1
|
Wu Z, Hou Q, Chi H, Liu J, Mei Y, Chen T, Yang K, Zheng J, Xu J, Wei F, Wang L. Single-cell RNA sequencing reveals a distinct profile of bone immune microenvironment and decreased osteoclast differentiation in type 2 diabetic mice. Genes Dis 2024; 11:101145. [PMID: 39281831 PMCID: PMC11399629 DOI: 10.1016/j.gendis.2023.101145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/07/2023] [Accepted: 09/16/2023] [Indexed: 09/18/2024] Open
Abstract
The pathogenic effects of type 2 diabetes on bone tissue are gaining attention, but the cellular and molecular mechanisms underlying osteoimmunology are still unclear in diabetes-related bone diseases. We delineated the single-cell transcriptome of bone marrow cells from both wide type and type 2 diabetes mice, which provided the first detailed global profile of bone marrow cells and revealed a distinct bone immune microenvironment at the genetic level under type 2 diabetic condition. It was observed that osteoclast activity was inhibited due to a dysregulated cytokine network, which ultimately led to decreased osteoclast formation and differentiation. In type 2 diabetes mice, a specific C d 36 + cluster (cluster 18, monocytes/macrophages 2) was identified as the precursor of osteoclasts with diminished differentiation potential. AP-1 was demonstrated to be the key transcription factor in the underlying mechanism.
Collapse
Affiliation(s)
- Zimei Wu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Qiaodan Hou
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Heng Chi
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jihong Liu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Southern University of Science and Technology Hospital, Shenzhen, Guangdong 518055, China
| | - Yixin Mei
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Tingting Chen
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Kunkun Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jingna Zheng
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jing Xu
- Southern University of Science and Technology Hospital, Shenzhen, Guangdong 518055, China
| | - Fuxin Wei
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Lin Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Southern University of Science and Technology Hospital, Shenzhen, Guangdong 518055, China
| |
Collapse
|
2
|
Infiltration of Blood-Derived Macrophages Contributes to the Development of Diabetic Neuropathy. J Immunol Res 2019; 2019:7597382. [PMID: 31534976 PMCID: PMC6732633 DOI: 10.1155/2019/7597382] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/30/2019] [Accepted: 07/16/2019] [Indexed: 11/18/2022] Open
Abstract
Background and Objective Diabetic neuropathic pain (DNP) is a common complication associated with diabetes. Currently, its underlying pathomechanism remains unknown. Studies have revealed that the recruitment of blood monocyte-derived macrophages (MDMs) to the spinal cord plays a pivotal role in different models of central nervous system injury. Therefore, the present study aimed at exploring the infiltration and function of MDMs in DNP using a mice model. Methods Diabetes was induced using streptozotocin in male A/J mice. Mechanical withdrawal thresholds were measured weekly to characterize neuropathy phenotype. Quantitative analysis of CD11b was performed and visualized by immunofluorescence. Spinal cord cells were isolated from myelin and debris by Percoll gradient. Flow cytometry was used to label CD11b and CD45 antibodies to differentiate MDMs (CD45highCD11b+) from resident microglia (CD45lowCD11b+). Mice were injected with clodronate liposomes to investigate the role of MDMs in DNP. The successful depletion of monocytes was determined by flow cytometry. Results The DNP mice model was successfully established. Compared with nondiabetic mice, diabetic mice displayed a markedly higher level of CD11b immunofluorescence in the spinal cord. The number of CD11b-positive microglia/macrophages gradually increased over the 28 days of testing after STZ injection, and a significant increase was observed on Day 14 (P < 0.01) and 28 (P < 0.01). Further analysis by flow cytometry showed that the infiltration of peripheral macrophages began to increase in 2 weeks (P < 0.001) and reached a maximum at 4 weeks (P < 0.001) post-STZ injection compared to the control. The depletion of MDMs by clodronate liposomes alleviated diabetes-induced tactile allodynia (P < 0.05) and reduced the infiltration of MDMs (P < 0.001) as well as the expression of IL-1β and TNF-α in the spinal cord (P < 0.05). Conclusions The infiltration of blood MDMs in the spinal cord may promote the development of painful neuropathy in diabetes.
