1
|
Retracted: PKC-delta and PKD activate MAPK signal pathway in mechano-transcription of colonic smooth muscle cells. Neurogastroenterol Motil 2024; 36:e14623. [PMID: 37278189 DOI: 10.1111/nmo.14623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 06/07/2023]
Abstract
Retraction: [PKC-delta and PKD activate MAPK signal pathway in mechano-transcription of colonic smooth muscle cells, Z. Yang, K. He, T. Wang, et al. Neurogastroenterology & Motility 2023; e14623 (https://onlinelibrary.wiley.com/doi/full/10.1111/nmo.14623)]. The above article, published online on June 6, 2023 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the authors, the Journal Editor in Chief, Maura Corsetti, and John Wiley & Sons Ltd. The retraction has been agreed due to unat[1]tributed overlap between this article and the abstract published in Gastroenterology: Li F, Sarna SK and Shi XP. Roles of PKCs and PKD in Mechanotranscription in Colonic Smooth Muscle Cells: Inhibition of Mechanotranscription as a Potential Treatment for Motility Dysfunction in Obstructive Disorders. In: 2012 Digestive Disease Week Abstract Supplement; May 19-22, San Diego, CA. Abstract 120 (https://www.gastrojournal.org/article/S0016-5085(12)60115-2/pdf).
Collapse
|
2
|
Qin P, He C, Ye P, Li Q, Cai C, Li Y. PKCδ regulates the vascular biology in diabetic atherosclerosis. Cell Commun Signal 2023; 21:330. [PMID: 37974282 PMCID: PMC10652453 DOI: 10.1186/s12964-023-01361-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023] Open
Abstract
Diabetes mellitus, known for its complications, especially vascular complications, is becoming a globally serious social problem. Atherosclerosis has been recognized as a common vascular complication mechanism in diabetes. The diacylglycerol (DAG)-protein kinase C (PKC) pathway plays an important role in atherosclerosis. PKCs can be divided into three subgroups: conventional PKCs (cPKCs), novel PKCs (nPKCs), and atypical PKCs (aPKCs). The aim of this review is to provide a comprehensive overview of the role of the PKCδ pathway, an isoform of nPKC, in regulating the function of endothelial cells, vascular smooth muscle cells, and macrophages in diabetic atherosclerosis. In addition, potential therapeutic targets regarding the PKCδ pathway are summarized. Video Abstract.
Collapse
Affiliation(s)
- Peiliang Qin
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Changhuai He
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Pin Ye
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qin Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chuanqi Cai
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
3
|
Cao Z, Liu Y, Wang Y, Leng P. Research progress on the role of PDGF/PDGFR in type 2 diabetes. Biomed Pharmacother 2023; 164:114983. [PMID: 37290188 DOI: 10.1016/j.biopha.2023.114983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023] Open
Abstract
Platelet-derived growth factors (PDGFs) are basic proteins stored in the α granules of platelets. PDGFs and their receptors (PDGFRs) are widely expressed in platelets, fibroblasts, vascular endothelial cells, platelets, pericytes, smooth muscle cells and tumor cells. The activation of PDGFR plays a number of critical roles in physiological functions and diseases, including normal embryonic development, cellular differentiation, and responses to tissue damage. In recent years, emerging experimental evidence has shown that activation of the PDGF/PDGFR pathway is involved in the development of diabetes and its complications, such as atherosclerosis, diabetic foot ulcers, diabetic nephropathy, and retinopathy. Research on targeting PDGF/PDGFR as a treatment has also made great progress. In this mini-review, we summarized the role of PDGF in diabetes, as well as the research progress on targeted diabetes therapy, which provides a new strategy for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Zhanqi Cao
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yijie Liu
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yini Wang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Ping Leng
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
4
|
Kim SG, Sung JY, Kang YJ, Choi HC. Fisetin alleviates cellular senescence through PTEN mediated inhibition of PKCδ-NOX1 pathway in vascular smooth muscle cells. Arch Gerontol Geriatr 2023; 108:104927. [PMID: 36645971 DOI: 10.1016/j.archger.2023.104927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/29/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
Reactive oxygen species (ROS) are a key risk factor of cellular senescence and age-related diseases, and protein kinase C (PKC) has been shown to activate NADPH oxidases (NOXs), which generate ROS. Although PKC activation induces oxidative stress, leading to the cellular dysfunction in various cell types, the correlation between PKC and senescence has not been reported in vascular smooth muscle cell (VSMC). Several studies have indicated cellular senescence is accompanied by phosphatase and tensin homolog (PTEN) loss and that an interaction exists between PTEN and PKC. Therefore, we aimed to determine whether PTEN and PKC are associated with VSMC senescence and to investigate the mechanism involved. We found hydrogen peroxide (H2O2) decreased PTEN expression and increased PKCδ phosphorylation. Moreover, H2O2 upregulated the NOX1 subunits, p22phox and p47phox, and induced VSMC senescence via p53-p21 signaling pathway. We identified PKCδ activation contributed to VSMC senescence through activation of NOX1 and ROS production. However, fisetin inhibited cellular senescence induced by the PTEN-PKCδ-NOX1-ROS signaling pathway, and this anti-aging effect was attributed to reduced ROS production caused by suppressing NOX1 activation. These results suggest that the PTEN-PCKδ signaling pathway is directly related to senescence via NOX1 activation and that the downregulation of PKCδ by flavonoids provides a potential means of treating age-associated diseases.
Collapse
Affiliation(s)
- Seul Gi Kim
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea; Senotherapy-based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea
| | - Jin Young Sung
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea; Senotherapy-based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea
| | - Young Jin Kang
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea
| | - Hyoung Chul Choi
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea; Senotherapy-based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea.
| |
Collapse
|
5
|
Chowdhury A, Sarkar J, Kanti Pramanik P, Chakraborti T, Chakraborti S. Role of PKCζ-NADPH oxidase signaling axis in PKCα-mediated Giα2 phosphorylation for inhibition of adenylate cyclase activity by angiotensin II in pulmonary artery smooth muscle cells. Cell Biol Int 2020; 44:1142-1155. [PMID: 31965656 DOI: 10.1002/cbin.11311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/21/2020] [Indexed: 11/10/2022]
Abstract
We sought to determine the mechanism by which angiotensin II (AngII) inhibits isoproterenol induced increase in adenylate cyclase (AC) activity and cyclic adenosine monophosphate (cAMP) production in bovine pulmonary artery smooth muscle cells (BPASMCs). Treatment with AngII stimulates protein kinase C-ζ (PKC-ζ), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and PKC-α activities, and also inhibits isoproterenol induced increase in AC activity and cAMP production in the cells. Pertussis toxin pretreatment eliminates AngII caused inhibition of isoproterenol induced increase in AC activity without a discernible change in PKC-ζ, NADPH oxidase, and PKC-α activities. Treatment of the cells with AngII increases α2 isoform of Gi (Giα2) phosphorylation; while pretreatment with chemical and genetic inhibitors of PKC-ζ and NADPH oxidase attenuate AngII induced increase in PKC-α activity and Giα2 phosphorylation, and also reverse AngII caused inhibition of isoproterenol induced increase in AC activity. Pretreatment of the cells with chemical and genetic inhibitors of PKC-α attenuate AngII induced increase in Giα2 phosphorylation and inhibits isoproterenol induced increase in AC activity without a discernible change in PKC-ζ and NADPH oxidase activities. Overall, PKCζ-NADPH oxidase-PKCα signaling axis plays a crucial role in Giα2 phosphorylation resulting in AngII-mediated inhibition of isoproterenol induced increase in AC activity in BPASMCs.
Collapse
Affiliation(s)
- Animesh Chowdhury
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Jaganmay Sarkar
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Pijush Kanti Pramanik
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| |
Collapse
|
6
|
Chakraborti S, Sarkar J, Chakraborti T. Role of PLD-PKCζ signaling axis in p47phox phosphorylation for activation of NADPH oxidase by angiotensin II in pulmonary artery smooth muscle cells. Cell Biol Int 2019; 43:678-694. [PMID: 30977575 DOI: 10.1002/cbin.11145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/07/2019] [Indexed: 12/12/2022]
Abstract
We sought to determine the mechanism by which angiotensin II (ANGII) stimulates NADPH oxidase-mediated superoxide (O2 .- ) production in bovine pulmonary artery smooth muscle cells (BPASMCs). ANGII-induced increase in phospholipase D (PLD) and NADPH oxidase activities were inhibited upon pretreatment of the cells with chemical and genetic inhibitors of PLD2, but not PLD1. Immunoblot study revealed that ANGII treatment of the cells markedly increases protein kinase C-α (PKC-α), -δ, -ε, and -ζ levels in the cell membrane. Pretreatment of the cells with chemical and genetic inhibitors of PKC-ζ, but not PKC-α, -δ, and -ε, attenuated ANGII-induced increase in NADPH oxidase activity without a discernible change in PLD activity. Transfection of the cells with p47phox small interfering RNA inhibited ANGII-induced increase in NADPH oxidase activity without a significant change in PLD activity. Pretreatment of the cells with the chemical and genetic inhibitors of PLD2 and PKC-ζ inhibited ANGII-induced p47phox phosphorylation and subsequently translocation from cytosol to the cell membrane, and also inhibited its association with p22phox (a component of membrane-associated NADPH oxidase). Overall, PLD-PKCζ-p47phox signaling axis plays a crucial role in ANGII-induced increase in NADPH oxidase-mediated O2 .- production in the cells.
