1
|
Servant G, Kenakin T. A Pharmacological perspective on the temporal properties of sweeteners. Pharmacol Res 2024; 204:107211. [PMID: 38744400 DOI: 10.1016/j.phrs.2024.107211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Several non-caloric sweeteners exhibit a delay in sweetness onset and a sweetness linger after sampling. These temporal properties are thought to be the result of non-specific interactions with cell membranes and proteins in the oral cavity. Data and analysis presented in this report also support the potential involvement of receptor affinity and binding kinetics to this phenomenon. In general, affected sweeteners exhibit distinctly higher binding affinity compared to carbohydrate sweeteners, which do not have temporal issues. In addition, binding kinetic simulations illustrate much slower receptor binding association and dissociation kinetics for a set of non-caloric sweeteners presenting temporal issues, in comparison to carbohydrate sweeteners. So, the higher affinity of some non-caloric sweeteners, dictating lower use levels, and affecting binding kinetics, could contribute to their delay and linger in sweetness perception. Simple pharmacology principles could explain, at least in part, some of the temporal issues of sweeteners.
Collapse
Affiliation(s)
- Guy Servant
- dsm-firmenich, 10636 Scripps Summit Court #201, San Diego, CA 92131, USA.
| | - Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, 120 Mason Farm Rd., 4042 Genetic Medicine CB #7365, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
McMahon DB, Kuek LE, Johnson ME, Johnson PO, Horn RL, Carey RM, Adappa ND, Palmer JN, Lee RJ. The bitter end: T2R bitter receptor agonists elevate nuclear calcium and induce apoptosis in non-ciliated airway epithelial cells. Cell Calcium 2022; 101:102499. [PMID: 34839223 PMCID: PMC8752513 DOI: 10.1016/j.ceca.2021.102499] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/21/2021] [Accepted: 10/31/2021] [Indexed: 01/03/2023]
Abstract
Bitter taste receptors (T2Rs) localize to airway motile cilia and initiate innate immune responses in retaliation to bacterial quorum sensing molecules. Activation of cilia T2Rs leads to calcium-driven NO production that increases cilia beating and directly kills bacteria. Several diseases, including chronic rhinosinusitis, COPD, and cystic fibrosis, are characterized by loss of motile cilia and/or squamous metaplasia. To understand T2R function within the altered landscape of airway disease, we studied T2Rs in non-ciliated airway cell lines and primary cells. Several T2Rs localize to the nucleus in de-differentiated cells that typically localize to cilia in differentiated cells. As cilia and nuclear import utilize shared proteins, some T2Rs may target to the nucleus in the absence of motile cilia. T2R agonists selectively elevated nuclear and mitochondrial calcium through a G-protein-coupled receptor phospholipase C mechanism. Additionally, T2R agonists decreased nuclear cAMP, increased nitric oxide, and increased cGMP, consistent with T2R signaling. Furthermore, exposure to T2R agonists led to nuclear calcium-induced mitochondrial depolarization and caspase activation. T2R agonists induced apoptosis in primary bronchial and nasal cells differentiated at air-liquid interface but then induced to a squamous phenotype by apical submersion. Air-exposed well-differentiated cells did not die. This may be a last-resort defense against bacterial infection. However, it may also increase susceptibility of de-differentiated or remodeled epithelia to damage by bacterial metabolites. Moreover, the T2R-activated apoptosis pathway occurs in airway cancer cells. T2Rs may thus contribute to microbiome-tumor cell crosstalk in airway cancers. Targeting T2Rs may be useful for activating cancer cell apoptosis while sparing surrounding tissue.
Collapse
Affiliation(s)
- Derek B. McMahon
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA,Correspondence: Derek B. McMahon, PhD or Robert J. Lee, PhD, Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA, 215-573-9766, (D.B.M.) or (R.J.L)
| | - Li Eon Kuek
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Madeline E. Johnson
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Paige O. Johnson
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Rachel L.J. Horn
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ryan M. Carey
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nithin D. Adappa
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - James N. Palmer
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Robert J. Lee
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA,Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA,Correspondence: Derek B. McMahon, PhD or Robert J. Lee, PhD, Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA, 215-573-9766, (D.B.M.) or (R.J.L)
| |
Collapse
|
3
|
Carey RM, McMahon DB, Miller ZA, Kim T, Rajasekaran K, Gopallawa I, Newman JG, Basu D, Nead KT, White EA, Lee RJ. T2R bitter taste receptors regulate apoptosis and may be associated with survival in head and neck squamous cell carcinoma. Mol Oncol 2021; 16:1474-1492. [PMID: 34717036 PMCID: PMC8978516 DOI: 10.1002/1878-0261.13131] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/16/2021] [Accepted: 10/28/2021] [Indexed: 12/02/2022] Open
Abstract
Better management of head and neck squamous cell carcinomas (HNSCCs) requires a clearer understanding of tumor biology and disease risk. Bitter taste receptors (T2Rs) have been studied in several cancers, including thyroid, salivary, and GI, but their role in HNSCC has not been explored. We found that HNSCC patient samples and cell lines expressed functional T2Rs on both the cell and nuclear membranes. Bitter compounds, including bacterial metabolites, activated T2R‐mediated nuclear Ca2+ responses leading to mitochondrial depolarization, caspase activation, and ultimately apoptosis. Buffering nuclear Ca2+ elevation blocked caspase activation. Furthermore, increased expression of T2Rs in HNSCCs from The Cancer Genome Atlas is associated with improved overall survival. This work suggests that T2Rs are potential biomarkers to predict outcomes and guide treatment selection, may be leveraged as therapeutic targets to stimulate tumor apoptosis, and may mediate tumor‐microbiome crosstalk in HNSCC.
