1
|
Okino R, Mukai K, Oguri S, Masuda M, Watanabe S, Yoneyama Y, Nagaosa S, Miyamoto T, Mochizuki A, Takahashi SI, Hakuno F. IGF-I concentration determines cell fate by converting signaling dynamics as a bifurcation parameter in L6 myoblasts. Sci Rep 2024; 14:20699. [PMID: 39237579 PMCID: PMC11377782 DOI: 10.1038/s41598-024-71739-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024] Open
Abstract
Insulin-like growth factor (IGF)-I mediates long-term activities that determine cell fate, including cell proliferation and differentiation. This study aimed to characterize the mechanisms by which IGF-I determines cell fate from the aspect of IGF-I signaling dynamics. In L6 myoblasts, myogenic differentiation proceeded under low IGF-I levels, whereas proliferation was enhanced under high levels. Mathematical and experimental analyses revealed that IGF-I signaling oscillated at low IGF-I levels but remained constant at high levels, suggesting that differences in IGF-I signaling dynamics determine cell fate. We previously reported that differential insulin receptor substrate (IRS)-1 levels generate a driving force for cell competition. Computational simulations and immunofluorescence analyses revealed that asynchronous IRS-1 protein oscillations were synchronized during myogenic processes through cell competition. Disturbances of cell competition impaired signaling synchronization and cell fusion, indicating that synchronization of IGF-I signaling oscillation is critical for myoblast cell fusion to form multinucleate myotubes.
Collapse
Affiliation(s)
- Ryosuke Okino
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Muscle Biology Laboratory, Research Team for Aging Science, Tokyo Metropolitan Institute for Geriatric and Gerontology (TMIG), Tokyo, Japan
| | - Kazuaki Mukai
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shunpei Oguri
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masato Masuda
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Faculty of Information Sciences and Arts, Toyo University, Saitama, Japan
| | - Satoshi Watanabe
- Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Yosuke Yoneyama
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sumine Nagaosa
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takafumi Miyamoto
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, Japan
- Cybermedicine Research Center, University of Tsukuba, Ibaraki, Japan
| | - Atsushi Mochizuki
- Laboratory of Mathematical Biology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shin-Ichiro Takahashi
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Fumihiko Hakuno
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
2
|
Kanakachari M, Ashwini R, Chatterjee RN, Bhattacharya TK. Embryonic transcriptome unravels mechanisms and pathways underlying embryonic development with respect to muscle growth, egg production, and plumage formation in native and broiler chickens. Front Genet 2022; 13:990849. [PMID: 36313432 PMCID: PMC9616467 DOI: 10.3389/fgene.2022.990849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Muscle development, egg production, and plumage colors are different between native and broiler chickens. The study was designed to investigate why improved Aseel (PD4) is colorful, stronger, and grew slowly compared with the control broiler (CB). Methods: A microarray was conducted using the 7th-day embryo (7EB) and 18th-day thigh muscle (18TM) of improved Aseel and broiler, respectively. Also, we have selected 24 Gallus gallus candidate reference genes from NCBI, and total RNA was isolated from the broiler, improved Aseel embryo tissues, and their expression profiles were studied by real-time quantitative PCR (qPCR). Furthermore, microarray data were validated with qPCR using improved Aseel and broiler embryo tissues. Results: In the differential transcripts screening, all the transcripts obtained by microarray of slow and fast growth groups were screened by fold change ≥ 1 and false discovery rate (FDR) ≤ 0.05. In total, 8,069 transcripts were differentially expressed between the 7EB and 18TM of PD4 compared to the CB. A further analysis showed that a high number of transcripts are differentially regulated in the 7EB of PD4 (6,896) and fewer transcripts are differentially regulated (1,173) in the 18TM of PD4 compared to the CB. On the 7th- and 18th-day PD4 embryos, 3,890, 3,006, 745, and 428 transcripts were up- and downregulated, respectively. The commonly up- and downregulated transcripts are 91 and 44 between the 7th- and 18th-day of embryos. In addition, the best housekeeping gene was identified. Furthermore, we validated the differentially expressed genes (DEGs) related to muscle growth, myostatin signaling and development, and fatty acid metabolism genes in PD4 and CB embryo tissues by qPCR, and the results correlated with microarray expression data. Conclusion: Our study identified DEGs that regulate the myostatin signaling and differentiation pathway; glycolysis and gluconeogenesis; fatty acid metabolism; Jak-STAT, mTOR, and TGF-β signaling pathways; tryptophan metabolism; and PI3K-Akt signaling pathways in PD4. The results revealed that the gene expression architecture is present in the improved Aseel exhibiting embryo growth that will help improve muscle development, differentiation, egg production, protein synthesis, and plumage formation in PD4 native chickens. Our findings may be used as a model for improving the growth in Aseel as well as optimizing the growth in the broiler.
Collapse
Affiliation(s)
- M. Kanakachari
- ICAR-Directorate of Poultry Research, Hyderabad, India
- EVA.4 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - R. Ashwini
- ICAR-Directorate of Poultry Research, Hyderabad, India
| | | | - T. K. Bhattacharya
- ICAR-Directorate of Poultry Research, Hyderabad, India
- *Correspondence: T. K. Bhattacharya,
| |
Collapse
|
3
|
Okino R, Usui A, Yoneyama Y, Takahashi SI, Hakuno F. Myoblasts With Higher IRS-1 Levels Are Eliminated From the Normal Cell Layer During Differentiation. Front Endocrinol (Lausanne) 2020; 11:96. [PMID: 32180762 PMCID: PMC7059307 DOI: 10.3389/fendo.2020.00096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Insulin receptor substrate (IRS)-1 is a major substrate of insulin-like growth factor (IGF)-I receptors. It is well-known that IGF-I and II play essential roles in myogenesis progression. Herein, we report an unexpected phenomenon that IRS-1-overexpressing L6 myoblasts are eliminated from normal cell layers at the beginning of differentiation. Initially, the IRS protein level and apoptosis were examined during myogenic differentiation in L6 myoblasts. We found that the IRS-1 protein level decreased, whereas active caspase 3 increased around 1 day after induction of differentiation. The addition of a pan-caspase inhibitor, Z-VAD-FMK, inhibited differentiation-induced suppression of the IRS-1 protein level. Apoptosis was not enhanced in L6 myoblasts stably expressing high levels of IRS-1 (L6-IRS-1). However, when L6-IRS-1 was cultured with control cells (L6-mock), we observed that L6-IRS-1 was eliminated from the cell layer. We have recently reported that, in L6-IRS-1, internalization of the IGF-I receptor was delayed and IGF signal activation was sustained for a longer period than in L6-mock. When cells stably expressing IRS-1 3YA mutant, which could not maintain the IGF signals, were cultured with normal cells, elimination from the cell layer was not detected. These data suggested that the high level of IRS-1 in myoblasts induces elimination from the cell layer due to abnormal sustainment of IGF-I receptor activation.
Collapse
Affiliation(s)
- Ryosuke Okino
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ami Usui
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yosuke Yoneyama
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin-Ichiro Takahashi
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Fumihiko Hakuno
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Laboratory of Cell Regulation, Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- *Correspondence: Fumihiko Hakuno
| |
Collapse
|
4
|
Scicchitano BM, Dobrowolny G, Sica G, Musarò A. Molecular Insights into Muscle Homeostasis, Atrophy and Wasting. Curr Genomics 2018; 19:356-369. [PMID: 30065611 PMCID: PMC6030854 DOI: 10.2174/1389202919666180101153911] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Muscle homeostasis is guaranteed by a delicate balance between synthesis and degradation of cell proteins and its alteration leads to muscle wasting and diseases. In this review, we describe the major anabolic pathways that are involved in muscle growth and homeostasis and the proteolytic systems that are over-activated in muscle pathologies. Modulation of these pathways comprises an attractive target for drug intervention.
Collapse
Affiliation(s)
- Bianca Maria Scicchitano
- Istituto di Istologia e Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Largo Francesco Vito 1-00168, Roma, Italy
| | - Gabriella Dobrowolny
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Gigliola Sica
- Istituto di Istologia e Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Largo Francesco Vito 1-00168, Roma, Italy
| | - Antonio Musarò
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
5
|
Kasemkijwattana C, Menetrey J, Somogyl G, Moreland MS, Fu FH, Buranapanitkit B, Watkins SC, Huard J. Development of Approaches to Improve the Healing following Muscle Contusion. Cell Transplant 2017; 7:585-98. [PMID: 9853587 DOI: 10.1177/096368979800700609] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Muscle injuries are a challenging problem in traumatology, and the most frequent occurrence in sports medicine. Muscle contusions are among the most common muscle injuries. Although this injury is capable of healing, an incomplete functional recovery often occurs, depending on the severity of the blunt trauma. We have developed an animal model of muscle contusion in mice (high energy blunt trauma) and characterized the muscle's ability to heal following this injury using histology and immunohistochemistry to determine the level of muscle regeneration and the development of scar tissue. We have observed a massive muscle regeneration occurring in the first 2 wk postinjury that is subsequently followed by the development of muscle fibrosis. Based on these observations, we propose that the enhancement of muscle growth and regeneration, as well as the prevention of fibrotic development, could be used as approach(es) to improve the healing of muscle injuries. In fact, we have identified three growth factors (bFGF, IGF-1, and NGF) capable of enhancing myoblast proliferation and differentiation in vitro and improving the healing of the injured muscle in vivo. Furthermore, the ability of adenovirus to mediate direct and ex vivo gene transfer of β-galactosidase into the injured site opens possibilities of delivering an efficient and persistent expression of these growth factors in the injured muscle. These studies should help in the development of strategies to promote efficient muscle healing with complete functional recovery following muscle contusion. © 1998 Elsevier Science Inc.