Collapse
Affiliation(s)
- Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal 741235, India
| | - Jaganmay Sarkar
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal 741235, India
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal 741235, India
| |
Collapse
|
7
|
Liu Z, Khalil RA. Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease. Biochem Pharmacol 2018; 153:91-122. [PMID: 29452094 PMCID: PMC5959760 DOI: 10.1016/j.bcp.2018.02.012] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/12/2018] [Indexed: 12/11/2022]
Abstract
Vascular smooth muscle (VSM) plays an important role in the regulation of vascular function. Identifying the mechanisms of VSM contraction has been a major research goal in order to determine the causes of vascular dysfunction and exaggerated vasoconstriction in vascular disease. Major discoveries over several decades have helped to better understand the mechanisms of VSM contraction. Ca2+ has been established as a major regulator of VSM contraction, and its sources, cytosolic levels, homeostatic mechanisms and subcellular distribution have been defined. Biochemical studies have also suggested that stimulation of Gq protein-coupled membrane receptors activates phospholipase C and promotes the hydrolysis of membrane phospholipids into inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 stimulates initial Ca2+ release from the sarcoplasmic reticulum, and is buttressed by Ca2+ influx through voltage-dependent, receptor-operated, transient receptor potential and store-operated channels. In order to prevent large increases in cytosolic Ca2+ concentration ([Ca2+]c), Ca2+ removal mechanisms promote Ca2+ extrusion via the plasmalemmal Ca2+ pump and Na+/Ca2+ exchanger, and Ca2+ uptake by the sarcoplasmic reticulum and mitochondria, and the coordinated activities of these Ca2+ handling mechanisms help to create subplasmalemmal Ca2+ domains. Threshold increases in [Ca2+]c form a Ca2+-calmodulin complex, which activates myosin light chain (MLC) kinase, and causes MLC phosphorylation, actin-myosin interaction, and VSM contraction. Dissociations in the relationships between [Ca2+]c, MLC phosphorylation, and force have suggested additional Ca2+ sensitization mechanisms. DAG activates protein kinase C (PKC) isoforms, which directly or indirectly via mitogen-activated protein kinase phosphorylate the actin-binding proteins calponin and caldesmon and thereby enhance the myofilaments force sensitivity to Ca2+. PKC-mediated phosphorylation of PKC-potentiated phosphatase inhibitor protein-17 (CPI-17), and RhoA-mediated activation of Rho-kinase (ROCK) inhibit MLC phosphatase and in turn increase MLC phosphorylation and VSM contraction. Abnormalities in the Ca2+ handling mechanisms and PKC and ROCK activity have been associated with vascular dysfunction in multiple vascular disorders. Modulators of [Ca2+]c, PKC and ROCK activity could be useful in mitigating the increased vasoconstriction associated with vascular disease.
Collapse
Affiliation(s)
- Zhongwei Liu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Lo HM, Ma MC, Shieh JM, Chen HL, Wu WB. Naked physically synthesized gold nanoparticles affect migration, mitochondrial activity, and proliferation of vascular smooth muscle cells. Int J Nanomedicine 2018; 13:3163-3176. [PMID: 29881271 PMCID: PMC5985769 DOI: 10.2147/ijn.s156880] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Introduction Vascular smooth muscle cells (VSMCs) play an important role in the development and progression of atherosclerosis and vascular injuries in terms of proliferation and migration. Therefore, the aim of this study was to investigate the anti-migratory and proliferative effects of naked gold nanoparticles (AuNPs) on VSMCs. Materials and methods One set of physically synthesized AuNPs (pAuNPs) and three sets of chemically synthesized AuNPs (cAuNPs) were tested. Results and discussion Among them, the pAuNPs were found to significantly and markedly inhibit platelet-derived growth factor (PDGF)-induced VSMC migration. Transmission electron microscopy revealed that the pAuNPs were ingested and aggregated in the cytoplasm at an early stage of treatment, while the viability of VSMCs was not affected within 24 hours of treatment. The pAuNP treatment enhanced cellular mitochondrial activity but inhibited basal and PDGF-induced VSMC proliferation, as determined by MTT, WST-1, and BrdU cell proliferation assays. Furthermore, the pAuNPs did not interfere with PDGF signaling or matrix metalloproteinase-2 expression/activity. Unlike the cAuNPs, the pAuNPs could markedly reduce VSMC adhesion to collagen, which was supported by the findings that the pAuNPs could inhibit collagen-induced tyrosine protein and focal adhesion kinase (FAK) phosphorylation and actin cytoskeleton reorganization during cell adhesion. The in vitro effects of the pAuNPs were confirmed in the in vivo rat balloon-injured carotid artery model by diminishing the proliferating VSMCs. Conclusion Taken together, the present study provides the first evidence that naked pAuNPs can reduce VSMC migration and compromise cell adhesion by affecting FAK and tyrosine-protein activation. The pAuNPs also have an inhibitory effect on PDGF-induced VSMC proliferation and can reduce proliferating/migrating VSMC expression in vivo.
Collapse
Affiliation(s)
- Huey-Ming Lo
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan.,Section of Cardiology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ming-Chieh Ma
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Jiunn-Min Shieh
- Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan.,Department of Recreation and Healthcare Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Hui-Ling Chen
- Holistic Education Center, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Wen-Bin Wu
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
9
|
Ringvold HC, Khalil RA. Protein Kinase C as Regulator of Vascular Smooth Muscle Function and Potential Target in Vascular Disorders. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:203-301. [PMID: 28212798 PMCID: PMC5319769 DOI: 10.1016/bs.apha.2016.06.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vascular smooth muscle (VSM) plays an important role in maintaining vascular tone. In addition to Ca2+-dependent myosin light chain (MLC) phosphorylation, protein kinase C (PKC) is a major regulator of VSM function. PKC is a family of conventional Ca2+-dependent α, β, and γ, novel Ca2+-independent δ, ɛ, θ, and η, and atypical ξ, and ι/λ isoforms. Inactive PKC is mainly cytosolic, and upon activation it undergoes phosphorylation, maturation, and translocation to the surface membrane, the nucleus, endoplasmic reticulum, and other cell organelles; a process facilitated by scaffold proteins such as RACKs. Activated PKC phosphorylates different substrates including ion channels, pumps, and nuclear proteins. PKC also phosphorylates CPI-17 leading to inhibition of MLC phosphatase, increased MLC phosphorylation, and enhanced VSM contraction. PKC could also initiate a cascade of protein kinases leading to phosphorylation of the actin-binding proteins calponin and caldesmon, increased actin-myosin interaction, and VSM contraction. Increased PKC activity has been associated with vascular disorders including ischemia-reperfusion injury, coronary artery disease, hypertension, and diabetic vasculopathy. PKC inhibitors could test the role of PKC in different systems and could reduce PKC hyperactivity in vascular disorders. First-generation PKC inhibitors such as staurosporine and chelerythrine are not very specific. Isoform-specific PKC inhibitors such as ruboxistaurin have been tested in clinical trials. Target delivery of PKC pseudosubstrate inhibitory peptides and PKC siRNA may be useful in localized vascular disease. Further studies of PKC and its role in VSM should help design isoform-specific PKC modulators that are experimentally potent and clinically safe to target PKC in vascular disease.