Collapse
Affiliation(s)
- Ryan M Carey
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Derek B McMahon
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Zoey A Miller
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - TaeBeom Kim
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Karthik Rajasekaran
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Indiwari Gopallawa
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jason G Newman
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Devraj Basu
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kevin T Nead
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elizabeth A White
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Robert J Lee
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Di Pizio A, Ben Shoshan-Galeczki Y, Hayes JE, Niv MY. Bitter and sweet tasting molecules: It's complicated. Neurosci Lett 2018; 700:56-63. [PMID: 29679682 DOI: 10.1016/j.neulet.2018.04.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/22/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022]
Abstract
"Bitter" and "sweet" are frequently framed in opposition, both functionally and metaphorically, in regard to affective responses, emotion, and nutrition. This oppositional relationship is complicated by the fact that some molecules are simultaneously bitter and sweet. In some cases, a small chemical modification, or a chirality switch, flips the taste from sweet to bitter. Molecules humans describe as bitter are recognized by a 25-member subfamily of class A G-protein coupled receptors (GPCRs) known as TAS2Rs. Molecules humans describe as sweet are recognized by a TAS1R2/TAS1R3 heterodimer of class C GPCRs. Here we characterize the chemical space of bitter and sweet molecules: the majority of bitter compounds show higher hydrophobicity compared to sweet compounds, while sweet molecules have a wider range of sizes. Importantly, recent evidence indicates that TAS1Rs and TAS2Rs are not limited to the oral cavity; moreover, some bitterants are pharmacologically promiscuous, with the hERG potassium channel, cytochrome P450 enzymes, and carbonic anhydrases as common off-targets. Further focus on polypharmacology may unravel new physiological roles for tastant molecules.
Collapse
Affiliation(s)
- Antonella Di Pizio
- The Institute of Biochemistry, Food and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, 76100, Rehovot, Israel; The Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem, 91904, Israel
| | - Yaron Ben Shoshan-Galeczki
- The Institute of Biochemistry, Food and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, 76100, Rehovot, Israel; The Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem, 91904, Israel
| | - John E Hayes
- Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park PA, USA
| | - Masha Y Niv
- The Institute of Biochemistry, Food and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, 76100, Rehovot, Israel; The Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem, 91904, Israel.
| |
Collapse
|
5
|
Influence of medications on taste and smell. World J Otorhinolaryngol Head Neck Surg 2018; 4:84-91. [PMID: 30035266 PMCID: PMC6051304 DOI: 10.1016/j.wjorl.2018.02.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/27/2018] [Indexed: 01/11/2023] Open
Abstract
Medications frequently have chemosensory side effects that can adversely affect compliance with medical treatment regimens. Hundreds of drugs have been reported to induce unpleasant tastes and/or odors as well as altered chemosensations when administered alone or in combination with other medications. Some chemosensory complaints are due to the sensory properties of the drug itself such as aversive bitter and metallic tastes. However, most chemosensory side effects of drugs are due to alterations in the transduction pathways, biochemical targets, enzymes, and transporters by the offending medications. Studies of chemosensory perception in medicated older individuals have found that taste and smell loss is greatest for those consuming the largest number of prescription drugs. There are no standard treatments for drug-induced chemosensory disorders because each drug has unique biological effects. However, there are a few treatment options to ameliorate chemosensory alterations including addition of simulated flavors to food to compensate for losses and to override offending tastes and smells.
Collapse
|
6
|
Bastiaan-Net S, van den Berg-Somhorst DB, Ariëns RM, Paques M, Mes JJ. A novel functional screening assay to monitor sweet taste receptor activation in vitro. FLAVOUR FRAG J 2017. [DOI: 10.1002/ffj.3431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shanna Bastiaan-Net
- Research Institute Wageningen Food & Biobased Research; Wageningen University and Research; Wageningen The Netherlands
| | | | - Renata M.C. Ariëns
- Research Institute Wageningen Food & Biobased Research; Wageningen University and Research; Wageningen The Netherlands
| | | | - Jurriaan J. Mes
- Research Institute Wageningen Food & Biobased Research; Wageningen University and Research; Wageningen The Netherlands
| |
Collapse
|
7
|
Abstract
Many people avidly consume foods and drinks containing caffeine, despite its bitter taste. Here, we review what is known about caffeine as a bitter taste stimulus. Topics include caffeine's action on the canonical bitter taste receptor pathway and caffeine's action on noncanonical receptor-dependent and -independent pathways in taste cells. Two conclusions are that (1) caffeine is a poor prototypical bitter taste stimulus because it acts on bitter taste receptor-independent pathways, and (2) caffeinated products most likely stimulate "taste" receptors in nongustatory cells. This review is relevant for taste researchers, manufacturers of caffeinated products, and caffeine consumers.
Collapse
Affiliation(s)
- Rachel L Poole
- Monell Chemical Senses Center, Philadelphia, Pennsylvania
| | | |
Collapse
|
8
|
Molecular mechanism of sweetness sensation. Physiol Behav 2016; 164:453-463. [DOI: 10.1016/j.physbeh.2016.03.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/12/2016] [Accepted: 03/14/2016] [Indexed: 11/17/2022]
|
9
|
Bachmanov AA, Bosak NP, Glendinning JI, Inoue M, Li X, Manita S, McCaughey SA, Murata Y, Reed DR, Tordoff MG, Beauchamp GK. Genetics of Amino Acid Taste and Appetite. Adv Nutr 2016; 7:806S-22S. [PMID: 27422518 PMCID: PMC4942865 DOI: 10.3945/an.115.011270] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The consumption of amino acids by animals is controlled by both oral and postoral mechanisms. We used a genetic approach to investigate these mechanisms. Our studies have shown that inbred mouse strains differ in voluntary amino acid consumption, and these differences depend on sensory and nutritive properties of amino acids. Like humans, mice perceive some amino acids as having a sweet (sucrose-like) taste and others as having an umami (glutamate-like) taste. Mouse strain differences in the consumption of some sweet-tasting amino acids (d-phenylalanine, d-tryptophan, and l-proline) are associated with polymorphisms of a taste receptor, type 1, member 3 gene (Tas1r3), and involve differential peripheral taste responsiveness. Strain differences in the consumption of some other sweet-tasting amino acids (glycine, l-alanine, l-glutamine, and l-threonine) do not depend on Tas1r3 polymorphisms and so must be due to allelic variation in other, as yet unknown, genes involved in sweet taste. Strain differences in the consumption of l-glutamate may depend on postingestive rather than taste mechanisms. Thus, genes and physiologic mechanisms responsible for strain differences in the consumption of each amino acid depend on the nature of its taste and postingestive properties. Overall, mouse strain differences in amino acid taste and appetite have a complex genetic architecture. In addition to the Tas1r3 gene, these differences depend on other genes likely involved in determining the taste and postingestive effects of amino acids. The identification of these genes may lead to the discovery of novel mechanisms that regulate amino acid taste and appetite.
