1
|
Chen X, Al-Mualem ZA, Baiz CR. Lipid Landscapes: Vibrational Spectroscopy for Decoding Membrane Complexity. Annu Rev Phys Chem 2024; 75:283-305. [PMID: 38382566 DOI: 10.1146/annurev-physchem-090722-010230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Cell membranes are incredibly complex environments containing hundreds of components. Despite substantial advances in the past decade, fundamental questions related to lipid-lipid interactions and heterogeneity persist. This review explores the complexity of lipid membranes, showcasing recent advances in vibrational spectroscopy to characterize the structure, dynamics, and interactions at the membrane interface. We include an overview of modern techniques such as surface-enhanced infrared spectroscopy as a steady-state technique with single-bilayer sensitivity, two-dimensional sum-frequency generation spectroscopy, and two-dimensional infrared spectroscopy to measure time-evolving structures and dynamics with femtosecond time resolution. Furthermore, we discuss the potential of multiscale molecular dynamics (MD) simulations, focusing on recently developed simulation algorithms, which have emerged as a powerful approach to interpret complex spectra. We highlight the ongoing challenges in studying heterogeneous environments in multicomponent membranes via current vibrational spectroscopic techniques and MD simulations. Overall, this review provides an up-to-date comprehensive overview of the powerful combination of vibrational spectroscopy and simulations, which has great potential to illuminate lipid-lipid, lipid-protein, and lipid-water interactions in the intricate conformational landscape of cell membranes.
Collapse
Affiliation(s)
- Xiaobing Chen
- Department of Chemistry, University of Texas at Austin, Austin, Texas, USA;
| | | | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, Austin, Texas, USA;
| |
Collapse
|
2
|
Yuan Z, Hansen SB. Cholesterol Regulation of Membrane Proteins Revealed by Two-Color Super-Resolution Imaging. MEMBRANES 2023; 13:membranes13020250. [PMID: 36837753 PMCID: PMC9966874 DOI: 10.3390/membranes13020250] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 05/15/2023]
Abstract
Cholesterol and phosphatidyl inositol 4,5-bisphosphate (PIP2) are hydrophobic molecules that regulate protein function in the plasma membrane of all cells. In this review, we discuss how changes in cholesterol concentration cause nanoscopic (<200 nm) movements of membrane proteins to regulate their function. Cholesterol is known to cluster many membrane proteins (often palmitoylated proteins) with long-chain saturated lipids. Although PIP2 is better known for gating ion channels, in this review, we will discuss a second independent function as a regulator of nanoscopic protein movement that opposes cholesterol clustering. The understanding of the movement of proteins between nanoscopic lipid domains emerged largely through the recent advent of super-resolution imaging and the establishment of two-color techniques to label lipids separate from proteins. We discuss the labeling techniques for imaging, their strengths and weakness, and how they are used to reveal novel mechanisms for an ion channel, transporter, and enzyme function. Among the mechanisms, we describe substrate and ligand presentation and their ability to activate enzymes, gate channels, and transporters rapidly and potently. Finally, we define cholesterol-regulated proteins (CRP) and discuss the role of PIP2 in opposing the regulation of cholesterol, as seen through super-resolution imaging.
Collapse
Affiliation(s)
- Zixuan Yuan
- Department of Molecular Medicine, Department of Neuroscience, UF Scripps, Jupiter, FL 33458, USA
- Department of Neuroscience UF Scripps, Jupiter, FL 33458, USA
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Scott B. Hansen
- Department of Molecular Medicine, Department of Neuroscience, UF Scripps, Jupiter, FL 33458, USA
- Department of Neuroscience UF Scripps, Jupiter, FL 33458, USA
- Correspondence:
| |
Collapse
|
3
|
Levental I, Lyman E. Regulation of membrane protein structure and function by their lipid nano-environment. Nat Rev Mol Cell Biol 2023; 24:107-122. [PMID: 36056103 PMCID: PMC9892264 DOI: 10.1038/s41580-022-00524-4] [Citation(s) in RCA: 173] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 02/04/2023]
Abstract
Transmembrane proteins comprise ~30% of the mammalian proteome, mediating metabolism, signalling, transport and many other functions required for cellular life. The microenvironment of integral membrane proteins (IMPs) is intrinsically different from that of cytoplasmic proteins, with IMPs solvated by a compositionally and biophysically complex lipid matrix. These solvating lipids affect protein structure and function in a variety of ways, from stereospecific, high-affinity protein-lipid interactions to modulation by bulk membrane properties. Specific examples of functional modulation of IMPs by their solvating membranes have been reported for various transporters, channels and signal receptors; however, generalizable mechanistic principles governing IMP regulation by lipid environments are neither widely appreciated nor completely understood. Here, we review recent insights into the inter-relationships between complex lipidomes of mammalian membranes, the membrane physicochemical properties resulting from such lipid collectives, and the regulation of IMPs by either or both. The recent proliferation of high-resolution methods to study such lipid-protein interactions has led to generalizable insights, which we synthesize into a general framework termed the 'functional paralipidome' to understand the mutual regulation between membrane proteins and their surrounding lipid microenvironments.
Collapse
Affiliation(s)
- Ilya Levental
- Department of Molecular Physiology and Biological Physics, Center for Molecular and Cell Physiology, University of Virginia, Charlottesville, VA, USA.
| | - Ed Lyman
- Department of Physics and Astronomy, Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA.
| |
Collapse
|
4
|
Borcik CG, Eason IR, Yekefallah M, Amani R, Han R, Vanderloop BH, Wylie BJ. A Cholesterol Dimer Stabilizes the Inactivated State of an Inward-Rectifier Potassium Channel. Angew Chem Int Ed Engl 2022; 61:e202112232. [PMID: 34985791 PMCID: PMC8957755 DOI: 10.1002/anie.202112232] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 12/15/2022]
Abstract
Cholesterol oligomers reside in multiple membrane protein X-ray crystal structures. Yet, there is no direct link between these oligomers and a biological function. Here we present the structural and functional details of a cholesterol dimer that stabilizes the inactivated state of an inward-rectifier potassium channel KirBac1.1. K+ efflux assays confirm that high cholesterol concentration reduces K+ conductance. We then determine the structure of the cholesterol-KirBac1.1 complex using Xplor-NIH simulated annealing calculations driven by solid-state NMR distance measurements. These calculations identified an α-α cholesterol dimer docked to a cleft formed by adjacent subunits of the homotetrameric protein. We compare these results to coarse grain molecular dynamics simulations. This is one of the first examples of a cholesterol oligomer performing a distinct biological function and structural characterization of a conserved promiscuous lipid binding region.
Collapse
Affiliation(s)
- Collin G Borcik
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Isaac R Eason
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Maryam Yekefallah
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Reza Amani
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Ruixian Han
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Boden H Vanderloop
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Benjamin J Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
5
|
The Role of Membrane Lipids in Light-Activation of Drosophila TRP Channels. Biomolecules 2022; 12:biom12030382. [PMID: 35327573 PMCID: PMC8945425 DOI: 10.3390/biom12030382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/28/2022] Open
Abstract
Transient Receptor Potential (TRP) channels constitute a large superfamily of polymodal channel proteins with diverse roles in many physiological and sensory systems that function both as ionotropic and metabotropic receptors. From the early days of TRP channel discovery, membrane lipids were suggested to play a fundamental role in channel activation and regulation. A prominent example is the Drosophila TRP and TRP-like (TRPL) channels, which are predominantly expressed in the visual system of Drosophila. Light activation of the TRP and TRPL channels, the founding members of the TRP channel superfamily, requires activation of phospholipase Cβ (PLC), which hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) into Diacylglycerol (DAG) and Inositol 1, 4,5-trisphosphate (IP3). However, the events required for channel gating downstream of PLC activation are still under debate and led to several hypotheses regarding the mechanisms by which lipids gate the channels. Despite many efforts, compelling evidence of the involvement of DAG accumulation, PIP2 depletion or IP3-mediated Ca2+ release in light activation of the TRP/TRPL channels are still lacking. Exogeneous application of poly unsaturated fatty acids (PUFAs), a product of DAG hydrolysis was demonstrated as an efficient way to activate the Drosophila TRP/TRPL channels. However, compelling evidence for the involvement of PUFAs in physiological light-activation of the TRP/TRPL channels is still lacking. Light-induced mechanical force generation was measured in photoreceptor cells prior to channel opening. This mechanical force depends on PLC activity, suggesting that the enzymatic activity of PLC converting PIP2 into DAG generates membrane tension, leading to mechanical gating of the channels. In this review, we will present the roles of membrane lipids in light activation of Drosophila TRP channels and present the many advantages of this model system in the exploration of TRP channel activation under physiological conditions.