Collapse
Affiliation(s)
- H C Ringvold
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - R A Khalil
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
10
|
Jain M, Singh A, Singh V, Barthwal MK. Involvement of interleukin-1 receptor-associated kinase-1 in vascular smooth muscle cell proliferation and neointimal formation after rat carotid injury. Arterioscler Thromb Vasc Biol 2015; 35:1445-55. [PMID: 25908764 DOI: 10.1161/atvbaha.114.305028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/07/2015] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Reduced frequency of atherosclerotic plaques is observed in interleukin-1 receptor-associated kinase-1 (IRAK1)-deficient mice; however, the underlying mechanism is not clear. Therefore, this study investigate the role of IRAK1 in vascular smooth muscle cell proliferation and neointimal hyperplasia. APPROACH AND RESULTS Stimulation of rat primary vascular smooth muscle cells with fetal bovine serum (10%) or platelet-derived growth factor-BB (20 ng/mL) for 15 minutes to 24 hours induced a time-dependent increase in IRAK1 and extracellular signal-regulated kinase (ERK) activation, proliferating cell nuclear antigen upregulation and p27Kip1 downregulation as assessed by Western blotting. Inhibitors of ERK pathway (U0126, 10 μmol/L), IRAK (IRAK1/4, 3 μmol/L), protein kinase C (PKC; Ro-31-8220, 1 μmol/L), siRNA of toll-like receptor-4 (200 nmol/L), and PKC-ε (200 nmol/L) significantly attenuated these changes. Platelet-derived growth factor induced endogenous IRAK-ERK-PKC-ε association in a toll-like receptor-4 and PKC-ε-dependent manner. A time-dependent increase in IRAK1 and ERK activation was observed after 15 minutes, 30 minutes, 1 hour, 6 hours, 12 hours, and 24 hours of carotid balloon injury in rats. Balloon injury induced endogenous IRAK-ERK-PKC-ε interaction. Perivascular application of IRAK1/4 inhibitor (100 μmol/L), U0126 (100 μmol/L), and IRAK1 siRNA (220 and 360 nmol/L) in pluronic gel abrogated balloon injury-induced ERK phosphorylation, activation, and p27Kip1 downregulation. Hematoxylin and eosin staining and immunohistochemistry of proliferating cell nuclear antigen and smooth muscle actin demonstrated that balloon injury-induced intimal thickening and neointimal vascular smooth muscle cell proliferation were significantly abrogated in the presence of IRAK1/4 inhibitor, IRAK1 siRNA, and U0126. CONCLUSIONS IRAK1 mediates vascular smooth muscle cell proliferation and neointimal hyperplasia by regulating PKC-ε-IRAK1-ERK axis.
Collapse
Affiliation(s)
- Manish Jain
- From the Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ankita Singh
- From the Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Vishal Singh
- From the Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Manoj Kumar Barthwal
- From the Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India.
| |
Collapse
|
11
|
Luteolin 8-C-β-fucopyranoside downregulates IL-6 expression by inhibiting MAPKs and the NF-κB signaling pathway in human monocytic cells. Pharmacol Rep 2015; 67:581-7. [PMID: 25933972 DOI: 10.1016/j.pharep.2014.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 12/23/2014] [Accepted: 12/23/2014] [Indexed: 01/08/2023]
Abstract
Numerous studies have been suggested that derivatives can improve the effects of original substances. Therefore, we made luteolin derivative luteolin 8-C-β-fucopyranoside (LU8C-FP) for better anti-inflammatory and anti-cancer effects. In a previous study, we demonstrated that LU8C-FP inhibits invasion of human breast cancer cells via suppression of matrix metalloproteinase 9 and IL-8, which play major roles in tumor progression and cancer cell invasion. Various stimuli trigger inflammatory responses by inducing pro-inflammatory cytokines and chemokines in THP-1 cells. IL-6 induces inflammation via inducing various cytokines and appears to be a potential mediator of inflammatory diseases. Here, we investigated the precise mechanism by which LU8C-FP inhibited phorbol 12-myristate 13-acetate-induced IL-6 mRNA and protein expression. We showed LU8C-FP downregulated IL-6 expression by inhibiting mitogen-activated protein kinases and the nuclear factor-kappaB signaling pathway in human monocytic cells. Furthermore, LU8C-FP exerts less cytotoxicity than luteolin and also it has specific inhibitory effect on IL-6 expression. However, luteolin has a variety of inhibitory effects on pro-inflammatory cytokines and chemokines. Our in vitro studies may provide valuable information leading to the use of LU8C-FP to treat inflammatory diseases caused by IL-6.
Collapse
|
12
|
Baik J, Ok SH, Cho H, Yu J, Kim W, Nam IK, Choi MJ, Lee HK, Sohn JT. Dexmedetomidine-induced contraction involves phosphorylation of caldesmon by JNK in endothelium-denuded rat aortas. Int J Biol Sci 2014; 10:1108-15. [PMID: 25332685 PMCID: PMC4202027 DOI: 10.7150/ijbs.9797] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/07/2014] [Indexed: 01/25/2023] Open
Abstract
Caldesmon, an inhibitory actin binding protein, binds to actin and inhibits actin-myosin interactions, whereas caldesmon phosphorylation reverses the inhibitory effect of caldesmon on actin-myosin interactions, potentially leading to enhanced contraction. The goal of this study was to investigate the cellular signaling pathway responsible for caldesmon phosphorylation, which is involved in the regulation of the contraction induced by dexmedetomidine (DMT), an alpha-2 adrenoceptor agonist, in endothelium-denuded rat aortas. SP600125 (a c-Jun NH2-terminal kinase [JNK] inhibitor) dose-response curves were generated in aortas that were pre-contracted with DMT or phorbol 12,13-dibutyrate (PDBu), a protein kinase C (PKC) activator. Dose-response curves to the PKC inhibitor chelerythrine were generated in rat aortas pre-contracted with DMT. The effects of SP600125 and rauwolscine (an alpha-2 adrenoceptor inhibitor) on DMT-induced caldesmon phosphorylation in rat aortic vascular smooth muscle cells (VSMCs) were investigated by western blot analysis. PDBu-induced caldesmon and DMT-induced PKC phosphorylation in rat aortic VSMCs was investigated by western blot analysis. The effects of GF109203X (a PKC inhibitor) on DMT- or PDBu-induced JNK phosphorylation in VSMCs were assessed. SP600125 resulted in the relaxation of aortas that were pre-contracted with DMT or PDBu, whereas rauwolscine attenuated DMT-induced contraction. Chelerythrine resulted in the vasodilation of aortas pre-contracted with DMT. SP600125 and rauwolscine inhibited DMT-induced caldesmon phosphorylation. Additionally, PDBu induced caldesmon phosphorylation, and GF109203X attenuated the JNK phosphorylation induced by DMT or PDBu. DMT induced PKC phosphorylation in rat aortic VSMCs. These results suggest that alpha-2 adrenoceptor-mediated, DMT-induced contraction involves caldesmon phosphorylation that is mediated by JNK phosphorylation by PKC.
Collapse
Affiliation(s)
- Jiseok Baik
- 1. Department of Anesthesiology and Pain Medicine, Pusan National University Hospital, Biomed Research Institute, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Seong-Ho Ok
- 2. Department of Anesthesiology and Pain Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Hyunhoo Cho
- 3. Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Jongsun Yu
- 3. Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Woochan Kim
- 3. Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - In-Koo Nam
- 3. Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Mun-Jeoung Choi
- 4. Department of Oral and Maxillofacial Surgery, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Heon-Keun Lee
- 2. Department of Anesthesiology and Pain Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Ju-Tae Sohn
- 2. Department of Anesthesiology and Pain Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea
| |
Collapse
|
13
|
Eaton AF, Yue Q, Eaton DC, Bao HF. ENaC activity and expression is decreased in the lungs of protein kinase C-α knockout mice. Am J Physiol Lung Cell Mol Physiol 2014; 307:L374-85. [PMID: 25015976 DOI: 10.1152/ajplung.00040.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We used a PKC-α knockout model to investigate the regulation of alveolar epithelial Na(+) channels (ENaC) by PKC. Primary alveolar type II (ATII) cells were subjected to cell-attached patch clamp. In the absence of PKC-α, the open probability (Po) of ENaC was decreased by half compared with wild-type mice. The channel density (N) was also reduced in the knockout mice. Using in vivo biotinylation, membrane localization of all three ENaC subunits (α, β, and γ) was decreased in the PKC-α knockout lung, compared with the wild-type. Confocal microscopy of lung slices showed elevated levels of reactive oxygen species (ROS) in the lungs of the PKC-α knockout mice vs. the wild-type. High levels of ROS in the knockout lung can be explained by a decrease in both cytosolic and mitochondrial superoxide dismutase activity. Elevated levels of ROS in the knockout lung activates PKC-δ and leads to reduced dephosphorylation of ERK1/2 by MAP kinase phosphatase, which in turn causes increased internalization of ENaC via ubiquitination by the ubiquitin-ligase Nedd4-2. In addition, in the knockout lung, PKC-δ activates ERK, causing a decrease in ENaC density at the apical alveolar membrane. PKC-δ also phosphorylates MARCKS, leading to a decrease in ENaC Po. The effects of ROS and PKC-δ were confirmed with patch-clamp experiments on isolated ATII cells in which the ROS scavenger, Tempol, or a PKC-δ-specific inhibitor added to patches reversed the observed decrease in ENaC apical channel density and Po. These results explain the decrease in ENaC activity in PKC-α knockout lung.
