling complex by determining the nucleotide milieu to titrate receptor activation. Purinergic signaling also regulates immune cell function by modulating the synthesis and release of various cytokines such as IL1-β and IL-18 as part of inflammasome activation. Abnormal or excessive stimulation of this intricate paracrine system can be pro- or anti-inflammatory, and is also linked to necrosis and apoptosis. Kidney tissue injury causes a localized increase in ATP concentration, and sustained activation of P2 receptors can lead to renal glomerular, tubular, and vascular cell damage. Purinergic receptors also regulate the activity and proliferation of fibroblasts, promoting both inflammation and fibrosis in chronic disease. In this short review we summarize some of the recent findings related to purinergic signaling in the kidney. We focus predominantly on the P2X7 receptor, discussing why antagonists have so far disappointed in clinical trials and how advances in our understanding of purinergic signaling might help to reposition these compounds as potential treatments for renal disease.
Collapse
Affiliation(s)
- Robert I Menzies
- British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Frederick W Tam
- Imperial College Renal and Transplant Centre, Department of Medicine, Imperial College London, UK
| | - Robert J Unwin
- Cardiovascular and Metabolic Diseases Biotech Unit, AstraZeneca Gothenburg, Sweden; UCL Centre for Nephrology, University College London, London, UK.
| | - Matthew A Bailey
- British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
37
|
Djerada Z, Feliu C, Richard V, Millart H. Current knowledge on the role of P2Y receptors in cardioprotection against ischemia-reperfusion. Pharmacol Res 2016; 118:5-18. [PMID: 27520402 DOI: 10.1016/j.phrs.2016.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/05/2016] [Accepted: 08/07/2016] [Indexed: 11/27/2022]
Abstract
During ischemia, numerous effective endogenous extracellular mediators have been identified, particularly, nucleosides such as adenosine as well as purinergic and pyrimidinergic nucleotides. They may play important regulatory roles within the cardiovascular system and notably as cardio-protectants. Indeed, the distribution of the P2Y receptors in mammalian heart includes several cellular constituents relevant for the pathophysiology of myocardial ischemia. Beside the well-known cardioprotective effect of adenosine, the additional protective role of P2Y receptors has emerged. However, interpretation of experimental results may be sometimes perplexing. This is due to the variability of: the experimental models, the endpoints criteria, the chemical structure of agonist and antagonist ligands and their concentrations, the sequences of drug administration with respect to the model used (before and/or during and/or after ischemia). The net effect may be in the opposite direction after a transient or a prolonged stimulation. Nevertheless, the overall reading of published data highlights the beneficial role of the P2Y2/4 receptor stimulation, the useful and synergistic role of P2Y6/11 receptor activation and even of the P2Y11 receptor alone in cardioprotection. More, the P2Y11 receptor could be involved in counter-regulation of profibrotic processes. Paradoxically, transient P2X7 receptor stimulation could contribute to the net cardioprotective effect of ATP. Recently, experimental data have shown that blocking the P2Y12 receptor after ischemia confers cardioprotection independently of platelet antiaggregatory effect. This suggests for P2Y receptors an important role in primary prevention and as a therapeutic target in myocardial protection during ischemia and reperfusion.
Collapse
Affiliation(s)
- Zoubir Djerada
- Department of Pharmacology, E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims Cedex, France.
| | - Catherine Feliu
- Department of Pharmacology, E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims Cedex, France
| | - Vincent Richard
- Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Department of Pharmacology, Rouen, France; Normandy University, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Hervé Millart
- Department of Pharmacology, E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims Cedex, France
| |
Collapse
|
38
|
Involvement of matrix metalloproteinases (MMPs) and inflammasome pathway in molecular mechanisms of fibrosis. Biosci Rep 2016; 36:BSR20160107. [PMID: 27247426 PMCID: PMC4945993 DOI: 10.1042/bsr20160107] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/31/2016] [Indexed: 12/18/2022] Open
Abstract
Fibrosis is a basic connective tissue lesion defined by the increase in the fibrillar extracellular matrix (ECM) components in tissue or organ. Matrix metalloproteinases (MMPs) are a major group of proteases known to regulate the turn-over of ECM and so they are suggested to be important in tissue remodelling observed during fibrogenic process associated with chronic inflammation. Tissue remodelling is the result of an imbalance in the equilibrium of the normal processes of synthesis and degradation of ECM components markedly controlled by the MMPs/TIMP imbalance. We previously showed an association of the differences in collagen deposition in the lungs of bleomycin-treated mice with a reduced molar pro-MMP-9/TIMP-1 ratio. Using the carbon tetrachloride (CCl4) preclinical model of liver fibrosis in mice, we observed a significant increase in collagen deposition with increased expression and release of tissue inhibitors of metalloproteinase (TIMP)-1 both at 24 h and 3 weeks later. This suggests an early altered regulation of matrix turnover involved in the development of fibrosis. We also demonstrated an activation of NLRP3-inflammasome pathway associated with the IL-1R/MyD88 signalling in the development of experimental fibrosis both in lung and liver. This was also associated with an increased expression of purinergic receptors mainly P2X7. Finally, these observations emphasize those effective therapies for these disorders must be given early in the natural history of the disease, prior to the development of tissue remodelling and fibrosis.