Collapse
|
3
|
Ayala TS, Tessaro FHG, Jannuzzi GP, Bella LM, Ferreira KS, Martins JO. High Glucose Environments Interfere with Bone Marrow-Derived Macrophage Inflammatory Mediator Release, the TLR4 Pathway and Glucose Metabolism. Sci Rep 2019; 9:11447. [PMID: 31391499 PMCID: PMC6686006 DOI: 10.1038/s41598-019-47836-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/25/2019] [Indexed: 12/22/2022] Open
Abstract
Macrophages may be a crucial aspect of diabetic complications associated with the inflammatory response. In this study, we examined how hyperglycaemia, a common aspect of diabetes, modulates bone marrow-derived macrophages (BMDMs) under an inflammatory stimulus. To perform this study, BMDMs from non-diabetic and diabetic (60 mg/kg alloxan, i.v.) male C57BL/6 mice (CEUA/FCF/USP-488) were cultured under normal (5.5 mM) and high glucose (HG, 25 or 40 mM) conditions and stimulated or not stimulated with lipopolysaccharide (LPS, 100 ng/mL). Compared to the BMDMs from the normoglycaemic mice, the LPS-stimulated BMDMs from the diabetic mice presented reduced TLR4 expression on the cell surface, lower phagocytic capacity, and reduced secretion of NO and lactate but greater oxygen consumption and greater phosphorylation of p46 SAPK/JNK, p42 ERK MAPK, pAKT and pPKC-δ. When the BMDMs from the non-diabetic mice were cultured under high-glucose conditions and stimulated with LPS, TLR4 expression was reduced on the cell surface and NO and H2O2 levels were reduced. In contrast, the diabetic BMDMs cultured under high glucose conditions presented increased levels of lactate and reduced phosphorylation of AKT, PKC-δ and p46 SAPK/JNK but enhanced phosphorylation of the p46 subunit of SAPK/JNK after LPS stimulation. High glucose levels appear to modify macrophage behaviour, affecting different aspects of diabetic and healthy BMDMs under the same LPS stimulus. Thus, hyperglycaemia leaves a glucose legacy, altering the basal steady state of macrophages.
Collapse
Affiliation(s)
- Thais Soprani Ayala
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of University Sao Paulo (FCF/USP), São Paulo, Brazil
| | - Fernando Henrique Galvão Tessaro
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of University Sao Paulo (FCF/USP), São Paulo, Brazil
| | - Grasielle Pereira Jannuzzi
- Laboratory of Cellular Immunology and Biochemistry of Fungus and Protozoa, Department of Pharmaceutical Sciences Analysis, Federal University of São Paulo, São Paulo, Brazil
| | - Leonardo Mendes Bella
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of University Sao Paulo (FCF/USP), São Paulo, Brazil
| | - Karen Spadari Ferreira
- Laboratory of Cellular Immunology and Biochemistry of Fungus and Protozoa, Department of Pharmaceutical Sciences Analysis, Federal University of São Paulo, São Paulo, Brazil
| | - Joilson O Martins
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of University Sao Paulo (FCF/USP), São Paulo, Brazil.
| |
Collapse
|
4
|
Hawkes CP, Mostoufi-Moab S. Fat-bone interaction within the bone marrow milieu: Impact on hematopoiesis and systemic energy metabolism. Bone 2019; 119:57-64. [PMID: 29550266 PMCID: PMC6139083 DOI: 10.1016/j.bone.2018.03.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 03/13/2018] [Indexed: 12/23/2022]
Abstract
The relationship between fat, bone and systemic metabolism is a growing area of scientific interest. Marrow adipose tissue is a well-recognized component of the bone marrow milieu and is metabolically distinct from current established subtypes of adipose tissue. Despite recent advances, the functional significance of marrow adipose tissue is still not clearly delineated. Bone and fat cells share a common mesenchymal stem cell (MSC) within the bone marrow, and hormones and transcription factors such as growth hormone, leptin, and peroxisomal proliferator-activated receptor γ influence MSC differentiation into osteoblasts or adipocytes. MSC osteogenic potential is more vulnerable than adipogenic potential to radiation and chemotherapy, and this confers a risk for an abnormal fat-bone axis in survivors following cancer therapy and bone marrow transplantation. This review provides a summary of data from animal and human studies describing the relationship between marrow adipose tissue and hematopoiesis, bone mineral density, bone strength, and metabolic function. The significance of marrow adiposity in other metabolic disorders such as osteoporosis, diabetes mellitus, and estrogen and growth hormone deficiency are also discussed. We conclude that marrow adipose tissue is an active endocrine organ with important metabolic functions contributing to bone energy maintenance, osteogenesis, bone remodeling, and hematopoiesis. Future studies on the metabolic role of marrow adipose tissue may provide the critical insight necessary for selecting targeted therapeutic interventions to improve altered hematopoiesis and augment skeletal remodeling in cancer survivors.