Collapse
Affiliation(s)
| | | | - John I Glendinning
- Department of Biology, Barnard College, Columbia University, New York, NY
| | - Masashi Inoue
- Monell Chemical Senses Center, Philadelphia, PA; Laboratory of Cellular Neurobiology, School of Life Sciences, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
| | - Xia Li
- Monell Chemical Senses Center, Philadelphia, PA
| | - Satoshi Manita
- Monell Chemical Senses Center, Philadelphia, PA; Laboratory of Cellular Neurobiology, School of Life Sciences, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
| | | | - Yuko Murata
- Monell Chemical Senses Center, Philadelphia, PA; National Research Institute of Fisheries Science, Yokohama, Japan; and
| | | | | | - Gary K Beauchamp
- Monell Chemical Senses Center, Philadelphia, PA; Department of Psychology and School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
10
|
Upadhyaya JD, Chakraborty R, Shaik FA, Jaggupilli A, Bhullar RP, Chelikani P. The Pharmacochaperone Activity of Quinine on Bitter Taste Receptors. PLoS One 2016; 11:e0156347. [PMID: 27223611 PMCID: PMC4880206 DOI: 10.1371/journal.pone.0156347] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 05/12/2016] [Indexed: 11/19/2022] Open
Abstract
Bitter taste is one of the five basic taste sensations which is mediated by 25 bitter taste receptors (T2Rs) in humans. The mechanism of bitter taste signal transduction is not yet elucidated. The cellular processes underlying T2R desensitization including receptor internalization, trafficking and degradation are yet to be studied. Here, using a combination of molecular and pharmacological techniques we show that T2R4 is not internalized upon agonist treatment. Pretreatment with bitter agonist quinine led to a reduction in subsequent quinine-mediated calcium responses to 35 ± 5% compared to the control untreated cells. Interestingly, treatment with different bitter agonists did not cause internalization of T2R4. Instead, quinine treatment led to a 2-fold increase in T2R4 cell surface expression which was sensitive to Brefeldin A, suggesting a novel pharmacochaperone activity of quinine. This phenomenon of chaperone activity of quinine was also observed for T2R7, T2R10, T2R39 and T2R46. Our results suggest that the observed action of quinine for these T2Rs is independent of its agonist activity. This study provides novel insights into the pharmacochaperone activity of quinine and possible mechanism of T2R desensitization, which is of fundamental importance in understanding the mechanism of bitter taste signal transduction.
Collapse
Affiliation(s)
- Jasbir D. Upadhyaya
- Department of Oral Biology, and Manitoba Chemosensory Biology (MCSB) Research group, University of Manitoba, Winnipeg, MB, R3E 0W2, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, R3E 3P4, Canada
| | - Raja Chakraborty
- Department of Oral Biology, and Manitoba Chemosensory Biology (MCSB) Research group, University of Manitoba, Winnipeg, MB, R3E 0W2, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, R3E 3P4, Canada
| | - Feroz A. Shaik
- Department of Oral Biology, and Manitoba Chemosensory Biology (MCSB) Research group, University of Manitoba, Winnipeg, MB, R3E 0W2, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, R3E 3P4, Canada
| | - Appalaraju Jaggupilli
- Department of Oral Biology, and Manitoba Chemosensory Biology (MCSB) Research group, University of Manitoba, Winnipeg, MB, R3E 0W2, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, R3E 3P4, Canada
| | - Rajinder P. Bhullar
- Department of Oral Biology, and Manitoba Chemosensory Biology (MCSB) Research group, University of Manitoba, Winnipeg, MB, R3E 0W2, Canada
| | - Prashen Chelikani
- Department of Oral Biology, and Manitoba Chemosensory Biology (MCSB) Research group, University of Manitoba, Winnipeg, MB, R3E 0W2, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, R3E 3P4, Canada
- * E-mail:
| |
Collapse
|
11
|
Malach E, Shaul ME, Peri I, Huang L, Spielman AI, Seger R, Naim M. Membrane-permeable tastants amplify β2-adrenergic receptor signaling and delay receptor desensitization via intracellular inhibition of GRK2's kinase activity. Biochim Biophys Acta Gen Subj 2015; 1850:1375-88. [PMID: 25857770 DOI: 10.1016/j.bbagen.2015.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Amphipathic sweet and bitter tastants inhibit purified forms of the protein kinases GRK2, GRK5 and PKA activities. Here we tested whether membrane-permeable tastants may intracellularly interfere with GPCR desensitization at the whole cell context. METHODS β2AR-transfected cells and cells containing endogenous β2AR were preincubated with membrane-permeable or impermeable tastants and then stimulated with isoproterenol (ISO). cAMP formation, β2AR phosphorylation and β2AR internalization were monitored in response to ISO stimulation. IBMX and H89 inhibitors and GRK2 silencing were used to explore possible roles of PDE, PKA, and GRK2 in the tastants-mediated amplification of cAMP formation and the tastant delay of β2AR phosphorylation and internalization. RESULTS Membrane-permeable but not impermeable tastants amplified the ISO-stimulated cAMP formation in a concentration- and time-dependent manner. Without ISO stimulation, amphipathic tastants, except caffeine, had no effect on cAMP formation. The amplification of ISO-stimulated cAMP formation by the amphipathic tastants was not affected by PDE and PKA activities, but was completely abolished by GRK2 silencing. Amphipathic tastants delayed the ISO-induced GRK-mediated phosphorylation of β2ARs and GRK2 silencing abolished it. Further, tastants also delayed the ISO-stimulated β2AR internalization. CONCLUSION Amphipathic tastants significantly amplify β2AR signaling and delay its desensitization via their intracellular inhibition of GRK2. GENERAL SIGNIFICANCE Commonly used amphipathic tastants may potentially affect similar GPCR pathways whose desensitization depends on GRK2's kinase activity. Because GRK2 also modulates phosphorylation of non-receptor components in multiple cellular pathways, these gut-absorbable tastants may permeate into various cells, and potentially affect GRK2-dependent phosphorylation processes in these cells as well.