Collapse
|
39
|
Ion Channels and Oxidative Stress as a Potential Link for the Diagnosis or Treatment of Liver Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3928714. [PMID: 26881024 PMCID: PMC4736365 DOI: 10.1155/2016/3928714] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/22/2015] [Accepted: 10/27/2015] [Indexed: 02/06/2023]
Abstract
Oxidative stress results from a disturbed balance between oxidation and antioxidant systems. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) may be either harmful or beneficial to the cells. Ion channels are transmembrane proteins that participate in a large variety of cellular functions and have been implicated in the development of a variety of diseases. A significant amount of the available drugs in the market targets ion channels. These proteins have sulfhydryl groups of cysteine and methionine residues in their structure that can be targeted by ROS and RNS altering channel function including gating and conducting properties, as well as the corresponding signaling pathways associated. The regulation of ion channels by ROS has been suggested to be associated with some pathological conditions including liver diseases. This review focuses on understanding the role and the potential association of ion channels and oxidative stress in liver diseases including fibrosis, alcoholic liver disease, and cancer. The potential association between ion channels and oxidative stress conditions could be used to develop new treatments for major liver diseases.
Collapse
|
40
|
Ferrari D, Gambari R, Idzko M, Müller T, Albanesi C, Pastore S, La Manna G, Robson SC, Cronstein B. Purinergic signaling in scarring. FASEB J 2016; 30:3-12. [PMID: 26333425 PMCID: PMC4684510 DOI: 10.1096/fj.15-274563] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/17/2015] [Indexed: 12/23/2022]
Abstract
Adenosine (ADO) and nucleotides such as ATP, ADP, and uridine 5'-triphosphate (UTP), among others, may serve as extracellular signaling molecules. These mediators activate specific cell-surface receptors-namely, purinergic 1 and 2 (P1 and P2)-to modulate crucial pathophysiological responses. Regulation of this process is maintained by nucleoside and nucleotide transporters, as well as the ectonucleotidases ectonucleoside triphosphate diphosphohydrolase [ENTPD; cluster of differentiation (CD)39] and ecto-5'-nucleotidase (5'-NT; CD73), among others. Cells involved in tissue repair, healing, and scarring respond to both ADO and ATP. Our recent investigations have shown that modulation of purinergic signaling regulates matrix deposition during tissue repair and fibrosis in several organs. Cells release adenine nucleotides into the extracellular space, where these mediators are converted by CD39 and CD73 into ADO, which is anti-inflammatory in the short term but may also promote dermal, heart, liver, and lung fibrosis with repetitive signaling under defined circumstances. Extracellular ATP stimulates cardiac fibroblast proliferation, lung inflammation, and fibrosis. P2Y2 (UTP/ATP) and P2Y6 [ADP/UTP/uridine 5'-diphosphate (UDP)] have been shown to have profibrotic effects, as well. Modulation of purinergic signaling represents a novel approach to preventing or diminishing fibrosis. We provide an overview of the current understanding of purinergic signaling in scarring and discuss its potential to prevent or decrease fibrosis.