Collapse
Affiliation(s)
- C P Hawkes
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - S Mostoufi-Moab
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, USA; Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, USA; Perelman School of Medicine, Department of Pediatrics, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
5
|
Zhou J, Zhang Z, Qian G. Neuropathy and inflammation in diabetic bone marrow. Diabetes Metab Res Rev 2019; 35:e3083. [PMID: 30289199 DOI: 10.1002/dmrr.3083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 09/05/2018] [Accepted: 10/02/2018] [Indexed: 12/14/2022]
Abstract
Diabetes impairs the bone marrow (BM) architecture and function as well as the mobilization of immature cells into the bloodstream and number of potential regenerative cells. Circadian regulation of bone immature cell migration is regulated by β-adrenergic receptors, which are expressed on haematopoietic stem cells, mesenchymal stem cells, and osteoblasts in the BM. Diabetes is associated with a substantially lower number of sympathetic nerve terminal endings in the BM; thus, diabetic neuropathy plays a critical role in BM dysfunction. Treatment with mesenchymal stem cells, BM mononuclear cells, haematopoietic stem cells, and stromal cells ameliorates the dysfunction of diabetic neuropathy, which occurs, in part, through secreted neurotrophic factors, growth factors, adipokines, and polarizing macrophage M2 cells and inhibiting inflammation. Inflammation may be a therapeutic target for BM stem cells to improve diabetic neuropathy. Given that angiogenic and neurotrophic effects are two major barriers to effective diabetic neuropathy therapy, targeting BM stem cells may provide a novel approach to develop these types of treatments.
Collapse
Affiliation(s)
- Jiyin Zhou
- National Drug Clinical Trial Institution, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zuo Zhang
- National Drug Clinical Trial Institution, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Guisheng Qian
- Institute of Respiratory Diseases, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
6
|
Guidi N, Sacma M, Ständker L, Soller K, Marka G, Eiwen K, Weiss JM, Kirchhoff F, Weil T, Cancelas JA, Florian MC, Geiger H. Osteopontin attenuates aging-associated phenotypes of hematopoietic stem cells. EMBO J 2017; 36:840-853. [PMID: 28254837 PMCID: PMC5376966 DOI: 10.15252/embj.201694969] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 12/08/2016] [Accepted: 01/18/2017] [Indexed: 01/08/2023] Open
Abstract
Upon aging, hematopoietic stem cells (HSCs) undergo changes in function and structure, including skewing to myeloid lineages, lower reconstitution potential and loss of protein polarity. While stem cell intrinsic mechanisms are known to contribute to HSC aging, little is known on whether age-related changes in the bone marrow niche regulate HSC aging. Upon aging, the expression of osteopontin (OPN) in the murine bone marrow stroma is reduced. Exposure of young HSCs to an OPN knockout niche results in a decrease in engraftment, an increase in long-term HSC frequency and loss of stem cell polarity. Exposure of aged HSCs to thrombin-cleaved OPN attenuates aging of old HSCs, resulting in increased engraftment, decreased HSC frequency, increased stem cell polarity and a restored balance of lymphoid and myeloid cells in peripheral blood. Thus, our data suggest a critical role for reduced stroma-derived OPN for HSC aging and identify thrombin-cleaved OPN as a novel niche informed therapeutic approach for ameliorating HSC phenotypes associated with aging.