Collapse
Affiliation(s)
- Einav Malach
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Merav E Shaul
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Irena Peri
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Liquan Huang
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | | | - Rony Seger
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | - Michael Naim
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
12
|
Bachmanov AA, Bosak NP, Lin C, Matsumoto I, Ohmoto M, Reed DR, Nelson TM. Genetics of taste receptors. Curr Pharm Des 2014; 20:2669-83. [PMID: 23886383 PMCID: PMC4764331 DOI: 10.2174/13816128113199990566] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/24/2013] [Indexed: 12/19/2022]
Abstract
Taste receptors function as one of the interfaces between internal and external milieus. Taste receptors for sweet and umami (T1R [taste receptor, type 1]), bitter (T2R [taste receptor, type 2]), and salty (ENaC [epithelial sodium channel]) have been discovered in the recent years, but transduction mechanisms of sour taste and ENaC-independent salt taste are still poorly understood. In addition to these five main taste qualities, the taste system detects such noncanonical "tastes" as water, fat, and complex carbohydrates, but their reception mechanisms require further research. Variations in taste receptor genes between and within vertebrate species contribute to individual and species differences in taste-related behaviors. These variations are shaped by evolutionary forces and reflect species adaptations to their chemical environments and feeding ecology. Principles of drug discovery can be applied to taste receptors as targets in order to develop novel taste compounds to satisfy demand in better artificial sweeteners, enhancers of sugar and sodium taste, and blockers of bitterness of food ingredients and oral medications.
Collapse
|
13
|
Robery S, Tyson R, Dinh C, Kuspa A, Noegel AA, Bretschneider T, Andrews PLR, Williams RSB. A novel human receptor involved in bitter tastant detection identified using Dictyostelium discoideum. J Cell Sci 2013; 126:5465-76. [PMID: 24006265 PMCID: PMC4376016 DOI: 10.1242/jcs.136440] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2013] [Indexed: 12/19/2022] Open
Abstract
Detection of substances tasting bitter to humans occurs in diverse organisms including the social amoeba Dictyostelium discoideum. To establish a molecular mechanism for bitter tastant detection in Dictyostelium, we screened a mutant library for resistance to a commonly used bitter standard, phenylthiourea. This approach identified a G-protein-coupled receptor mutant, grlJ(-), which showed a significantly increased tolerance to phenylthiourea in growth, survival and movement. This mutant was not resistant to a structurally dissimilar potent bitter tastant, denatonium benzoate, suggesting it is not a target for at least one other bitter tastant. Analysis of the cell-signalling pathway involved in the detection of phenylthiourea showed dependence upon heterotrimeric G protein and phosphatidylinositol 3-kinase activity, suggesting that this signalling pathway is responsible for the cellular effects of phenylthiourea. This is further supported by a phenylthiourea-dependent block in the transient cAMP-induced production of phosphatidylinositol (3,4,5)-trisphosphate (PIP3) in wild-type but not grlJ(-) cells. Finally, we have identified an uncharacterized human protein γ-aminobutyric acid (GABA) type B receptor subunit 1 isoform with weak homology to GrlJ that restored grlJ(-) sensitivity to phenylthiourea in cell movement and PIP3 regulation. Our results thus identify a novel pathway for the detection of the standard bitter tastant phenylthiourea in Dictyostelium and implicate a poorly characterized human protein in phenylthiourea-dependent cell responses.
Collapse
Affiliation(s)
- Steven Robery
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Richard Tyson
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, UK
| | - Christopher Dinh
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Adam Kuspa
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Angelika A. Noegel
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
| | - Till Bretschneider
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, UK
| | - Paul L. R. Andrews
- Division of Biomedical Sciences, St George's University of London, London SW17 0RE, UK
| | - Robin S. B. Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| |
Collapse
|
14
|
Immunohistochemical detection of TAS2R38 protein in human taste cells. PLoS One 2012; 7:e40304. [PMID: 22792271 PMCID: PMC3391245 DOI: 10.1371/journal.pone.0040304] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 06/05/2012] [Indexed: 12/14/2022] Open
Abstract
The sense of taste plays an important role in the evaluation of the nutrient composition of consumed food. Bitter taste in particular is believed to serve a warning function against the ingestion of poisonous substances. In the past years enormous progress was made in the characterization of bitter taste receptors, including their gene expression patterns, pharmacological features and presumed physiological roles in gustatory as well as in non-gustatory tissues. However, due to a lack in TAS2R-specifc antibodies the localization of receptor proteins within gustatory tissues has never been analyzed. In the present study we have screened a panel of commercially available antisera raised against human bitter taste receptors by immunocytochemical experiments. One of these antisera was found to be highly specific for the human bitter taste receptor TAS2R38. We further demonstrate that this antibody is able to detect heterologously expressed TAS2R38 protein on Western blots. The antiserum is, however, not able to interfere significantly with TAS2R38 function in cell based calcium imaging analyses. Most importantly, we were able to demonstrate the presence of TAS2R38 protein in human gustatory papillae. Using double immunofluorescence we show that TAS2R38-positive cells form a subpopulation of PLCbeta2 expressing cells. On a subcellular level the localization of this bitter taste receptor is neither restricted to the cell surface nor particularly enriched at the level of the microvilli protruding into the pore region of the taste buds, but rather evenly distributed over the entire cell body.