Collapse
Affiliation(s)
- Amity F Eaton
- Department of Physiology and the Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia
| | - Qiang Yue
- Department of Physiology and the Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia
| | - Douglas C Eaton
- Department of Physiology and the Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia
| | - Hui-Fang Bao
- Department of Physiology and the Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
14
|
Role of PKCα-p38 MAPK-Giα axis in peroxynitrite-mediated inhibition of β-adrenergic response in pulmonary artery smooth muscle cells. Cell Signal 2012; 25:512-26. [PMID: 23159577 DOI: 10.1016/j.cellsig.2012.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 11/09/2012] [Accepted: 11/09/2012] [Indexed: 11/21/2022]
Abstract
In the context of cross-talk between transmembrane signaling pathways, we studied the loci within the β-adrenergic receptor/G protein/adenyl cyclase system at which PKC exerts regulatory effects of peroxynitrite (ONOO(-)) on isoproterenol stimulated adenyl cyclase activity in pulmonary artery smooth muscle cells. Treatment of the cells with ONOO(-) stimulated PKC-α activity and that subsequently increased p(38)MAPK phosphorylation. Pretreatment with Go6976 (PKC-α inhibitor) and SB203580 (p(38)MAPK inhibitor) eliminated ONOO(-) caused inhibition on isoproterenol stimulated adenyl cyclase activity. Pretreatment with Go6976, but not SB203580, prevented ONOO(-) induced increase in PKC-α activity. Studies using genetic inhibitors of PKC-α (PKC-α siRNA) and p(38)MAPK (p(38)MAPK siRNA) also corroborated the findings obtained with their pharmacological inhibitors in eliminating the attenuation of ONOO(-) effect on isoproterenol stimulated adenyl cyclase activity. This inhibitory effect of ONOO(-) was found to be eliminated upon pretreatment of the cells with pertussis toxin thereby pointing to a G(i) dependent mechanism. This hypothesis was reinforced by G(i)α phosphorylation as well as by the observation of the loss of the ability of Gpp(NH)p (a measure of G(i) mediated response) to stimulate adenyl cyclase activity upon ONOO(-) treatment to the cells. We suggest the existence of a pertussis toxin sensitive G protein (G(i))-mediated mechanism in isoproterenol stimulated adenyl cyclase activity, which is regulated by PKCα-p(38)MAPK axis dependent phosphorylation of its α-subunit (G(i)α) in the pulmonary artery smooth muscle cells.
Collapse
|
15
|
Protein kinase C-δ (PKC-δ) and PKC-α mediate Ca2+-dependent increases in CNP mRNA in human vascular cells. Vascul Pharmacol 2012; 57:98-104. [DOI: 10.1016/j.vph.2012.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 04/04/2012] [Accepted: 05/07/2012] [Indexed: 11/18/2022]
|
16
|
Ding RQ, Tsao J, Chai H, Mochly-Rosen D, Zhou W. Therapeutic potential for protein kinase C inhibitor in vascular restenosis. J Cardiovasc Pharmacol Ther 2010; 16:160-7. [PMID: 21183728 DOI: 10.1177/1074248410382106] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Vascular restenosis, an overreaction of biological response to injury, is initialized by thrombosis and inflammation. This response is characterized by increased smooth muscle cell migration and proliferation. Available pharmacological treatments include anticoagulants, antiplatelet agents, immunosuppressants, and antiproliferation agents. Protein kinase C (PKC), a large family of serine/threonine kinases, has been shown to participate in various pathological stages of restenosis. Consequently, PKC inhibitors are expected to exert a wide range of pharmacological activities therapeutically beneficial for restenosis. In this review, the roles of PKC isozymes in platelets, leukocytes, endothelial cells, and smooth muscle cells are discussed, with emphasis given to smooth muscle cells. We will describe cellular and animal studies assessing prevention of restenosis with PKC inhibitors, particularly targeting -α, -β, -δ, and -ζ isozymes. The delivery strategy, efficacy, and safety of such PKC regulators will also be discussed.
Collapse
Affiliation(s)
- Richard Qinxue Ding
- Division of Vascular and Endovascular Surgery, Department of Surgery, Stanford University, Stanford, CA 94350, USA
| | | | | | | | | |
Collapse
|
17
|
Sathishkumar K, Yallampalli U, Elkins R, Yallampalli C. Raf-1 kinase regulates smooth muscle contraction in the rat mesenteric arteries. J Vasc Res 2010; 47:384-98. [PMID: 20110729 DOI: 10.1159/000277726] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Accepted: 09/04/2009] [Indexed: 01/30/2023] Open
Abstract
We investigated the potential role of Raf-1 kinase in mesenteric arterial contraction. Inhibitors of Raf-1 kinase, GW5074, L779450 and ZM 336372 reversed phenylephrine (PE)-induced mesenteric vascular contraction. Studies in vivo in rats showed that GW5074 inhibited PE-induced increase in mean arterial pressure in adult female Sprague-Dawley rats. Isometric tension studies in mesenteric arteries of rats showed that GW5074 did not change the KCl-evoked contraction but significantly inhibited the contractions to PE, 5-HT, U46619, endothelin 1, angiotensin II and phorbol 12, 13-dibutyrate (PDBu). In mesenteric vascular smooth muscle cells (VSMCs), PE stimulated increase in Raf-1 phosphorylation which was inhibited by GW5074. Measurement of [Ca(2+)](i) with Fura-2 showed that GW5074-mediated inhibition of PE-induced contraction was not associated with decreases in [Ca(2+)](i). VSMCs treated with PE exhibited higher levels of the contractile proteins, p-MYPT1 and p-MLC(20), which was inhibited by GW5074. Similarly, PDBu induced increases in phosphorylation of Raf-1, MLC(20) and MYPT1 and this was inhibited by GW5074. However, GW5074 did not have any significant effect on PE/PDBu-induced MEK/ERK activation. The results indicate that Raf-1 kinase plays an important role in the regulation of vascular contractility through regulation of calcium sensitization.
Collapse
Affiliation(s)
- Kunju Sathishkumar
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Tex. 77555-1062, USA
| | | | | | | |
Collapse
|
18
|
Zielinsky P, Piccoli AL, Manica JL, Nicoloso LH, Menezes H, Busato A, Moraes MR, Silva J, Bender L, Pizzato P, Aita L, Alievi M, Vian I, Almeida L. Maternal consumption of polyphenol-rich foods in late pregnancy and fetal ductus arteriosus flow dynamics. J Perinatol 2010; 30:17-21. [PMID: 19641513 PMCID: PMC2834346 DOI: 10.1038/jp.2009.101] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To test the hypothesis that maternal consumption of polyphenol-rich foods during third trimester interferes with fetal ductal dynamics by inhibition of prostaglandin synthesis. STUDY DESIGN In a prospective analysis, Doppler ductal velocities and right-to-left ventricular dimensions ratio of 102 fetuses exposed to polyphenol-rich foods (daily estimated maternal consumption >75th percentile, or 1089 mg) were compared with 41 unexposed fetuses (flavonoid ingestion <25th percentile, or 127 mg). RESULT In the exposed fetuses, ductal velocities were higher (systolic: 0.96+/-0.23 m/s; diastolic: 0.17+/-0.05 m/s) and right-to-left ventricular ratio was higher (1.23+/-0.23) than in unexposed fetuses (systolic: 0.61+/-0.18 m/s, P<0.001; diastolic: 0.11+/-0.04 m/s, P=0.011; right-to-left ventricular ratio: 0.94+/-0.14, P<0.001). CONCLUSION As maternal polyphenol-rich foods intake in late gestation may trigger alterations in fetal ductal dynamics, changes in perinatal dietary orientation are warranted.
