1
|
Tang SH, Wang HY, Sun H, An N, Xiao L, Sun Q, Zhao DB. Propofol inhibits carbachol-induced chloride secretion by directly targeting the basolateral K + channel in rat ileum epithelium. Neurogastroenterol Motil 2017; 29. [PMID: 27578144 DOI: 10.1111/nmo.12934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/04/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Propofol is a widely used intravenous general anesthetic. Acetylcholine (ACh) is critical in controlling epithelial ion transport. This study was to investigate the effects of propofol on ACh-evoked secretion in rat ileum epithelium. METHODS The Ussing chamber technique was used to investigate the effects of propofol on carbachol (CCh)-evoked short-circuit currents (Isc). KEY RESULTS Propofol (10-2 -10-6 mol/L) attenuated CCh-evoked Isc of rat ileum mucosa in a dose-dependent manner. The inhibitory effect of propofol was only evident after application to the serosal side. Pretreatment with tetrodotoxin (TTX, 0.3 μmol/L, n=5) had no effect on propofol-induced inhibitory effect, whereas serosal application of K+ channel inhibitor, glibenclamide, but not, an ATP-sensitive K+ channel inhibitor, largely reduced the inhibitory effect of propofol. In addition, pretreatment with either hexamethonium bromide (HB, nicotinic nACh receptor antagonist) or Cl- channel blockers niflumic acid and cystic fibrosis transmembrane conductance regulator (inh)-172 did not produce any effect on the propofol-induced inhibitory effect. CONCLUSIONS & INFERENCES Propofol inhibits CCh-induced intestinal secretion by directly targeting basolateral K+ channels.
Collapse
Affiliation(s)
- S-H Tang
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - H-Y Wang
- Department of Physiology, School of Medicine, Shandong University, Jinan, China
| | - H Sun
- Department of Thoracic Surgery, Shandong Tumor Hospital, Shandong University, Jinan, China
| | - N An
- Department of Physiology, School of Medicine, Shandong University, Jinan, China
| | - L Xiao
- Department of Physiology, School of Medicine, Shandong University, Jinan, China
| | - Q Sun
- Department of Physiology, School of Medicine, Shandong University, Jinan, China
| | - D-B Zhao
- Department of Thoracic Surgery, Shandong Tumor Hospital, Shandong University, Jinan, China
| |
Collapse
|
2
|
Bertuccio CA, Lee SL, Wu G, Butterworth MB, Hamilton KL, Devor DC. Anterograde trafficking of KCa3.1 in polarized epithelia is Rab1- and Rab8-dependent and recycling endosome-independent. PLoS One 2014; 9:e92013. [PMID: 24632741 PMCID: PMC3954861 DOI: 10.1371/journal.pone.0092013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/16/2014] [Indexed: 02/01/2023] Open
Abstract
The intermediate conductance, Ca2+-activated K+ channel (KCa3.1) targets to the basolateral (BL) membrane in polarized epithelia where it plays a key role in transepithelial ion transport. However, there are no studies defining the anterograde and retrograde trafficking of KCa3.1 in polarized epithelia. Herein, we utilize Biotin Ligase Acceptor Peptide (BLAP)-tagged KCa3.1 to address these trafficking steps in polarized epithelia, using MDCK, Caco-2 and FRT cells. We demonstrate that KCa3.1 is exclusively targeted to the BL membrane in these cells when grown on filter supports. Following endocytosis, KCa3.1 degradation is prevented by inhibition of lysosomal/proteosomal pathways. Further, the ubiquitylation of KCa3.1 is increased following endocytosis from the BL membrane and PR-619, a deubiquitylase inhibitor, prevents degradation, indicating KCa3.1 is targeted for degradation by ubiquitylation. We demonstrate that KCa3.1 is targeted to the BL membrane in polarized LLC-PK1 cells which lack the μ1B subunit of the AP-1 complex, indicating BL targeting of KCa3.1 is independent of μ1B. As Rabs 1, 2, 6 and 8 play roles in ER/Golgi exit and trafficking of proteins to the BL membrane, we evaluated the role of these Rabs in the trafficking of KCa3.1. In the presence of dominant negative Rab1 or Rab8, KCa3.1 cell surface expression was significantly reduced, whereas Rabs 2 and 6 had no effect. We also co-immunoprecipitated KCa3.1 with both Rab1 and Rab8. These results suggest these Rabs are necessary for the anterograde trafficking of KCa3.1. Finally, we determined whether KCa3.1 traffics directly to the BL membrane or through recycling endosomes in MDCK cells. For these studies, we used either recycling endosome ablation or dominant negative RME-1 constructs and determined that KCa3.1 is trafficked directly to the BL membrane rather than via recycling endosomes. These results are the first to describe the anterograde and retrograde trafficking of KCa3.1 in polarized epithelia cells.