Collapse
Affiliation(s)
- Novella Guidi
- Institute of Molecular Medicine and Aging Research Center Ulm, University of Ulm, Ulm, Germany
| | - Mehmet Sacma
- Institute of Molecular Medicine and Aging Research Center Ulm, University of Ulm, Ulm, Germany
| | - Ludger Ständker
- Kompetenzzentrum Ulm Peptide Pharmaceuticals, University of Ulm, Ulm, Germany
| | - Karin Soller
- Institute of Molecular Medicine and Aging Research Center Ulm, University of Ulm, Ulm, Germany
| | - Gina Marka
- Institute of Molecular Medicine and Aging Research Center Ulm, University of Ulm, Ulm, Germany
| | - Karina Eiwen
- Institute of Molecular Medicine and Aging Research Center Ulm, University of Ulm, Ulm, Germany
| | - Johannes M Weiss
- Department of Dermatology and Allergic Diseases, Universitätsklinikum Ulm, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Universitätsklinikum Ulm, Ulm, Germany
| | - Tanja Weil
- Institute of Organic Chemistry III, University of Ulm, Ulm, Germany
| | - Jose A Cancelas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Maria Carolina Florian
- Institute of Molecular Medicine and Aging Research Center Ulm, University of Ulm, Ulm, Germany
| | - Hartmut Geiger
- Institute of Molecular Medicine and Aging Research Center Ulm, University of Ulm, Ulm, Germany .,Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
7
|
Abplanalp WT, Conklin DJ, Cantor JM, Ginsberg MH, Wysoczynski M, Bhatnagar A, O'Toole TE. Enhanced Integrin α4β1-Mediated Adhesion Contributes to a Mobilization Defect of Endothelial Progenitor Cells in Diabetes. Diabetes 2016; 65:3505-3515. [PMID: 27495221 PMCID: PMC5079633 DOI: 10.2337/db16-0634] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/26/2016] [Indexed: 12/13/2022]
Abstract
Diabetes is associated with a deficit of circulating endothelial progenitor cells (EPCs), which has been attributed to their defective mobilization from the bone marrow. The basis for this mobilization defect is not completely understood, and we sought to determine if hyperglycemic conditions enhanced EPC adhesion. We found that culturing EPCs in high glucose media increased adhesion to bone marrow stromal cells. This enhanced adhesion was associated with decreased expression of protein kinase A regulatory subunit 1β (PRKAR1β), activation of protein kinase A (PKA), and phosphorylation of α4-integrin on serine 988. This potentiated adhesion was reversed by treatment with a PKA inhibitor, overexpression of PRKAR1β, or expression of a phosphorylation-defective α4-integrin variant (α4[S988A]). Using a model of type 1 diabetes, we showed that α4(S988A)-expressing mice have more circulating EPCs than their wild-type counterparts. Moreover, diabetic α4(S988A) mice demonstrate enhanced revascularization after hind limb ischemia. Thus, we have identified a novel signaling mechanism activating PKA in diabetes (downregulation of an inhibitory regulatory subunit) that leads to deficits of circulating EPCs and impaired vascular repair, which could be reversed by α4-integrin mutation.