Collapse
Affiliation(s)
- P Zielinsky
- Fetal Cardiology Unit, Institute of Cardiology of Rio Grande do Sul/FUC, Porto Alegre, Brazil.
| | - A L Piccoli
- Fetal Cardiology Unit, IC/FUC, Porto Alegre, Brazil
| | - J L Manica
- Fetal Cardiology Unit, IC/FUC, Porto Alegre, Brazil
| | - L H Nicoloso
- Fetal Cardiology Unit, IC/FUC, Porto Alegre, Brazil
| | - H Menezes
- Post-Graduation Program and Experimental Animal Laboratory, IC/FUC, Porto Alegre, Brazil
| | - A Busato
- Fetal Cardiology Unit, IC/FUC, Porto Alegre, Brazil
| | - M R Moraes
- Fetal Cardiology Unit, IC/FUC, Porto Alegre, Brazil
| | - J Silva
- Fetal Cardiology Unit, IC/FUC, Porto Alegre, Brazil
| | - L Bender
- Fetal Cardiology Unit, IC/FUC, Porto Alegre, Brazil
| | - P Pizzato
- Fetal Cardiology Unit, IC/FUC, Porto Alegre, Brazil
| | - L Aita
- Fetal Cardiology Unit, IC/FUC, Porto Alegre, Brazil
| | - M Alievi
- Veterinary School, Federal University of Rio Grande do Sul.(UFRGS), Porto Alegre, Brazil
| | - I Vian
- Nutrition Service, IC/FUC, Porto Alegre, Brazil
| | - L Almeida
- Nutrition Service, IC/FUC, Porto Alegre, Brazil
| |
Collapse
|
19
|
McEneaney V, Dooley R, Harvey BJ, Thomas W. Protein kinase D stabilizes aldosterone-induced ERK1/2 MAP kinase activation in M1 renal cortical collecting duct cells to promote cell proliferation. J Steroid Biochem Mol Biol 2010; 118:18-28. [PMID: 19804826 DOI: 10.1016/j.jsbmb.2009.09.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 08/29/2009] [Accepted: 09/29/2009] [Indexed: 10/20/2022]
Abstract
Aldosterone elicits transcriptional responses in target tissues and also rapidly stimulates the activation of protein kinase signalling cascades independently of de novo protein synthesis. Here we investigated aldosterone-induced cell proliferation and extra-cellular regulated kinase 1 and 2 (ERK1/2) mitogen activated protein (MAP) kinase signalling in the M1 cortical collecting duct cell line (M1-CCD). Aldosterone promoted the proliferative growth of M1-CCD cells, an effect that was protein kinase D1 (PKD1), PKCdelta and ERK1/2-dependent. Aldosterone induced the rapid activation of ERK1/2 with peaks of activation at 2 and 10 to 30 min after hormone treatment followed by sustained activation lasting beyond 120 min. M1-CCD cells suppressed in PKD1 expression exhibited only the early, transient peaks in ERK1/2 activation without the sustained phase. Aldosterone stimulated the physical association of PKD1 with ERK1/2 within 2 min of treatment. The mineralocorticoid receptor (MR) antagonist RU28318 inhibited the early and late phases of aldosterone-induced ERK1/2 activation, and also aldosterone-induced proliferative cell growth. Aldosterone induced the sub-cellular redistribution of ERK1/2 to the nuclei at 2 min and to cytoplasmic sites, proximal to the nuclei after 30 min. This sub-cellular distribution of ERK1/2 was inhibited in cells suppressed in the expression of PKD1.
Collapse
Affiliation(s)
- Victoria McEneaney
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | | | | | | |
Collapse
|
20
|
Stapleton CM, Joo JH, Kim YS, Liao G, Panettieri RA, Jetten AM. Induction of ANGPTL4 expression in human airway smooth muscle cells by PMA through activation of PKC and MAPK pathways. Exp Cell Res 2009; 316:507-16. [PMID: 20025870 DOI: 10.1016/j.yexcr.2009.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 11/25/2009] [Accepted: 12/05/2009] [Indexed: 11/17/2022]
Abstract
In this study, we demonstrate that protein kinase C (PKC) activators, including phorbol-12-myristate-13-acetate (PMA), 1,2-dioctanoyl-sn-glycerol (DOG), and platelet-derived growth factor alpha are potent inducers of angiopoietin-like protein 4 (ANGPTL4) expression in several normal lung cell types and carcinoma cell lines. In human airway smooth muscle (HASM) cells induction of ANGPTL4 expression is observed as early as 2 h after the addition of PMA. PMA also increases the level of ANGPTL4 protein released in the medium. PKC inhibitors Ro31-8820 and Gö6983 greatly inhibit the induction of ANGPTL4 mRNA by PMA suggesting that this up-regulation involves activation of PKC. Knockdown of several PKCs by corresponding siRNAs suggest a role for PKCalpha. PMA does not activate MAPK p38 and p38 inhibitors have little effect on the induction of ANGPTL4 indicating that p38 is not involved in the regulation of ANGPTL4 by PMA. In contrast, treatment of HASM by PMA induces phosphorylation and activation of Ra, MEK1/2, ERK1/2, JNK, Elk-1, and c-Jun. The Ras inhibitor manumycin A, the MEK1/2 inhibitor U0126, and the JNK inhibitor SP600125, greatly reduce the increase in ANGPTL4 expression by PMA. Knockdown of MEK1/2 and JNK1/2 expression by corresponding siRNAs inhibits the induction of ANGPTL4. Our observations suggest that the induction of ANGPTL4 by PMA in HASM involves the activation of PKC, ERK, and JNK pathways. This induction may play a role in tissue remodeling during lung injury and be implicated in several lung pathologies.
Collapse
Affiliation(s)
- Cliona M Stapleton
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | |
Collapse
|
21
|
Kato K, Yamanouchi D, Esbona K, Kamiya K, Zhang F, Kent KC, Liu B. Caspase-mediated protein kinase C-delta cleavage is necessary for apoptosis of vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2009; 297:H2253-61. [PMID: 19837952 DOI: 10.1152/ajpheart.00274.2009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Apoptotic death of vascular smooth muscle cells (SMCs) is a prominent feature of blood vessel remodeling and various vascular diseases. We have previously shown that protein kinase C-delta (PKC-delta) plays a critical role in SMC apoptosis. In this study, we tested the importance of PKC-delta proteolytic cleavage and tyrosine phosphorylation within the apoptosis pathway. Using hydrogen peroxide as a paradigm for oxidative stress, we showed that proteolytic cleavage of PKC-delta occurred in SMCs that underwent apoptosis, while tyrosine phosphorylation was detected only in necrotic cells. Furthermore, using a peptide (z-DIPD-fmk) that mimics the caspase-3 binding motif within the linker region of PKC-delta, we were able to prevent the cleavage of PKC-delta, as well as apoptosis. Inhibition of PKC-delta with rottlerin or small-interfering RNA diminished caspase-3 cleavage, caspase-3 activity, cleavage of poly (ADP-ribose) polymerase, cleavage of PKC-delta, and DNA fragmentation, confirming the previously reported role of PKC-delta in initiation of apoptosis. In contrast, z-DIPD-fmk markedly diminished caspase-3 activity, cleavage of PKC-delta, and DNA fragmentation without affecting cleavage of caspase-3 and poly (ADP-ribose) polymerase. Taken together, our data suggest that caspase-3-mediated PKC-delta cleavage underlies SMC apoptosis induced by oxidative stress, and that PKC-delta acts both upstream and downstream of caspase-3.
Collapse
Affiliation(s)
- Kaori Kato
- Department of Surgery, University of Wisconsin, Madison, Wisconsin 53705, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Yamanouchi D, Kato K, Ryer EJ, Zhang F, Liu B. Protein kinase C delta mediates arterial injury responses through regulation of vascular smooth muscle cell apoptosis. Cardiovasc Res 2009; 85:434-43. [PMID: 19808702 DOI: 10.1093/cvr/cvp328] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIMS A balance between apoptosis and proliferation of vascular smooth muscle cells (VSMC) influences the development of intimal hyperplasia. We have previously demonstrated that protein kinase C delta (PKCdelta) regulates both apoptosis and proliferation of VSMC in vitro. Here we investigate the role of PKCdelta in intimal hyperplasia through gene deletion or overexpression in rodent models of arterial injury. METHODS AND RESULTS Arterial injury was induced in mice and rats by means of carotid ligation or balloon angioplasty, respectively. Overexpression of PKCdelta was achieved by adenovirus-mediated gene transfer immediately after balloon injury in rat carotid arteries. Levels of PKCdelta protein were profoundly increased in the carotid wall 3-7 days after balloon injury, co-localizing to TUNEL-positive medial cells. When subjected to arterial injury, PKCdelta gene-deficient mice responded with an enhanced intimal hyperplasia accompanied by an 80% reduction in the number of TUNEL-positive cells detected in the injured arteries as compared with their wild-type littermates. Conversely, arterial gene transfer of PKCdelta further increased the arterial expression of PKCdelta, which was associated with a marked increase in apoptosis and reduction of intimal hyperplasia. Neither manipulation led to significant alteration in cell proliferation, suggesting that the function of PKCdelta after arterial injury is predominantly pro-apoptotic. This notion is further supported by our observation of high PKCdelta expression in human restenotic lesions that also co-localized with apoptosis. CONCLUSION The expression of PKCdelta is upregulated in the arterial wall in response to injury. This induction appears to be a mechanism of arterial response that negatively influences the degree of intimal hyperplasia by stimulating VSMC apoptosis.