Collapse
Affiliation(s)
- Claudia A. Bertuccio
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Shih-Liang Lee
- Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, Otago, New Zealand
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Michael B. Butterworth
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Kirk L. Hamilton
- Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, Otago, New Zealand
- * E-mail: (DCD); (KLH)
| | - Daniel C. Devor
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (DCD); (KLH)
| |
Collapse
|
3
|
Brozmanova A, Jochem J, Javorka K, Zila I, Zwirska-Korczala K. Effects of diuretic-induced hypovolemia/isosmotic dehydration on cardiorespiratory responses to hyperthermia and its physical treatment in rabbits. Int J Hyperthermia 2009; 22:135-47. [PMID: 16754597 DOI: 10.1080/02656730500531988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Under conditions of heat stress and hyperosmotic dehydration, both animals and humans reduce thermoregulatory evaporation and regulate deep body temperature at elevated levels. Regarding the mechanisms, the main role in producing these thermoregulatory changes during dehydration is attributed to the increased osmolality of body fluids, although the role of the decreased plasma volume without changes in plasma osmolality (hypovolemia/isosmotic dehydration) has not been so far investigated. There are also controversial experimental results regarding the effects of dehydration on heat stress-induced cutaneous vasodilation. Therefore, this paper studied the effects of hypovolemia/isosmotic dehydration on cardiorespiratory responses to hyperthermia and its physical treatment in 17 anaesthetized adult rabbits. The animals were divided into two groups: normovolemic group (NV; n = 10) and hypovolemic group (HV; n = 7). In the HV group, hypovolemia/isosmotic dehydration (decrease in plasma volume by 16.1 +/- 1.2%) was induced by furosemide (5 mg kg-1 i.v.) without change in measured plasma Na+ concentration. Hyperthermia (the rise in body temperature (BT) to 42 degrees C by a gradual body surface heating) caused significant increase in minute ventilation (VE) in both groups. However, VE values were significantly higher in the HV rabbits compared to the NV animals despite the lower breathing frequency (p < 0.05). The panting was absent in the HV rabbits at the BT of 42 degrees C, unlike the NV animals. From cardiovascular variables, the vasoconstrictor response in visceral (mesenteric) region during hyperthermia in hypovolemic/isosmotic animals was attenuated (p < 0.05), whereas the heat stress-induced cutaneous vasodilation was not influenced by hypovolemia. Recovery of the BT by body surface cooling was accompanied by further increase in VE in the NV group, whereas VE decreased (p < 0.05) in the HV animals. Cooling led to recovery of the cardiovascular parameters. There were found no significant cardiorespiratory differences between the groups (NV:HV) during cooling. The lower frequency of breathing and attenuation of the mesenteric vasoconstriction during exogenous hyperthermia are present not only during hyperosmotic dehydration induced by water deprivation, but they also occur under conditions of furosemide-induced isosmotic dehydration/hypovolemia in rabbits. The heat stress-induced cutaneous vasodilation regarding its biological importance was not influenced by hypovolemia/isosmotic dehydration. Therefore, it is suggested that hypovolemia alone is sufficient to produce described respiratory, thermoregulatory and cardiovascular changes in dehydrated rabbits during exogenous hyperthermia, whereas hyperosmolality is not a requisite.
Collapse
Affiliation(s)
- Andrea Brozmanova
- Department of Physiology, Comenius University, Jessenius Faculty of Medicine, Martin, Slovakia.
| | | | | | | | | |
Collapse
|
4
|
Schmitt JP, Ahmad F, Lorenz K, Hein L, Schulz S, Asahi M, Maclennan DH, Seidman CE, Seidman JG, Lohse MJ. Alterations of phospholamban function can exhibit cardiotoxic effects independent of excessive sarcoplasmic reticulum Ca2+-ATPase inhibition. Circulation 2009; 119:436-44. [PMID: 19139388 DOI: 10.1161/circulationaha.108.783506] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Low activity of the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2a) resulting from strong inhibition by phospholamban (PLN) can depress cardiac contractility and lead to dilated cardiomyopathy and heart failure. Here, we investigated whether PLN exhibits cardiotoxic effects via mechanisms other than chronic inhibition of SERCA2a by studying a PLN mutant, PLN(R9C), that triggers cardiac failure in humans and mice. METHODS AND RESULTS Because PLN(R9C) inhibits SERCA2a mainly by preventing deactivation of wild-type PLN, SERCA2a activity could be increased stepwise by generating mice that carry a PLN(R9C) transgene and 2, 1, or 0 endogenous PLN alleles (PLN(+/+)+TgPLN(R9C), PLN(+/-)+TgPLN(R9C), and PLN(-/-)+TgPLN(R9C), respectively). PLN(-/-) +TgPLN(R9C) hearts demonstrated accelerated sarcoplasmic reticulum Ca(2+) uptake rates and improved hemodynamics compared with PLN(+/+)+TgPLN(R9C) mice but still responded poorly to beta-adrenergic stimulation because PLN(R9C) impairs protein kinase A-mediated phosphorylation of both wild-type and mutant PLN. PLN(+/+)+TgPLN(R9C) mice died of heart failure at 21+/-6 weeks, whereas heterozygous PLN(+/-)+TgPLN(R9C) mice survived to 48+/-11 weeks, PLN(-/-)+TgPLN(R9C) mice to 66+/-19 weeks, and wild-type mice to 94+/-27 weeks (P<0.001). Although Ca(2+) reuptake kinetics in young PLN(-/-)+TgPLN(R9C) mice exceeded those measured in wild-type control animals, this parameter alone was not sufficient to prevent the eventual development of dilated cardiomyopathy. CONCLUSIONS The data demonstrate an association between the dose-dependent inhibition of SERCA2a activity by PLN(wt) and the time of onset of heart failure and show that a weak inhibitor of SERCA2a, PLN(R9C), which is diminished in its ability to modify the level of SERCA2a activity, leads to heart failure despite fast sarcoplasmic reticulum Ca(2+) reuptake.