Collapse
|
15
|
Tucker RM, Mattes RD. Are free fatty acids effective taste stimuli in humans? Presented at the symposium "The Taste for Fat: New Discoveries on the Role of Fat in Sensory Perception, Metabolism, Sensory Pleasure and Beyond" held at the iNstitute of Food Technologists 2011 Annual Meeting, New Orleans, LA, June 12, 2011. J Food Sci 2012; 77:S148-51. [PMID: 22384969 DOI: 10.1111/j.1750-3841.2011.02518.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The popularity of low- and reduced-fat foods has increased as consumers seek to decrease their energy consumption. Fat replacers may be used in fat-reduced products to maintain their sensory properties. However, these ingredients have been largely formulated to replicate nongustatory properties of fats to foods and have only achieved moderate success. There is increasing evidence that fats also activate the taste system and uniquely evoke responses that may influence product acceptance. Work supporting a taste component of fat has prompted questions about whether fat constitutes an additional "primary" or "basic" taste quality. This review briefly summarizes this evidence, focusing on human studies, when possible. Effective stimuli, possible receptors, and physiological changes due to oral fat exposure are discussed. Some studies suggest that there are fatty acid tasters and nontasters and if verified could have implications for targeted product development.
Collapse
Affiliation(s)
- Robin M Tucker
- Dept. of Nutrition Science, Purdue Univ., 212 Stone Hall, 700 W. State St., West Lafayette, IN 47907-2059, USA
| | | |
Collapse
|
16
|
Fitch C, Keim KS. Position of the Academy of Nutrition and Dietetics: use of nutritive and nonnutritive sweeteners. J Acad Nutr Diet 2012; 112:739-58. [PMID: 22709780 DOI: 10.1016/j.jand.2012.03.009] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Indexed: 12/26/2022]
Abstract
It is the position of the Academy of Nutrition and Dietetics that consumers can safely enjoy a range of nutritive sweeteners and nonnutritive sweeteners (NNS) when consumed within an eating plan that is guided by current federal nutrition recommendations, such as the Dietary Guidelines for Americans and the Dietary Reference Intakes, as well as individual health goals and personal preference. A preference for sweet taste is innate and sweeteners can increase the pleasure of eating. Nutritive sweeteners contain carbohydrate and provide energy. They occur naturally in foods or may be added in food processing or by consumers before consumption. Higher intake of added sugars is associated with higher energy intake and lower diet quality, which can increase the risk for obesity, prediabetes, type 2 diabetes, and cardiovascular disease. On average, adults in the United States consume 14.6% of energy from added sugars. Polyols (also referred to as sugar alcohols) add sweetness with less energy and may reduce risk for dental caries. Foods containing polyols and/or no added sugars can, within food labeling guidelines, be labeled as sugar-free. NNS are those that sweeten with minimal or no carbohydrate or energy. They are regulated by the Food and Drug Administration as food additives or generally recognized as safe. The Food and Drug Administration approval process includes determination of probable intake, cumulative effect from all uses, and toxicology studies in animals. Seven NNS are approved for use in the United States: acesulfame K, aspartame, luo han guo fruit extract, neotame, saccharin, stevia, and sucralose. They have different functional properties that may affect perceived taste or use in different food applications. All NNS approved for use in the United States are determined to be safe.
Collapse
Affiliation(s)
- Cindy Fitch
- West Virginia University, Morgantown, WV, USA
| | | | | |
Collapse
|
17
|
Taste Enhancement by Pulsatile Stimulation Is Receptor Based But Independent of Receptor Type. CHEMOSENS PERCEPT 2012; 5:179-187. [PMID: 22611466 PMCID: PMC3343238 DOI: 10.1007/s12078-012-9126-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 04/09/2012] [Indexed: 10/28/2022]
Abstract
Effects of subjects' taste sensitivity (expressed as taste detection threshold), tastant quality and taste transduction mechanism on pulsation-induced taste enhancement were tested. Taste intensities of pulsatile MSG and NaCl stimuli at pulsation periods below, at and above individual taste fusion periods (TFP in seconds) were compared to taste intensities of a continuous reference of the same net tastant concentration and quality. In line with results previously reported for sucrose, pulsation-induced taste enhancement peaked around TFP for both MSG and NaCl and did not require perception of tastant pulsation. TFP and pulsation effects were independent of the taste transduction mechanism (G-protein-coupled receptor for MSG versus ion-channel for NaCl). The absence of a relation between TFP and taste sensitivity suggests that temporal gustatory resolution and taste sensitivity are not necessarily influenced by the same factors. The results support earlier findings that early stages of taste transduction are involved in pulsation-induced taste enhancement. Pulsation-induced taste enhancement is determined by the pulsation rate (i.e. TFP) which is longer for MSG than NaCl. This is probably due to the tastant-specific interaction with the receptor rather than the taste transduction mechanism (G-protein-coupled receptor versus ion-channel) involved.
Collapse
|
18
|
DuBois GE, Prakash I. Non-caloric sweeteners, sweetness modulators, and sweetener enhancers. Annu Rev Food Sci Technol 2012; 3:353-80. [PMID: 22224551 DOI: 10.1146/annurev-food-022811-101236] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For a new sweetness technology to realize strong commercial success, it must be safe, exhibit good taste quality, be sufficiently soluble and stable in food and beverage systems, and be cost effective and patentable. Assessments of the commercial promise of eight synthetic and eight natural non-caloric sweeteners are made relevant to these metrics. High-potency (HP) non-caloric sweeteners, both synthetic and natural, are generally limited in taste quality by (a) low maximal sweetness response, (b) "off" tastes, (c) slow-onset sweet tastes that linger, and (d) sweet tastes that adapt or desensitize the gustatory system. Formulation approaches to address these limitations are discussed. Enhancement of the normal sucrose sensory response by action of a sweetener receptor positive allosteric modulator (PAM) has been achieved with very significant calorie reduction and with retention of the taste quality of sucrose. Research on PAM discovery over the past decade is summarized.