Collapse
Affiliation(s)
- Dai Yamanouchi
- Division of Peripheral Vascular Surgery, Department of Surgery, University of Wisconsin Madison, 1111 Highland Avenue, WIMR 5120, Madison, WI 53705, USA
| | | | | | | | | |
Collapse
|
23
|
Simon F, Stutzin A. Protein Kinase C–Mediated Phosphorylation of p47phoxModulates Platelet-Derived Growth Factor–Induced H2O2Generation and Cell Proliferation in Human Umbilical Vein Endothelial Cells. ACTA ACUST UNITED AC 2009; 15:175-88. [DOI: 10.1080/10623320802174480] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Ginnan R, Guikema BJ, Halligan KE, Singer HA, Jourd’heuil D. Regulation of smooth muscle by inducible nitric oxide synthase and NADPH oxidase in vascular proliferative diseases. Free Radic Biol Med 2008; 44:1232-45. [PMID: 18211830 PMCID: PMC2390910 DOI: 10.1016/j.freeradbiomed.2007.12.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 12/11/2007] [Accepted: 12/11/2007] [Indexed: 10/22/2022]
Abstract
Inflammation plays a critical role in promoting smooth muscle migration and proliferation during vascular diseases such as postangioplasty restenosis and atherosclerosis. Another common feature of many vascular diseases is the contribution of reactive oxygen (ROS) and reactive nitrogen (RNS) species to vascular injury. Primary sources of ROS and RNS in smooth muscle are several isoforms of NADPH oxidase (Nox) and the cytokine-regulated inducible nitric oxide (NO) synthase (iNOS). One important example of the interaction between NO and ROS is the reaction of NO with superoxide to yield peroxynitrite, which may contribute to the pathogenesis of hypertension. In this review, we discuss the literature that supports an alternate possibility: Nox-derived ROS modulate NO bioavailability by altering the expression of iNOS. We highlight data showing coexpression of iNOS and Nox in vascular smooth muscle demonstrating the functional consequences of iNOS and Nox during vascular injury. We describe the relevant literature demonstrating that the mitogen-activated protein kinases are important modulators of proinflammatory cytokine-dependent expression of iNOS. A central hypothesis discussed is that ROS-dependent regulation of the serine/threonine kinase protein kinase Cdelta is essential to understanding how Nox may regulate signaling pathways leading to iNOS expression. Overall, the integration of nonphagocytic NADPH oxidase with cytokine signaling in general and in vascular smooth muscle in particular is poorly understood and merits further investigation.
Collapse
Affiliation(s)
| | | | | | | | - David Jourd’heuil
- To whom correspondence should be addressed: Albany Medical College, Center for Cardiovascular Sciences, 47 New Scotland Avenue (MC8), Albany, NY 12208; Tel: (518) 262 8104; Fax: (518) 262 8101; E-mail:
| |
Collapse
|
25
|
Xu SZ. Rottlerin induces calcium influx and protein degradation in cultured lenses independent of effects on protein kinase C delta. Basic Clin Pharmacol Toxicol 2007; 101:459-64. [PMID: 17927688 DOI: 10.1111/j.1742-7843.2007.00143.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rottlerin has been widely accepted as a specific inhibitor of protein kinase C delta (PKC delta); however, recent data suggest that the specificity of this compound become a question. Herein, we address this issue using a lens organ culture system, as PKC delta might regulate the gap junction permeability in lens. Interestingly, we found that rottlerin induced the degradation of connexin50 more rapidly than that of PKC delta. Furthermore, comparison of rottlerin with a protonophore, carbonylcyanide-4-(trifluoromethoxy)-phenylhydrazone (FCCP) that shares many characteristics with rottlerin, showed that both rottlerin and FCCP dramatically increased lens weight over time. This increase in lens weight was partially reversed by depletion of extracellular calcium with ethyleneglycoltetraacetic acid (EGTA) or by blocking L-type calcium channels with verapamil, suggesting rottlerin may induce calcium influx. Indeed, the rapid degradation of connexin50 (but not PKC delta) induced by rottlerin and FCCP was blocked by EGTA. In addition, rottlerin and FCCP also induced degradation of connexin46, filensin, vimentin and CP49. In order to determine whether this protein degradation is associated with the decrease of ATP due to uncoupling mitochondria by rottlerin, ATP content in lenses with different treatments were examined. The result indicated that EGTA had no effect on lens ATP content. Taken together, these data suggest that rottlerin, like FCCP, induces calcium influx, leading to protein degradation and cleavage in the lens, and that this effect is unrelated to the inhibition of PKC delta. Thus, extreme caution must be taken when considering use of rottlerin as a PKC delta inhibitor.
Collapse
Affiliation(s)
- Shang-Zhi Xu
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
26
|
Kamiya K, Ryer E, Sakakibara K, Zohlman A, Kent KC, Liu B. Protein kinase C delta activated adhesion regulates vascular smooth muscle cell migration. J Surg Res 2007; 141:91-6. [PMID: 17574042 DOI: 10.1016/j.jss.2007.02.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 02/08/2007] [Accepted: 02/15/2007] [Indexed: 11/23/2022]
Abstract
BACKGROUND Vascular smooth muscle cell (VSMC) migration, fundamental in the pathophysiology of atherogenesis and restenosis, is a coordinated process governed by the formation and disassembly of focal adhesions. Previous studies have demonstrated that VSMC migration is regulated via a signaling network involving protein kinase C delta (PKCdelta). In these studies, we test the hypothesis that PKCdelta regulates VSMC migration through modulation of cell adhesion. MATERIALS AND METHODS Using primary VSMCs isolated from PKCdelta wild type (+/+) and knock-out (-/-) mice, the effects of PKCdelta on VSMC migration and adhesion were assessed by chemotaxis and cell adhesion. RESULTS In evaluating cell migration, we found a decrease in platelet-derived growth factor-BB (PDGF-BB; 5 ng/mL x 6 h) stimulated migration of PKCdelta-/-VSMCs as compared to PKCdelta+/+VSMCs, by 59.4 +/- 5.9% (P < 0.01). A similar reduction in migration of PKCdelta-/-VSMCs (66.5 +/- 5.7%, P < 0.01) was also observed on collagen-coated (COL) membranes. Next, we examined cell attachment, a critical step of migration. PKCdelta-/-VSMCs exhibited significantly reduced adherence by 50.3 +/- 1.8% (P < 0.01). A similar defect of PKCdelta-/-VSMCs was also observed on the COL surface, 30.7 +/- 2.3% (P < 0.01). Interestingly, PDGF-BB did not stimulate attachment of VSMCs of either genotype. Consistent with these results, Rottlerin (2 microM), a selective inhibitor of PKCdelta, blocked migration and attachment of VSMCs by 56.8 +/- 3.4% (P < 0.01) and 37.7 +/- 1.9% (P < 0.01), respectively. CONCLUSIONS Taken together, our data indicate that PKCdelta activation is necessary for VSMC adhesion, which could, at least in part, contribute to the regulatory function of this kinase in cell migration thus pathogenesis of vascular lesions.
Collapse
Affiliation(s)
- Kentaro Kamiya
- Department of Surgery, Division of Vascular Surgery, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
27
|
Makagiansar IT, Williams S, Mustelin T, Stallcup WB. Differential phosphorylation of NG2 proteoglycan by ERK and PKCalpha helps balance cell proliferation and migration. ACTA ACUST UNITED AC 2007; 178:155-65. [PMID: 17591920 PMCID: PMC2064431 DOI: 10.1083/jcb.200612084] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two distinct Thr phosphorylation events within the cytoplasmic domain of the NG2 proteoglycan help regulate the cellular balance between proliferation and motility. Protein kinase Calpha mediates the phosphorylation of NG2 at Thr2256, resulting in enhanced cell motility. Extracellular signal-regulated kinase phosphorylates NG2 at Thr2314, stimulating cell proliferation. The effects of NG2 phosphorylation on proliferation and motility are dependent on beta1-integrin activation. Differential cell surface localization of the two distinctly phosphorylated forms of NG2 may be the mechanism by which the NG2-beta1-integrin interaction promotes proliferation in one case and motility in the other. NG2 phosphorylated at Thr2314 colocalizes with beta1-integrin on microprotrusions from the apical cell surface. In contrast, NG2 phosphorylated at Thr2256 colocalizes with beta1-integrin on lamellipodia at the leading edges of cells. Thus, phosphorylation and the resulting site of NG2-integrin localization may determine the specific downstream effects of integrin signaling.