Collapse
Affiliation(s)
- Joachim P Schmitt
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Tikh EI, Fenton RA, Chen JF, Schwarzschild MA, Dobson JG. Adenosine A1 and A2A receptor regulation of protein phosphatase 2A in the murine heart. J Cell Physiol 2008; 216:83-90. [PMID: 18181173 DOI: 10.1002/jcp.21375] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Adenosine plays a role in regulating the contractile function of the heart. This includes a positive ionotropic action via the adenosine A(2A) receptor (A(2A)R) and an inhibition of beta(1)-adrenergic receptor-induced ionotropy (antiadrenergic action) via the adenosine A(1) receptor (A(1)R). Phosphatase activity has also been shown to influence contractile function by affecting the level of protein phosphorylation. Protein phosphatase 2A (PP2A) plays a significant role in mediating the A(1)R antiadrenergic effect. The purpose of this study was to investigate the effects of A(2A)R and A(1)R on the activities of PP2A in hearts obtained from wild-type (WT) and A(2A)R knockout (A(2A)R-KO) mice. PP2A activities were examined in myocardial particulate and cytoplasmic extract fractions. Treatment of wild-type hearts with the A(1)R agonist CCPA increased the total PP2A activity and increased the particulate:cytoplasmic PP2A activity ratio. Treatment with the A(2A)R agonist CGS-21680 (CGS) decreased the total PP2A activity and decreased the particulate:cytoplasmic PP2A activity ratio. This indicated a movement of PP2A activity between cell fractions. The effect of CCPA was inhibited by CGS. In A(2A)R-KO hearts the response to A(1)R activation was markedly enhanced whereas the response to A(2A)R activation was absent. These data show that A(2A)R and A(1)R regulate PP2A activity, thus suggesting an important mechanism for modulating myocardial contractility.
Collapse
Affiliation(s)
- Eugene I Tikh
- Department of Physiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | |
Collapse
|
6
|
Hirota CL, McKay DM. Cholinergic regulation of epithelial ion transport in the mammalian intestine. Br J Pharmacol 2006; 149:463-79. [PMID: 16981004 PMCID: PMC2014671 DOI: 10.1038/sj.bjp.0706889] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Acetylcholine (ACh) is critical in controlling epithelial ion transport and hence water movements for gut hydration. Here we review the mechanism of cholinergic control of epithelial ion transport across the mammalian intestine. The cholinergic nervous system affects basal ion flux and can evoke increased active ion transport events. Most studies rely on measuring increases in short-circuit current (ISC = active ion transport) evoked by adding ACh or cholinomimetics to intestinal tissue mounted in Ussing chambers. Despite subtle species and gut regional differences, most data indicate that, under normal circumstances, the effect of ACh on intestinal ion transport is mainly an increase in Cl- secretion due to interaction with epithelial M3 muscarinic ACh receptors (mAChRs) and, to a lesser extent, neuronal M1 mAChRs; however, AChR pharmacology has been plagued by a lack of good receptor subtype-selective compounds. Mice lacking M3 mAChRs display intact cholinergically-mediated intestinal ion transport, suggesting a possible compensatory mechanism. Inflamed tissues often display perturbations in the enteric cholinergic system and reduced intestinal ion transport responses to cholinomimetics. The mechanism(s) underlying this hyporesponsiveness are not fully defined. Inflammation-evoked loss of mAChR-mediated control of epithelial ion transport in the mouse reveals a role for neuronal nicotinic AChRs, representing a hitherto unappreciated braking system to limit ACh-evoked Cl- secretion. We suggest that: i) pharmacological analyses should be supported by the use of more selective compounds and supplemented with molecular biology techniques targeting specific ACh receptors and signalling molecules, and ii) assessment of ion transport in normal tissue must be complemented with investigations of tissues from patients or animals with intestinal disease to reveal control mechanisms that may go undetected by focusing on healthy tissue only.