Collapse
Affiliation(s)
- C Kasemkijwattana
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, University of Pittsburgh, and Children's Hospital of Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Kirk SP, Oldham JM, Jeanplong F, Bass JJ. Insulin-like Growth Factor-II Delays Early but Enhances Late Regeneration of Skeletal Muscle. J Histochem Cytochem 2016; 51:1611-20. [PMID: 14623929 DOI: 10.1177/002215540305101205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This study tested whether administration of insulin-like growth factor-II (IGF-II) enhances muscle regeneration. Rat biceps femoris muscle was damaged with notexin and then IGF-II was administered for up to 7 days. Results show that the proportion of nuclei containing or surrounded by immunoreactivity to MyoD, myogenin, and developmental myosin heavy chain (dMHC) is less in the IGF-II treatment group relative to the control group on days 1 (p=0.057), 2 (p=0.034), and 3 (p=0.047), respectively. This indicates a delay in muscle precursor cell (MPC) proliferation and differentiation with IGF-II administration. This effect was not associated with decreased binding capacity of the type 1 IGF receptor, as determined by receptor autoradiography in day 1 muscle sections (NS), but was associated with inhibition of phagocytic processes. The cross-sectional area of regenerating muscle fibers was significantly greater in the IGF-II treatment group than in the control group by day 7 (p=0.0092). The enhancing effect of IGF-II on late muscle regeneration, when the main process taking place is fiber enlargement, coincides with the period in which IGF-II is normally expressed by regenerating muscle, indicating that greater endogenous production of IGF-II would be associated with improved regeneration.
Collapse
Affiliation(s)
- Sonnie P Kirk
- Functional Muscle Genomics, AgResearch, Ruakura Agricultural Research Centre, Hamilton, New Zealand
| | | | | | | |
Collapse
|
7
|
Gradari S, Pallé A, McGreevy KR, Fontán-Lozano Á, Trejo JL. Can Exercise Make You Smarter, Happier, and Have More Neurons? A Hormetic Perspective. Front Neurosci 2016; 10:93. [PMID: 27013955 PMCID: PMC4789405 DOI: 10.3389/fnins.2016.00093] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/23/2016] [Indexed: 11/15/2022] Open
Abstract
Exercise can make you smarter, happier and have more neurons depending on the dose (intensity) of the training program. It is well recognized that exercise protocols induce both positive and negative effects depending on the intensity of the exercise, among other key factors, a process described as a hormetic-like biphasic dose-response. However, no evidences have been reported till very recently about the biphasic response of some of the potential mediators of the exercise-induced actions. This hypothesis and theory will focus on the adult hippocampal neurogenesis (AHN) as a putative physical substrate for hormesis responses to exercise in the context of exercise-induced actions on cognition and mood, and on the molecular pathways which might potentially be mediating these actions.
Collapse
Affiliation(s)
- Simona Gradari
- Laboratory of Adult Neurogenesis, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Anna Pallé
- Laboratory of Adult Neurogenesis, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Kerry R McGreevy
- Laboratory of Adult Neurogenesis, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Ángela Fontán-Lozano
- Laboratory of Adult Neurogenesis, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - José L Trejo
- Laboratory of Adult Neurogenesis, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas Madrid, Spain
| |
Collapse
|
8
|
Li Z, Gilbert JA, Zhang Y, Zhang M, Qiu Q, Ramanujan K, Shavlakadze T, Eash JK, Scaramozza A, Goddeeris MM, Kirsch DG, Campbell KP, Brack AS, Glass DJ. An HMGA2-IGF2BP2 axis regulates myoblast proliferation and myogenesis. Dev Cell 2012. [PMID: 23177649 DOI: 10.1016/j.devcel.2012.10.019] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A group of genes that are highly and specifically expressed in proliferating skeletal myoblasts during myogenesis was identified. Expression of one of these genes, Hmga2, increases coincident with satellite cell activation, and later its expression significantly declines correlating with fusion of myoblasts into myotubes. Hmga2 knockout mice exhibit impaired muscle development and reduced myoblast proliferation, while overexpression of HMGA2 promotes myoblast growth. This perturbation in proliferation can be explained by the finding that HMGA2 directly regulates the RNA-binding protein IGF2BP2. Add-back of IGF2BP2 rescues the phenotype. IGF2BP2 in turn binds to and controls the translation of a set of mRNAs, including c-myc, Sp1, and Igf1r. These data demonstrate that the HMGA2-IGF2BP2 axis functions as a key regulator of satellite cell activation and therefore skeletal muscle development.
Collapse
Affiliation(s)
- Zhizhong Li
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gharaibeh B, Chun-Lansinger Y, Hagen T, Ingham SJM, Wright V, Fu F, Huard J. Biological approaches to improve skeletal muscle healing after injury and disease. ACTA ACUST UNITED AC 2012; 96:82-94. [PMID: 22457179 DOI: 10.1002/bdrc.21005] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Skeletal muscle injury and repair are complex processes, including well-coordinated steps of degeneration, inflammation, regeneration, and fibrosis. We have reviewed the recent literature including studies by our group that describe how to modulate the processes of skeletal muscle repair and regeneration. Antiinflammatory drugs that target cyclooxygenase-2 were found to hamper the skeletal muscle repair process. Muscle regeneration phase can be aided by growth factors, including insulin-like growth factor-1 and nerve growth factor, but these factors are typically short-lived, and thus more effective methods of delivery are needed. Skeletal muscle damage caused by traumatic injury or genetic diseases can benefit from cell therapy; however, the majority of transplanted muscle cells (myoblasts) are unable to survive the immune response and hypoxic conditions. Our group has isolated neonatal skeletal muscle derived stem cells (MDSCs) that appear to repair muscle tissue in a more effective manner than myoblasts, most likely due to their better resistance to oxidative stress. Enhancing antioxidant levels of MDSCs led to improved regenerative potential. It is becoming increasingly clear that stem cells tissue repair by direct differentiation and paracrine effects leading to neovascularization of injured site and chemoattraction of host cells. The factors invoked in paracrine action are still under investigation. Our group has found that angiotensin II receptor blocker (losartan) significantly reduces fibrotic tissue formation and improves repair of murine injured muscle. Based on these data, we have conducted a case study on two hamstring injury patients and found that losartan treatment was well tolerated and possibly improved recovery time. We believe this medication holds great promise to optimize muscle repair in humans.
Collapse
Affiliation(s)
- Burhan Gharaibeh
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Willoughby CL, Christiansen SP, Mustari MJ, McLoon LK. Effects of the sustained release of IGF-1 on extraocular muscle of the infant non-human primate: adaptations at the effector organ level. Invest Ophthalmol Vis Sci 2012; 53:68-75. [PMID: 22125277 DOI: 10.1167/iovs.11-8356] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The authors have demonstrated that prolonged exposure of adult rabbit extraocular muscle (EOM) to insulin-like growth factor-1 (IGF-1) results in significantly increased cross-sectional area and muscle force generation lasting over 3 months. Here the authors assess the effects on EOM of sustained IGF-1 treatment on normal binocular infant Macaca mulatta. METHODS Sustained-release IGF-1 pellets were implanted bilaterally in each medial rectus (MR) muscle of two normal infant non-human primates. Eye position was examined using corneal light reflex testing. After 3 months, morphometric analyses of myofiber cross-sectional area and innervation density in treated MR muscles were compared with an age-matched control and with antagonist lateral rectus (LR) muscles. RESULTS After 3 months, the slow-release pellets remained at the implantation site in all four MR muscles treated. The treated MR showed pronounced increases in cross-sectional area and nerve density, mirrored in the untreated antagonist LR. CONCLUSIONS Three months of bilateral sustained IGF-1 release in infant non-human primate MR resulted in increased muscle size and innervation density, mirrored in the untreated antagonist LR. It appears that bilateral MR treatment resulted in slow adaptation of both treated MR and contralateral LR muscles over time such that functional homeostasis and near-normal alignment were maintained. Further work is needed to determine what signaling mechanisms maintain proportional innervation when EOMs are forced to adapt to an externally applied perturbation.
Collapse
Affiliation(s)
- Christy L Willoughby
- Department of Ophthalmology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
11
|
Liu HH, Wang JW, Chen X, Zhang RP, Yu HY, Jin HB, Li L, Han CC. In ovo administration of rhIGF-1 to duck eggs affects the expression of myogenic transcription factors and muscle mass during late embryo development. J Appl Physiol (1985) 2011; 111:1789-97. [PMID: 21885804 DOI: 10.1152/japplphysiol.00551.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In ovo administration of IGF-1 to poultry eggs has effective roles on post hatching muscle development. However, the secondary muscle development stages at the late embryo development stage are important for muscle fiber formation and differentiation. To investigate the roles of in ovo administration of IGF-1 on duck secondary muscle development, we injected rhIGF-1 into duck eggs in hatching at day 12. After administration on days 18, 21, 24, and 27 in hatching (E18d, E21d, E24d, and E27d, respectively), muscle samples were isolated, and the muscle tissue weight, muscle fiber parameters, and myoblast proliferation rate in leg and breast muscle were analyzed. Additionally, the expression levels of the transcription factors MyoG and MRF4 were detected using qPCR. Results show that embryo body weight and muscle fiber parameters, including muscle fiber diameter (MFD) and the number of myofibers per unit area, are upregulated in IGF-1-treated groups. Moreover, the transcription factors MyoG and MRF4 are expressed at higher levels in the experimental groups compared with the control groups. These results suggest that in ovo administration of IGF-1 to poultry eggs can mediate the expression of MyoG and MRF4, induce myoblast proliferation, and finally influence muscle development during the secondary muscle development stages.
Collapse
Affiliation(s)
- H H Liu
- Institute of Animal Breeding & Genetics, Sichuan Agricultural University, Ya’an, Sichuan, People’s Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang L, Zhang G, Lin F, Jiang B, Dong F, Liu H. Expression of the insulin-like growth factor system in skeletal muscle during embryonic and postnatal development in the first filial generation pigs from Erhualian and Yorkshire reciprocal crosses. Gen Comp Endocrinol 2011; 173:56-62. [PMID: 21570979 DOI: 10.1016/j.ygcen.2011.04.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/22/2011] [Accepted: 04/26/2011] [Indexed: 11/21/2022]
Abstract
In this study, we detected the expression of IGF-I, IGF-II, IGF-IR, IGF-IIR, and IGFBP-3 mRNA at 50 (E50), 70 (E70), and 90 (E90) days of gestation, and 1 (D1), 20 (D20), 70 (D70), 120 (D120), and 180 (D180) days of age in the longissimus dorsi (LD) and the semitendinosus (ST) of pigs from a Yorkshire boar×Erhualian sow (YE) cross as well as a Erhualian boar×Yorkshire sow (EY) cross. We found that the expression of IGF-I and IGF-II mRNA in skeletal muscle tissues differed based on developmental age and reciprocal cross type (P<0.05). The expression of IGF-I mRNA exhibited a fluctuant ascending trend. In contrast, IGF-II showed a fluctuant descending trend after birth. The levels of IGF-IR mRNA were higher before birth compared with after birth except for the ST of EY pigs at D120 (P<0.05). The expression of IGF-IIR and IGFBP-3 mRNA remarkably changed with age and reciprocal cross type (P<0.05). IGF-I, IGF-II, and IGFBP-3 mRNA were positively correlated with IGF-IR from 50E to 180D. These data suggest that the expression of IGF-system genes exhibits specific developmental patterns in the skeletal muscle tissues of pigs from reciprocal crosses at different developmental stages and may show linked expression during certain periods of development. Our results may provide a valuable resource for the molecular breeding of pigs.