Collapse
|
6
|
Hager NA, McAtee CK, Lesko MA, O’Donnell AF. Inwardly Rectifying Potassium Channel Kir2.1 and its "Kir-ious" Regulation by Protein Trafficking and Roles in Development and Disease. Front Cell Dev Biol 2022; 9:796136. [PMID: 35223865 PMCID: PMC8864065 DOI: 10.3389/fcell.2021.796136] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Potassium (K+) homeostasis is tightly regulated for optimal cell and organismal health. Failure to control potassium balance results in disease, including cardiac arrythmias and developmental disorders. A family of inwardly rectifying potassium (Kir) channels helps cells maintain K+ levels. Encoded by KCNJ genes, Kir channels are comprised of a tetramer of Kir subunits, each of which contains two-transmembrane domains. The assembled Kir channel generates an ion selectivity filter for K+ at the monomer interface, which allows for K+ transit. Kir channels are found in many cell types and influence K+ homeostasis across the organism, impacting muscle, nerve and immune function. Kir2.1 is one of the best studied family members with well-defined roles in regulating heart rhythm, muscle contraction and bone development. Due to their expansive roles, it is not surprising that Kir mutations lead to disease, including cardiomyopathies, and neurological and metabolic disorders. Kir malfunction is linked to developmental defects, including underdeveloped skeletal systems and cerebellar abnormalities. Mutations in Kir2.1 cause the periodic paralysis, cardiac arrythmia, and developmental deficits associated with Andersen-Tawil Syndrome. Here we review the roles of Kir family member Kir2.1 in maintaining K+ balance with a specific focus on our understanding of Kir2.1 channel trafficking and emerging roles in development and disease. We provide a synopsis of the vital work focused on understanding the trafficking of Kir2.1 and its role in development.
Collapse
Affiliation(s)
| | | | | | - Allyson F. O’Donnell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
7
|
Borcik CG, Eason IR, Yekefallah M, Amani R, Han R, Vanderloop BH, Wylie BJ. A Cholesterol Dimer Stabilizes the Inactivated State of an Inward‐Rectifier Potassium Channel. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Collin G. Borcik
- Department of Chemistry and Biochemistry Texas Tech University Lubbock TX 79409 USA
| | - Isaac R. Eason
- Department of Chemistry and Biochemistry Texas Tech University Lubbock TX 79409 USA
| | - Maryam Yekefallah
- Department of Chemistry and Biochemistry Texas Tech University Lubbock TX 79409 USA
| | - Reza Amani
- Department of Chemistry and Biochemistry Texas Tech University Lubbock TX 79409 USA
| | - Ruixian Han
- Department of Biochemistry University of Wisconsin-Madison Madison WI 53706 USA
| | - Boden H. Vanderloop
- Department of Chemistry and Biochemistry Texas Tech University Lubbock TX 79409 USA
| | - Benjamin J. Wylie
- Department of Chemistry and Biochemistry Texas Tech University Lubbock TX 79409 USA
| |
Collapse
|
8
|
Direct and indirect cholesterol effects on membrane proteins with special focus on potassium channels. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158706. [DOI: 10.1016/j.bbalip.2020.158706] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/19/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022]
|
9
|
Lieberman OJ, Frier MD, McGuirt AF, Griffey CJ, Rafikian E, Yang M, Yamamoto A, Borgkvist A, Santini E, Sulzer D. Cell-type-specific regulation of neuronal intrinsic excitability by macroautophagy. eLife 2020; 9:e50843. [PMID: 31913125 PMCID: PMC6984822 DOI: 10.7554/elife.50843] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 01/07/2020] [Indexed: 12/28/2022] Open
Abstract
The basal ganglia are a group of subcortical nuclei that contribute to action selection and reinforcement learning. The principal neurons of the striatum, spiny projection neurons of the direct (dSPN) and indirect (iSPN) pathways, maintain low intrinsic excitability, requiring convergent excitatory inputs to fire. Here, we examined the role of autophagy in mouse SPN physiology and animal behavior by generating conditional knockouts of Atg7 in either dSPNs or iSPNs. Loss of autophagy in either SPN population led to changes in motor learning but distinct effects on cellular physiology. dSPNs, but not iSPNs, required autophagy for normal dendritic structure and synaptic input. In contrast, iSPNs, but not dSPNs, were intrinsically hyperexcitable due to reduced function of the inwardly rectifying potassium channel, Kir2. These findings define a novel mechanism by which autophagy regulates neuronal activity: control of intrinsic excitability via the regulation of potassium channel function.
Collapse
Affiliation(s)
- Ori J Lieberman
- Department of PsychiatryColumbia University Vagelos College of Physicians and SurgeonsNew YorkUnited States
| | - Micah D Frier
- Department of PsychiatryColumbia University Vagelos College of Physicians and SurgeonsNew YorkUnited States
| | - Avery F McGuirt
- Department of PsychiatryColumbia University Vagelos College of Physicians and SurgeonsNew YorkUnited States
| | - Christopher J Griffey
- Department of NeurologyColumbia University Vagelos College of Physicians and SurgeonsNew YorkUnited States
| | - Elizabeth Rafikian
- Mouse NeuroBehavior Core, Institute for Genomic MedicineColumbia University Vagelos College of Physicians and SurgeonsNew YorkUnited States
| | - Mu Yang
- Mouse NeuroBehavior Core, Institute for Genomic MedicineColumbia University Vagelos College of Physicians and SurgeonsNew YorkUnited States
| | - Ai Yamamoto
- Department of NeurologyColumbia University Vagelos College of Physicians and SurgeonsNew YorkUnited States
| | | | | | - David Sulzer
- Department of PsychiatryColumbia University Vagelos College of Physicians and SurgeonsNew YorkUnited States
- Department of NeurologyColumbia University Vagelos College of Physicians and SurgeonsNew YorkUnited States
- Department of PharmacologyColumbia University Vagelos College of Physicians and SurgeonsNew YorkUnited States
- Division of Molecular TherapeuticsNew York State Psychiatric InstituteNew YorkUnited States
| |
Collapse
|
10
|
Gutorov R, Peters M, Katz B, Brandwine T, Barbera NA, Levitan I, Minke B. Modulation of Transient Receptor Potential C Channel Activity by Cholesterol. Front Pharmacol 2019; 10:1487. [PMID: 31920669 PMCID: PMC6923273 DOI: 10.3389/fphar.2019.01487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Changes of cholesterol level in the plasma membrane of cells have been shown to modulate ion channel function. The proposed mechanisms underlying these modulations include association of cholesterol to a single binding site at a single channel conformation, association to a highly flexible cholesterol binding site adopting multiple poses, and perturbation of lipid rafts. These perturbations have been shown to induce reversible targeting of mammalian transient receptor potential C (TRPC) channels to the cholesterol-rich membrane environment of lipid rafts. Thus, the observed inhibition of TRPC channels by methyl-β-cyclodextrin (MβCD), which induces cholesterol efflux from the plasma membrane, may result from disruption of lipid rafts. This perturbation was also shown to disrupt multimolecular signaling complexes containing TRPC channels. The Drosophila TRP and TRP-like (TRPL) channels belong to the TRPC channel subfamily. When the Drosophila TRPL channel was expressed in S2 or HEK293 cells and perfused with MβCD, the TRPL current was abolished in less than 100 s, fitting well the fast kinetic phase of cholesterol sequestration experiments in cells. It was thus suggested that the fast kinetics of TRPL channel suppression by MβCD arise from disruption of lipid rafts. Accordingly, lipid raft perturbation by cholesterol sequestration could give clues to the function of lipid environment in TRPC channel activity and its mechanism.
Collapse
Affiliation(s)
- Rita Gutorov
- Institute for Medical Research Israel-Canada (IMRIC), Edmond and Lily Safra Center for Brain Sciences (ELSC), Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Maximilian Peters
- Institute for Medical Research Israel-Canada (IMRIC), Edmond and Lily Safra Center for Brain Sciences (ELSC), Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Ben Katz
- Institute for Medical Research Israel-Canada (IMRIC), Edmond and Lily Safra Center for Brain Sciences (ELSC), Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Tal Brandwine
- Institute for Medical Research Israel-Canada (IMRIC), Edmond and Lily Safra Center for Brain Sciences (ELSC), Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Nicolas A Barbera
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Irena Levitan
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Baruch Minke
- Institute for Medical Research Israel-Canada (IMRIC), Edmond and Lily Safra Center for Brain Sciences (ELSC), Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
11
|
Kever L, Cherezova A, Zenin V, Negulyaev Y, Komissarchik Y, Semenova S. Downregulation of TRPV6 channel activity by cholesterol depletion in Jurkat T cell line. Cell Biol Int 2019; 43:965-975. [DOI: 10.1002/cbin.11185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/21/2019] [Accepted: 05/25/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Lyudmila Kever
- Laboratory of Ionic Mechanisms of Cell SignalingInstitute of Cytology of the Russian Academy of ScienceTikhoretsky ave. 4 194064 Saint‐Petersburg Russia
| | - Alena Cherezova
- Laboratory of Ionic Mechanisms of Cell SignalingInstitute of Cytology of the Russian Academy of ScienceTikhoretsky ave. 4 194064 Saint‐Petersburg Russia
- Department of PhysiologyMedical College of Georgia, Augusta University1120 15th Street 30912 Augusta GA USA
| | - Valery Zenin
- Laboratory of Ionic Mechanisms of Cell SignalingInstitute of Cytology of the Russian Academy of ScienceTikhoretsky ave. 4 194064 Saint‐Petersburg Russia
| | - Yuri Negulyaev
- Laboratory of Ionic Mechanisms of Cell SignalingInstitute of Cytology of the Russian Academy of ScienceTikhoretsky ave. 4 194064 Saint‐Petersburg Russia
| | - Yan Komissarchik
- Laboratory of Ionic Mechanisms of Cell SignalingInstitute of Cytology of the Russian Academy of ScienceTikhoretsky ave. 4 194064 Saint‐Petersburg Russia
| | - Svetlana Semenova
- Laboratory of Ionic Mechanisms of Cell SignalingInstitute of Cytology of the Russian Academy of ScienceTikhoretsky ave. 4 194064 Saint‐Petersburg Russia
| |
Collapse
|
12
|
Borcik CG, Versteeg DB, Wylie BJ. An Inward-Rectifier Potassium Channel Coordinates the Properties of Biologically Derived Membranes. Biophys J 2019; 116:1701-1718. [PMID: 31010661 DOI: 10.1016/j.bpj.2019.03.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 12/13/2022] Open
Abstract
KirBac1.1 is a prokaryotic inward-rectifier K+ channel from Burkholderia pseudomallei. It shares the common inward-rectifier K+ channel fold with eukaryotic channels, including conserved lipid-binding pockets. Here, we show that KirBac1.1 changes the phase properties and dynamics of the surrounding bilayer. KirBac1.1 was reconstituted into vesicles composed of 13C-enriched biological lipids. Two-dimensional liquid-state and solid-state NMR experiments were used to assign lipid 1H and 13C chemical shifts as a function of lipid identity and conformational degrees of freedom. A solid-state NMR temperature series reveals that KirBac1.1 lowers the primary thermotropic phase transition of Escherichia coli lipid membranes while introducing both fluidity and internal lipid order into the fluid phases. In B. thailandensis liposomes, the bacteriohopanetetrol hopanoid, and potentially ornithine lipids, introduce a similar primary lipid-phase transition and liquid-ordered properties. Adding KirBac1.1 to B. thailandensis lipids increases B. thailandensis lipid fluidity while preserving internal lipid order. This synergistic effect of KirBac1.1 in bacteriohopanetetrol-rich membranes has implications for bilayer dynamic structure. If membrane proteins can anneal lipid translational degrees of freedom while preserving internal order, it could offer an explanation to the nature of liquid-ordered protein-lipid organization in vivo.