Collapse
Affiliation(s)
- C L Hirota
- Department Physiology & Biophysics, University of Calgary, Calgary, AB, Canada.
| | | |
Collapse
|
7
|
Abstract
The tight junction of epithelial cells excludes macromolecules but allows permeation of ions. However, it is not clear whether this ion-conducting property is mediated by aqueous pores or by ion channels. To investigate the permeability properties of the tight junction, we have developed paracellular ion flux assays for four major extracellular ions, Na(+), Cl(-), Ca(2+), and Mg(2+). We found that the tight junction shares biophysical properties with conventional ion channels, including size and charge selectivity, dependency of permeability on ion concentration, competition between permeant molecules, anomalous mole-fraction effects, and sensitivity to pH. Our results support the hypothesis that discrete ion channels are present at the tight junction. Unlike conventional ion channels, which mediate ion transport across lipid bilayers, the tight junction channels must orient parallel to the plane of the plasma membranes to support paracellular ion movements. This new class of paracellular-tight junction channels (PTJC) facilitates the transport of ions between separate extracellular compartments.
Collapse
Affiliation(s)
- Vivian W Tang
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, Massachusetts 02115, USA
| | | |
Collapse
|
8
|
Abstract
K(+) channels play critical roles in a wide variety of physiological processes, including the regulation of heart rate, muscle contraction, neurotransmitter release, neuronal excitability, insulin secretion, epithelial electrolyte transport, cell volume regulation, and cell proliferation. As such, K(+) channels have been recognized as potential therapeutic drug targets for many years. Unfortunately, progress toward identifying selective K(+) channel modulators has been severely hampered by the need to use native currents and primary cells in the drug-screening process. Today, however, more than 80 K(+) channel and K(+) channel-related genes have been identified, and an understanding of the molecular composition of many important native K(+) currents has begun to emerge. The identification of these molecular K(+) channel drug targets should lead to the discovery of novel drug candidates. A summary of progress is presented.
Collapse
Affiliation(s)
- Alan Wickenden
- Icagen Inc., Suite 460, 4222 Emperor Boulevard, Durham, NC 27703, USA.
| |
Collapse
|
9
|
Calcium-mediated chloride secretion in the intestinal epithelium: Significance and regulation. CURRENT TOPICS IN MEMBRANES 2002. [DOI: 10.1016/s1063-5823(02)53037-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Al-Bazzaz FJ, Gailey C. Ion transport by sheep distal airways in a miniature chamber. Am J Physiol Lung Cell Mol Physiol 2001; 281:L1028-34. [PMID: 11557607 DOI: 10.1152/ajplung.2001.281.4.l1028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ion transport and the electric profile of distal airways of sheep lungs were studied in a miniature polypropylene chamber with a 1-mm aperture. Small airways with an inner diameter < 1 mm were isolated, opened longitudinally, and then mounted as a flat sheet onto the 1-mm aperture where it was glued and secured with an O-ring. Both sides of the tissue were bathed with identical physiological solutions at 37 degrees C and oxygenated. Pooled data from 27 distal airways showed an inner airway diameter of 854 +/- 22 (SE) microm and a transepithelial potential difference (PD) of 1.86 +/- 0.29 mV, lumen negative. Short-circuit current (I(sc)) was 25 +/- 3.5 microA/cm(2), tissue resistance was 96 +/- 14 Omega, and conductance was 15.2 +/- 1.7 mS/cm(2). At baseline, amiloride-sensitive Na transport accounted for 51% of I(sc) (change in I(sc) = 9.7 +/- 2.6 microA/cm(2); n = 8 airways), corresponding to 0.36 microeq. cm(-2). h(-1). Treatment with 0.1 mM bumetanide did not reduce the I(sc) (n = 5 airways). Exposure to 1 microM Ca ionophore A-23187 raised the I(sc) by 9 microA/cm(2) (47%; P < 0.03; n = 6 airways). The latter effect was blunted by bumetanide. Carbachol at 1 microM provoked a biphasic response, an initial rapid rise in I(sc) followed by a decline (n = 3 airways). There was no significant increase in PD or I(sc) in response to isoproterenol or dibutyryl cAMP. The data suggest that Na absorption constitutes at least 50% of baseline transport activity. Cl or other anion secretion such as HCO(3) appears to be present and could be stimulated by raising intracellular Ca.
Collapse
Affiliation(s)
- F J Al-Bazzaz
- Respiratory and Critical Care Section, Veterans Affairs Chicago Healthcare System-Westside Division, and Department of Medicine, University of Illinois at Chicago, 60612, USA.
| | | |
Collapse
|
11
|
Cid LP, Niemeyer MI, Ramírez A, Sepúlveda FV. Splice variants of a ClC-2 chloride channel with differing functional characteristics. Am J Physiol Cell Physiol 2000; 279:C1198-210. [PMID: 11003600 DOI: 10.1152/ajpcell.2000.279.4.c1198] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We identified two ClC-2 clones in a guinea pig intestinal epithelial cDNA library, one of which carries a 30-bp deletion in the NH(2) terminus. PCR using primers encompassing the deletion gave two products that furthermore were amplified with specific primers confirming their authenticity. The corresponding genomic DNA sequence gave a structure of three exons and two introns. An internal donor site occurring within one of the exons accounts for the deletion, consistent with alternative splicing. Expression of the variants gpClC-2 and gpClC-2Delta77-86 in HEK-293 cells generated inwardly rectifying chloride currents with similar activation characteristics. Deactivation, however, occurred with faster kinetics in gpClC-2Delta77-86. Site-directed mutagenesis suggests that a protein kinase C-mediated phosphorylation consensus site lost in gpClC-2Delta77-86 is not responsible for the observed change. The deletion-carrying variant is found in most tissues examined, and it appears more abundant in proximal colon, kidney, and testis. The presence of a splice variant of ClC-2 modified in its NH(2)-terminal domain could have functional consequences in tissues where their relative expression levels are different.