Collapse
Affiliation(s)
- Davide Ferrari
- *Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Department of Pneumology, University of Freiburg, Freiburg, Germany; Laboratory of Immunology and Laboratory of Tissue Engineering and Cutaneous Physiopathology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Specialized, Diagnostic, and Experimental Medicine, University of Bologna, Bologna, Italy; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA; and Department of Medicine, New York University, New York, New York, USA
| | - Roberto Gambari
- *Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Department of Pneumology, University of Freiburg, Freiburg, Germany; Laboratory of Immunology and Laboratory of Tissue Engineering and Cutaneous Physiopathology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Specialized, Diagnostic, and Experimental Medicine, University of Bologna, Bologna, Italy; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA; and Department of Medicine, New York University, New York, New York, USA
| | - Marco Idzko
- *Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Department of Pneumology, University of Freiburg, Freiburg, Germany; Laboratory of Immunology and Laboratory of Tissue Engineering and Cutaneous Physiopathology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Specialized, Diagnostic, and Experimental Medicine, University of Bologna, Bologna, Italy; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA; and Department of Medicine, New York University, New York, New York, USA
| | - Tobias Müller
- *Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Department of Pneumology, University of Freiburg, Freiburg, Germany; Laboratory of Immunology and Laboratory of Tissue Engineering and Cutaneous Physiopathology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Specialized, Diagnostic, and Experimental Medicine, University of Bologna, Bologna, Italy; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA; and Department of Medicine, New York University, New York, New York, USA
| | - Cristina Albanesi
- *Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Department of Pneumology, University of Freiburg, Freiburg, Germany; Laboratory of Immunology and Laboratory of Tissue Engineering and Cutaneous Physiopathology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Specialized, Diagnostic, and Experimental Medicine, University of Bologna, Bologna, Italy; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA; and Department of Medicine, New York University, New York, New York, USA
| | - Saveria Pastore
- *Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Department of Pneumology, University of Freiburg, Freiburg, Germany; Laboratory of Immunology and Laboratory of Tissue Engineering and Cutaneous Physiopathology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Specialized, Diagnostic, and Experimental Medicine, University of Bologna, Bologna, Italy; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA; and Department of Medicine, New York University, New York, New York, USA
| | - Gaetano La Manna
- *Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Department of Pneumology, University of Freiburg, Freiburg, Germany; Laboratory of Immunology and Laboratory of Tissue Engineering and Cutaneous Physiopathology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Specialized, Diagnostic, and Experimental Medicine, University of Bologna, Bologna, Italy; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA; and Department of Medicine, New York University, New York, New York, USA
| | - Simon C Robson
- *Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Department of Pneumology, University of Freiburg, Freiburg, Germany; Laboratory of Immunology and Laboratory of Tissue Engineering and Cutaneous Physiopathology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Specialized, Diagnostic, and Experimental Medicine, University of Bologna, Bologna, Italy; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA; and Department of Medicine, New York University, New York, New York, USA
| | - Bruce Cronstein
- *Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Department of Pneumology, University of Freiburg, Freiburg, Germany; Laboratory of Immunology and Laboratory of Tissue Engineering and Cutaneous Physiopathology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Specialized, Diagnostic, and Experimental Medicine, University of Bologna, Bologna, Italy; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA; and Department of Medicine, New York University, New York, New York, USA
| |
Collapse
|
41
|