Collapse
|
19
|
Mattes RD. Accumulating evidence supports a taste component for free fatty acids in humans. Physiol Behav 2011; 104:624-31. [PMID: 21557960 PMCID: PMC3139746 DOI: 10.1016/j.physbeh.2011.05.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/13/2011] [Accepted: 05/03/2011] [Indexed: 01/22/2023]
Abstract
The requisite criteria for what constitutes a taste primary have not been established. Recent advances in understanding of the mechanisms and functions of taste have prompted suggestions for an expanded list of unique taste sensations, including fat, or more specifically, free fatty acids (FFA). A set of criteria are proposed here and the data related to FFA are reviewed on each point. It is concluded that the data are moderate to strong that there are: A) adaptive advantages to FFA detection in the oral cavity; B) adequate concentrations of FFA to serve as taste stimuli; C) multiple complimentary putative FFA receptors on taste cells; D) signals generated by FFA that are conveyed by gustatory nerves; E) sensations generated by FFA that can be detected and scaled by psychophysical methods in humans when non-gustatory cues are masked; and F) physiological responses to oral fat/FFA exposure. On no point is there strong evidence challenging these observations. The reviewed findings are suggestive, albeit not definitive, that there is a taste component for FFA.
Collapse
Affiliation(s)
- Richard D Mattes
- Department of Foods and Nutrition, Purdue University, 700 W State Street, West Lafayette, IN 47907-2059, USA.
| |
Collapse
|
20
|
DuBois GE. Validity of early indirect models of taste active sites and advances in new taste technologies enabled by improved models. FLAVOUR FRAG J 2011. [DOI: 10.1002/ffj.2042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Grant E DuBois
- Research and Technologies Department; The Coca-Cola Company; Atlanta; GA 30313; USA
| |
Collapse
|
21
|
Smeets PA, Weijzen P, de Graaf C, Viergever MA. Consumption of caloric and non-caloric versions of a soft drink differentially affects brain activation during tasting. Neuroimage 2011; 54:1367-74. [DOI: 10.1016/j.neuroimage.2010.08.054] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 08/17/2010] [Accepted: 08/21/2010] [Indexed: 10/19/2022] Open
|
22
|
Zhang Y, Kolli T, Hivley R, Jaber L, Zhao FI, Yan J, Herness S. Characterization of the expression pattern of adrenergic receptors in rat taste buds. Neuroscience 2010; 169:1421-37. [PMID: 20478367 DOI: 10.1016/j.neuroscience.2010.05.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/03/2010] [Accepted: 05/11/2010] [Indexed: 12/01/2022]
Abstract
Taste buds signal the presence of chemical stimuli in the oral cavity to the central nervous system using both early transduction mechanisms, which allow single cells to be depolarized via receptor-mediated signaling pathways, and late transduction mechanisms, which involve extensive cell-to-cell communication among the cells in the bud. The latter mechanisms, which involve a large number of neurotransmitters and neuropeptides, are less well understood. Among neurotransmitters, multiple lines of evidence suggest that norepinephrine plays a yet unknown role in the taste bud. This study investigated the expression pattern of adrenergic receptors in the rat posterior taste bud. Expression of alpha1A, alpha1B, alpha1D, alpha2A, alpha2B, alpha2C, beta1, and the beta2 adrenoceptor subtypes was observed in taste buds using RT-PCR and immunocytochemical techniques. Taste buds also expressed the biosynthetic enzyme for norepinephrine, dopamine beta-hydroxylase (DbetaH), as well as the norepinephrine transporter. Further, expression of the epinephrine synthetic enzyme, phenylethanolamine N-methyltransferase (PNMT), was observed suggesting a possible role for this transmitter in the bud. Phenotyping adrenoceptor expression patterns with double labeling experiments to gustducin, synaptosomal-associated protein 25 (SNAP-25), and neural cell adhesion molecule (NCAM) suggests they are prominently expressed in subsets of cells known to express taste receptor molecules but segregated from cells known to have synapses with the afferent nerve fiber. Alpha and beta adrenoceptors co-express with one another in unique patterns as observed with immunocytochemistry and single cell reverse transcription polymerase chain reaction (RT-PCR). These data suggest that single cells express multiple adrenergic receptors and that adrenergic signaling may be particularly important in bitter, sweet, and umami taste qualities. In summary, adrenergic signaling in the taste bud occurs through complex pathways that include presynaptic and postsynaptic receptors and likely play modulatory roles in processing of gustatory information similar to other peripheral sensory systems such as the retina, cochlea, and olfactory bulb.
Collapse
Affiliation(s)
- Y Zhang
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, School of Medicine, Xi'an Jiaotong University, 76# West Yanta Road, Xi'an 710061, PR China
| | | | | | | | | | | | | |
Collapse
|
23
|
Meyerhof W, Batram C, Kuhn C, Brockhoff A, Chudoba E, Bufe B, Appendino G, Behrens M. The Molecular Receptive Ranges of Human TAS2R Bitter Taste Receptors. Chem Senses 2009; 35:157-70. [DOI: 10.1093/chemse/bjp092] [Citation(s) in RCA: 757] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Abstract
Taste is a chemical sense that aids in the detection of nutrients and guides food choice. A limited number of primary qualities comprise taste. Accumulating evidence has raised a question about whether fat should be among them. Most evidence indicates triacylglycerol is not an effective taste stimulus, though it clearly contributes sensory properties to foods by carrying flavor compounds and altering texture. However, there is increasing anatomical, electrophysiological, animal behavior, imaging, metabolic, and psychophysical evidence that free fatty acids are detectable when non-taste cues are minimized. Free fatty acids varying in saturation and chain length are detectable, suggesting the presence of multiple transduction mechanisms and/or a nonspecific mechanism in the oral cavity. However, confirmation of "fatty" as a taste primary will require additional studies that verify these observations are taste specific. Oral exposure to free fatty acids likely serves as a warning signal to discourage intake and influences lipid metabolism.