Collapse
Affiliation(s)
- Collin G Borcik
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Derek B Versteeg
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Benjamin J Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas.
| |
Collapse
|
13
|
Barbera N, Levitan I. Chiral Specificity of Cholesterol Orientation Within Cholesterol Binding Sites in Inwardly Rectifying K+ Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1115:77-95. [DOI: 10.1007/978-3-030-04278-3_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Rosenhouse-Dantsker A. Cholesterol Binding Sites in Inwardly Rectifying Potassium Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1135:119-138. [DOI: 10.1007/978-3-030-14265-0_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
15
|
Zhang B, Paffett ML, Naik JS, Jernigan NL, Walker BR, Resta TC. Cholesterol Regulation of Pulmonary Endothelial Calcium Homeostasis. CURRENT TOPICS IN MEMBRANES 2018; 82:53-91. [PMID: 30360783 DOI: 10.1016/bs.ctm.2018.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cholesterol is a key structural component and regulator of lipid raft signaling platforms critical for cell function. Such regulation may involve changes in the biophysical properties of lipid microdomains or direct protein-sterol interactions that alter the function of ion channels, receptors, enzymes, and membrane structural proteins. Recent studies have implicated abnormal membrane cholesterol levels in mediating endothelial dysfunction that is characteristic of pulmonary hypertensive disorders, including that resulting from long-term exposure to hypoxia. Endothelial dysfunction in this setting is characterized by impaired pulmonary endothelial calcium entry and an associated imbalance that favors production vasoconstrictor and mitogenic factors that contribute to pulmonary hypertension. Here we review current knowledge of cholesterol regulation of pulmonary endothelial Ca2+ homeostasis, focusing on the role of membrane cholesterol in mediating agonist-induced Ca2+ entry and its components in the normal and hypertensive pulmonary circulation.
Collapse
Affiliation(s)
- Bojun Zhang
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Michael L Paffett
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Jay S Naik
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Benjimen R Walker
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States.
| |
Collapse
|
16
|
Jackson WF. Boosting the signal: Endothelial inward rectifier K + channels. Microcirculation 2018; 24. [PMID: 27652592 DOI: 10.1111/micc.12319] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/12/2016] [Indexed: 12/19/2022]
Abstract
Endothelial cells express a diverse array of ion channels including members of the strong inward rectifier family composed of KIR 2 subunits. These two-membrane spanning domain channels are modulated by their lipid environment, and exist in macromolecular signaling complexes with receptors, protein kinases and other ion channels. Inward rectifier K+ channel (KIR ) currents display a region of negative slope conductance at membrane potentials positive to the K+ equilibrium potential that allows outward current through the channels to be activated by membrane hyperpolarization, permitting KIR to amplify hyperpolarization induced by other K+ channels and ion transporters. Increases in extracellular K+ concentration activate KIR allowing them to sense extracellular K+ concentration and transduce this change into membrane hyperpolarization. These properties position KIR to participate in the mechanism of action of hyperpolarizing vasodilators and contribute to cell-cell conduction of hyperpolarization along the wall of microvessels. The expression of KIR in capillaries in electrically active tissues may allow KIR to sense extracellular K+ , contributing to functional hyperemia. Understanding the regulation of expression and function of microvascular endothelial KIR will improve our understanding of the control of blood flow in the microcirculation in health and disease and may provide new targets for the development of therapeutics in the future.
Collapse
Affiliation(s)
- William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
17
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
18
|
Ahn SJ, Fancher IS, Bian JT, Zhang CX, Schwab S, Gaffin R, Phillips SA, Levitan I. Inwardly rectifying K + channels are major contributors to flow-induced vasodilatation in resistance arteries. J Physiol 2016; 595:2339-2364. [PMID: 27859264 PMCID: PMC5374117 DOI: 10.1113/jp273255] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Endothelial inwardly rectifying K+ (Kir2.1) channels regulate flow-induced vasodilatation via nitric oxide (NO) in mouse mesenteric resistance arteries. Deficiency of Kir2.1 channels results in elevated blood pressure and increased vascular resistance. Flow-induced vasodilatation in human resistance arteries is also regulated by inwardly rectifying K+ channels. This study presents the first direct evidence that Kir channels play a critical role in physiological endothelial responses to flow. ABSTRACT Inwardly rectifying K+ (Kir) channels are known to be sensitive to flow, but their role in flow-induced endothelial responses is not known. The goal of this study is to establish the role of Kir channels in flow-induced vasodilatation and to provide first insights into the mechanisms responsible for Kir signalling in this process. First, we establish that primary endothelial cells isolated from murine mesenteric arteries express functional Kir2.1 channels sensitive to shear stress. Then, using the Kir2.1+/- heterozygous mouse model, we establish that downregulation of Kir2.1 results in significant decrease in shear-activated Kir currents and inhibition of endothelium-dependent flow-induced vasodilatation (FIV) assayed in pressurized mesenteric arteries pre-constricted with endothelin-1. Deficiency in Kir2.1 also results in the loss of flow-induced phosphorylation of eNOS and Akt, as well as inhibition of NO generation. All the effects are fully rescued by endothelial cell (EC)-specific overexpression of Kir2.1. A component of FIV that is Kir independent is abrogated by blocking Ca2+ -sensitive K+ channels. Kir2.1 has no effect on endothelium-independent and K+ -induced vasodilatation in denuded arteries. Kir2.1+/- mice also show increased mean blood pressure measured by carotid artery cannulation and increased microvascular resistance measured using a tail-cuff. Importantly, blocking Kir channels also inhibits flow-induced vasodilatation in human subcutaneous adipose microvessels. Endothelial Kir channels contribute to FIV of mouse mesenteric arteries via an NO-dependent mechanism, whereas Ca2+ -sensitive K+ channels mediate FIV via an NO-independent pathway. Kir2 channels also regulate vascular resistance and blood pressure. Finally, Kir channels also contribute to FIV in human subcutaneous microvessels.
Collapse
Affiliation(s)
- Sang Joon Ahn
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, USA
| | - Ibra S Fancher
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, USA.,Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA
| | - Jing-Tan Bian
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA
| | - Chong Xu Zhang
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, USA
| | - Sarah Schwab
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA
| | - Robert Gaffin
- Department of Physiology, Physiology Core Lab, University of Illinois at Chicago, Chicago, IL, USA
| | - Shane A Phillips
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA
| | - Irena Levitan
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
19
|
Fürst O, Nichols CG, Lamoureux G, D'Avanzo N. Identification of a cholesterol-binding pocket in inward rectifier K(+) (Kir) channels. Biophys J 2016; 107:2786-2796. [PMID: 25517146 DOI: 10.1016/j.bpj.2014.10.066] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/24/2014] [Accepted: 10/08/2014] [Indexed: 11/28/2022] Open
Abstract
Cholesterol is the major sterol component of all mammalian plasma membranes. Recent studies have shown that cholesterol inhibits both bacterial (KirBac1.1 and KirBac3.1) and eukaryotic (Kir2.1) inward rectifier K(+) (Kir) channels. Lipid-sterol interactions are not enantioselective, and the enantiomer of cholesterol (ent-cholesterol) does not inhibit Kir channel activity, suggesting that inhibition results from direct enantiospecific binding to the channel, and not indirect effects of changes to the bilayer. Furthermore, conservation of the effect of cholesterol among prokaryotic and eukaryotic Kir channels suggests an evolutionary conserved cholesterol-binding pocket, which we aimed to identify. Computational experiments were performed by docking cholesterol to the atomic structures of Kir2.2 (PDB: 3SPI) and KirBac1.1 (PDB: 2WLL) using Autodock 4.2. Poses were assessed to ensure biologically relevant orientation and then clustered according to location and orientation. The stability of cholesterol in each of these poses was then confirmed by molecular dynamics simulations. Finally, mutation of key residues (S95H and I171L) in this putative binding pocket found within the transmembrane domain of Kir2.1 channels were shown to lead to a loss of inhibition by cholesterol. Together, these data provide support for this location as a biologically relevant pocket.