Collapse
Affiliation(s)
- Wesley T Abplanalp
- Diabetes and Obesity Center, University of Louisville, Louisville, KY
- Department of Physiology, University of Louisville, Louisville, KY
| | - Daniel J Conklin
- Diabetes and Obesity Center, University of Louisville, Louisville, KY
| | - Joseph M Cantor
- Department of Medicine, University of California, San Diego, San Diego, CA
| | - Mark H Ginsberg
- Department of Medicine, University of California, San Diego, San Diego, CA
| | | | - Aruni Bhatnagar
- Diabetes and Obesity Center, University of Louisville, Louisville, KY
- Department of Physiology, University of Louisville, Louisville, KY
| | - Timothy E O'Toole
- Diabetes and Obesity Center, University of Louisville, Louisville, KY
| |
Collapse
|
8
|
Bhatwadekar AD, Duan Y, Chakravarthy H, Korah M, Caballero S, Busik JV, Grant MB. Ataxia Telangiectasia Mutated Dysregulation Results in Diabetic Retinopathy. Stem Cells 2015; 34:405-17. [PMID: 26502796 DOI: 10.1002/stem.2235] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 08/28/2015] [Accepted: 09/22/2015] [Indexed: 01/17/2023]
Abstract
Ataxia telangiectasia mutated (ATM) acts as a defense against a variety of bone marrow (BM) stressors. We hypothesized that ATM loss in BM-hematopoietic stem cells (HSCs) would be detrimental to both HSC function and microvascular repair while sustained ATM would be beneficial in disease models of diabetes. Chronic diabetes represents a condition associated with HSC depletion and inadequate vascular repair. Gender mismatched chimeras of ATM(-/-) on wild type background were generated and a cohort were made diabetic using streptozotocin (STZ). HSCs from the STZ-ATM(-/-) chimeras showed (a) reduced self-renewal; (b) decreased long-term repopulation; (c) depletion from the primitive endosteal niche; (d) myeloid bias; and (e) accelerated diabetic retinopathy (DR). To further test the significance of ATM in hematopoiesis and diabetes, we performed microarrays on circulating angiogenic cells, CD34(+) cells, obtained from a unique cohort of human subjects with long-standing (>40 years duration) poorly controlled diabetes that were free of DR. Pathway analysis of microarrays in these individuals revealed DNA repair and cell-cycle regulation as the top networks with marked upregulation of ATM mRNA compared with CD34(+) cells from diabetics with DR. In conclusion, our study highlights using rodent models and human subjects, the critical role of ATM in microvascular repair in DR.
Collapse
Affiliation(s)
- Ashay D Bhatwadekar
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana, USA
- Department of Pharmacology and Therapeutics, University of Florida, Florida, USA
| | - Yaqian Duan
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana, USA
| | | | - Maria Korah
- Department of Pharmacology and Therapeutics, University of Florida, Florida, USA
| | - Sergio Caballero
- Department of Pharmacology and Therapeutics, University of Florida, Florida, USA
| | - Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Maria B Grant
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana, USA
- Department of Pharmacology and Therapeutics, University of Florida, Florida, USA
| |
Collapse
|
9
|
Cousin B, Casteilla L, Laharrague P, Luche E, Lorsignol A, Cuminetti V, Paupert J. Immuno-metabolism and adipose tissue: The key role of hematopoietic stem cells. Biochimie 2015; 124:21-26. [PMID: 26107410 DOI: 10.1016/j.biochi.2015.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/13/2015] [Indexed: 12/17/2022]
Abstract
The field of immunometabolism has come a long way in the past decade, leading to the emergence of a new role for white adipose tissue (WAT) that is now recognized to stand at the junction of immune and metabolic regulations. Interestingly, a crucial role of the abundant and heterogeneous immune population present in WAT has been proposed in the induction and development of metabolic diseases. Although a large body of data focused on mature immune cells, only few scattered studies are dedicated to leukocyte production, and the activity of hematopoietic stem cells (HSC) in these pathological states. Considering that blood cell production and the differentiation of HSCs and their progeny is orchestrated, in part, by complex interacting signals emanating from their microenvironment, it thus seems worth to better understand the relationships between metabolism and HSC. This review discusses the alterations of hematopoietic process described in metabolic diseases and focused on the emerging data concerning HSC present in WAT.
Collapse
Affiliation(s)
- B Cousin
- CNRS 5273, UMR STROMALab, F-31 432 Toulouse Cedex 4, France; Université de Toulouse 3, UPS, F-31 432 Toulouse Cedex 4, France; INSERM U1031, F-31 432 Toulouse Cedex 4, France; EFS Pyrénées -Méditerranée, BP 84225, F-31 432 Toulouse Cedex 4, France.