Collapse
|
25
|
|
26
|
Mattes RD. Oral thresholds and suprathreshold intensity ratings for free fatty acids on 3 tongue sites in humans: implications for transduction mechanisms. Chem Senses 2009; 34:415-23. [PMID: 19357229 PMCID: PMC2720690 DOI: 10.1093/chemse/bjp015] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2009] [Indexed: 12/29/2022] Open
Abstract
Multiple putative free fatty acid (FFA) transduction mechanisms have been identified in the oral cavity. They reportedly differ in their distribution on the tongue and each has a unique range of ligand specificities. This suggests that there should be regional differences in sensory responses to varying FFAs. This was assessed through spatial testing with caproic (C), lauric (L), and stearic (S) FFAs among 35 healthy adults. Stimuli were applied to the fungiform (FU), foliate (FO), and circumvallate (CV) papillae with a cotton-tipped applicator. Oral detection thresholds were measured by an ascending, 3-alternative, forced-choice, sip and spit procedure. Intensity ratings were obtained on the general labeled magnitude scale. Nongustatory cues were minimized by testing with the nares blocked, eyes covered, and by masking tactile cues with the addition of gum acacia and mineral oil to the stimuli vehicle. Thresholds were obtained from nearly all individuals at each site, and the concentration was similar across the 3 FFAs. Absolute intensity ratings differed significantly with C > L > S overall and at the CV and FO papillae. At the FU papillae, the L and S ratings were comparable. Ratings were highest at the FU followed by the CV and then the FO papillae. Slopes of the concentration-intensity rating functions were higher for L compared with C and S at the CV papillae as well as both L and C compared with S at the FO papillae. However, overall, slopes were comparable across sites. These findings strengthen evidence for oral FFA perception in humans by replicating threshold sensitivity findings and documenting monotonic scaling ability for these stimuli. Further, they challenge current views on transduction as sensory responsiveness was observed at tongue sites not predicted to support FFA detection.
Collapse
Affiliation(s)
- Richard D Mattes
- Department of Foods and Nutrition, Purdue University, West Lafayette, IN 47907-2059, USA.
| |
Collapse
|
27
|
Abstract
A greater understanding of the molecular mechanisms of sweet taste has profound significance for the food industry as well as for consumers. Understanding the mechanism by which sweet taste is elicited by saccharides, peptides, and proteins will assist science and industry in their search for sweet substances with fewer negative health effects. The original AH-B theories have been supplanted by detailed structural models. Recent identification of the human sweet receptor as a dimeric G-protein coupled receptor comprising T1R2 and T1R3 subunits has greatly increased the understanding of the mechanisms involved in sweet molecule binding and sweet taste transduction. This review discusses early theories of the sweet receptor, recent research of sweetener chemoreception of nonprotein and protein ligands, homology modeling, the transduction pathway, the possibility of the sweet receptor functioning allosterically, as well as the implications of allelic variation.
Collapse
Affiliation(s)
- B Meyers
- NutraSweet Co., Chicago, IL 60654, USA
| | | |
Collapse
|
28
|
Mattes RD. Oral detection of short-, medium-, and long-chain free fatty acids in humans. Chem Senses 2008; 34:145-50. [PMID: 19091695 DOI: 10.1093/chemse/bjn072] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
There is increasing evidence supporting an oral chemosensory detection system for free fatty acids (FFA). The presumptive transduction mechanisms have different ligand specificities. Psychophysical studies with FFA varying in chain length and saturation may aid in identifying the presence and functionality of these mechanisms in humans. Oral detection thresholds were measured for linoleic, stearic, lauric, and caproic acids in 32 healthy adults by an ascending, 3-alternative, forced-choice, sip and spit procedure. Thresholds were obtained for all fatty acids from all participants, but the distributions were wide and nonnormal. Thresholds were not correlated between fatty acids nor with thresholds for sucrose (taste), butanol (olfactory), mineral oil, or gum acacia (both somatosensory). These data demonstrate human oral sensitivity to short-, medium-, and long-chain FFA and suggest the presence of multiple transduction mechanisms. The findings are consistent with, but do not definitively demonstrate, a role for taste that may have a genetic basis.
Collapse
Affiliation(s)
- Richard D Mattes
- Department of Foods and Nutrition, Purdue University, 212 Stone Hall, 700 West State Street, West Lafayette, IN 47907-2059, USA.
| |
Collapse
|
29
|
Zhao FL, Herness S. Resynthesis of phosphatidylinositol 4,5-bisphosphate mediates adaptation of the caffeine response in rat taste receptor cells. J Physiol 2008; 587:363-77. [PMID: 19047199 DOI: 10.1113/jphysiol.2008.165167] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Caffeine, a prototypic bitter stimulus, produces several physiological actions on taste receptor cells that include inhibition of KIR and KV potassium currents and elevations of intracellular calcium. These responses display adaptation, i.e. their magnitude diminishes in the sustained presence of the stimulus. Levels of the membrane lipid phosphatidylinositol-4,5-bisphosphate (PIP2) are well known to modulate many potassium channels, activating the channel by stabilizing its open state. Here we investigate a putative relationship of KIR and KV with PIP2 levels hypothesizing that inhibition of these currents by caffeine might be allayed by PIP2 resynthesis. Using standard patch-clamp techniques, recordings of either potassium current from rat posterior taste receptor cells produced essentially parallel results when PIP2 levels were manipulated pharmacologically. Increasing PIP2 levels by blocking phosphoinositide-3 kinase with wortmannin or LY294002, or by blocking phospholipase C with U73122 all significantly increased the incidence of adaptation for both KIR and KV. Conversely, lowering PIP2 synthesis by blocking PI4K or using the PIP2 scavengers polylysine or bovine serum albumin reduced the incidence of adaptation. Adaptation could be modulated by activation of protein kinase C but not calcium calmodulin kinase. Collectively, these data support two highly novel conclusions: potassium currents in taste receptor cells are significantly modulated by PIP2 levels and PIP2 resynthesis may play a central role in the gustatory adaptation process at the primary receptor cell level.