Collapse
Affiliation(s)
- Oliver Fürst
- Département de Physiologie Moléculaire et Intégrative and Groupe d'Étude des Protéines Membranaires (GÉPROM), Université de Montréal, Montreal, Quebec, Canada
| | - Colin G Nichols
- Department of Cell Biology and Physiology and Center for Investigation of Membrane Excitabiltiy Diseases, Washington University School of Medicine, St. Louis, Missouri
| | - Guillaume Lamoureux
- Department of Chemistry and Biochemistry, Centre for Research in Molecular Modeling (CERMM), Groupe d'Étude des Protéines Membranaires (GÉPROM), Concordia University, Montreal, Quebec, Canada
| | - Nazzareno D'Avanzo
- Département de Physiologie Moléculaire et Intégrative and Groupe d'Étude des Protéines Membranaires (GÉPROM), Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
20
|
Han H, Rosenhouse-Dantsker A, Gnanasambandam R, Epshtein Y, Chen Z, Sachs F, Minshall RD, Levitan I. Silencing of Kir2 channels by caveolin-1: cross-talk with cholesterol. J Physiol 2014; 592:4025-38. [PMID: 25038242 PMCID: PMC4198012 DOI: 10.1113/jphysiol.2014.273177] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 06/22/2014] [Indexed: 02/06/2023] Open
Abstract
A growing number of studies show that different types of ion channels localize in caveolae and are regulated by the level of membrane cholesterol. Furthermore, it has been proposed that cholesterol-induced regulation of ion channels might be attributed to partitioning into caveolae and association with caveolin-1 (Cav-1). We tested, therefore, whether Cav-1 regulates the function of inwardly rectifying potassium channels Kir2.1 that play major roles in the regulation of membrane potentials of numerous mammalian cells. Our earlier studies demonstrated that Kir2.1 channels are cholesterol sensitive. In this study, we show that Kir2.1 channels co-immunoprecipitate with Cav-1 and that co-expression of Kir2.1 channels with Cav-1 in HEK293 cells results in suppression of Kir2 current indicating that Cav-1 is a negative regulator of Kir2 function. These observations are confirmed by comparing Kir currents in bone marrow-derived macrophages isolated from Cav-1(-/-) and wild-type animals. We also show, however, that Kir2 channels maintain their sensitivity to cholesterol in HEK293 cells that have very low levels of endogenous Cav-1 and in bone marrow-derived macrophages isolated from Cav-1(-/-) knockout mice. Thus, these studies indicate that Cav-1 and/or intact caveolae are not required for cholesterol sensitivity of Kir channels. Moreover, a single point mutation of Kir2.1, L222I that abrogates the sensitivity of the channels to cholesterol also abolishes their sensitivity to Cav-1 suggesting that the two modulators regulate Kir2 channels via a common mechanism.
Collapse
Affiliation(s)
- Huazhi Han
- Section of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Avia Rosenhouse-Dantsker
- Section of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | | | - Yulia Epshtein
- Section of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Zhenlong Chen
- Departments of Anesthesiology and Pharmacology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Frederick Sachs
- Department of Physiology and Biophysics, University at Buffalo, SUNY, Buffalo, NY, 14214, USA
| | - Richard D Minshall
- Departments of Anesthesiology and Pharmacology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Irena Levitan
- Section of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| |
Collapse
|
21
|
Licon Y, Leandro D, Romero-Mendez C, Rodriguez-Menchaca AA, Sanchez-Armass S, Meza U. Inhibition of CaV2.3 channels by NK1 receptors is sensitive to membrane cholesterol but insensitive to caveolin-1. Pflugers Arch 2014; 467:1699-709. [DOI: 10.1007/s00424-014-1605-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 12/12/2022]
|
22
|
Rosenhouse-Dantsker A, Epshtein Y, Levitan I. Interplay Between Lipid Modulators of Kir2 Channels: Cholesterol and PIP2. Comput Struct Biotechnol J 2014; 11:131-7. [PMID: 25408847 PMCID: PMC4232564 DOI: 10.1016/j.csbj.2014.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/16/2014] [Accepted: 09/18/2014] [Indexed: 11/16/2022] Open
Abstract
We have shown earlier that Kir2 channels are suppressed by the elevation of membrane cholesterol. Moreover, it is also well known that activation of Kir channels is critically dependent on a regulatory phospholipid, phosphatidylinositol-4,5-bisphosphate (PIP2). In this study we examined the cross-talk between cholesterol and PIP2 in the regulation of Kir2 channels. The strength of Kir2-PIP2 interactions was assessed by acute sequestering of PIP2 with neomycin dialyzed into cells through a patch pipette while simultaneously recording whole cell currents. Consistent with a reduction in PIP2 levels, dialysis of neomycin resulted in a decrease in Kir2.1 and Kir2.3 current amplitudes (current rundown), however, this effect was significantly delayed by cholesterol depletion for both types of channels suggesting that cholesterol depletion strengthens the interaction between Kir2 channels and PIP2. Furthermore, mutation of Kir2.1 that renders the channels' cholesterol insensitive abrogated cholesterol depletion-induced delay in the current rundown whereas reverse mutation in Kir2.3 has the opposite effect. These observations provide further support for the functional cross-talk between cholesterol and PIP2 in regulating Kir2 channels. Consistent with these observations, there is a significant structural overlap between cytosolic residues that are critical for the sensitivity of Kir2 channels to the two lipid modulators but based on recent studies, there is little or no overlap between cholesterol and PIP2 binding sites. Taken together, these observations suggest that cholesterol and PIP2 regulate the channels through distinct binding sites but that the signals generated by the binding of the two modulators converge.
Collapse
Affiliation(s)
| | | | - Irena Levitan
- Section of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, United States
| |
Collapse
|
23
|
Ambrosini E, Sicca F, Brignone MS, D'Adamo MC, Napolitano C, Servettini I, Moro F, Ruan Y, Guglielmi L, Pieroni S, Servillo G, Lanciotti A, Valvo G, Catacuzzeno L, Franciolini F, Molinari P, Marchese M, Grottesi A, Guerrini R, Santorelli FM, Priori S, Pessia M. Genetically induced dysfunctions of Kir2.1 channels: implications for short QT3 syndrome and autism-epilepsy phenotype. Hum Mol Genet 2014; 23:4875-86. [PMID: 24794859 PMCID: PMC4140467 DOI: 10.1093/hmg/ddu201] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Short QT3 syndrome (SQT3S) is a cardiac disorder characterized by a high risk of mortality and associated with mutations in Kir2.1 (KCNJ2) channels. The molecular mechanisms leading to channel dysfunction, cardiac rhythm disturbances and neurodevelopmental disorders, potentially associated with SQT3S, remain incompletely understood. Here, we report on monozygotic twins displaying a short QT interval on electrocardiogram recordings and autism-epilepsy phenotype. Genetic screening identified a novel KCNJ2 variant in Kir2.1 that (i) enhanced the channel's surface expression and stability at the plasma membrane, (ii) reduced protein ubiquitylation and degradation, (iii) altered protein compartmentalization in lipid rafts by targeting more channels to cholesterol-poor domains and (iv) reduced interactions with caveolin 2. Importantly, our study reveals novel physiological mechanisms concerning wild-type Kir2.1 channel processing by the cell, such as binding to both caveolin 1 and 2, protein degradation through the ubiquitin-proteasome pathway; in addition, it uncovers a potential multifunctional site that controls Kir2.1 surface expression, protein half-life and partitioning to lipid rafts. The reported mechanisms emerge as crucial also for proper astrocyte function, suggesting the need for a neuropsychiatric evaluation in patients with SQT3S and offering new opportunities for disease management.