Collapse
Affiliation(s)
- Irwan T Makagiansar
- Cancer Center, The Burnham Institute for Medical Research, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
28
|
Liu B, Ryer EJ, Kundi R, Kamiya K, Itoh H, Faries PL, Sakakibaria K, Kent KC. Protein kinase C-delta regulates migration and proliferation of vascular smooth muscle cells through the extracellular signal-regulated kinase 1/2. J Vasc Surg 2007; 45:160-8. [PMID: 17210402 PMCID: PMC1829412 DOI: 10.1016/j.jvs.2006.09.053] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 09/19/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND Smooth muscle cell (SMC) migration and proliferation are early and crucial events in the pathogenesis of intimal hyperplasia, the primary cause of restenosis after vascular intervention. We tested the hypothesis that protein kinase C-delta (PKCdelta), a ubiquitously expressed intracellular protein kinase, regulates vascular SMC proliferation and migration. METHODS Exogenous PKCdelta was expressed in cultured SMCs via stable transfection or adenovirus-mediated gene transfer. Conversely, endogenous PKCdelta was inhibited by means of targeted gene deletion (gene knock-out). Cell proliferation and migration were determined by (3)H-thymidine incorporation and 24-well transwell assay, respectively. RESULTS We isolated and examined three A10 SMC lines in which PKCdelta was stably transfected. Compared with cells that were transfected with an empty vector, cells transfected with PKCdelta exhibited reduced ability to proliferate. Moreover, PKCdelta transfection inhibited SMC migration toward platelet-derived growth factor-BB. Similar inhibitory effects on proliferation and migration were also observed when PKCdelta was introduced into primary aortic SMCs via an adenoviral vector. Interestingly, SMCs isolated from PKCdelta knockout mice also displayed decreased chemotaxis and proliferation compared with PKCdelta(+/+) littermates, suggesting a complex yet critical role for PKCdelta. We studied the mitogen-activated protein kinase extracellular signal-regulated kinases (ERK) 1/2 as a possible signaling pathway for PKCdelta's inhibitory effect. PKCdelta overexpression diminished ERK1/2 activity. Molecular restoration of ERK activation reversed the inhibitory effect of PKCdelta on SMC proliferation and migration. CONCLUSIONS We demonstrate that although normal migration and proliferation is lessened in SMCs deficient in PKCdelta, its prolonged activation also diminishes those behaviors. This suggests a dual, critical role for PKCdelta in SMC proliferation and migration, and thus intimal hyperplasia and restenosis.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/cytology
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/enzymology
- Cell Line
- Cell Movement/physiology
- Cell Proliferation
- Isoenzymes
- Mice
- Mice, Knockout
- Mitogen-Activated Protein Kinase 3/biosynthesis
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Protein Kinase C/biosynthesis
- Protein Kinase C beta
- Rats
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Bo Liu
- Department of Surgery, Division of Vascular Surgery, New York Presbyterian Hospital and Weill Medical College of Cornell University, New York, NY 10021
| | - Evan J. Ryer
- Department of Surgery, Division of Vascular Surgery, New York Presbyterian Hospital and Weill Medical College of Cornell University, New York, NY 10021
| | - Rishi Kundi
- Department of Surgery, Division of Vascular Surgery, New York Presbyterian Hospital and Weill Medical College of Cornell University, New York, NY 10021
- Department of Surgery, Beth Israel Medical Center, New York, NY 10003
| | - Kenatro Kamiya
- Department of Surgery, Division of Vascular Surgery, New York Presbyterian Hospital and Weill Medical College of Cornell University, New York, NY 10021
| | - Hiroyuki Itoh
- Department of Surgery, Division of Vascular Surgery, New York Presbyterian Hospital and Weill Medical College of Cornell University, New York, NY 10021
| | - Peter L. Faries
- Department of Surgery, Division of Vascular Surgery, New York Presbyterian Hospital and Weill Medical College of Cornell University, New York, NY 10021
| | - Kenji Sakakibaria
- Department of Surgery, Division of Vascular Surgery, New York Presbyterian Hospital and Weill Medical College of Cornell University, New York, NY 10021
| | - K. Craig Kent
- Department of Surgery, Division of Vascular Surgery, New York Presbyterian Hospital and Weill Medical College of Cornell University, New York, NY 10021
- To whom correspondence should be addressed: Bo Liu PhD, Department of Surgery, New York Presbyterian Hospital, 525 East 68 Street, Payson 707, New York, NY 10021, Tel. 212 746-5192; Fax. 212 746-5812;
| |
Collapse
|
29
|
Kilpatrick LE, Sun S, Mackie D, Baik F, Li H, Korchak HM. Regulation of TNF mediated antiapoptotic signaling in human neutrophils: role of delta-PKC and ERK1/2. J Leukoc Biol 2007; 80:1512-21. [PMID: 17138860 DOI: 10.1189/jlb.0406284] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
TNF is implicated in the suppression of neutrophil apoptosis during sepsis. Multiple signaling pathways are involved in TNF-mediated antiapoptotic signaling; a role for the MAP kinases (MAPK), ERK1/2, and p38 MAPK has been suggested. Antiapoptotic signaling is mediated principally through TNF receptor-1 (TNFR-1), and the PKC isotype-delta (delta-PKC) is a critical regulator of TNFR-1 signaling. delta-PKC associates with TNFR-1 in response to TNF and is required for NFkappaB activation and inhibition of caspase 3. The role of delta-PKC in TNF-mediated activation of MAPK is not known. The purpose of this study was to determine whether the MAPK, ERK1/2, and p38 MAPK are involved in TNF antiapoptotic signaling and whether delta-PKC is a key regulator of MAPK activation by TNF. In human neutrophils, TNF activated both p38 MAPK and ERK1/2 principally via TNFR-1. The MEK1/2 inhibitors PD098059 and U0126, but not the p38 MAPK inhibitor SB203580, decreased TNF antiapoptotic signaling as measured by caspase 3 activity. A specific delta-PKC antagonist, V1.1delta-PKC-Tat peptide, inhibited TNF-mediated ERK1/2 activation, but not p38 MAPK. ERK1/2 inhibition did not alter recruitment of delta-PKC to TNFR-1, indicating delta-PKC is acting upstream of ERK1/2. In HL-60 cells differentiated to a neutrophilic phenotype, delta-PKC depletion by delta-PKC siRNA resulted in inhibition of TNF mediated ERK1/2 activation but not p38 MAPK. Thus, ERK1/2, but not p38 MAPK, is an essential component of TNF-mediated antiapoptotic signaling. In human neutrophils, delta-PKC is a positive regulator of ERK1/2 activation via TNFR-1 but has no role in p38 MAPK activation.
Collapse
Affiliation(s)
- Laurie E Kilpatrick
- Department of Pediatrics, University of Pennsylvania School of Medicine and the Joseph Stokes Jr. Research Institute, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Mehdi MZ, Vardatsikos G, Pandey SK, Srivastava AK. Involvement of insulin-like growth factor type 1 receptor and protein kinase Cdelta in bis(maltolato)oxovanadium(IV)-induced phosphorylation of protein kinase B in HepG2 cells. Biochemistry 2006; 45:11605-15. [PMID: 16981720 DOI: 10.1021/bi060403x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vanadium(IV) oxo-bis(maltolato) (BMOV), an organovanadium compound, is a potent insulinomimetic agent and improves glucose homeostasis in various models of diabetes. We have shown previously that BMOV stimulates the phosphorylation of PKB which may contribute as one of the mechanisms for the insulinomimetic effect of this compound. However, the upstream mechanism of BMOV-induced PKB phosphorylation remains elusive. Therefore, in this study, we examine the upstream events leading to BMOV-induced PKB phosphorylation in HepG2 cells. Since BMOV is an inhibitor of protein tyrosine phosphatases and through enhanced tyrosine phosphorylation may activate various protein tyrosine kinases (PTK), we have investigated the potential role of different receptor or nonreceptor PTK in mediating BMOV-induced PKB phosphorylation. Among several pharmacological inhibitors that were tested, only AG1024, a selective inhibitor of IGF-1R-PTK, almost completely blocked BMOV-stimulated phosphorylation of PKB. In contrast, AG1295 and AG1478, specific inhibitors of PDGFR and EGFR, respectively, were unable to block the BMOV response. Moreover, efficient reduction of the level of IGF-1R protein expression by antisense oligonucleotides (ASO) attenuated BMOV-induced PKB phosphorylation. BMOV-induced PKB phosphorylation was associated with an increased level of tyrosine phosphorylation of the IRbeta subunit, IGF-1Rbeta subunit, IRS-1, and p85alpha subunit of PI3-kinase. However, this response was independent of IR-PTK activity because in cells overexpressing a PTK-inactive form of IR, insulin response was attenuated while the effect of BMOV remained intact. A role of PKC in BMOV-induced response was also tested. Pharmacological inhibition with chelerythrine, a nonselective PKC inhibitor, or rottlerin, a PKCdelta inhibitor, as well as chronic treatment with PMA attenuated BMOV-induced PKB phosphorylation. In contrast, GO6976 and RO31-8220 PKCalpha/beta selective inhibitors failed to alter the BMOV effect. Taken together, these data suggest that IGF-1R and PKCdelta are required to stimulate PKB phosphorylation in response to BMOV in HepG2 cells and provide new insights into the molecular mechanism by which this compound exerts its insulinomimetic effects.