Peti-Peterdi J, Kishore BK, Pluznick JL. Regulation of Vascular and Renal Function by Metabolite Receptors. Annu Rev Physiol 2015; 78:391-414. [PMID: 26667077 DOI: 10.1146/annurev-physiol-021115-105403] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To maintain metabolic homeostasis, the body must be able to monitor the concentration of a large number of substances, including metabolites, in real time and to use that information to regulate the activities of different metabolic pathways. Such regulation is achieved by the presence of sensors, termed metabolite receptors, in various tissues and cells of the body, which in turn convey the information to appropriate regulatory or positive or negative feedback systems. In this review, we cover the unique roles of metabolite receptors in renal and vascular function. These receptors play a wide variety of important roles in maintaining various aspects of homeostasis-from salt and water balance to metabolism-by sensing metabolites from a wide variety of sources. We discuss the role of metabolite sensors in sensing metabolites generated locally, metabolites generated at distant tissues or organs, or even metabolites generated by resident microbes. Metabolite receptors are also involved in various pathophysiological conditions and are being recognized as potential targets for new drugs. By highlighting three receptor families-(a) citric acid cycle intermediate receptors, (b) purinergic receptors, and
Collapse
Affiliation(s)
- János Peti-Peterdi
- Department of Physiology and Biophysics and Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California 90033;
| | - Bellamkonda K Kishore
- Department of Internal Medicine and Center on Aging, University of Utah Health Sciences Center, Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah 84148;
| | - Jennifer L Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| |
Collapse
|
42
|
RhoA Ambivalently Controls Prominent Myofibroblast Characteritics by Involving Distinct Signaling Routes. PLoS One 2015; 10:e0137519. [PMID: 26448568 PMCID: PMC4598021 DOI: 10.1371/journal.pone.0137519] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 08/18/2015] [Indexed: 11/19/2022] Open
Abstract
Introduction RhoA has been shown to be beneficial in cardiac disease models when overexpressed in cardiomyocytes, whereas its role in cardiac fibroblasts (CF) is still poorly understood. During cardiac remodeling CF undergo a transition towards a myofibroblast phenotype thereby showing an increased proliferation and migration rate. Both processes involve the remodeling of the cytoskeleton. Since RhoA is known to be a major regulator of the cytoskeleton, we analyzed its role in CF and its effect on myofibroblast characteristics in 2 D and 3D models. Results Downregulation of RhoA was shown to strongly affect the actin cytoskeleton. It decreased the myofibroblast marker α-sm-actin, but increased certain fibrosis-associated factors like TGF-β and collagens. Also, the detailed analysis of CTGF expression demonstrated that the outcome of RhoA signaling strongly depends on the involved stimulus. Furthermore, we show that proliferation of myofibroblasts rely on RhoA and tubulin acetylation. In assays accessing three different types of migration, we demonstrate that RhoA/ROCK/Dia1 are important for 2D migration and the repression of RhoA and Dia1 signaling accelerates 3D migration. Finally, we show that a downregulation of RhoA in CF impacts the viscoelastic and contractile properties of engineered tissues. Conclusion RhoA positively and negatively influences myofibroblast characteristics by differential signaling cascades and depending on environmental conditions. These include gene expression, migration and proliferation. Reduction of RhoA leads to an increased viscoelasticity and a decrease in contractile force in engineered cardiac tissue.
Collapse
|
43
|
Cardiomyogenesis of embryonic stem cells upon purinergic receptor activation by ADP and ATP. Purinergic Signal 2015; 11:491-506. [PMID: 26395809 DOI: 10.1007/s11302-015-9468-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 09/09/2015] [Indexed: 02/07/2023] Open
Abstract
Purinergic signaling may be involved in embryonic development of the heart. In the present study, the effects of purinergic receptor stimulation on cardiomyogenesis of mouse embryonic stem (ES) cells were investigated. ADP or ATP increased the number of cardiac clusters and cardiac cells, as well as beating frequency. Cardiac-specific genes showed enhanced expression of α-MHC, MLC2v, α-actinin, connexin 45 (Cx45), and HCN4, on both gene and protein levels upon ADP/ATP treatment, indicating increased cardiomyogenesis and pacemaker cell differentiation. Real-time RT-PCR analysis of purinergic receptor expression demonstrated presence of P2X1, P2X4, P2X6, P2X7, P2Y1, P2Y2, P2Y4, and P2Y6 on differentiating ES cells. ATP and ADP as well as the P2X agonists β,γ-methylenadenosine 5'-triphosphate (β,γ-MetATP) and 8-bromoadenosine 5'-triphosphate (8-Br-ATP) but not UTP or UDP transiently increased the intracellular calcium concentration ([Ca(2+)](i)) as evaluated by the calcium indicator Fluo-4, whereas no changes in membrane potential were observed. [Ca(2+)](i) transients induced by ADP/ATP were abolished by the phospholipase C-β (PLC-β) inhibitor U-73122, suggesting involvement of metabotropic P2Y receptors. Furthermore, partial inhibition of [Ca(2+)](i) transients was achieved in presence of MRS2179, a selective P2Y1 receptor antagonist, whereas PPADS, a non-selective P2 receptor inhibitor, completely abolished the [Ca(2+)](i) response. Consequently, cardiomyocyte differentiation was decreased upon long term co-incubation of cells with ADP and P2 receptor antagonists. In summary, activation of purinoceptors and the subsequent [Ca(2+)](i) transients enhance the differentiation of ES cells toward cardiomyocytes. Purinergic receptor stimulation may be a promising strategy to drive the fate of pluripotent ES cells into a particular population of cardiomyocytes.