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | |
Collapse
|
13
|
Al-Musawi SL, Lock F, Simbi BH, Bayol SAM, Stickland NC. Muscle specific differences in the regulation of myogenic differentiation in chickens genetically selected for divergent growth rates. Differentiation 2011; 82:127-35. [PMID: 21723031 PMCID: PMC3181402 DOI: 10.1016/j.diff.2011.05.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/03/2011] [Accepted: 05/27/2011] [Indexed: 12/15/2022]
Abstract
With the human population predicted to reach 9 billion by 2050, increasing food supplies while maintaining adequate standards of animal welfare has become a global priority. In the poultry industry, broilers are genetically selected for greater pectoral but not leg muscularity yield leading to leg disorders and thereby welfare issues. It is known that the pectoralis major of broilers contains more muscle fibres of larger diameters than egg-layers but little is known about the leg gastrocnemius muscle cellular characteristics. As muscle fibre numbers are set by hatch, the molecular regulation of myogenesis was investigated in pectoral (selected) and gastrocnemius (unselected) muscles of chick embryos to help explain diverging post-hatch phenotypes. Results showed that broilers were more active from embryonic day (ED) 8 and heavier from ED12 to 18 than layers. The pectoral muscle of broilers exhibited increased myoblast proliferation on ED15 (raised myonuclei, MyoD and PCNA) followed by increased differentiation from ED16 (raised myogenin, IGF-I) leading to increased muscle fibre hyperplasia and mass by ED18 compared to layers. In the gastrocnemius muscle of broilers, cell proliferation was also raised up to ED15 accompanied by increased PCNA, MyoD and IGF-I mRNAs. However, from ED16, myogenin and IGF-I mRNAs were similar to that of layers and PCNA was reduced leading to similar fibre area, nuclei numbers and muscle mass at ED18. We conclude that genetic selection for enhanced post-hatch pectoral muscle growth has altered the temporal expression of IGF-I and thereby myogenin transcription affecting cellular characteristics and mass by hatch in a muscle specific manner. These observations should help develop intervention strategies aimed at improving leg muscle strength and thereby animal welfare to meet growing consumer demand.
Collapse
Affiliation(s)
- Sara L Al-Musawi
- Department of Veterinary Basic Sciences, the Royal Veterinary College, London, United Kingdom.
| | | | | | | | | |
Collapse
|
14
|
Micke GC, Sullivan TM, McMillen IC, Gentili S, Perry VEA. Protein intake during gestation affects postnatal bovine skeletal muscle growth and relative expression of IGF1, IGF1R, IGF2 and IGF2R. Mol Cell Endocrinol 2011; 332:234-41. [PMID: 21056085 DOI: 10.1016/j.mce.2010.10.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 10/19/2010] [Accepted: 10/27/2010] [Indexed: 01/29/2023]
Abstract
Expression of insulin-like growth factor (IGF)1 and IGF2 and their receptor (IGF1R and IGF2R) mRNA in fetal skeletal muscle are changed by variations in maternal nutrient intake. The persistence of these effects into postnatal life and their association with phenotype in beef cattle is unknown. Here we report that the cross-sectional areas of longissimus dorsi and semitendinosus (ST) muscles were greater for mature male progeny born to heifers fed low protein diets (70% vs. 240% of recommended) during the first trimester. In ST, this was accompanied by greater IGF1, IGF2 and IGF2R mRNA at 680 d. Females exposed to low protein diets during the first trimester had decreased IGF2 mRNA in ST at 680 d, however this did not result in an effect to phenotype. Exposure to low protein diets during the second trimester increased IGF1R mRNA in ST of all progeny at 680 d. Changes to expression of IGF genes in progeny skeletal muscle resulting from variations to maternal protein intake during gestation may have permanent and sex-specific effect on postnatal skeletal muscle growth.
Collapse
MESH Headings
- Animals
- Cattle
- Dietary Proteins/metabolism
- Female
- Insulin-Like Growth Factor I/genetics
- Insulin-Like Growth Factor I/metabolism
- Insulin-Like Growth Factor II/genetics
- Insulin-Like Growth Factor II/metabolism
- Male
- Muscle, Skeletal/anatomy & histology
- Muscle, Skeletal/embryology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Phenotype
- Pregnancy
- Pregnancy Trimester, First
- RNA, Messenger/metabolism
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Receptor, IGF Type 2/genetics
- Receptor, IGF Type 2/metabolism
Collapse
Affiliation(s)
- G C Micke
- School of Veterinary Science, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | | | | | | |
Collapse
|
15
|
Lang T, Streeper T, Cawthon P, Baldwin K, Taaffe DR, Harris TB. Sarcopenia: etiology, clinical consequences, intervention, and assessment. Osteoporos Int 2010; 21:543-59. [PMID: 19779761 PMCID: PMC2832869 DOI: 10.1007/s00198-009-1059-y] [Citation(s) in RCA: 487] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Accepted: 08/18/2009] [Indexed: 02/07/2023]
Abstract
The aging process is associated with loss of muscle mass and strength and decline in physical functioning. The term sarcopenia is primarily defined as low level of muscle mass resulting from age-related muscle loss, but its definition is often broadened to include the underlying cellular processes involved in skeletal muscle loss as well as their clinical manifestations. The underlying cellular changes involve weakening of factors promoting muscle anabolism and increased expression of inflammatory factors and other agents which contribute to skeletal muscle catabolism. At the cellular level, these molecular processes are manifested in a loss of muscle fiber cross-sectional area, loss of innervation, and adaptive changes in the proportions of slow and fast motor units in muscle tissue. Ultimately, these alterations translate to bulk changes in muscle mass, strength, and function which lead to reduced physical performance, disability, increased risk of fall-related injury, and, often, frailty. In this review, we summarize current understanding of the mechanisms underlying sarcopenia and age-related changes in muscle tissue morphology and function. We also discuss the resulting long-term outcomes in terms of loss of function, which causes increased risk of musculoskeletal injuries and other morbidities, leading to frailty and loss of independence.
Collapse
Affiliation(s)
- T Lang
- Department of Radiology and Biomedical Imaging, University of California, UCSF, San Francisco, CA 94143-0946, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Melchionna R, Di Carlo A, De Mori R, Cappuzzello C, Barberi L, Musarò A, Cencioni C, Fujii N, Tamamura H, Crescenzi M, Capogrossi MC, Napolitano M, Germani A. Induction of myogenic differentiation by SDF-1 via CXCR4 and CXCR7 receptors. Muscle Nerve 2010; 41:828-35. [DOI: 10.1002/mus.21611] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Longobardi L, Granero-Moltó F, O'Rear L, Myers TJ, Li T, Kregor PJ, Spagnoli A. Subcellular localization of IRS-1 in IGF-I-mediated chondrogenic proliferation, differentiation and hypertrophy of bone marrow mesenchymal stem cells. Growth Factors 2009; 27:309-20. [PMID: 19639489 DOI: 10.1080/08977190903138874] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bone marrow derived mesenchymal stem cells (BM-MSC) can differentiate into chondrocytes. Understanding the mechanisms and growth factors that control the MSC stemness is critical to fully implement their therapeutic use in cartilage diseases. The activated type 1 insulin-like growth factor receptor (IGF-IR), interacting with the insulin receptor substrate-1 (IRS-1), can induce cancer cell proliferation and transformation. In cancer or transformed cells, IRS-1 has been shown to localize in the cytoplasm where it activates the canonical Akt pathway, as well as in the nucleus where it binds to nuclear proteins. We have previously demonstrated that IGF-I has distinct time-dependent effect on primary BM-MSC chondrogenic pellets: initially (2-day culture), IGF-I induces proliferation; subsequently, IGF-I promotes chondrocytic differentiation (7-day culture). In the present study, by using MSC from the BM of IRS-1(- / - ) mice we show that IRS-1 mediates almost 50% of the IGF-I mitogenic response and the MAPK-MEK/ERK signalling accounts for the other 50%. After stimulation with IGF-I, we found that in 2-day old human and mouse derived BM-MSC pellets, IRS-1 (total and phosphorylated) is nuclearly localized and that proliferation prevails over differentiation. The IGF-I mitogenic effect is Akt-independent. In 7-day MSC pellets, IGF-I stimulates the chondrogenic differentiation of MSC into chondrocytes, pre-hypertrophic and hypertrophic chondrocytes and IRS-1 accumulates in the cytoplasm. IGF-I-dependent differentiation is exclusively Akt-dependent. Our data indicate that in the physiologically relevant model of primary cultured MSC, IGF-I induces a temporally regulated nuclear or cytoplasmic localization of IRS-1 that correlate with the transition from proliferation to chondrogenic differentiation.