Collapse
Affiliation(s)
- Elena Ambrosini
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy,
| | - Federico Sicca
- Clinical Neurophysiology Laboratory, Department of Developmental Neuroscience and
| | - Maria S Brignone
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | - Maria C D'Adamo
- Faculty of Medicine, Section of Physiology & Biochemistry, Department of Experimental Medicine
| | - Carlo Napolitano
- Molecular Cardiology, IRCCS Salvatore Maugeri Foundation, Pavia, Italy
| | - Ilenio Servettini
- Faculty of Medicine, Section of Physiology & Biochemistry, Department of Experimental Medicine
| | - Francesca Moro
- Clinical Neurophysiology Laboratory, Department of Developmental Neuroscience and
| | - Yanfei Ruan
- Molecular Cardiology, IRCCS Salvatore Maugeri Foundation, Pavia, Italy
| | - Luca Guglielmi
- Faculty of Medicine, Section of Physiology & Biochemistry, Department of Experimental Medicine
| | | | | | - Angela Lanciotti
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | - Giulia Valvo
- Clinical Neurophysiology Laboratory, Department of Developmental Neuroscience and
| | - Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Fabio Franciolini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Paola Molinari
- Department of Pharmacology, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Marchese
- Molecular Medicine Laboratory, IRCCS Stella Maris Foundation, Pisa, Italy
| | | | - Renzo Guerrini
- Clinical Neurophysiology Laboratory, Department of Developmental Neuroscience and Pediatric Neurology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | | | - Silvia Priori
- Molecular Cardiology, IRCCS Salvatore Maugeri Foundation, Pavia, Italy
| | - Mauro Pessia
- Faculty of Medicine, Section of Physiology & Biochemistry, Department of Experimental Medicine
| |
Collapse
|
24
|
Jiménez-Garduño AM, Mitkovski M, Alexopoulos IK, Sánchez A, Stühmer W, Pardo LA, Ortega A. KV10.1 K+-channel plasma membrane discrete domain partitioning and its functional correlation in neurons. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:921-31. [DOI: 10.1016/j.bbamem.2013.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 10/27/2013] [Accepted: 11/05/2013] [Indexed: 12/25/2022]
|
25
|
Rosenhouse-Dantsker A, Noskov S, Durdagi S, Logothetis DE, Levitan I. Identification of novel cholesterol-binding regions in Kir2 channels. J Biol Chem 2013; 288:31154-64. [PMID: 24019518 DOI: 10.1074/jbc.m113.496117] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inwardly rectifying potassium (Kir) channels play an important role in setting the resting membrane potential and modulating membrane excitability. We have recently shown that cholesterol regulates representative members of the Kir family and that in the majority of the cases, cholesterol suppresses channel function. Furthermore, recent data indicate that cholesterol regulates Kir channels by specific sterol-protein interactions, yet the location of the cholesterol binding site in Kir channels is unknown. Using a combined computational-experimental approach, we show that cholesterol may bind to two nonanular hydrophobic regions in the transmembrane domain of Kir2.1 located between adjacent subunits of the channel. The location of the binding regions suggests that cholesterol modulates channel function by affecting the hinging motion at the center of the pore-lining transmembrane helix that underlies channel gating either directly or through the interface between the N and C termini of the channel.
Collapse
Affiliation(s)
- Avia Rosenhouse-Dantsker
- From the Department of Medicine, Pulmonary Section, University of Illinois, Chicago, Illinois 60612
| | | | | | | | | |
Collapse
|
26
|
Tong J, Briggs MM, McIntosh TJ. Water permeability of aquaporin-4 channel depends on bilayer composition, thickness, and elasticity. Biophys J 2013. [PMID: 23199918 DOI: 10.1016/j.bpj.2012.09.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aquaporin-4 (AQP4) is the primary water channel in the mammalian brain, particularly abundant in astrocytes, whose plasma membranes normally contain high concentrations of cholesterol. Here we test the hypothesis that the water permeabilities of two naturally occurring isoforms (AQP4-M1 and AQP4-M23) depend on bilayer mechanical/structural properties modulated by cholesterol and phospholipid composition. Osmotic stress measurements were performed with proteoliposomes containing AQP4 and three different lipid mixtures: 1), phosphatidylcholine (PC) and phosphatidylglycerol (PG); 2), PC, PG, with 40 mol % cholesterol; and 3), sphingomyelin (SM), PG, with 40 mol % cholesterol. The unit permeabilities of AQP4-M1 were 3.3 ± 0.4 × 10(-13) cm(3)/s (mean ± SE), 1.2 ± 0.1 × 10(-13) cm(3)/s, and 0.4 ± 0.1 × 10(-13) cm(3)/s in PC:PG, PC:PG:cholesterol, and SM:PG:cholesterol, respectively. The unit permeabilities of AQP4-M23 were 2.1 ± 0.2 × 10(-13) cm(3)/s, 0.8 ± 0.1 × 10(-13) cm(3)/s, and 0.3 ± 0.1 × 10(-13) cm(3)/s in PC:PG, PC:PG:cholesterol, and SM:PG:cholesterol, respectively. Thus, for each isoform the unit permeabilities strongly depended on bilayer composition and systematically decreased with increasing bilayer compressibility modulus and bilayer thickness. These observations suggest that altering lipid environment provides a means of regulating water channel permeability. Such permeability changes could have physiological consequences, because AQP4 water permeability would be reduced by its sequestration into SM:cholesterol-enriched raft microdomains. Conversely, under ischemic conditions astrocyte membrane cholesterol content decreases, which could increase AQP4 permeability.
Collapse
Affiliation(s)
- Jihong Tong
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | | | | |
Collapse
|
27
|
Inhibiting the clathrin-mediated endocytosis pathway rescues KIR2.1 downregulation by pentamidine. Pflugers Arch 2012. [DOI: 10.1007/s00424-012-1189-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
28
|
Rosenhouse-Dantsker A, Noskov S, Han H, Adney SK, Tang QY, Rodríguez-Menchaca AA, Kowalsky GB, Petrou VI, Osborn CV, Logothetis DE, Levitan I. Distant cytosolic residues mediate a two-way molecular switch that controls the modulation of inwardly rectifying potassium (Kir) channels by cholesterol and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)). J Biol Chem 2012; 287:40266-78. [PMID: 22995912 DOI: 10.1074/jbc.m111.336339] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Cholesterol modulates inwardly rectifying potassium (Kir) channels. RESULTS A two-way molecular cytosolic switch controls channel modulation by cholesterol and PI(4,5)P(2). CONCLUSION Cholesterol and PI(4,5)P(2) induce a common gating pathway of Kir2.1 despite their opposite impact on channel function. SIGNIFICANCE These findings provide insights into structure-function relationship of ion channels and contribute to understanding of the mechanisms underlying their regulation by lipids. Inwardly rectifying potassium (Kir) channels play an important role in setting the resting membrane potential and modulating membrane excitability. An emerging feature of several Kir channels is that they are regulated by cholesterol. However, the mechanism by which cholesterol affects channel function is unclear. Here we show that mutations of two distant Kir2.1 cytosolic residues, Leu-222 and Asn-251, form a two-way molecular switch that controls channel modulation by cholesterol and affects critical hydrogen bonding. Notably, these two residues are linked by a residue chain that continues from Asn-251 to connect adjacent subunits. Furthermore, our data indicate that the same switch also regulates the sensitivity of the channels to phosphatidylinositol 4,5-bisphosphate, a phosphoinositide that is required for activation of Kir channels. Thus, although cholesterol and phosphatidylinositol 4,5-bisphosphate do not interact with the same region of Kir2.1, these different modulators induce a common gating pathway of the channel.
Collapse
|
29
|
Riquelme G, de Gregorio N, Vallejos C, Berrios M, Morales B. Differential expression of potassium channels in placentas from normal and pathological pregnancies: targeting of the K(ir) 2.1 channel to lipid rafts. J Membr Biol 2012; 245:141-50. [PMID: 22391579 DOI: 10.1007/s00232-012-9422-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 02/16/2012] [Indexed: 12/01/2022]
Abstract
Potassium channels play important physiological roles in human syncytiotrophoblasts (hSTBs) from placenta, an epithelium responsible for maternal-fetal exchange. Basal and apical plasma membranes differ in their lipid and protein composition, and the latter contains cholesterol-enriched microdomains. In placental tissue, the specific localization of potassium channels is unknown. Previously, we described two isolated subdomains from the apical membrane (MVM and LMVM) and their respective microdomains (lipid rafts). Here, we report on the distribution of K(ir)2.1, K(v)2.1, TASK-1, and TREK-1 in hSTB membranes and the lipid rafts that segregate them. Immunoblotting experiments showed that these channels are present mainly in the apical membrane from healthy hSTBs. Apical expression versus basal membrane was 84 and 16% for K(ir)2.1 and K(v)2.1, 60 and 30% for TREK-1, and 74 and 26% for TASK-1. Interestingly, K(v)2.1 showed differences between apical membrane subdomains: 26 ± 8% was located in the LMVM and 59 ± 9% in MVM. In pathological placentas, the expression distribution changed in the basal membrane: preeclampsia shifted to 50% and intrauterine growth restriction to 42% for TASK-1 and both pathologies increased to 25% for K(ir)2.1 and K(v)2.1, K(ir)2.1 appeared to be associated with rafts that were sensitive to cholesterol depletion in healthy, but not in pathological, placentas. K(v)2.1 and TREK-1 emerged in the nonraft fractions. The precise membrane localization of ion channels in hSTB membranes is necessary to understand the physiological events.
Collapse
Affiliation(s)
- Gloria Riquelme
- Departamento de Fisiología y Biofísica, Instituto de Ciencias Biomédicas-ICBM, Facultad de Medicina, Universidad de Chile, Casilla, 70005 Santiago 7, Chile.
| | | | | | | | | |
Collapse
|
30
|
Rosenhouse‐Dantsker A, Mehta D, Levitan I. Regulation of Ion Channels by Membrane Lipids. Compr Physiol 2012; 2:31-68. [DOI: 10.1002/cphy.c110001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Kowalsky GB, Beam D, Oh MJ, Sachs F, Hua SZ, Levitan I. Cholesterol depletion facilitates recovery from hypotonic cell swelling in CHO cells. Cell Physiol Biochem 2011; 28:1247-54. [PMID: 22179012 DOI: 10.1159/000335856] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2011] [Indexed: 12/12/2022] Open
Abstract
The maintenance of cell volume homeostasis is critical for preventing pathological cell swelling that may lead to severe cellular dysfunction or cell death. Our earlier studies have shown that volume-regulated anion channels that play a major role in the regulation of cell volume are facilitated by a decrease in cellular cholesterol suggesting that cholesterol depletion should also facilitate regulatory volume decrease (RVD), the ability of cells to recover from hypotonic swelling. In this study, we test this hypothesis using a novel methodology developed to measure changes in cell volume using a microfluidics chamber. Our data show that cholesterol depletion of Chinese Hamster Ovary (CHO) significantly facilitates the recovery process, as is apparent from a faster onset of the RVD (162±10 s. vs. 114±5 s. in control and cholesterol depleted cells respectively) and a higher degree of volume recovery after 10 min of the hypotonic challenge (41%±6% vs. 65%±6% in control and cholesterol depleted cells respectively). In contrast, enriching cells with cholesterol had no effect on the RVD process. We also show here that similarly to our previous observations in endothelial cells, cholesterol depletion significantly increases the stiffness of CHO cells suggesting that facilitation of RVD may be associated with cell stiffening. Furthermore, we also show that increasing cell stiffness by stabilizing F-actin with jasplakinolide also facilitates RVD development. We propose that cell stiffening enhances cell mechano-sensitivity, which in turn facilitates the RVD process.