Collapse
Affiliation(s)
- L P Cid
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago-7, Chile.
| | | | | | | |
Collapse
|
12
|
Higuchi A, Adachi S, Imizu T, Ok YB, Tsubomura T, Hara M, Sakai K. Oscillation of Membrane Potential in Immobilized DNA Membranes. J Phys Chem B 2000. [DOI: 10.1021/jp001600n] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Akon Higuchi
- Department of Industrial Chemistry, Seikei University, 3-1 Kichijoji Kitamachi 3, Musashino, Tokyo 180-8633, Japan
| | - Shinya Adachi
- Department of Industrial Chemistry, Seikei University, 3-1 Kichijoji Kitamachi 3, Musashino, Tokyo 180-8633, Japan
| | - Takeshi Imizu
- Department of Industrial Chemistry, Seikei University, 3-1 Kichijoji Kitamachi 3, Musashino, Tokyo 180-8633, Japan
| | - Yoon Boo Ok
- Department of Industrial Chemistry, Seikei University, 3-1 Kichijoji Kitamachi 3, Musashino, Tokyo 180-8633, Japan
| | - Taro Tsubomura
- Department of Industrial Chemistry, Seikei University, 3-1 Kichijoji Kitamachi 3, Musashino, Tokyo 180-8633, Japan
| | - Mariko Hara
- Department of Industrial Chemistry, Seikei University, 3-1 Kichijoji Kitamachi 3, Musashino, Tokyo 180-8633, Japan
| | - Ken Sakai
- Department of Applied Chemistry, Science University of Tokyo, 1-3 Kagurazaka, Shinjyuku, Tokyo 162-8601, Japan
| |
Collapse
|
13
|
Barrett KE, Keely SJ. Chloride secretion by the intestinal epithelium: molecular basis and regulatory aspects. Annu Rev Physiol 2000; 62:535-72. [PMID: 10845102 DOI: 10.1146/annurev.physiol.62.1.535] [Citation(s) in RCA: 372] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chloride secretion is the major determinant of mucosal hydration throughout the gastrointestinal tract, and chloride transport is also pivotal in the regulation of fluid secretion by organs that drain into the intestine. Moreover, there are pathological consequences if chloride secretion is either reduced or increased such as in cystic fibrosis and secretory diarrhea, respectively. With the molecular cloning of many of the proteins and regulatory factors that make up the chloride secretory mechanism, there have been significant advances in our understanding of this process at the cellular level. Similarly, emerging data have clarified the intercellular relationships that govern the extent of chloride secretion. The goal of our article is to review this area of investigation, with an emphasis on recent developments and their implications for the physiology and pathophysiology of chloride transport.
Collapse
Affiliation(s)
- K E Barrett
- Department of Medicine, University of California, San Diego, School of Medicine, California 92103, USA.
| | | |
Collapse
|
14
|
Xu A, Netticadan T, Jones DL, Narayanan N. Serine phosphorylation of the sarcoplasmic reticulum Ca(2+)-ATPase in the intact beating rabbit heart. Biochem Biophys Res Commun 1999; 264:241-6. [PMID: 10527872 DOI: 10.1006/bbrc.1999.1491] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have demonstrated that Ca(2+)/calmodulin-dependent protein kinase phosphorylates the Ca(2+)-pumping ATPase of cardiac sarcoplasmic reticulum (SR) in vitro. Also, evidence from in vitro studies suggested that this phosphorylation, occurring at Ser(38), results in stimulation of Ca(2+) transport. In the present study, we investigated whether serine phosphorylation of the SR Ca(2+)-ATPase occurs in the intact functioning heart. Hearts removed from anesthetized rabbits were subjected to retrograde aortic perfusion of the coronary arteries with oxygenated mammalian Ringer solution containing (32)P(i) and contractions were monitored by recording systolic left ventricular pressure development. Following 45-50 min of (32)P perfusion, the hearts were freeze-clamped, SR isolated, and analyzed for protein phosphorylation. SDS-polyacrylamide gel electrophoresis and autoradiography showed phosphorylation of several peptides including the Ca(2+)-ATPase and Ca(2+) release channel (ryanodine receptor). The identity of Ca(2+)-ATPase as a phosphorylated substrate was confirmed by Western immunoblotting as well as immunoprecipitation using a cardiac SR Ca(2+)-ATPase-specific monoclonal antibody. The Ca(2+)-ATPase showed immunoreactivity with a phosphoserine monoclonal antibody indicating that the in situ phosphorylation occurred at the serine residue. Quantification of Ca(2+)-ATPase phosphorylation in situ yielded a value of 208 +/- 12 pmol (32)P/mg SR protein which corresponded to the phosphorylation of approximately 20% of the Ca(2+) pump units in the SR membrane. Since this phosphorylation occurred under basal conditions (i.e., in the absence of any inotropic intervention), a considerable steady-state pool of serine-phosphorylated Ca(2+)-ATPase likely exists in the normally beating heart. These findings demonstrate that serine phosphorylation of the Ca(2+)-ATPase is a physiological event which may be important in the regulation of SR function.