Collapse
Affiliation(s)
- Lara Longobardi
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7039, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Cellular and molecular mechanisms underlying age-related skeletal muscle wasting and weakness. Biogerontology 2008; 9:213-28. [PMID: 18299960 DOI: 10.1007/s10522-008-9131-0] [Citation(s) in RCA: 280] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2007] [Accepted: 02/06/2008] [Indexed: 01/02/2023]
Abstract
Some of the most serious consequences of ageing are its effects on skeletal muscle. The term 'sarcopenia' describes the slow but progressive loss of muscle mass with advancing age and is characterised by a deterioration of muscle quantity and quality leading to a gradual slowing of movement and a decline in strength. The loss of muscle mass and strength is thought to be attributed to the progressive atrophy and loss of individual muscle fibres associated with the loss of motor units, and a concomitant reduction in muscle 'quality' due to the infiltration of fat and other non-contractile material. These age-related changes in skeletal muscle can be largely attributed to the complex interaction of factors affecting neuromuscular transmission, muscle architecture, fibre composition, excitation-contraction coupling, and metabolism. Given the magnitude of the growing public health problems associated with sarcopenia, there is considerable interest in the development and evaluation of therapeutic strategies to attenuate, prevent, or ultimately reverse age-related muscle wasting and weakness. The aim is to review our current understanding of some of the cellular and molecular mechanisms responsible for age-related changes in skeletal muscle.
Collapse
|
19
|
Woodhouse LJ, Mukherjee A, Shalet SM, Ezzat S. The influence of growth hormone status on physical impairments, functional limitations, and health-related quality of life in adults. Endocr Rev 2006; 27:287-317. [PMID: 16543384 DOI: 10.1210/er.2004-0022] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The availability of recombinant human GH and somatostatin analogs has resulted in widespread treatment for adults with GH deficiency (GHD) and those with GH excess (acromegaly). Despite being at opposite ends of the spectrum in terms of their GH/IGF-I axis, both of these populations experience overlapping somatic impairments. Adults with untreated GHD have low circulating levels of IGF-I that manifest as altered body composition with increased fat and reduced lean body and skeletal muscle mass. At the other end of the spectrum, adults with GH excess, who have elevated levels of IGF-I, also have altered body composition. Impairments that result from disorders of either GHD or GH excess are both associated with increased functional limitations, such as reduced ability to walk quickly for prolonged periods, and poorer health-related quality of life (HR-QoL). Adults with untreated GHD and GH excess both commonly complain of excessive fatigue that seems to be associated more with impaired aerobic than muscular performance. Several studies have documented that administration of GH or somatostatin analogs to adults with GHD or GH excess, respectively, ameliorates abnormal biochemical profile and the associated somatic impairments. However, whether these improvements translate into improved physical function in adults with GHD or GH excess remains largely unknown, and their impact on HR-QoL controversial. Review of placebo-controlled trials to date suggests that GH and somatostatin analogs have greater effects on gas exchange and aerobic performance than as anabolic agents on skeletal muscle mass and function. Future investigations should include dose-response studies to establish the optimal combination of pharmacological agents plus exercise required to improve not only biochemical markers but also physical function and HR-QoL in adults with GHD or GH excess.
Collapse
Affiliation(s)
- Linda J Woodhouse
- School of Rehabilitation Science, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
20
|
Frago LM, Chowen JA. Basic Physiology of the Growth Hormone/Insulin-Like Growth Factor Axis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 567:1-25. [PMID: 16370134 DOI: 10.1007/0-387-26274-1_1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Laura M Frago
- Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, Departamento de Endocrinología, Spain
| | | |
Collapse
|
21
|
|
22
|
Fahey AJ, Brameld JM, Parr T, Buttery PJ. Ontogeny of factors associated with proliferation and differentiation of muscle in the ovine fetus1,2. J Anim Sci 2005; 83:2330-8. [PMID: 16160044 DOI: 10.2527/2005.83102330x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The number of muscle fibers within a muscle has been found to be of high importance for the growth potential of an animal, and this number is set during fetal development. The objective of this study was to identify the ontogeny of muscle cell differentiation and fiber formation by observing the changes in expression of factors known to influence myoblast proliferation and differentiation. Twenty-one Swaledale x Leicester Blue Face ewes carrying twins were allotted to this trial. From d 40 of gestation, three ewes were killed every 15 d until term. At each time point, the fetuses were located, removed, and total muscle from both hind limbs was dissected from each fetus and snap frozen in liquid N2. Ribonuclease protection assays were used to quantify transcripts for IGF-I, IGF-II, GH receptor (GHR), and myostatin genes in the muscle samples, whereas quantitative real-time PCR was used to quantify myogenin transcripts. Histological sections also were taken from the fetal muscle samples and observed for evidence of muscle differentiation resulting in fiber formation. The abundance of mRNA for ovine IGF-II and ovine myogenin peaked at d 85 of gestation (P < 0.001). The abundance of ovine IGF-I transcripts peaked at d 100 of gestation, whereas the abundance of ovine GHR mRNA increased throughout gestation (P < 0.05). No change (P = 0.87) in the abundance of myostatin mRNA was observed. The histological sections from the muscle samples demonstrated a clear change in the appearance of the muscle tissue at each time period. Major fiber formation was observed around d 85. The results obtained from the analysis of gene expression and the histological sections suggest that the majority of muscle differentiation and fiber formation takes place around d 85, with myoblast proliferation mainly occurring before this time. It may be possible to manipulate the number of muscle fibers formed by targeting treatments during this proliferation stage immediately before the period of major fiber formation.
Collapse
Affiliation(s)
- A J Fahey
- Division of Nutritional Sciences, School of Biosciences, Sutton Bonington Campus, The University of Nottingham, Leicestershire LE12 5RD, UK
| | | | | | | |
Collapse
|
23
|
Araya R, Riquelme MA, Brandan E, Sáez JC. The formation of skeletal muscle myotubes requires functional membrane receptors activated by extracellular ATP. ACTA ACUST UNITED AC 2005; 47:174-88. [PMID: 15572171 DOI: 10.1016/j.brainresrev.2004.06.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2004] [Indexed: 10/26/2022]
Abstract
Skeletal muscle differentiation follows an organized sequence of events including commitment, cell cycle withdrawal, and cell fusion to form multinucleated myotubes. The role of adenosine 5'-triphosphate (ATP)-mediated signaling in differentiation of skeletal muscle myoblasts was evaluated in C(2)C(12) cells, a myoblast cell line. Cell differentiation was inhibited by P2X receptor blockers or by degradation of endogenous ATP with apyrase. However, pertussis toxin, known to block only a group of P2Y receptors, did not alter the differentiation process. Cells were heterogeneous in their expression of functional P2X receptors, evaluated by the uptake of fluorescent permeability tracers (Lucifer yellow and ethidium bromide), and by immunofluorescence of P2X(7) receptors. Moreover, xestospongin C, a selective and membrane-permeable inhibitor of IP(3) receptors, inhibited both myotube formation and myogenin expression. Based on these results, we suggest that the known increase in intracellular Ca(2+) concentration required for differentiation is due at least in part to Ca(2+) influx through P2X receptors and Ca(2+) release from intracellular stores. The possible involvement of P2X receptors and other pathways that might set the intracellular Ca(2+) at the level required for myoblast differentiation as well as the possible involvement of gap junction channels in the intercellular transfer of second messengers involved in coordinating myogenesis is proposed.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Animals
- Calcium/metabolism
- Calcium Channels/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cell Line
- Extracellular Fluid/metabolism
- Fluorescent Dyes/metabolism
- Gap Junctions/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Intracellular Fluid/drug effects
- Intracellular Fluid/metabolism
- Mice
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Myogenin/biosynthesis
- Myogenin/drug effects
- Purinergic P2 Receptor Antagonists
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2X
- Receptors, Purinergic P2X7
- Sarcolemma/metabolism
Collapse
Affiliation(s)
- Roberto Araya
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Region Metropolitana, Santiago 114D, Chile.
| | | | | | | |
Collapse
|
24
|
Maltby V, Somaiya A, French NA, Stickland NC. In ovo temperature manipulation influences post-hatch muscle growth in the turkey. Br Poult Sci 2004; 45:491-8. [PMID: 15484723 DOI: 10.1080/00071660412331286190] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
1. The effect of manipulating egg incubation temperature for short periods on turkey muscle development was determined using the M. semitendinosus, a thigh muscle, as the model. 2. Experiment 1. Eggs were incubated at a control temperature of 37.5 degrees C. For a 4-d period of 0 to 4, 5 to 8, 9 to 12, 13 to 16, 17 to 20 or 21 to 24 embryonic days (ED) eggs were transferred to either 38.5 or 35.5 degrees C. A regime of 38.5 degrees C at 5 to 8 and 9 to 12 ED caused an increased myonuclei number and muscle fibre number, respectively. 3. Experiment 2. Eggs were incubated at a control temperature of 37.5 degrees C. At 5 to 8 ED eggs were transferred to 38.5 or 35.5 degrees C. Temperature-manipulated embryos showed a delay in differentiation (myogenin expression) of the semitendinosus muscle compared to controls. 4. Manipulating the incubation temperature for 4 d in early incubation alters muscle development in the turkey with no observation of deformities or reduction in hatchability. We speculate that this increase in temperature may result in an improved muscle growth in the post-hatch bird.
Collapse
Affiliation(s)
- V Maltby
- The Royal Veterinary College, The University of London, London.
| | | | | | | |
Collapse
|
25
|
Oksbjerg N, Gondret F, Vestergaard M. Basic principles of muscle development and growth in meat-producing mammals as affected by the insulin-like growth factor (IGF) system. Domest Anim Endocrinol 2004; 27:219-40. [PMID: 15451071 DOI: 10.1016/j.domaniend.2004.06.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Accepted: 06/21/2004] [Indexed: 11/21/2022]
Abstract
This presentation aims to describe how the basic events in prenatal muscle development and postnatal muscle growth are controlled by the insulin-like growth factor system (IGF). The prenatal events (myogenesis) cover the rate of proliferation, the rate and extent of fusion, and the differentiation of three myoblast populations, giving rise to primary fibers, secondary fibers, and a satellite cell population, respectively. The number of muscle fibers, a key determinant of the postnatal growth rate, is fixed late in gestation. The postnatal events contributing to myofiber hypertrophy comprise satellite cell proliferation and differentiation, and protein turnover. Muscle cell cultures produce IGFs and IGF binding proteins (IGFBPs) in various degrees depending on the origin (species, muscle type) and state of development of these cells, suggesting an autocrine/paracrine mode of action of IGF-related factors. In vivo studies and results based on cell lines or primary cell cultures show that IGF-I and IGF-II stimulate both proliferation and differentiation of myoblasts and satellite cells in a time and concentration-dependent way, via interaction with type I IGF receptors. However, IGF binding proteins (IGFBP) may either inhibit or potentiate the stimulating effects of IGFs on proliferation or differentiation. During postnatal growth in vivo or in fully differentiated muscle cells in culture, IGF-I stimulates the rate of protein synthesis and inhibits the rate of protein degradation, thereby enhancing myofiber hypertrophy. The possible roles and actions of the IGF system in regulating and determining muscle growth as affected by developmental stage and age, muscle type, feeding levels, treatment with growth hormone and selection for growth performance are discussed.