| | - L Casteilla
- CNRS 5273, UMR STROMALab, F-31 432 Toulouse Cedex 4, France; Université de Toulouse 3, UPS, F-31 432 Toulouse Cedex 4, France; INSERM U1031, F-31 432 Toulouse Cedex 4, France; EFS Pyrénées -Méditerranée, BP 84225, F-31 432 Toulouse Cedex 4, France
| | - P Laharrague
- CNRS 5273, UMR STROMALab, F-31 432 Toulouse Cedex 4, France; Université de Toulouse 3, UPS, F-31 432 Toulouse Cedex 4, France; INSERM U1031, F-31 432 Toulouse Cedex 4, France; EFS Pyrénées -Méditerranée, BP 84225, F-31 432 Toulouse Cedex 4, France; Laboratoire d'Hématologie, TSA 50032, F-31059 Toulouse, France
| | - E Luche
- CNRS 5273, UMR STROMALab, F-31 432 Toulouse Cedex 4, France; Université de Toulouse 3, UPS, F-31 432 Toulouse Cedex 4, France; INSERM U1031, F-31 432 Toulouse Cedex 4, France; EFS Pyrénées -Méditerranée, BP 84225, F-31 432 Toulouse Cedex 4, France
| | - A Lorsignol
- CNRS 5273, UMR STROMALab, F-31 432 Toulouse Cedex 4, France; Université de Toulouse 3, UPS, F-31 432 Toulouse Cedex 4, France; INSERM U1031, F-31 432 Toulouse Cedex 4, France; EFS Pyrénées -Méditerranée, BP 84225, F-31 432 Toulouse Cedex 4, France
| | - V Cuminetti
- CNRS 5273, UMR STROMALab, F-31 432 Toulouse Cedex 4, France; Université de Toulouse 3, UPS, F-31 432 Toulouse Cedex 4, France; INSERM U1031, F-31 432 Toulouse Cedex 4, France; EFS Pyrénées -Méditerranée, BP 84225, F-31 432 Toulouse Cedex 4, France
| | - J Paupert
- CNRS 5273, UMR STROMALab, F-31 432 Toulouse Cedex 4, France; Université de Toulouse 3, UPS, F-31 432 Toulouse Cedex 4, France; INSERM U1031, F-31 432 Toulouse Cedex 4, France; EFS Pyrénées -Méditerranée, BP 84225, F-31 432 Toulouse Cedex 4, France
| |
Collapse
|
10
|
Abstract
Obesity markedly increases susceptibility to a range of diseases and simultaneously undermines the viability and fate selection of haematopoietic stem cells (HSCs), and thus the kinetics of leukocyte production that is critical to innate and adaptive immunity. Considering that blood cell production and the differentiation of HSCs and their progeny is orchestrated, in part, by complex interacting signals emanating from the bone marrow microenvironment, it is not surprising that conditions that disturb bone marrow structure inevitably disrupt both the numbers and lineage-fates of these key blood cell progenitors. In addition to the increased adipose burden in visceral and subcutaneous compartments, obesity causes a marked increase in the size and number of adipocytes encroaching into the bone marrow space, almost certainly disturbing HSC interactions with neighbouring cells, which include osteoblasts, osteoclasts, mesenchymal cells and endothelial cells. As the global obesity pandemic grows, the short-term and long-term consequences of increased bone marrow adiposity on HSC lineage selection and immune function remain uncertain. This Review discusses the differentiation and function of haematopoietic cell populations, the principal physicochemical components of the bone marrow niche, and how this environment influences HSCs and haematopoiesis in general. The effect of adipocytes and adiposity on HSC and progenitor cell populations is also discussed, with the goal of understanding how obesity might compromise the core haematopoietic system.
Collapse
Affiliation(s)
- Benjamin J Adler
- Department of Biomedical Engineering, Bioengineering Building, Stony Brook University, Stony Brook, NY 11794-5281, USA
| | - Kenneth Kaushansky
- Department of Medicine, Health Sciences Centre, Stony Brook University, Stony Brook, NY 11794-8430, USA
| | - Clinton T Rubin
- Department of Biomedical Engineering, Bioengineering Building, Stony Brook University, Stony Brook, NY 11794-5281, USA
| |
Collapse
|
11
|
Fadini GP, Ferraro F, Quaini F, Asahara T, Madeddu P. Concise review: diabetes, the bone marrow niche, and impaired vascular regeneration. Stem Cells Transl Med 2014; 3:949-57. [PMID: 24944206 PMCID: PMC4116251 DOI: 10.5966/sctm.2014-0052] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/15/2014] [Indexed: 12/23/2022] Open
Abstract
Diabetes mellitus is a global health problem that results in multiorgan complications leading to high morbidity and mortality. Until recently, the effects of diabetes and hyperglycemia on the bone marrow microenvironment-a site where multiple organ systems converge and communicate-have been underappreciated. However, several new studies in mice, rats, and humans reveal that diabetes leads to multiple bone marrow microenvironmental defects, such as small vessel disease (microangiopathy), nerve terminal pauperization (neuropathy), and impaired stem cell mobilization (mobilopathy). The discovery that diabetes involves bone marrow-derived progenitors implicated in maintaining cardiovascular homeostasis has been proposed as a bridging mechanism between micro- and macroangiopathy in distant organs. Herein, we review the physiological and molecular bone marrow abnormalities associated with diabetes and discuss how bone marrow dysfunction represents a potential root for the development of the multiorgan failure characteristic of advanced diabetes. The notion of diabetes as a bone marrow and stem cell disease opens new avenues for therapeutic interventions ultimately aimed at improving the outcome of diabetic patients.