Collapse
Affiliation(s)
- A Xu
- Department of Physiology, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | | | | | |
Collapse
|
15
|
DuVall MD, Guo Y, Matalon S. Hydrogen peroxide inhibits cAMP-induced Cl- secretion across colonic epithelial cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C1313-22. [PMID: 9814980 DOI: 10.1152/ajpcell.1998.275.5.c1313] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the effects of H2O2 on Cl- secretion across human colonic T84 cells grown on permeable supports and mounted in modified Ussing chambers. Forskolin-induced short-circuit current, a measure of Cl- secretion, was inhibited in a concentration-dependent fashion when monolayers were pretreated with H2O2 for 30 min (30-100% inhibition between 500 microM and 5 mM). Moreover, H2O2 inhibited 76% of the Cl- current across monolayers when the basolateral membranes were permeabilized with nystatin (200 micrograms/ml). When the apical membrane was permeabilized with amphotericin B, H2O2 inhibited the Na+ current (a measure of Na+-K+-ATPase activity) by 68% but increased the K+ current more than threefold. In addition to its effects on ion transport pathways, H2O2 also decreased intracellular ATP levels by 43%. We conclude that the principal effect of H2O2 on colonic Cl- secretion is inhibitory. This may be due to a decrease in ATP levels following H2O2 treatment, which subsequently results in an inhibition of the apical membrane Cl- conductance and basolateral membrane Na+-K+-ATPase activity. Alternatively, H2O2 may alter Cl- secretion by direct action on the transporters or alterations in signal transduction pathways.
Collapse
Affiliation(s)
- M D DuVall
- Department of Anesthesiology, University of Alabama, Birmingham, Alabama 34294, USA
| | | | | |
Collapse
|
16
|
Simmerman HK, Jones LR. Phospholamban: protein structure, mechanism of action, and role in cardiac function. Physiol Rev 1998; 78:921-47. [PMID: 9790566 DOI: 10.1152/physrev.1998.78.4.921] [Citation(s) in RCA: 422] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A comprehensive discussion is presented of advances in understanding the structure and function of phospholamban (PLB), the principal regulator of the Ca2+-ATPase of cardiac sarcoplasmic reticulum. Extensive historical studies are reviewed to provide perspective on recent developments. Phospholamban gene structure, expression, and regulation are presented in addition to in vitro and in vivo studies of PLB protein structure and activity. Applications of breakthrough experimental technologies in identifying PLB structure-function relationships and in defining its interaction with the Ca2+-ATPase are also highlighted. The current leading viewpoint of PLB's mechanism of action emerges from a critical examination of alternative hypotheses and the most recent experimental evidence. The potential physiological relevance of PLB function in human heart failure is also covered. The interest in PLB across diverse biochemical disciplines portends its continued intense scrutiny and its potential exploitation as a therapeutic target.
Collapse
|
17
|
Mattiazzi A, Vittone L, Mundiña-Weilenmann C, Said M. Phosphorylation of the Thr17 residue of phospholamban. New insights into the physiological role of the CaMK-II pathway of phospholamban phosphorylation. Ann N Y Acad Sci 1998; 853:280-3. [PMID: 10603959 DOI: 10.1111/j.1749-6632.1998.tb08279.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- A Mattiazzi
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Argentina.
| | | | | | | |
Collapse
|
18
|
Calaghan S, White E, Colyer J. Preservation of the in vivo phosphorylation status of phospholamban in the heart: evidence for a site-specific difference in the dephosphorylation of phospholamban. Biochem Biophys Res Commun 1998; 248:701-5. [PMID: 9703990 DOI: 10.1006/bbrc.1998.9036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The phosphorylation status of the cardiac sarcoplasmic reticular (SR) protein phospholamban determines the activity of the SR Ca(2+)-ATPase. In order to predict SR Ca2+ transport in vivo, it is vital that techniques used to measure the phosphorylation status of phospholamban adequately clamp the endogenous kinases and phosphatases which modify phosphorylation during sample preparation. A recent study (Boateng, S., Seymour, A-M., Dunn, M., Yacoub, M., and Boheler, K. (1997) Biochem. Biophys. Res. Comm. 239, 701-705) has suggested that phosphatase inhibitors must be present in quenching media to prevent almost total dephosphorylation of phospholamban. We addressed this issue by assessing the effect of both kinase and phosphatase inhibition on site-specific phosphorylation of phospholamban in ferret ventricular muscle and isolated rat ventricular myocytes quenched with Laemmli sample buffer. Under these clearly defined quenching conditions in isolated myocytes, we demonstrated that the phosphorylation status of phospholamban was low under basal conditions, and high following exposure to the beta-agonist isoprenaline. The only significant effect of inhibitor inclusion in the quench solution was in isolated myocyte preparations where phosphatase inhibition increased phosphorylation at Ser16 by about a third. The differential effect of phosphatase inclusion on phosphorylation at Ser16 and Thr17 may indicate that different enzymes are involved in dephosphorylation of the two sites.