Collapse
Affiliation(s)
- Niels Oksbjerg
- Department of Animal Nutrition and Physiology, Research Centre Foulum, Danish Institute of Agricultural Sciences, Blichers Alle 1, PO Box 50, DK-8830 Tjele.
| | | | | |
Collapse
|
26
|
Li AA, MacDonald NC, Chang PL. Effect of growth factors and extracellular matrix materials on the proliferation and differentiation of microencapsulated myoblasts. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2004; 14:533-49. [PMID: 12901436 DOI: 10.1163/15685620360674236] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An alternative approach to gene therapy via non-autologous somatic gene therapy is to implant genetically-engineered cells protected from immune rejection with microcapsules to deliver a therapeutic gene product. This delivery system may be optimized by using myoblast cell lines which can undergo terminal differentiation into myotubes, thus removing the potential problems of tumorigenesis and space restriction. However, once encapsulated, myoblasts do not proliferate or differentiate well. We now report the use of extracellular matrix components and growth factors to improve these properties. Addition of matrix material collagen, merosin or laminin all stimulated myoblast proliferation, particularly when merosin and laminin were combined; however, none, except collagen, stimulated differentiation. Inclusion of basic fibroblast growth factor (bFGF) within the microcapsules in the presence of collagen stimulated proliferation of C2C12 myoblasts, as well as differentiation into myotubes. Inclusion of insulin growth factor (IGF-II) in the microcapsules had no effect on proliferation but accelerated myoblasts differentiation. When the above matrix material and growth factors were provided in combination, the use of merosin and laminin together with bFGF and IGF-II stimulated myoblast proliferation but had no effect on differentiation. In contrast, the cocktail containing bFGF, IGF-II and collagen induced increased myoblasts proliferation and subsequent differentiation. Hence, the combination of bFGF, IGF-II and collagen appears optimal in improving proliferation and differentiation in encapsulated myoblasts.
Collapse
Affiliation(s)
- Anna Aihua Li
- Department of Pediatrics, Health Sciences Centre, Room 3N18, McMaster University, 1200 Main Street West, Hamilton, Ontario, L8S 4J9, Canada
| | | | | |
Collapse
|
27
|
Huard J, Li Y, Peng H, Fu FH. Gene therapy and tissue engineering for sports medicine. J Gene Med 2003; 5:93-108. [PMID: 12539148 DOI: 10.1002/jgm.344] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Sports injuries usually involve tissues that display a limited capacity for healing. The treatment of sports injuries has improved over the past 10 to 20 years through sophisticated rehabilitation programs, novel operative techniques, and advances in the field of biomechanical research. Despite this considerable progress, no optimal solution has been found for treatment of various sports-related injuries, including muscle injuries, ligament and tendon ruptures, central meniscal tears, cartilage lesions, and delayed bone fracture healing. New biological approaches focus on the treatment of these injuries with growth factors to stimulate and hasten the healing process. Gene therapy using the transfer of defined genes encoding therapeutic proteins represents a promising way to efficiently deliver suitable growth factors into the injured tissue. Tissue engineering, which may eventually be combined with gene therapy, may potentially result in the creation of tissues or scaffolds for regeneration of tissue defects following trauma. In this article we will discuss why gene therapy and tissue engineering are becoming increasingly important in modern orthopaedic sports medicine practice. We then will review recent research achievements in the area of gene therapy and tissue engineering for sports-related injuries, and highlight the potential clinical applications of this technology in the treatment of patients with musculoskeletal problems following sports-related injuries.
Collapse
Affiliation(s)
- Johnny Huard
- University of Pittsburgh, Department of Orthopaedic Surgery, Growth and Development Laboratory, 4151 Rangos Research Center, Pittsburgh, PA 15213, USA. jhuard+@pitt.edu
| | | | | | | |
Collapse
|
28
|
Rosendal L, Langberg H, Flyvbjerg A, Frystyk J, Ørskov H, Kjaer M. Physical capacity influences the response of insulin-like growth factor and its binding proteins to training. J Appl Physiol (1985) 2002; 93:1669-75. [PMID: 12381752 DOI: 10.1152/japplphysiol.00145.2002] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The influence of initial training status on the response of circulating insulin-like growth factor (IGF) and its binding proteins (IGFBP) to prolonged physical training was studied in young men. It was hypothesized that highly standardized training would result in more extensive changes in the circulating IGF system in untrained subjects because of lower fitness level. Seven untrained (UT) and 12 well-trained (WT) individuals performed 11 wk of intense physical training (2-4 h daily). Fasting serum samples were analyzed for total and free IGF-I and -II, for IGFBP-1 to -4, as well as for IGFBP-3 proteolysis. Eleven weeks of physical training resulted in decreased levels of total IGF-I, free IGF-I, and IGFBP-4 in both the UT and WT groups. In the UT group, IGFBP-2 increased, IGFBP-3 decreased [from 4,255 +/- 410 (baseline) to 3,896 +/- 465 (SD) microg/l (week 4); P < 0.05], and IGFBP-3 proteolysis increased [from 28 +/- 8% (baseline) to 37 +/- 7% (week 4) and 39 +/- 12% (week 11); P < 0.05], whereas no significant changes were found in the WT group. In conclusion, intense physical training results in a marked influence on the IGF system and its binding proteins with generally more extensive changes seen in the untrained individuals. Also, prolonged physical training resulted in increased IGFBP-3 proteolysis in previously untrained individuals only, indicating that intense physical training affects trained and untrained individuals differently.
Collapse
Affiliation(s)
- Lars Rosendal
- Sports Medicine Research Unit and Copenhagen Muscle Research Centre, Bispebjerg Hospital, DK-2400 Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
29
|
Yoshiko Y, Hirao K, Maeda N. Differentiation in C(2)C(12) myoblasts depends on the expression of endogenous IGFs and not serum depletion. Am J Physiol Cell Physiol 2002; 283:C1278-86. [PMID: 12225990 DOI: 10.1152/ajpcell.00168.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myogenic differentiation in vitro has been usually viewed as being negatively controlled by serum mitogens. A depletion of critical serum components from medium has been considered to be essential for permanent withdrawal from the cell cycle and terminal differentiation of myoblasts. Removal of serum mitogens induces the expression of insulin-like growth factors (IGFs), whereas it inhibits that of basic fibroblast growth factor (bFGF) and transforming growth factor (TGF)-beta in myoblasts. These responses of growth factors to medium conditioning seem to be well matched to their functions in proliferation/differentiation. In the present study, we showed that C(2)C(12) myoblasts differentiated actively, even in mitogen-rich medium, and that this medium offered an advantage over mitogen-poor medium in terms of increasing differentiation. Our attention focused on endogenous growth factors, as described above, especially IGFs in mitogen-rich medium. During differentiation, IGF-I and IGF-II mRNA levels increased, but bFGF and TGF-beta(1) mRNAs decreased. Differentiation was commensurable with IGF mRNA levels and suppressed by antisense oligodeoxynucleotides and neutralizing monoclonal antibodies against IGFs. These results suggest that an autocrine/paracrine loop of IGFs, bFGF, and TGF-beta(1) is active in proliferating and differentiating C(2)C(12) cells without a depletion of serum and that endogenous IGFs actively override the negative control of differentiation by serum mitogens.
Collapse
Affiliation(s)
- Yuji Yoshiko
- Department of Oral Growth and Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, Minami-ku, Hiroshima 734-8553, Japan
| | | | | |
Collapse
|
30
|
|
31
|
Holley SJ, Hall SB, Mellon PL. Complementary expression of IGF-II and IGFBP-5 during anterior pituitary development. Dev Biol 2002; 244:319-28. [PMID: 11944940 DOI: 10.1006/dbio.2002.0608] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The specification of the five individual hormone-secreting cell types in the anterior pituitary requires a series of sequential cell fate decisions. We have immortalized cells at several stages along this pathway of pituitary differentiation. Here, we present analysis of differences in gene expression between an anterior pituitary precursor cell line, alphaT1-1, and an immature gonadotrope cell line, alphaT3-1, identified by using cDNA subtraction. Messenger RNA expression of members of the insulin-like growth factor signaling system, IGF-II and IGFBP-5, was found in the alphaT1-1 precursor cell line, but not in the more differentiated cell line, alphaT3-1. This inferred stage specificity was confirmed in the mouse embryo by using in situ hybridization on embryonic days e10.5 through e18.5. Expression of IGF-II and IGFBP-5 mRNAs was both temporally and spatially regulated during pituitary development. IGF-II was highly expressed in the epithelium surrounding Rathke's pouch at e10.5, while IGFBP-5 expression was restricted to the adjacent oral epithelium. At e11.5 (represented by alphaT1-1), IGF-II was expressed throughout the pouch, but was coexpressed with IGFBP-5 and alpha-subunit in the ventral portion of the pouch epithelium. On e12.5, the two mRNAs were expressed in opposing dorsoventral (IGF-II) and ventrodorsal (IGFBP-5) patterns, with IGF-II excluded from the rostral, alpha-subunit-expressing region. A decrease of both mRNAs was observed at e14.5 (equivalent to alphaT3-1), with IGF-II levels low and IGFBP-5 concentrated in the anterior pituitary rostral tip. These findings suggest that the timing of IGF-II expression and regulation of its accessibility by IGFBP-5 may play a role in anterior pituitary differentiation, survival, and/or proliferation.