Collapse
|
44
|
Calcium signaling and the novel anti-proliferative effect of the UTP-sensitive P2Y11 receptor in rat cardiac myofibroblasts. Cell Calcium 2015; 58:518-33. [PMID: 26324417 DOI: 10.1016/j.ceca.2015.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/06/2015] [Accepted: 08/14/2015] [Indexed: 12/16/2022]
Abstract
During myocardial ischemia and reperfusion both purines and pyrimidines are released into the extracellular milieu, thus creating a signaling wave that propagates to neighboring cells via membrane-bound P2 purinoceptors activation. Cardiac fibroblasts (CF) are important players in heart remodeling, electrophysiological changes and hemodynamic alterations following myocardial infarction. Here, we investigated the role UTP on calcium signaling and proliferation of CF cultured from ventricles of adult rats. Co-expression of discoidin domain receptor 2 and α-smooth muscle actin indicate that cultured CF are activated myofibroblasts. Intracellular calcium ([Ca(2+)]i) signals were monitored in cells loaded with Fluo-4 NW. CF proliferation was evaluated by the MTT assay. UTP and the selective P2Y4 agonist, MRS4062, caused a fast desensitizing [Ca(2+)]i rise originated from thapsigargin-sensitive internal stores, which partially declined to a plateau providing the existence of Ca(2+) in the extracellular fluid. The biphasic [Ca(2+)]i response to UTP was attenuated respectively by P2Y4 blockers, like reactive blue-2 and suramin, and by the P2Y11 antagonist, NF340. UTP and the P2Y2 receptor agonist MRS2768 increased, whereas the selective P2Y11 agonist NF546 decreased, CF growth; MRS4062 was ineffective. Blockage of the P2Y11 receptor or its coupling to adenylate cyclase boosted UTP-induced CF proliferation. Confocal microscopy and Western blot analysis confirmed the presence of P2Y2, P2Y4 and P2Y11 receptors. Data indicate that besides P2Y4 and P2Y2 receptors which are responsible for UTP-induced [Ca(2+)]i transients and growth of CF, respectively, synchronous activation of the previously unrecognized P2Y11 receptor may represent an important target for anti-fibrotic intervention in cardiac remodeling.
Collapse
|
45
|
Yang Y, Wang H, Lv X, Wang Q, Zhao H, Yang F, Yang Y, Li J. Involvement of cAMP-PKA pathway in adenosine A1 and A2A receptor-mediated regulation of acetaldehyde-induced activation of HSCs. Biochimie 2015; 115:59-70. [DOI: 10.1016/j.biochi.2015.04.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/24/2015] [Indexed: 02/07/2023]
|
46
|
Yao HW, Li J. Epigenetic modifications in fibrotic diseases: implications for pathogenesis and pharmacological targets. J Pharmacol Exp Ther 2015; 352:2-13. [PMID: 25362107 DOI: 10.1124/jpet.114.219816] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Organ fibrosis is a complex and chronic disorder that results from a variety of acute injuries and contributes to thirty percent of naturally occurring deaths worldwide. The main feature of organ fibrosis is the excessive accumulation and deposit of extracellular matrix, thereby leading to organ dysfunction, loss of elasticity, and development of a rigid organ. Accumulating evidence shows that epigenetic remodeling, including aberrant DNA methylation and noncoding RNA expression as well as histone post-translational modifications, play important roles in the pathogenesis of fibrosis through the regulation of fibroblast activation, differentiation, and apoptosis, as well as collagen synthesis and profibrotic gene transcription. In this review, we discuss the basic regulation of DNA methylation, noncoding RNA expression, and histone post-translational modification, and their participation in the pathogenesis and development of organ fibrosis. This review also provides the latest insights into the novel biomarkers and therapeutic targets for fibrosis through modulation of epigenetic remodeling.
Collapse
Affiliation(s)
- Hong-Wei Yao
- School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
47
|
Ostrom RS. A new molecular target for blunting organ fibrosis. Focus on "Secreted Frizzled-related protein 2 as a target in antifibrotic therapeutic intervention". Am J Physiol Cell Physiol 2014; 306:C527-8. [PMID: 24452379 DOI: 10.1152/ajpcell.00020.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Rennolds S Ostrom
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|