Collapse
Affiliation(s)
- Fang-Li Zhao
- College of Dentistry, Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
30
|
The capsaicin receptor participates in artificial sweetener aversion. Biochem Biophys Res Commun 2008; 376:653-7. [PMID: 18804451 DOI: 10.1016/j.bbrc.2008.09.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 09/05/2008] [Indexed: 11/22/2022]
Abstract
Artificial sweeteners such as saccharin, aspartame, acesulfame-K, and cyclamate produce at high concentrations an unpleasant after-taste that is generally attributed to bitter and metallic taste sensations. To identify receptors involved with the complex perception of the above compounds, preference tests were performed in wild-type mice and mice lacking the TRPV1 channel or the T1R3 receptor, the latter being necessary for the perception of sweet taste. The sweeteners, including cyclamate, displayed a biphasic response profile, with the T1R3 mediated component implicated in preference. At high concentrations imparting off-taste, omission of TRPV1 reduced aversion. In a heterologous expression system the Y511A point mutation in the vanilloid pocket of TRPV1 did not affect saccharin and aspartame responses but abolished cyclamate and acesulfame-K activities. The results rationalize artificial sweetener tastes and off-tastes by showing that at low concentrations, these molecules stimulate the gustatory system through the hedonically positive T1R3 pathway, and at higher concentrations, their aversion is partly mediated by TRPV1.
Collapse
|
31
|
|
32
|
Brockhoff A, Behrens M, Massarotti A, Appendino G, Meyerhof W. Broad tuning of the human bitter taste receptor hTAS2R46 to various sesquiterpene lactones, clerodane and labdane diterpenoids, strychnine, and denatonium. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:6236-43. [PMID: 17595105 DOI: 10.1021/jf070503p] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Sesquiterpene lactones are a major class of natural bitter compounds occurring in vegetables and culinary herbs as well as in aromatic and medicinal plants, where they often represent the main gustatory and pharmacologically active component. Investigations on sesquiterpene lactones have mainly focused on their bioactive potential rather than on their sensory properties. In the present study, we report about the stimulation of heterologously expressed human bitter taste receptors, hTAS2Rs, by the bitter sesquiterpene lactone herbolide D. A specific response to herbolide D was observed i.a. for hTAS2R46, a so far orphan bitter taste receptor without any known ligand. By further investigation of its agonist pattern, we characterized hTAS2R46 as a bitter receptor broadly tuned to sesquiterpene lactones and to clerodane and labdane diterpenoids as well as to the unrelated bitter substances strychnine and denatonium.
Collapse
Affiliation(s)
- Anne Brockhoff
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | | | | | | | | |
Collapse
|
33
|
Riera CE, Vogel H, Simon SA, le Coutre J. Artificial sweeteners and salts producing a metallic taste sensation activate TRPV1 receptors. Am J Physiol Regul Integr Comp Physiol 2007; 293:R626-34. [PMID: 17567713 DOI: 10.1152/ajpregu.00286.2007] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Throughout the world many people use artificial sweeteners (AS) for the purpose of reducing caloric intake. The most prominently used of these molecules include saccharin, aspartame (Nutrasweet), acesulfame-K, and cyclamate. Despite the caloric advantage they provide, one key concern in their use is their aversive aftertaste that has been characterized on a sensory level as bitter and/or metallic. Recently, it has been shown that the activation of particular T2R bitter taste receptors is partially involved with the bitter aftertaste sensation of saccharin and acesulfame-K. To more fully understand the biology behind these phenomena we have addressed the question of whether AS could stimulate transient receptor potential vanilloid-1 (TRPV1) receptors, as these receptors are activated by a large range of structurally different chemicals. Moreover, TRPV1 receptors and/or their variants are found in taste receptor cells and in nerve terminals throughout the oral cavity. Hence, TRPV1 activation could be involved in the AS aftertaste or even contribute to the poorly understood metallic taste sensation. Using Ca(2+) imaging on TRPV1 receptors heterologously expressed in the human embryonic kidney (HEK) 293 cells and on dissociated primary sensory neurons, we find that in both systems, AS activate TRPV1 receptors, and, moreover, they sensitize these channels to acid and heat. We also found that TRPV1 receptors are activated by CuSO(4), ZnSO(4), and FeSO(4), three salts known to produce a metallic taste sensation. In summary, our results identify a novel group of compounds that activate TRPV1 and, consequently, provide a molecular mechanism that may account for off tastes of sweeteners and metallic tasting salts.
Collapse
Affiliation(s)
- Céline E Riera
- Nestlé Research Center, P.O. Box 44, CH-1000 Lausanne 26, Switzerland
| | | | | | | |
Collapse
|
34
|
Abstract
Heterotrimeric G protein-coupled receptors (GPCRs) are found on the surface of all cells of multicellular organisms and are major mediators of intercellular communication. More than 800 distinct GPCRs are present in the human genome, and individual receptor subtypes respond to hormones, neurotransmitters, chemokines, odorants, or tastants. GPCRs represent the most widely targeted pharmacological protein class. Because drugs that target GPCRs often engage receptor regulatory mechanisms that limit drug effectiveness, particularly in chronic treatment, there is great interest in understanding how GPCRs are regulated, as a basis for designing therapeutic drugs that evade this regulation. The major GPCR regulatory pathway involves phosphorylation of activated receptors by G protein-coupled receptor kinases (GRKs), followed by binding of arrestin proteins, which prevent receptors from activating downstream heterotrimeric G protein pathways while allowing activation of arrestin-dependent signaling pathways. Although the general mechanisms of GRK-arrestin regulation have been well explored in model cell systems and with purified proteins, much less is known about the role of GRK-arrestin regulation of receptors in physiological and pathophysiological settings. This review focuses on the physiological functions and potential pathophysiological roles of GRKs and arrestins in human disorders as well as on recent studies using knockout and transgenic mice to explore the role of GRK-arrestin regulation of GPCRs in vivo.
Collapse
Affiliation(s)
- Richard T Premont
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|