Collapse
Affiliation(s)
- Mohamad Z Mehdi
- Laboratory of Cell Signaling, Montreal Diabetes Research Center, Centre hospitalier de l'Université de Montréal, Angus campus, Montreal, Quebec, H1W 4A4, Canada
| | | | | | | |
Collapse
|
31
|
Marchisio M, Bertagnolo V, Lanuti P, Gaspari AR, Paludi M, Ciccocioppo F, Ercolino E, Bascelli A, Cataldi A, Miscia S. Nuclear protein kinase C-delta: a possible check-point of cell cycle progression. Int J Immunopathol Pharmacol 2006; 19:287-91. [PMID: 16831296 DOI: 10.1177/039463200601900206] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Protein kinase Cs (PKCs) belong to a serine/threonine kinase family, ubiquitously expressed and claimed to be involved in physiological processes including apoptosis, cell growth and differentiation. The question of the subcellular localization and activity of PKCs remains to be clarified. Here we report that nuclear PKC-delta cooperates to regulate the S-G2/M phase transition of cell cycle, apparently being associated to chromosome condensation and alignment on the metaphase plate.
Collapse
Affiliation(s)
- M Marchisio
- Cell Signalling Unit at the Department of Biomorphology, University of Chieti-Pescara, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Fan J, Guan S, Cheng CF, Cho M, Fields JW, Chen M, Denning MF, Woodley DT, Li W. PKCdelta clustering at the leading edge and mediating growth factor-enhanced, but not ecm-initiated, dermal fibroblast migration. J Invest Dermatol 2006; 126:1233-43. [PMID: 16543902 DOI: 10.1038/sj.jid.5700149] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have previously shown that the immobilized extracellular matrices (ECMs) initiate cell migration and soluble growth factors (GFs) further enhance ECM-initiated cell migration. GFs alone cannot initiate cell migration. To further investigate the specificity of the two signaling mechanisms, we focused on the protein kinase C (PKC) family genes in primary human dermal fibroblasts (DFs). We here show that platelet-derived growth factor-BB (PDGF-BB) strongly stimulates membrane translocation and leading edge clustering of protein kinase Cdelta (PKCdelta). In contrast, attachment to collagen matrix alone does not cause the translocation. Although the kinase function of PKCdelta is dispensable for initial membrane translocation, it is critical for its sustained presence at the cells's leading edge. Blockade of endogenous PKCdelta signaling with dominant-negative kinase-defective PKC (PKCdelta-KD) or PKCdelta-small interfering RNA (siRNA) completely inhibited PDGF-BB-stimulated DF migration. In contrast, neither PKCdelta-KD nor PKCdelta-siRNA affected collagen-induced initiation of DF migration. Overexpression of a constitutively activated PKCdelta (PKCdelta-R144/145A) partially mimics the effect of PDGF-BB. However, PKCdelta-KD, PKCdelta-siRNA, or PKCdelta-R144/145A does not affect PDGF-BB-stimulated activation of p38 mitogen-activated protein kinase, extracellular signal-regulated kinase1/2, or c-Jun N-terminal kinase. Instead, inhibition of PKCdelta blocks PDGF-BB-stimulated activation of signal transducer and activator of transcription 3 (Stat3). This study unveiled the specificity of PKCdelta in the control of DF migration.
Collapse
Affiliation(s)
- Jianhua Fan
- The Department of Dermatology and the Norris Comprehensive Cancer Center, The University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ginnan R, Guikema BJ, Singer HA, Jourd'heuil D. PKC-δ mediates activation of ERK1/2 and induction of iNOS by IL-1β in vascular smooth muscle cells. Am J Physiol Cell Physiol 2006; 290:C1583-91. [PMID: 16436473 DOI: 10.1152/ajpcell.00390.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the inflammatory cytokine interleukin-1β (IL-β) is an important regulator of gene expression in vascular smooth muscle (VSM), the signal transduction pathways leading to transcriptional activation upon IL-1β stimulation are poorly understood. Recent studies have implicated IL-1β-mediated ERK1/2 activation in the upregulation of type II nitric oxide synthase (iNOS) in VSM. We report that these events are mediated in a phospholipase C (PLC)- and protein kinase C (PKC)-δ-dependent manner utilizing a signaling mechanism independent of p21ras (Ras) and Raf1 activation. Stimulation of rat aortic VSM cells with IL-1β activated PLC-γ and pharmacological inhibition of PLC attenuated IL-1β-induced ERK1/2 activation and subsequent iNOS expression. Stimulation with IL-1β activated PKC-α and -δ, which was blocked using the PLC inhibitor U-73122. Pharmacological studies using isoform-specific PKC inhibitors and adenoviral overexpression of constitutively active PKC-δ indicated that ERK1/2 activation was PKC-α independent and PKC-δ dependent. Similarly, adenoviral overexpression of constitutively activated PKC-δ enhanced iNOS expression. IL-1β stimulation did not induce either Ras or Raf1 activity. The absence of a functional role for Ras and Raf1 related to ERK1/2 activation and iNOS expression was further confirmed by adenoviral overexpression of dominant-negative Ras and treatment with the Raf1 inhibitor GW5074. Taken together, we have outlined a novel transduction pathway implicating PKC-δ as a critical component of the IL-1-dependent activation of ERK in VSM cells.
Collapse
Affiliation(s)
- Roman Ginnan
- Center for Cardiovascular Sciences, MC-8, Albany Medical College, Albany, NY 12208, USA.
| | | | | | | |
Collapse
|
34
|
Chakraborti S, Mandal A, Das S, Chakraborti T. Role of MMP-2 in PKCδ-mediated inhibition of Na+ dependent Ca2+ uptake in microsomes of pulmonary smooth muscle: Involvement of a pertussis toxin sensitive protein. Mol Cell Biochem 2005; 280:107-17. [PMID: 16311911 DOI: 10.1007/s11010-005-8237-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Accepted: 06/01/2005] [Indexed: 10/25/2022]
Abstract
Treatment of bovine pulmonary artery smooth muscle with the O2 *- generating system hypoxanthine plus xanthine oxidase stimulated MMP-2 activity and PKC activity; and inhibited Na+ dependent Ca2+ uptake in the microsomes. Pretreatment of the smooth muscle with SOD (the O2 *- scavenger) and TIMP-2 (MMP-2 inhibitor) prevented the increase in MMP-2 activity and PKC activity, and reversed the inhibition of Na+ dependent Ca2+ uptake in the microsomes. Pretreatment with calphostin C (a general PKC inhibitor) and rottlerin (a PKCdelta inhibitor) prevented the increase in PKC activity and reversed O2 *- caused inhibition of Na+ dependent Ca2+ uptake without causing any change in MMP-2 activity in the microsomes of the smooth muscle. Treatment of the smooth muscle with the O2 *- generating system revealed, respectively, 36 kDa RACK-1 and 78 kDa PKCdelta immunoreactive protein profile along with an additional 38 kDa immunoreactive fragment in the microsomes. The 38 kDa band appeared to be the proteolytic fragment of the 78 kDa PKCdelta since pretreatment with TIMP-2 abolished the increase in the 38 kDa immunoreactive fragment. Co-immunoprecipitation of PKCdelta and RACK-1 demonstrated O2 *- dependent increase in PKCdelta-RACK-1 interaction in the microsomes. Immunoblot assay elicited an immunoreactive band of 41 kDa G(i)alpha in the microsomes. Treatment of the smooth muscle tissue with the O2 *- generating system causes phosphorylation of G(i)alpha in the microsomes and pretreatment with TIMP-2 and rottlerin prevented the phosphorylation. Pretreatment of the smooth muscle tissue with pertussis toxin reversed O2 *- caused inhibition of Na+ dependent Ca2+ uptake without affecting the protease activity and PKC activity in the microsomes. We suggest the existence of a pertussis toxin sensitive G protein mediated mechanism for inhibition of Na+ dependent Ca2+ uptake in microsomes of bovine pulmonary artery smooth muscle under O2 *- triggered condition, which is regulated by PKCdelta dependent phosphorylation and sensitive to TIMP-2 for its inhibition.
Collapse
Affiliation(s)
- Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India.
| | | | | | | |
Collapse
|