Collapse
Affiliation(s)
- Gregory B Kowalsky
- Section of Respiratory, Critical Care and Sleep Medicine, Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
32
|
Takahashi H, Yoshika M, Komiyama Y, Nishimura M. The central mechanism underlying hypertension: a review of the roles of sodium ions, epithelial sodium channels, the renin-angiotensin-aldosterone system, oxidative stress and endogenous digitalis in the brain. Hypertens Res 2011; 34:1147-60. [PMID: 21814209 PMCID: PMC3324327 DOI: 10.1038/hr.2011.105] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/08/2011] [Accepted: 05/15/2011] [Indexed: 02/07/2023]
Abstract
The central nervous system has a key role in regulating the circulatory system by modulating the sympathetic and parasympathetic nervous systems, pituitary hormone release, and the baroreceptor reflex. Digoxin- and ouabain-like immunoreactive materials were found >20 years ago in the hypothalamic nuclei. These factors appeared to localize to the paraventricular and supraoptic nuclei and the nerve fibers at the circumventricular organs and supposed to affect electrolyte balance and blood pressure. The turnover rate of these materials increases with increasing sodium intake. As intracerebroventricular injection of ouabain increases blood pressure via sympathetic activation, an endogenous digitalis-like factor (EDLF) was thought to regulate cardiovascular system-related functions in the brain, particularly after sodium loading. Experiments conducted mainly in rats revealed that the mechanism of action of ouabain in the brain involves sodium ions, epithelial sodium channels (ENaCs) and the renin-angiotensin-aldosterone system (RAAS), all of which are affected by sodium loading. Rats fed a high-sodium diet develop elevated sodium levels in their cerebrospinal fluid, which activates ENaCs. Activated ENaCs and/or increased intracellular sodium in neurons activate the RAAS; this releases EDLF in the brain, activating the sympathetic nervous system. The RAAS promotes oxidative stress in the brain, further activating the RAAS and augmenting sympathetic outflow. Angiotensin II and aldosterone of peripheral origin act in the brain to activate this cascade, increasing sympathetic outflow and leading to hypertension. Thus, the brain Na(+)-ENaC-RAAS-EDLF axis activates sympathetic outflow and has a crucial role in essential and secondary hypertension. This report provides an overview of the central mechanism underlying hypertension and discusses the use of antihypertensive agents.
Collapse
Affiliation(s)
- Hakuo Takahashi
- Department of Clinical Sciences and Laboratory Medicine, Kansai Medical University, Hirakata City, Osaka, Japan.
| | | | | | | |
Collapse
|
33
|
Singh DK, Shentu TP, Enkvetchakul D, Levitan I. Cholesterol regulates prokaryotic Kir channel by direct binding to channel protein. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1808:2527-33. [PMID: 21798234 PMCID: PMC3156940 DOI: 10.1016/j.bbamem.2011.07.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 07/07/2011] [Accepted: 07/09/2011] [Indexed: 12/11/2022]
Abstract
Cholesterol is a major regulator of a variety of ion channels but the mechanisms underlying cholesterol sensitivity of ion channels are still poorly understood. The key question is whether cholesterol regulates ion channels by direct binding to the channel protein or by altering the physical environment of lipid bilayer. In this study, we provide the first direct evidence that cholesterol binds to prokaryotic Kir channels, KirBac1.1, and that cholesterol binding is essential for its regulatory effect. Specifically, we show that cholesterol is eluted together with the KirBac1.1 protein when separated on an affinity column and that the amount of bound cholesterol is proportional to the amount of the protein. We also show that cholesterol binding to KirBac1.1 is saturable with a K(D) of 390μM. Moreover, there is clear competition between radioactive and non-radioactive cholesterol for the binding site. There is no competition, however, between cholesterol and 5-Androsten 3β-17 β-diol, a sterol that we showed previously to have no effect on KirBac1.1 function. Finally, we show that cholesterol-KirBac1.1 binding is significantly inhibited by trifluoperazine, known to inhibit cholesterol binding to other proteins, and that inhibition of cholesterol-KirBac1.1 binding results in full recovery of the channel activity. Collectively, results from this study indicate that cholesterol-induced suppression of KirBac1.1 activity is mediated by direct interaction between cholesterol and the channel protein.
Collapse
Affiliation(s)
- Dev K Singh
- Department of Medicine, University of Illinois, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
34
|
Chao L, Daniel S. Measuring the Partitioning Kinetics of Membrane Biomolecules Using Patterned Two-Phase Coexistant Lipid Bilayers. J Am Chem Soc 2011; 133:15635-43. [DOI: 10.1021/ja205274g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ling Chao
- Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Susan Daniel
- Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
35
|
D'Avanzo N, Hyrc K, Enkvetchakul D, Covey DF, Nichols CG. Enantioselective protein-sterol interactions mediate regulation of both prokaryotic and eukaryotic inward rectifier K+ channels by cholesterol. PLoS One 2011; 6:e19393. [PMID: 21559361 PMCID: PMC3084843 DOI: 10.1371/journal.pone.0019393] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 03/29/2011] [Indexed: 02/06/2023] Open
Abstract
Cholesterol is the major sterol component of all mammalian cell plasma membranes and plays a critical role in cell function and growth. Previous studies have shown that cholesterol inhibits inward rectifier K+ (Kir) channels, but have not distinguished whether this is due directly to protein-sterol interactions or indirectly to changes in the physical properties of the lipid bilayer. Using purified bacterial and eukaryotic Kir channels reconstituted into liposomes of controlled lipid composition, we demonstrate by 86Rb+ influx assays that bacterial Kir channels (KirBac1.1 and KirBac3.1) and human Kir2.1 are all inhibited by cholesterol, most likely by locking the channels into prolonged closed states, whereas the enantiomer, ent-cholesterol, does not inhibit these channels. These data indicate that cholesterol regulates Kir channels through direct protein-sterol interactions likely taking advantage of an evolutionarily conserved binding pocket.
Collapse
Affiliation(s)
- Nazzareno D'Avanzo
- Department of Cell Biology and Physiology, and Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Krzysztof Hyrc
- Department of Cell Biology and Physiology, and Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Decha Enkvetchakul
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Douglas F. Covey
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Colin G. Nichols
- Department of Cell Biology and Physiology, and Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
36
|
Rosenhouse-Dantsker A, Logothetis DE, Levitan I. Cholesterol sensitivity of KIR2.1 is controlled by a belt of residues around the cytosolic pore. Biophys J 2011; 100:381-9. [PMID: 21244834 DOI: 10.1016/j.bpj.2010.11.086] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 11/15/2010] [Accepted: 11/23/2010] [Indexed: 11/18/2022] Open
Abstract
Kir channels play an important role in setting the resting membrane potential and modulating membrane excitability. A common feature of several Kir channels is that they are regulated by cholesterol. Yet, the mechanism by which cholesterol affects channel function is unclear. We recently showed that the cholesterol sensitivity of Kir2 channels depends on several CD-loop residues. Here we show that this cytosolic loop is part of a regulatory site that also includes residues in the G-loop, the N-terminus, and the connecting segment between the C-terminus and the inner transmembrane helix. Together, these residues form a cytosolic belt that surrounds the pore of the channel close to its interface with the transmembrane domain, and modulate the cholesterol sensitivity of the channel. Furthermore, we show that residues in this cluster are correlated with residues located in the most flexible region of the G-loop, the major cytosolic gate of Kir2.1, implying that the importance of these residues extends beyond their effect on the channel's cholesterol sensitivity. We suggest that the residues of the cholesterol sensitivity belt are critical for channel gating.