Collapse
Affiliation(s)
- Sandra J Holley
- Reproductive Medicine, University of California San Diego, La Jolla, California 92093-0674, USA
| | | | | |
Collapse
|
32
|
Mitchell PJ, Johnson SE, Hannon K. Insulin-like growth factor I stimulates myoblast expansion and myofiber development in the limb. Dev Dyn 2002; 223:12-23. [PMID: 11803566 DOI: 10.1002/dvdy.1227] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Insulin-like growth factor I (IGF-I) is expressed in the anterior and posterior mesodermal cells of the developing limb. However, a definite role for IGF-I during early limb organogenesis is unknown. To determine the inherent participation of IGF-I during limb organ development, a retroviral delivery system (RCAS) was used to overexpress IGF-I throughout the developing hind limb of stage 24 chicken embryos. The area of the belly of the external gastrocnemius muscle in the IGF-I infected limb was an average of 160, 90, 70, and 80% larger than the contralateral control muscle belly, 4, 5, 6, and 7 days postinjection, respectively (all differences P < 0.01). In comparison to the contralateral control muscles, there were a significantly greater number of muscle fibers in the IGF-I infected muscles (P < 0.05), confirming that the majority of IGF-I-mediated muscle enlargement was due to an increase in total fiber numbers (hyperplasia). Four days postinjection, there was a 32% increase in myoblast to myofiber ratio in the muscle of injected limbs compared with the muscle in the contralateral noninjected control limbs (P < 0.05). This result demonstrates that IGF-I acts to expand the undifferentiated myoblast population, and as a result, more myofibers subsequently develop, and the muscles expressing ectopic IGF-I are enlarged by means of hyperplasia. There was no difference in tibiotarsus and fibula length or diameter between the IGF-I injected and control limb, suggesting that ectopic IGF-I expression within the mesoderm was not a nonspecific growth stimulant of all tissues of the developing limb, but specifically enhanced skeletal muscle development and growth. Ectopic IGF-I expression had no significant effect on myostatin mRNA concentrations. Our results support a model where mesodermally expressed IGF-I acts to regulate the number of primary myofibers, and, therefore, size of skeletal muscles, which form during the initial events of limb myogenesis.
Collapse
Affiliation(s)
- Pamela J Mitchell
- Department of Basic Medical Sciences, School of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
33
|
Brocardo MG, Schillaci R, Galeano A, Radrizzani M, White V, Guerrico AG, Santa‐Coloma TA, Roldán A. Early effects of insulin‐like growth factor‐1 in activated human T lymphocytes. J Leukoc Biol 2001. [DOI: 10.1189/jlb.70.2.297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Mariana G. Brocardo
- Instituto de Investigaciones Bioquímicas Fundación Campomar (IIB‐UBA and IIBBA CONICET), Buenos Aires, Argentina
| | - Roxana Schillaci
- Instituto de Biología y Medicina Experimental CONICET, Buenos Aires, Argentina
| | - Adriana Galeano
- Laboratorio de Patología Sanatorio Mater Dei, Buenos Aires, Argentina
| | - Martín Radrizzani
- Instituto de Investigaciones Bioquímicas Fundación Campomar (IIB‐UBA and IIBBA CONICET), Buenos Aires, Argentina
| | - Verónica White
- Instituto de Biología y Medicina Experimental CONICET, Buenos Aires, Argentina
| | - Anatilde González Guerrico
- Instituto de Investigaciones Bioquímicas Fundación Campomar (IIB‐UBA and IIBBA CONICET), Buenos Aires, Argentina
| | - Tomás A. Santa‐Coloma
- Instituto de Investigaciones Bioquímicas Fundación Campomar (IIB‐UBA and IIBBA CONICET), Buenos Aires, Argentina
| | - Alicia Roldán
- Instituto de Biología y Medicina Experimental CONICET, Buenos Aires, Argentina
| |
Collapse
|
34
|
Abstract
Donor myoblast migration is a major limiting factor in the success of myoblast transfer therapy, a potential treatment for Duchenne muscular dystrophy. A possible strategy to promote the migration of donor myoblasts into host muscle is to enhance their proliferation and delay their fusion, two properties that are major characteristics of myoblasts in regenerating skeletal muscle in MyoD null (-/-) mice. Here we investigate whether the migration of MyoD (-/-) donor myoblasts into host muscle is enhanced in vivo. Sliced muscle grafts from male MyoD (-/-) or normal control (Balb/c) mice were transplanted into the muscles of female normal (Balb/c) host mice. Muscles were sampled at 1, 3, and 12 weeks after grafting, and the fate of male donor myoblasts within female host muscles determined by in situ hybridization with the mouse Y-chromosome-specific Y-1 probe. MyoD (-/-) donor myoblasts migrated into host muscle continuously over 1, 3, and 12 weeks after grafting, in contrast with Balb/c donor myoblasts, whose overall numbers and migratory distances did not increase significantly after 1 week. These results strongly support a role for elevated donor myoblast proliferation and/or their delayed fusion in enhancing migration into host muscle in vivo, and endorse the use of either genetically engineered donor myoblasts, or the administration of exogenous myoblast mitogens to improve donor myoblast migration in myoblast transfer therapy.
Collapse
Affiliation(s)
- G M Smythe
- Department of Anatomy and Human Biology, The University of Western Australia, Crawley, Perth, 6009, Western Australia
| | | |
Collapse
|
35
|
Edmondson SR, Werther GA, Wraight CJ. Calcium regulates the expression of insulin-like growth factor binding protein-3 by the human keratinocyte cell line HaCaT. J Invest Dermatol 2001; 116:491-7. [PMID: 11286613 DOI: 10.1046/j.0022-202x.2001.temp.doc.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The insulin-like growth factor (IGF) system is essential for epidermal homeostasis. Insulin-like growth factor binding protein 3 (IGFBP-3), a modulator of IGF action that also exhibits IGF-independent activity, is localized to selected keratinocytes in the basal epidermal layer and may thus contribute to keratinocyte differentiation. We have utilized the human keratinocyte cell line, HaCaT, to examine the effect of calcium on the regulation of components of the IGF system. Western ligand and northern blot analyses revealed secreted IGFBP-3 and IGFBP-3 mRNA were reduced by an elevation in calcium levels in the culture medium. At 1.0 and 1.2 mM CaCl2 culture conditions IGFBP-3 abundance was reduced to 36% +/- 1.6% and 26% +/- 7.1%, respectively, of that from cells grown at 0.03 mM CaCl2. IGFBP-3 mRNA levels in 0.7 mM and 1.2 mM CaCl2 were reduced to 46% +/- 17.4% and 24% +/- 4.6%, respectively, compared with IGFBP-3 mRNA levels at 0.03 mM CaCl2. The observed reduction of IGFBP-3 was not associated with IGFBP-3 proteolysis. In contrast IGF-I receptor protein and mRNA levels remained unchanged. The IGF-I stimulated proliferative response of HaCaT keratinocytes showed that under low (0.03 mM) and high (1.2 mM) CaCl2 conditions IGF-I at 100 and 1000 ng per ml similarly increased cell number 2.4- and 2.7-fold, respectively, with similar dose-response curves. HaCaT keratinocytes grown under medium (0.7 mM) and high (1.2 mM), but not low (0.03 mM), CaCl2 conditions for 21 d revealed an induction of profilaggrin mRNA, a marker of keratinocyte differentiation. These studies indicate that the exposure of HaCaT keratinocytes to elevated calcium levels is associated with a decline in IGFBP-3 but not IGF-I receptor levels. These findings suggest a potential mechanism for the distribution of IGFBP-3 in the epidermis, which may be involved in the process of keratinocyte differentiation.
Collapse
Affiliation(s)
- S R Edmondson
- Center for Hormone Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia.
| | | | | |
Collapse
|
36
|
Abstract
Epidermal growth factor (EGF) receptors are widely distributed in mammalian tissues, including muscle. One ligand of these receptors, heparin-binding epidermal growth factor-like growth factor (HB-EGF) is also strongly expressed in adult muscle. However, in vitro studies of EGF action in cultured muscle cells of different species have yielded conflicting results. The purpose of this study was to investigate the potential role of EGF and related factors in the growth and development of fetal ovine muscle. High affinity EGF receptors were detected on clonally purified ovine fetal myoblasts, using [(125)I] human EGF as a ligand (K(d) values of 47 and 54 pM in separate experiments). Competitive binding studies in mixed secondary cultures showed that EGF had the highest affinity for the fetal ovine receptor, followed by HB-EGF and transforming growth factor alpha (TGF-alpha). These ligands all stimulated DNA synthesis in clonally purified ovine myoblasts, with their relative potencies at 0.1 nM reflecting their receptor binding affinities. Maximal effects were seen at 1-10 nM. EGF (10 nM) did not significantly inhibit the differentiation of clonally purified fetal ovine myoblasts, although there was increased proliferation of nondifferentiating cells. Hence a variety of EGF receptor ligands have the potential to influence the proliferation ovine muscle cell precursors in utero, but it is unlikely that they promote differentiation.
Collapse
Affiliation(s)
- J M Harper
- Division of Nutritional Biochemistry, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leics LE12 5RD, United Kingdom
| | | |
Collapse
|
37
|
Abstract
Myostatin, a member of the TGF-beta superfamily, is a key negative regulator of skeletal muscle growth. The role of myostatin during skeletal muscle regeneration has not previously been reported. In the present studies, normal Sprague-Dawley and growth hormone (GH)-deficient (dw/dw) rats were administered the myotoxin, notexin, in the right M. biceps femoris on day 0. The dw/dw rats then received either saline or human-N-methionyl GH (200microg/100g body weight/day) during the ensuing regeneration. Normal and dw/dw M. biceps femoris were dissected on days 1, 2, 3, 5, 9 and 13, formalin-fixed, then immunostained for myostatin protein. Immunostaining for myostatin revealed high levels of protein within necrotic fibres and connective tissue of normal and dw/dw damaged muscles. Regenerating myotubes contained no myostatin at the time of fusion (peak fusion on day 5), and only low levels of myostatin were observed during subsequent myotube enlargement. Fibres which survived assault by notexin (survivor fibres) contained moderate to high myostatin immunostaining initially. The levels in both normal and dw/dw rat survivor fibres decreased on days 2-3, then increased on days 9-13. In dw/dw rats, there was no observed effect of GH administration on the levels of myostatin protein in damaged muscle. The low level of myostatin observed in regenerating myotubes in these studies suggests a negative regulatory role for myostatin in muscle regeneration.