Collapse
Affiliation(s)
- Gian Paolo Fadini
- Department of Medicine, University of Padova, Padova, Italy; Venetian Institute of Molecular Medicine, Padova, Italy; Pennsylvania Hospital, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA; Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA; Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy; Division of Regenerative Medicine, Department of Basic Clinical Science, Tokai University, Tokyo, Japan; Regenerative Medicine Section, Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Francesca Ferraro
- Department of Medicine, University of Padova, Padova, Italy; Venetian Institute of Molecular Medicine, Padova, Italy; Pennsylvania Hospital, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA; Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA; Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy; Division of Regenerative Medicine, Department of Basic Clinical Science, Tokai University, Tokyo, Japan; Regenerative Medicine Section, Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Federico Quaini
- Department of Medicine, University of Padova, Padova, Italy; Venetian Institute of Molecular Medicine, Padova, Italy; Pennsylvania Hospital, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA; Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA; Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy; Division of Regenerative Medicine, Department of Basic Clinical Science, Tokai University, Tokyo, Japan; Regenerative Medicine Section, Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Takayuki Asahara
- Department of Medicine, University of Padova, Padova, Italy; Venetian Institute of Molecular Medicine, Padova, Italy; Pennsylvania Hospital, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA; Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA; Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy; Division of Regenerative Medicine, Department of Basic Clinical Science, Tokai University, Tokyo, Japan; Regenerative Medicine Section, Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Paolo Madeddu
- Department of Medicine, University of Padova, Padova, Italy; Venetian Institute of Molecular Medicine, Padova, Italy; Pennsylvania Hospital, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA; Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA; Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy; Division of Regenerative Medicine, Department of Basic Clinical Science, Tokai University, Tokyo, Japan; Regenerative Medicine Section, Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
12
|
Endothelial cells enhance the in vivo bone-forming ability of osteogenic cell sheets. J Transl Med 2014; 94:663-73. [PMID: 24709778 DOI: 10.1038/labinvest.2014.55] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/30/2014] [Accepted: 03/06/2014] [Indexed: 01/20/2023] Open
Abstract
Addressing the problem of vascularization is of vital importance when engineering three-dimensional (3D) tissues. Endothelial cells are increasingly used in tissue-engineered constructs to obtain prevascularization and to enhance in vivo neovascularization. Rat bone marrow stromal cells were cultured in thermoresponsive dishes under osteogenic conditions with human umbilical vein endothelial cells (HUVECs) to obtain homotypic or heterotypic cell sheets (CSs). Cells were retrieved as sheets from the dishes after incubation at 20 °C. Monoculture osteogenic CSs were stacked on top of homotypic or heterotypic CSs, and subcutaneously implanted in the dorsal flap of nude mice for 7 days. The implants showed mineralized tissue formation under both conditions. Transplanted osteogenic cells were found at the new tissue site, demonstrating CS bone-inductive effect. Perfused vessels, positive for human CD31, confirmed the contribution of HUVECs for the neovascularization of coculture CS constructs. Furthermore, calcium quantification and expression of osteocalcin and osterix genes were higher for the CS constructs, with HUVECs demonstrating the more robust osteogenic potential of these constructs. This work demonstrates the potential of using endothelial cells, combined with osteogenic CSs, to increase the in vivo vascularization of CS-based 3D constructs for bone tissue engineering purposes.