Collapse
Affiliation(s)
- S Calaghan
- School of Biochemistry and Molecular Biology, University of Leeds, United Kingdom.
| | | | | |
Collapse
|
19
|
Vittone L, Mundiña-Weilenmann C, Said M, Mattiazzi A. Mechanisms involved in the acidosis enhancement of the isoproterenol-induced phosphorylation of phospholamban in the intact heart. J Biol Chem 1998; 273:9804-11. [PMID: 9545319 DOI: 10.1074/jbc.273.16.9804] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous experiments have shown that acidosis enhances isoproterenol-induced phospholamban (PHL) phosphorylation (Mundiña-Weilenmann, C., Vittone, L., Cingolani, H. E., Orchard, C. H. (1996) Am. J. Physiol. 270, C107-C114). In the present experiments, performed in isolated Langendorff perfused rat hearts, phosphorylation site-specific antibodies to PHL combined with the quantitative measurement of 32P incorporation into PHL were used as experimental tools to gain further insight into the mechanism involved in this effect. At all isoproterenol concentrations tested (3-300 nM), phosphorylation of Thr17 of PHL was significantly higher at pHo 6.80 than at pHo 7.40, without significant changes in Ser16 phosphorylation. This increase in Thr17 phosphorylation was associated with an enhancement of the isoproterenol-induced relaxant effect. In the absence of isoproterenol, the increase in [Ca]o at pHo 6.80 (but not at pHo 7.40) evoked an increase in PHL phosphorylation that was exclusively due to an increase in Thr17 phosphorylation and that was also associated with a significant relaxant effect. This effect and the phosphorylation of Thr17 evoked by acidosis were both offset by the Ca2+/calmodulin-dependent protein kinase II inhibitor KN-62. In the presence of isoproterenol, either the increase in [Ca]o or the addition of a 1 microM concentration of the phosphatase inhibitor okadaic acid was able to mimic the increase in isoproterenol-induced Thr17 phosphorylation produced by acidosis. In contrast, these two interventions have opposite effects on phosphorylation of Ser16. Whereas the increase in [Ca]o significantly decreased phosphorylation of Ser16, the addition of okadaic acid significantly increased the phosphorylation of this residue. The results are consistent with the hypothesis that the increase in phospholamban phosphorylation produced by acidosis in the presence of isoproterenol is the consequence of two different mechanisms triggered by acidosis: an increase in [Ca2+]i and an inhibition of phosphatases.
Collapse
Affiliation(s)
- L Vittone
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Argentina
| | | | | | | |
Collapse
|
20
|
Barrett KE, Smitham J, Traynor-Kaplan A, Uribe JM. Inhibition of Ca(2+)-dependent Cl- secretion in T84 cells: membrane target(s) of inhibition is agonist specific. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:C958-65. [PMID: 9575792 DOI: 10.1152/ajpcell.1998.274.4.c958] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Previous studies have indicated that Ca(2+)-dependent Cl- secretion across monolayers of T84 epithelial cells is subject to a variety of negative influences that serve to limit the overall extent of secretion. However, the downstream membrane target(s) of these inhibitory influences had not been elucidated. In this study, nuclide efflux techniques were used to determine whether inhibition of Ca(2+)-dependent Cl- secretion induced by carbachol, inositol 3,4,5,6-tetrakisphosphate, epidermal growth factor, or insulin reflected actions at an apical Cl- conductance, a basolateral K+ conductance, or both. Pretreatment of T84 cell monolayers with carbachol or a cell-permeant analog of inositol 3,4,5,6-tetrakisphosphate reduced the ability of subsequently added thapsigargin to stimulate apical 125I-, but not basolateral 86Rb+, efflux. These data suggested an effect on an apical Cl- channel. Conversely, epidermal growth factor reduced Ca(2+)-stimulated 86Rb+ but not 125I- efflux, suggesting an effect of the growth factor on a K+ channel. Finally, insulin inhibited 125I- and 86Rb+ effluxes. Thus effects of agents that inhibit transepithelial Cl- secretion are also manifest at the level of transmembrane transport pathways. However, the precise nature of the membrane conductances targeted are agonist specific.