Collapse
|
37
|
Ganapathi SB, Fox TE, Kester M, Elmslie KS. Ceramide modulates HERG potassium channel gating by translocation into lipid rafts. Am J Physiol Cell Physiol 2010; 299:C74-86. [PMID: 20375276 DOI: 10.1152/ajpcell.00462.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Human ether-à-go-go-related gene (HERG) potassium channels play an important role in cardiac action potential repolarization, and HERG dysfunction can cause cardiac arrhythmias. However, recent evidence suggests a role for HERG in the proliferation and progression of multiple types of cancers, making it an attractive target for cancer therapy. Ceramide is an important second messenger of the sphingolipid family, which due to its proapoptotic properties has shown promising results in animal models as an anticancer agent. Yet the acute effects of ceramide on HERG potassium channels are not known. In the present study we examined the effects of cell-permeable C(6)-ceramide on HERG potassium channels stably expressed in HEK-293 cells. C(6)-ceramide (10 microM) reversibly inhibited HERG channel current (I(HERG)) by 36 +/- 5%. Kinetically, ceramide induced a significant hyperpolarizing shift in the current-voltage relationship (DeltaV(1/2) = -8 +/- 0.5 mV) and increased the deactivation rate (43 +/- 3% for tau(fast) and 51 +/- 3% for tau(slow)). Mechanistically, ceramide recruited HERG channels within caveolin-enriched lipid rafts. Cholesterol depletion and repletion experiments and mathematical modeling studies confirmed that inhibition and gating effects are mediated by separate mechanisms. The ceramide-induced hyperpolarizing gating shift (raft mediated) could offset the impact of inhibition (raft independent) during cardiac action potential repolarization, so together they may nullify any negative impact on cardiac rhythm. Our results provide new insights into the effects of C(6)-ceramide on HERG channels and suggest that C(6)-ceramide can be a promising therapeutic for cancers that overexpress HERG.
Collapse
Affiliation(s)
- Sindura B Ganapathi
- Department of Pharmacology, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
38
|
Abstract
A variety of ion channels, including members of all major ion channel families, have been shown to be regulated by changes in the level of membrane cholesterol and partition into cholesterol-rich membrane domains. In general, several types of cholesterol effects have been described. The most common effect is suppression of channel activity by an increase in membrane cholesterol, an effect that was described for several types of inwardly-rectifying K(+) channels, voltage-gated K(+) channels, Ca(+2) sensitive K(+) channels, voltage-gated Na(+) channels, N-type voltage-gated Ca(+2) channels and volume-regulated anion channels. In contrast, several types of ion channels, such as epithelial amiloride-sensitive Na(+) channels and Transient Receptor Potential channels, as well as some of the types of inwardly-rectifying and voltage-gated K(+) channels were shown to be inhibited by cholesterol depletion. Cholesterol was also shown to alter the kinetic properties and current-voltage dependence of several voltage-gated channels. Finally, maintaining membrane cholesterol level is required for coupling ion channels to signalling cascades. In terms of the mechanisms, three general mechanisms have been proposed: (i) specific interactions between cholesterol and the channel protein, (ii) changes in the physical properties of the membrane bilayer and (iii) maintaining the scaffolds for protein-protein interactions. The goal of this review is to describe systematically the role of cholesterol in regulation of the major types of ion channels and to discuss these effects in the context of the models proposed.
Collapse
Affiliation(s)
- Irena Levitan
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| | | | | | | |
Collapse
|
39
|
Tong J, Briggs MM, Mlaver D, Vidal A, McIntosh TJ. Sorting of lens aquaporins and connexins into raft and nonraft bilayers: role of protein homo-oligomerization. Biophys J 2009; 97:2493-502. [PMID: 19883592 PMCID: PMC2770620 DOI: 10.1016/j.bpj.2009.08.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 08/17/2009] [Accepted: 08/21/2009] [Indexed: 11/16/2022] Open
Abstract
Two classes of channel-forming proteins in the eye lens, the water channel aquaporin-0 (AQP-0) and the connexins Cx46 and Cx50, are preferentially located in different regions of lens plasma membranes (1,2). Because these membranes contain high concentrations of cholesterol and sphingomyelin, as well as phospholipids such as phosphatidylcholine with unsaturated hydrocarbon chains, microdomains (rafts) form in these membranes. Here we test the hypothesis that sorting into lipid microdomains can play a role in the disposition of AQP-0 and the connexins in the plane of the membrane. For both crude membrane fractions and proteoliposomes composed of lens proteins in phosphatidylcholine/sphingomyelin/cholesterol lipid bilayers, detergent extraction experiments showed that the connexins were located primarily in detergent soluble membrane (DSM) fractions, whereas AQP-0 was found in both detergent resistant membrane and DSM fractions. Analysis of purified AQP-0 reconstituted in raft-containing bilayers showed that the microdomain location of AQP-0 depended on protein/lipid ratio. AQP-0 was located almost exclusively in DSMs at a 1:1200 AQP-0/lipid ratio, whereas approximately 50% of the protein was sequestered into detergent resistant membranes at a 1:100 ratio, where freeze-fracture experiments show that AQP-0 oligomerizes (3). Consistent with these detergent extraction results, confocal microscopy images showed that AQP-0 was sequestered into raft microdomains in the 1:100 protein/lipid membranes. Taken together these results indicate that AQP-0 and connexins can be segregated in the membrane by protein-lipid interactions as modified by AQP-0 homo-oligomerization.
Collapse
Affiliation(s)
| | | | | | | | - Thomas J. McIntosh
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
40
|
Abstract
To date, most of the major types of Kir channels, Kir2s, Kir3s, Kir4s, and Kir6s, have been found to partition into cholesterol-rich membrane domains and/or to be regulated by changes in the level of membrane cholesterol. Surprisingly, however, in spite of the structural similarities between different Kirs, effects of cholesterol on different types of Kir channels vary from cholesterol-induced decrease in the current density (Kir2 channels) to the loss of channel activity by cholesterol depletion (Kir4 channels) and loss of channel coupling by different mediators (Kir3 and Kir6 channels). Recently, we have gained initial insights into the mechanisms responsible for cholesterol-induced suppression Kir2 channels, but mechanisms underlying cholesterol sensitivity of other Kir channels are mostly unknown. The goal of this review is to present a summary of the current knowledge of the distinct effects of cholesterol on different types of Kir channels in vitro and in vivo.
Collapse
Affiliation(s)
- Irena Levitan
- Department of Medicine, Pulmonary Section, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
41
|
Singh DK, Rosenhouse-Dantsker A, Nichols CG, Enkvetchakul D, Levitan I. Direct regulation of prokaryotic Kir channel by cholesterol. J Biol Chem 2009; 284:30727-36. [PMID: 19740741 DOI: 10.1074/jbc.m109.011221] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Our earlier studies have shown that channel activity of Kir2 subfamily of inward rectifiers is strongly suppressed by the elevation of cellular cholesterol. The goal of this study is to determine whether cholesterol suppresses Kir channels directly. To achieve this goal, purified prokaryotic Kir (KirBac1.1) channels were incorporated into liposomes of defined lipid composition, and channel activity was assayed by (86)Rb(+) uptake. Our results show that (86)Rb(+) flux through KirBac1.1 is strongly inhibited by cholesterol. Incorporation of 5% (mass cholesterol/phospholipid) cholesterol into the liposome suppresses (86)Rb(+) flux by >50%, and activity is completely inhibited at 12-15%. However, epicholesterol, a stereoisomer of cholesterol with similar physical properties, has significantly less effect on KirBac-mediated (86)Rb(+) uptake than cholesterol. Furthermore, analysis of multiple sterols suggests that cholesterol-induced inhibition of KirBac1.1 channels is mediated by specific interactions rather than by changes in the physical properties of the lipid bilayer. In contrast to the inhibition of KirBac1.1 activity, cholesterol had no effect on the activity of reconstituted KscA channels (at up to 250 microg/mg of phospholipid). Taken together, these observations demonstrate that cholesterol suppresses Kir channels in a pure protein-lipid environment and suggest that the interaction is direct and specific.
Collapse
Affiliation(s)
- Dev K Singh
- Department of Medicine, University of Illinois, Chicago, Illinois 60612, USA.
| | | | | | | | | |
Collapse
|
42
|
Cholesterol modulates the recruitment of Kv1.5 channels from Rab11-associated recycling endosome in native atrial myocytes. Proc Natl Acad Sci U S A 2009; 106:14681-6. [PMID: 19706553 DOI: 10.1073/pnas.0902809106] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cholesterol is an important determinant of cardiac electrical properties. However, underlying mechanisms are still poorly understood. Here, we examine the hypothesis that cholesterol modulates the turnover of voltage-gated potassium channels based on previous observations showing that depletion of membrane cholesterol increases the atrial repolarizing current I(Kur). Whole-cell currents and single-channel activity were recorded in rat adult atrial myocytes (AAM) or after transduction with hKv1.5-EGFP. Channel mobility and expression were studied using fluorescence recovery after photobleaching (FRAP) and 3-dimensional microscopy. In both native and transduced-AAMs, the cholesterol-depleting agent MbetaCD induced a delayed ( approximately 7 min) increase in I(Kur); the cholesterol donor LDL had an opposite effect. Single-channel recordings revealed an increased number of active Kv1.5 channels upon MbetaCD application. Whole-cell recordings indicated that this increase was not dependent on new synthesis but on trafficking of existing pools of intracellular channels whose exocytosis could be blocked by both N-ethylmaleimide and nonhydrolyzable GTP analogues. Rab11 was found to coimmunoprecipitate with hKv1.5-EGFP channels and transfection with Rab11 dominant negative (DN) but not Rab4 DN prevented the MbetaCD-induced I(Kur) increase. Three-dimensional microscopy showed a decrease in colocalization of Kv1.5 and Rab11 in MbetaCD-treated AAM. These results suggest that cholesterol regulates Kv1.5 channel expression by modulating its trafficking through the Rab11-associated recycling endosome. Therefore, this compartment provides a submembrane pool of channels readily available for recruitment into the sarcolemma of myocytes. This process could be a major mechanism for the tuning of cardiac electrical properties and might contribute to the understanding of cardiac effects of lipid-lowering drugs.