Collapse
Affiliation(s)
- S Kirk
- Functional Muscle Genomics, AgResearch, Ruakura Agricultural Research Centre, Hamilton, New Zealand.
| | | | | | | | | | | |
Collapse
|
38
|
Pirskanen A, Kiefer JC, Hauschka SD. IGFs, insulin, Shh, bFGF, and TGF-beta1 interact synergistically to promote somite myogenesis in vitro. Dev Biol 2000; 224:189-203. [PMID: 10926759 DOI: 10.1006/dbio.2000.9784] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies from our group and others have shown that in vitro somite myogenesis is regulated by neural tube and notochord factors including Wnt, Sonic hedgehog (Shh), and basic fibroblast growth factor (bFGF) together with transforming growth factor-beta1 (TGF-beta1). In this study we report that insulin and insulin-like growth factors I and II (IGF-I and -II) also promote myogenesis in explant cultures containing single somites or somite-sized pieces of segmental plate mesoderm from 2-day (stage 10-14) chicken embryos and that the combination of insulin/IGFs with bFGF plus TGF-beta1 promotes even higher levels of myogenesis. We also found that Shh promotes myogenesis in this in vitro system and that Shh interacts synergistically with insulin/IGFs to promote high levels of myogenesis. RT-PCR analysis detected insulin, IGF-II, insulin receptor, and IGF receptor mRNAs in both the neural tube and the somites, whereas IGF-I transcripts were detected in entire embryos but not in the neural tube or somites. Treatment of somite-neural tube cocultures with anti-insulin, anti-IGF-II, anti-insulin receptor, or anti-IGF receptor blocking antibodies caused a significant decrease in myogenesis. These results are consistent with the hypothesis that systemic IGF-I as well as insulin and IGF-II secreted by the neural tube act as additional early myogenic signals during embryogenesis. Further studies indicate that insulin, IGFs, bFGF, and Shh also stimulate somite cell proliferation and influence apoptosis.
Collapse
Affiliation(s)
- A Pirskanen
- Department of Biochemistry, University of Washington, Seattle 98195, USA
| | | | | |
Collapse
|
39
|
Meadows KA, Holly JM, Stewart CE. Tumor necrosis factor-alpha-induced apoptosis is associated with suppression of insulin-like growth factor binding protein-5 secretion in differentiating murine skeletal myoblasts. J Cell Physiol 2000; 183:330-7. [PMID: 10797307 DOI: 10.1002/(sici)1097-4652(200006)183:3<330::aid-jcp5>3.0.co;2-n] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Wasting of muscle and fat during cachexia exceeds that explained by reduced food intake alone. This wasting may result from an imbalanced cytokine environment, which could lead to increased protein catabolism. Supporting this, tumor necrosis factor-alpha (TNF-alpha) is raised in several animal models of cachectic muscle wasting. Therefore, we assessed the effects of TNF-alpha and its second messenger, ceramide, on the proliferation, differentiation, and survival of murine C2 skeletal myoblasts. Because insulin-like growth factor binding protein-5 (IGFBP-5) and insulin-like growth factor-II (IGF-II) are potent regulators of myoblast proliferation and differentiation, we monitored the ability of exogenous TNF-alpha to manipulate this system. Fibroblast growth factor (FGF) ceramide, or TNF-alpha suppressed differentiation of C2 cells compared with controls. All treatments suppressed IGF-II production but only TNF-alpha blocked IGFBP-5 secretion. TNF-alpha increased apoptotic cell death, which otherwise remained basal (low serum differentiation medium (LSM), FGF) or low (ceramide). Suppression of both IGFBP-5 and IGF-II secretion may explain why of all triggers tested, only TNF-alpha not only blocked differentiation, but also promoted cell death. This suggests a fundamental role of IGFBP-5 for maintaining muscle survival. Supporting this hypothesis, no increase in apoptosis was seen in IGFBP-5 cDNA tranfected C2 cells after TNF-alpha treatment. In summary, the IGF system is essential for maintaining skeletal muscle cell survival and differentiation, and its suppression by TNF-alpha is fundamental regarding muscle wasting, and may be associated in vivo with cancer cachexia.
Collapse
Affiliation(s)
- K A Meadows
- University Department of Surgery, Bristol Royal Infirmary, Bristol, England
| | | | | |
Collapse
|
40
|
Blondin P, Farin PW, Crosier AE, Alexander JE, Farin CE. In vitro production of embryos alters levels of insulin-like growth factor-II messenger ribonucleic acid in bovine fetuses 63 days after transfer. Biol Reprod 2000; 62:384-9. [PMID: 10642577 DOI: 10.1095/biolreprod62.2.384] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The objective of this study was to determine the effect of embryo production systems on the expression of insulin-like growth factor (IGF)-II mRNA in fetal bovine tissues at Day 70 of gestation (63 days after transfer). Oocytes aspirated from ovaries of Holstein cows were matured and fertilized in vitro. Zygotes were cultured in either tissue culture medium (TCM)-199 + 10% estrous cow serum (ECS; in vitro-produced with serum [IVPS]) or TCM-199 + 1% BSA (in vitro-produced with serum restriction [IVPSR]). At 72 h postinsemination, IVPSR embryos were transferred into fresh TCM-199 + 10% ECS whereas IVPS embryos had fresh medium replaced. All embryos were cultured for an additional 96 h. In vivo-produced embryos were harvested from superovulated Holstein cows (multiple ovulations [MO]). Grade 1 blastocysts from all groups were transferred singly into Angus heifers. At Day 70 of gestation, fetuses (n = 14, 13, and 11 for MO, IVPS, and IVPSR, respectively) were collected; liver and skeletal muscle samples were snap frozen, and whole-cell RNA (wcRNA) was extracted. Levels of IGF-II mRNA were determined by RNase protection assay and quantified relative to 18S rRNA (mean arbitrary units +/- SEM). WcRNA from adult and Day 90 fetal bovine liver were used as controls. Adult liver contained 9-fold less IGF-II mRNA than liver from Day 90 fetuses (P < 0.05). Fetal livers of males originating from IVPS and IVPSR groups possessed approximately 2-fold greater levels of mRNA for IGF-II than those from MO males (0.25 +/- 0.07, 0.33 +/- 0.04, and 0.14 +/- 0.03, respectively; P < 0.05). Levels of mRNA for IGF-II tended to be lower (P = 0.07) in skeletal muscle of fetuses originating from the IVPSR group (0.043 +/- 0.005) compared to MO controls (0.070 +/- 0.008). In conclusion, at Day 70 of gestation, fetuses originating from in vitro production systems possessed altered levels of IGF-II mRNA in both liver and skeletal muscle.
Collapse
Affiliation(s)
- P Blondin
- Department of Animal Science and Department of Food Animal and Equine Medicine, North Carolina State University, Raleigh, North Carolina 27695-7621, USA
| | | | | | | | | |
Collapse
|
41
|
Kasemkijwattana C, Menetrey J, Bosch P, Somogyi G, Moreland MS, Fu FH, Buranapanitkit B, Watkins SS, Huard J. Use of growth factors to improve muscle healing after strain injury. Clin Orthop Relat Res 2000:272-85. [PMID: 10660723 DOI: 10.1097/00003086-200001000-00028] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Muscle injuries represent a large number of professional and recreational sports injuries. Muscle strains habitually occur after an eccentric contraction, which often leads to an injury located in the myotendinous junction. Treatment varies widely, depending on the severity of the trauma, but has remained limited mostly to rest, ice, compression, elevation, antiinflammatory drugs, and mobilization. The authors' research group aims to develop new biologic approaches to improve muscle healing after injuries, including muscle strains. To achieve this goal, the authors investigated several parameters that will lead to the development of new strategies to enhance muscle healing. The authors first evaluated natural muscle healing after strain injuries and showed that muscle regeneration occurs in the early phase of healing but becomes impaired with time by the development of tissue fibrosis. Several growth factors capable of improving muscle regeneration were investigated; basic fibroblast growth factor, insulin-like growth factor, and nerve growth factors were identified as substances capable of enhancing muscle regeneration and improving muscle force in the strained injured muscle. The current study should aid in the development of strategies to promote efficient muscle healing and complete recovery after strain injury.
Collapse
Affiliation(s)
- C Kasemkijwattana
- Department of Orthopaedic Surgery, University of Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Fryburg DA, Barrett EJ. The Regulation of Amino Acid and Protein Metabolism by Growth Hormone. Compr Physiol 1999. [DOI: 10.1002/cphy.cp070517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
|
44
|
Abstract
Adult skeletal muscle fibers are among the few cell types that are truly multinucleated. Recently, evidence has accumulated supporting a role for the modulation of myonuclear number during muscle remodeling in response to injury, adaptation, and disease. These studies have demonstrated that muscle hypertrophy is associated with, and is dependent on, the addition of newly formed myonuclei via the fusion of myogenic cells to the adult myofiber, whereas muscle atrophy and disease appear to be associated with the loss of myonuclei, possibly through apoptotic-like mechanisms. Moreover, these studies also have demonstrated that myonuclear domain size, i. e., the amount of cytoplasm per myonucleus, is unchanged following the acute phase of hypertrophy but is reduced following atrophy. Together these data demonstrate that modulation of myonuclear number or myonuclear domain size (or both) is a mechanism contributing to the remodeling of adult skeletal muscle in response to alterations in the level of normal neuromuscular activity.