Collapse
|
13
|
Yiu KH, Tse HF. Specific role of impaired glucose metabolism and diabetes mellitus in endothelial progenitor cell characteristics and function. Arterioscler Thromb Vasc Biol 2014; 34:1136-43. [PMID: 24743430 DOI: 10.1161/atvbaha.114.302192] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The disease burden of diabetes mellitus (DM) and its associated cardiovascular complications represent a growing and major global health problem. Recent studies suggest that circulating exogenous endothelial progenitor cells (EPCs) play an important role in endothelial repair and neovascularization at sites of injury or ischemia. Both experimental and clinical studies have demonstrated that hyperglycemia related to DM can induce alterations to EPCs. The reduction and dysfunction of EPCs related to DM correlate with the occurrence and severity of microvascular and macrovascular complications, suggesting a close mechanistic link between EPC dysfunction and impaired vascular function/repair in DM. These alterations to EPCs, likely mediated by multiple pathophysiological mechanisms, including inflammation, oxidative stress, and alterations in Akt and the nitric oxide pathway, affect EPCs at multiple stages: differentiation and mobilization in the bone marrow, trafficking and survival in the circulation, and homing and neovascularization. Several different therapeutic approaches have consequently been proposed to reverse the reduction and dysfunction of EPCs in DM and may represent a novel therapeutic approach to prevent and treat DM-related cardiovascular complications.
Collapse
Affiliation(s)
- Kai-Hang Yiu
- From the Division of Cardiology, Department of Medicine, Queen Mary Hospital (K.-H.Y., H.-F.T.) and Shenzhen Institute of Research and Innovation (H.-F.T.), University of Hong Kong, Hong Kong, China; and Research Centre of Heart, Brain, Hormone, and Healthy Aging (K.-H.Y., H.-F.T.) and Hong Kong-Guangdong Joint Laboratory on Stem Cell and Regenerative Medicine (H.-F.T.), Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Hung-Fat Tse
- From the Division of Cardiology, Department of Medicine, Queen Mary Hospital (K.-H.Y., H.-F.T.) and Shenzhen Institute of Research and Innovation (H.-F.T.), University of Hong Kong, Hong Kong, China; and Research Centre of Heart, Brain, Hormone, and Healthy Aging (K.-H.Y., H.-F.T.) and Hong Kong-Guangdong Joint Laboratory on Stem Cell and Regenerative Medicine (H.-F.T.), Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
14
|
Mazzoccoli G, Tevy MF, Borghesan M, Delle Vergini MR, Vinciguerra M. Caloric restriction and aging stem cells: the stick and the carrot? Exp Gerontol 2013; 50:137-48. [PMID: 24211426 DOI: 10.1016/j.exger.2013.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/03/2013] [Accepted: 10/28/2013] [Indexed: 12/24/2022]
Abstract
Adult tissue stem cells have the ability to adjust to environmental changes and affect also the proliferation of neighboring cells, with important consequences on tissue maintenance and regeneration. Stem cell renewal and proliferation is strongly regulated during aging of the organism. Caloric restriction is the most powerful anti-aging strategy conserved throughout evolution in the animal kingdom. Recent studies relate the properties of caloric restriction to its ability in reprogramming stem-like cell states and in prolonging the capacity of stem cells to self-renew, proliferate, differentiate, and replace cells in several adult tissues. However this general paradigm presents with exceptions. The scope of this review is to highlight how caloric restriction impacts on diverse stem cell compartments and, by doing so, might differentially delay aging in the tissues of lower and higher organisms.
Collapse
Affiliation(s)
- Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S. Giovanni Rotondo, FG, Italy.
| | - Maria Florencia Tevy
- Genomics and Bioinformatics Centre, Major University of Santiago, Santiago, Chile
| | - Michela Borghesan
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S. Giovanni Rotondo, FG, Italy; University College London, Institute for Liver and Digestive Health, Division of Medicine, Royal Free Campus, London, United Kingdom
| | - Maria Rita Delle Vergini
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S. Giovanni Rotondo, FG, Italy
| | - Manlio Vinciguerra
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S. Giovanni Rotondo, FG, Italy; Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy; University College London, Institute for Liver and Digestive Health, Division of Medicine, Royal Free Campus, London, United Kingdom.
| |
Collapse
|