Collapse
|
43
|
Identification of a C-terminus domain critical for the sensitivity of Kir2.1 to cholesterol. Proc Natl Acad Sci U S A 2009; 106:8055-60. [PMID: 19416905 DOI: 10.1073/pnas.0809847106] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A variety of ion channels are regulated by cholesterol, a major lipid component of the plasma membrane whose excess is associated with multiple pathological conditions. However, the mechanism underlying cholesterol sensitivity of ion channels is unknown. We have recently shown that an increase in membrane cholesterol suppresses inwardly rectifying K(+) (Kir2) channels that are responsible for maintaining membrane potential in a variety of cell types. Here we show that cholesterol sensitivity of Kir2 channels depends on a specific region of the C terminus of the cytosolic domain of the channel, the CD loop. Within this loop, the L222I mutation in Kir2.1 abrogates the sensitivity of the channel to cholesterol whereas a reverse mutation in the corresponding position in Kir2.3, I214L, has the opposite effect, increasing cholesterol sensitivity. Furthermore, the L222I mutation has a dominant negative effect on cholesterol sensitivity of Kir2.1 WT. Mutations of 2 additional residues in the CD loop in Kir2.1, N216D and K219Q, partially affect the sensitivity of the channel to cholesterol. Yet, whereas these mutations have been shown to affect activation of the channel by the membrane phospholipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)], other mutations outside the CD loop that have been previously shown to affect activation of the channel by PI(4,5)P(2) had no effect on cholesterol sensitivity. Mutations of the lipid-facing residues of the outer transmembrane helix also had no effect. These findings provide insights into the structural determinants of the sensitivity of Kir2 channels to cholesterol, and introduce the critical role of the cytosolic domain in cholesterol dependent channel regulation.
Collapse
|
44
|
Luykenaar KD, El-Rahman RA, Walsh MP, Welsh DG. Rho-kinase-mediated suppression of KDR current in cerebral arteries requires an intact actin cytoskeleton. Am J Physiol Heart Circ Physiol 2009; 296:H917-26. [PMID: 19218502 DOI: 10.1152/ajpheart.01206.2008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This study examined the role of the actin cytoskeleton in Rho-kinase-mediated suppression of the delayed-rectifier K(+) (K(DR)) current in cerebral arteries. Myocytes from rat cerebral arteries were enzymatically isolated, and whole cell K(DR) currents were monitored using conventional patch-clamp electrophysiology. At +40 mV, the K(DR) current averaged 19.8 +/- 1.6 pA/pF (mean +/- SE) and was potently inhibited by UTP (3 x 10(-5) M). This suppression was observed to depend on Rho signaling and was abolished by the Rho-kinase inhibitors H-1152 (3 x 10(-7) M) and Y-27632 (3 x 10(-5) M). Rho-kinase was also found to concomitantly facilitate actin polymerization in response to UTP. We therefore examined whether actin dynamics played a role in the ability of Rho-kinase to suppress K(DR) current and found that actin disruption using either cytochalasin D (1 x 10(-5) M) or latrunculin A (1 x 10(-8) M) prevented current modulation. Consistent with our electrophysiological observations, both Rho-kinase inhibition and actin disruption significantly attenuated UTP-induced depolarization and constriction of cerebral arteries. We propose that UTP initiates Rho-kinase-mediated remodeling of the actin cytoskeleton and consequently suppresses the K(DR) current, thereby facilitating the depolarization and constriction of cerebral arteries.
Collapse
|
45
|
Gunst SJ, Zhang W. Actin cytoskeletal dynamics in smooth muscle: a new paradigm for the regulation of smooth muscle contraction. Am J Physiol Cell Physiol 2008; 295:C576-87. [PMID: 18596210 DOI: 10.1152/ajpcell.00253.2008] [Citation(s) in RCA: 268] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A growing body of data supports a view of the actin cytoskeleton of smooth muscle cells as a dynamic structure that plays an integral role in regulating the development of mechanical tension and the material properties of smooth muscle tissues. The increase in the proportion of filamentous actin that occurs in response to the stimulation of smooth muscle cells and the essential role of stimulus-induced actin polymerization and cytoskeletal dynamics in the generation of mechanical tension has been convincingly documented in many smooth muscle tissues and cells using a wide variety of experimental approaches. Most of the evidence suggests that the functional role of actin polymerization during contraction is distinct and separately regulated from the actomyosin cross-bridge cycling process. The molecular basis for the regulation of actin polymerization and its physiological roles may vary in diverse types of smooth muscle cells and tissues. However, current evidence supports a model for smooth muscle contraction in which contractile stimulation initiates the assembly of cytoskeletal/extracellular matrix adhesion complex proteins at the membrane, and proteins within this complex orchestrate the polymerization and organization of a submembranous network of actin filaments. This cytoskeletal network may serve to strengthen the membrane for the transmission of force generated by the contractile apparatus to the extracellular matrix, and to enable the adaptation of smooth muscle cells to mechanical stresses. Better understanding of the physiological function of these dynamic cytoskeletal processes in smooth muscle may provide important insights into the physiological regulation of smooth muscle tissues.
Collapse
Affiliation(s)
- Susan J Gunst
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | |
Collapse
|
46
|
Maue RA. Understanding ion channel biology using epitope tags: progress, pitfalls, and promise. J Cell Physiol 2007; 213:618-25. [PMID: 17849449 DOI: 10.1002/jcp.21259] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Epitope tags have been increasingly used to understand ion channel subunit assembly and interaction, trafficking, subcellular localization, and function in living cells. In particular, epitope tags have proven extremely useful for analyses of closely related, highly homologous channel subunits in endogenous cell contexts in vitro and in vivo, where multiple channel isoforms may be expressed. However, as the variety of epitope tags that have been used has expanded, and the use of tagged channel subunits has become increasingly sophisticated and widespread, there has also been an increase in the number of examples highlighting the potential problems associated with the use of epitope tags for ion channel studies. Described here are some of the epitope tags that have been used to study ion channel subunits, including the HA, FLAG, myc, His6, and green fluorescent protein (GFP) epitopes, as well as some of the applications and avenues of research in which they have proven advantageous. Potential pitfalls and caveats associated with the use of these epitope tags are also discussed, with an emphasis on the need to include careful characterization of epitope-tagged channel subunits as part of their construction. Finally, potential avenues for future investigation and the development of this approach are considered.
Collapse
Affiliation(s)
- Robert A Maue
- Department of Physiology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| |
Collapse
|
47
|
Hlawaty H, San Juan A, Jacob MP, Vranckx R, Letourneur D, Feldman LJ. Inhibition of MMP-2 gene expression with small interfering RNA in rabbit vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2007; 293:H3593-601. [PMID: 17890430 DOI: 10.1152/ajpheart.00517.2007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Matrix metalloproteinase-2 (MMP-2) is constitutively expressed in vascular smooth muscle cells (VSMCs). Using small interfering RNA (siRNA), we evaluated the effect of MMP-2 inhibition in VSMCs in vitro and ex vivo. Rabbit VSMCs were transfected in vitro with 50 nmol/l MMP-2 siRNA or scramble siRNA. Flow cytometry and confocal microscopy showed cellular uptake of siRNA in ∼80% of VSMCs. MMP-2 mRNA levels evaluated by real-time RT-PCR, pro-MMP-2 activity from conditioned culture media evaluated by gelatin zymography, and VSMC migration were reduced by 44 ± 19%, 43 ± 14%, and 36 ± 14%, respectively, in MMP-2 siRNA-transfected compared with scramble siRNA-transfected VSMCs ( P < 0.005 for all). Ex vivo MMP-2 siRNA transfection was performed 2 wk after balloon injury of hypercholesterolemic rabbit carotid arteries. Fluorescence microscopy showed circumferential siRNA uptake in neointimal cells. Gelatin zymography of carotid artery culture medium demonstrated a significant decrease of pro-MMP-2 activity in MMP-2 siRNA-transfected compared with scramble siRNA-transfected arteries ( P < 0.01). Overall, our results demonstrate that in vitro MMP-2 siRNA transfection in VSMCs markedly inhibits MMP-2 gene expression and VSMC migration and that ex vivo delivery of MMP-2 siRNA in balloon-injured arteries reduces pro-MMP-2 activity in neointimal cells, suggesting that siRNA could be used to modify arterial biology in vivo.
Collapse
MESH Headings
- Angioplasty, Balloon/adverse effects
- Animals
- Carotid Artery Injuries/enzymology
- Carotid Artery Injuries/etiology
- Carotid Artery Injuries/genetics
- Carotid Artery Injuries/pathology
- Carotid Artery Injuries/therapy
- Cell Line
- Cell Movement
- Culture Media, Conditioned/metabolism
- Disease Models, Animal
- Enzyme Activation
- Enzyme Precursors/metabolism
- Feasibility Studies
- Flow Cytometry
- Gene Expression Regulation, Enzymologic
- Genetic Therapy/methods
- Matrix Metalloproteinase 2/genetics
- Matrix Metalloproteinase 2/metabolism
- Microscopy, Confocal
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- RNA Interference
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Rabbits
- Time Factors
- Transfection
Collapse
Affiliation(s)
- Hanna Hlawaty
- Institut National de la Santé et de la Recherche Médicale U698, Université Paris 7, F75018 Paris, France
| | | | | | | | | | | |
Collapse
|