Collapse
Affiliation(s)
- D L Allen
- Department of Molecular, University of Colorado, Boulder, Colorado 80309, USA
| | | | | |
Collapse
|
45
|
Layne MD, Farmer SR. Tumor necrosis factor-alpha and basic fibroblast growth factor differentially inhibit the insulin-like growth factor-I induced expression of myogenin in C2C12 myoblasts. Exp Cell Res 1999; 249:177-87. [PMID: 10328964 DOI: 10.1006/excr.1999.4465] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) plays a role in several disease states such as sepsis, cachexia, and non-insulin-dependent diabetes. TNF-alpha interferes with insulin signaling and inhibits differentiation-specific gene expression in adipose tissue and skeletal muscle. We have examined the mechanisms by which TNF-alpha, in comparison to basic fibroblast growth factor (bFGF), inhibits the insulin-like growth factor-I (IGF-I)-induced differentiation of C2C12 myoblasts. Adhesion of quiescent, suspended myoblasts to collagen in high concentrations of IGF-I (10 nM) induced these cells to proliferate during the initial 24 h postplating and in so doing transiently inhibited the expression of myogenin, an essential transcription factor controlling myoblast differentiation. Low doses of IGF-I (1 nM) were minimally mitogenic and enhanced muscle-specific gene expression. Quiescent myoblasts treated with bFGF in combination with IGF-I did not express myogenin, but expressed proliferating cell nuclear antigen and underwent DNA synthesis. In contrast, TNF-alpha in the presence or absence of 1 nM IGF-I, did not stimulate DNA synthesis in myoblasts. However, TNF-alpha inhibited myogenin mRNA and protein expression. Expression of the cyclin-dependent kinase inhibitor p21 correlated with myogenin expression and myoblast differentiation, but not with growth arrest. These results indicate that both TNF-alpha and bFGF inhibit myogenin expression but differentially influence myoblast proliferation.
Collapse
Affiliation(s)
- M D Layne
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
46
|
Valentinis B, Romano G, Peruzzi F, Morrione A, Prisco M, Soddu S, Cristofanelli B, Sacchi A, Baserga R. Growth and differentiation signals by the insulin-like growth factor 1 receptor in hemopoietic cells are mediated through different pathways. J Biol Chem 1999; 274:12423-30. [PMID: 10212216 DOI: 10.1074/jbc.274.18.12423] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The type 1 insulin-like growth factor receptor (IGF-IR) plays an important role in the growth of cells both in vivo and in vitro. The IGF-IR is also capable of inducing differentiation in a number of cell types, raising the question of how the same receptor can send two seemingly contradictory signals, one for growth and one for differentiation. Using 32D cells, which are murine hemopoietic cells, we show that the activated IGF-IR can induce differentiation along the granulocytic pathway in a manner similar to the granulocyte colony-stimulating factor. We find that one of the major substrates of the IGF-IR, the insulin receptor substrate-1 inhibits IGF-I-mediated differentiation of 32D cells. In the absence of insulin receptor substrate-1, functional impairment of another major substrate of the IGF-IR, the Shc proteins, is associated with a decrease in the extent of differentiation. Although the end points of the respective pathways remain to be defined, these results show for the first time that IGF-I-mediated growth or differentiation of hemopoietic cells may depend on a balance between two of its substrates.
Collapse
Affiliation(s)
- B Valentinis
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Musarò A, Rosenthal N. Maturation of the myogenic program is induced by postmitotic expression of insulin-like growth factor I. Mol Cell Biol 1999; 19:3115-24. [PMID: 10082578 PMCID: PMC84105 DOI: 10.1128/mcb.19.4.3115] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular mechanisms underlying myogenic induction by insulin-like growth factor I (IGF-I) are distinct from its proliferative effects on myoblasts. To determine the postmitotic role of IGF-I on muscle cell differentiation, we derived L6E9 muscle cell lines carrying a stably transfected rat IGF-I gene under the control of a myosin light chain (MLC) promoter-enhancer cassette. Expression of MLC-IGF-I exclusively in differentiated L6E9 myotubes, which express the embryonic form of myosin heavy chain (MyHC) and no endogenous IGF-I, resulted in pronounced myotube hypertrophy, accompanied by activation of the neonatal MyHC isoform. The hypertrophic myotubes dramatically increased expression of myogenin, muscle creatine kinase, beta-enolase, and IGF binding protein 5 and activated the myocyte enhancer factor 2C gene which is normally silent in this cell line. MLC-IGF-I induction in differentiated L6E9 cells also increased the expression of a transiently transfected LacZ reporter driven by the myogenin promoter, demonstrating activation of the differentiation program at the transcriptional level. Nuclear reorganization, accumulation of skeletal actin protein, and an increased expression of beta1D integrin were also observed. Inhibition of the phosphatidyl inositol (PI) 3-kinase intermediate in IGF-I-mediated signal transduction confirmed that the PI 3-kinase pathway is required only at early stages for IGF-I-mediated hypertrophy and neonatal MyHC induction in these cells. Expression of IGF-I in postmitotic muscle may therefore play an important role in the maturation of the myogenic program.
Collapse
Affiliation(s)
- A Musarò
- Cardiovascular Research Center, Massachusetts General Hospital-East, Charlestown, Massachusetts 02129, USA
| | | |
Collapse
|
48
|
Svanberg E, Svaninger G, Soussi B, Lundholm K. Mouse extensor digitorum longus muscle preparation as a tool in nutrition research: a quantitative comparison to in vivo and cell culture experiments. Nutrition 1999; 15:200-7. [PMID: 10198914 DOI: 10.1016/s0899-9007(98)00180-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Incubated restrained and unrestrained extensor digitorum longus (EDL) muscles from adult non-growing mice were evaluated as a tool in non-steady state nutrition experiments. Energy state was determined by nucleotide determinations in muscles. Protein synthesis was estimated by the amount of L-[U-14C]phenylalanine incorporated into proteins, and protein balance was measured by tyrosine release from muscle proteins. Confluent cultured L6 rat muscle cells served as a reference system in steady state without hypoxia being sensitive to growth factors and regulatory peptides at physiologic concentrations. Irrespective of medium composition, incubated EDL muscles remained in negative protein balance, being unrelated to the resting tension of the incubated muscles. Energy-rich phosphates were not restored to normal levels during incubation, but protein synthesis was not attenuated by the decline in energy state. Fractional protein synthesis (0.05-0.15%/h) remained constant for up to 6 h of EDL incubation, and was comparable to protein synthesis in cultured confluent non-proliferating myocytes (0.20-0.30%/h) and to mixed leg muscles measured in vivo (0.10-0.20%/h). Protein synthesis in incubated EDL muscles reflected alterations in muscle peptide formation in vivo following either oral provision of food or parenteral injection of insulin. EDL muscles were sensitive to in vitro exposure to both insulin (60-125 microU/mL) and insulin-like growth factor 1 (IGF-1) (1000 ng/mL). The sensitivity to insulin seemed to be modified by the nutritional state (starved/fed) of the animals before sacrifice. Protein synthesis in EDL muscles was less responsive to serum-containing growth factors (IGF-1, epidermal growth factor [EGF], platelet-derived growth factor [PDGF]) compared to confluent L6 muscle cells, which probably reflected different receptor expression. Our results demonstrate that protein metabolism in incubated unrestrained mouse EDL muscles reflects in vivo protein metabolism.
Collapse
Affiliation(s)
- E Svanberg
- Department of Surgery, Sahlgrenska University Hospital, University of Göteborg, Sweden
| | | | | | | |
Collapse
|
49
|
Kocamis H, Kirkpatrick-Keller DC, Klandorf H, Killefer J. In ovo administration of recombinant human insulin-like growth factor-I alters postnatal growth and development of the broiler chicken. Poult Sci 1998; 77:1913-9. [PMID: 9872596 DOI: 10.1093/ps/77.12.1913] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Two experiments assessed the efficacy of in ovo administration of insulin-like growth factor-I (IGF-I) to enhance skeletal muscle development and improve feed efficiency of broilers. Hatching eggs were divided into three groups: uninjected control, vehicle-injected control, and recombinant human (rh) IGF-I (100 ng per embryo). Eggs in Experiment 1 were injected on Day 1, 4, or one of Day 7 through 18 of incubation. Growth rates for Days 1 and 4 resulted in the greatest response to treatment (P < 0.01, P < 0.06 respectively). Based on these results, Experiment 2 focused on Days 1 to 4 of incubation. Results from Experiment 2 showed that there was no significant difference in hatchability among control and rh IGF-I treatment groups. Injection on Day 3 resulted in the greatest response for increased live (P < 0.035) and leg (P < 0.02) weights in both sexes. Feed efficiencies of all rh IGF-I groups were significantly (P < 0.01) improved for the first 3 wk. In ovo administration of rh IGF-I on Day 3 increased feed efficiency (6.65%; P < 0.009) in pens of mixed-sex broilers. In addition, live weights (12.3%; P < 0.002), leg weights (11.7%; P < 0.01), breast weights (9.9%; P < 0.04), and heart weights (11.4%; P < 0.02) were increased in males. These results demonstrate that in ovo administration of rh IGF-I alters feed efficiency, growth, and tissue development. This finding lends itself to significant improvements in broiler production efficiency and profitability.
Collapse
Affiliation(s)
- H Kocamis
- Division of Animal and Veterinary Sciences, West Virginia University, Morgantown 26506-6108, USA
| | | | | | | |
Collapse
|
50
|
Calera MR, Pilch PF. Induction of Akt-2 correlates with differentiation in Sol8 muscle cells. Biochem Biophys Res Commun 1998; 251:835-41. [PMID: 9790996 DOI: 10.1006/bbrc.1998.9566] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphatidylinositol 3-kinase is involved in the regulation of muscle cell differentiation. The serine/threonine kinase Akt has been implicated in the signaling pathway downstream of PI3-kinase. Here we demonstrate that differentiation of Sol8 skeletal muscle cells is associated with a marked increase in endogenous Akt-2 protein. Myogenesis was induced by three different conditions: cell confluence, low serum or treatment with insulin or insulin-like growth factor-I. Differentiation by cell confluence resulted in an increase in the endogenous protein content and activation of Akt-2. Low serum conditions induced a dramatic raise in Akt-2 protein levels which correlates with the induction of the muscle cell differentiation marker myogenin. Treatment of Sol8 cells with the PI3-kinase inhibitor LY294002 prevented the expression of myogenin as effectively as the increase in Akt-2 content induced by low-serum conditions. Similarly, differentiation of Sol8 cells stimulated by 50 nM insulin or 10 nM IGF-I markedly increased Akt-2 protein levels. These results and the recent observation that active Akt translocates to the cell nucleus (J. Biol. Chem. 272, 30491-30497; 31515-31524, 1997) suggests that Akt-2 might play a crucial role in the initiation of the genetic program responsible for muscle cell differentiation.
Collapse
Affiliation(s)
- M R Calera
- Department of Biochemistry, Boston University School of Medicine, 715 Albany Street, Boston, Massachusetts, 02118, USA
| | | |
Collapse
|