Collapse
Affiliation(s)
- K E Barrett
- Department of Medicine, University of California, San Diego, School of Medicine 92103, USA.
| | | | | | | |
Collapse
|
21
|
Luo W, Chu G, Sato Y, Zhou Z, Kadambi VJ, Kranias EG. Transgenic approaches to define the functional role of dual site phospholamban phosphorylation. J Biol Chem 1998; 273:4734-9. [PMID: 9468536 DOI: 10.1074/jbc.273.8.4734] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Phospholamban is a critical regulator of the sarcoplasmic reticulum Ca2+-ATPase activity and myocardial contractility. Phosphorylation of phospholamban occurs on both Ser16 and Thr17 during isoproterenol stimulation. To determine the physiological significance of dual site phospholamban phosphorylation, we generated transgenic models expressing either wild-type or the Ser16 --> Ala mutant phospholamban in the cardiac compartment of the phospholamban knockout mice. Transgenic lines with similar levels of mutant or wild-type phospholamban were studied in parallel. Langendorff perfusion indicated that the basal hyperdynamic cardiac function of the knockout mouse was reversed to the same extent by reinsertion of either wild-type or mutant phospholamban. However, isoproterenol stimulation was associated with much lower responses in the contractile parameters of mutant phospholamban compared with wild-type hearts. These attenuated responses were due to lack of phosphorylation of mutant phospholamban, assessed in 32P labeling perfusion experiments. The lack of phospholamban phosphorylation in vivo was not due to conversion of Ser16 to Ala, since the mutated phospholamban form could serve as substrate for the calcium-calmodulin-dependent protein kinase in vitro. These findings indicate that phosphorylation of Ser16 is a prerequisite for Thr17 phosphorylation in phospholamban, and prevention of phosphoserine formation results in attenuation of the beta-agonist stimulatory responses in the mammalian heart.
Collapse
Affiliation(s)
- W Luo
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0575, USA
| | | | | | | | | | | |
Collapse
|
22
|
Devor DC, Frizzell RA. Modulation of K+ channels by arachidonic acid in T84 cells. I. Inhibition of the Ca(2+)-dependent K+ channel. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:C138-48. [PMID: 9458722 DOI: 10.1152/ajpcell.1998.274.1.c138] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Cl- secretory response of colonic cells to Ca(2+)-mediated agonists is transient despite a sustained elevation of intracellular Ca2+. We evaluated the effects of second messengers proposed to limit Ca(2+)-mediated Cl- secretion on the basolateral membrane, Ca(2+)-dependent K+ channel (Kca) in colonic secretory cells, T84. Neither protein kinase C (PKC) nor inositol tetrakisphosphate (1,3,4,5 or 3,4,5,6 form) affected Kca in excised inside-out patches. In contrast, arachidonic acid (AA; 3 microM) potently inhibited Kca, reducing NP0, the product of number of channels and channel open probability, by 95%. The apparent inhibition constant for this AA effect was 425 nM. AA inhibited Kca in the presence of both indomethacin and nordihydroguaiaretic acid, blockers of the cyclooxygenase and lipoxygenase pathways. In the presence of albumin, the effect of AA on Kca was reversed. A similar effect of AA was observed on Kca during outside-out recording. We determined also the effect of the cis-unsaturated fatty acid linoleate, the trans-unsaturated fatty acid elaidate, and the saturated fatty acid myristate. At 3 microM, all of these fatty acids inhibited Kca, reducing NP0 by 72-86%. Finally, the effect of the cytosolic phospholipase A2 inhibitor arachidonyltrifluoromethyl ketone (AACOCF3) on the carbachol-induced short-circuit current (Isc) response was determined. In the presence of AACOCF3, the peak carbachol-induced Isc response was increased approximately 2.5-fold. Our results suggest that AA generation induced by Ca(2+)-mediated agonists may contribute to the dissociation observed between the rise in intracellular Ca2+ evoked by these agonists and the associated Cl- secretory response.
Collapse
Affiliation(s)
- D C Devor
- Department of Cell Biology and Physiology, University of Pittsburgh, Pennsylvania 15261, USA. dd2+@pitt.edu
| | | |
Collapse
|
23
|
Rufo PA, Merlin D, Riegler M, Ferguson-Maltzman MH, Dickinson BL, Brugnara C, Alper SL, Lencer WI. The antifungal antibiotic, clotrimazole, inhibits chloride secretion by human intestinal T84 cells via blockade of distinct basolateral K+ conductances. Demonstration of efficacy in intact rabbit colon and in an in vivo mouse model of cholera. J Clin Invest 1997; 100:3111-20. [PMID: 9399958 PMCID: PMC508524 DOI: 10.1172/jci119866] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The antifungal antibiotic clotrimazole (CLT) blocks directly and with high potency the Ca2+-activated K+ channels of human erythrocytes, erythroleukemia cells, and ferret vascular smooth muscle cells. We recently reported that CLT inhibits Cl- secretion in human intestinal T84 cells, likely by affecting K+ transport (Rufo, P.A., L. Jiang, S.J. Moe, C. Brugnara, S.L. Alper, and W.I. Lencer. 1996. J. Clin. Invest. 98:2066-2075). To determine if CLT had direct effects on K+ conductances in T84 cells, we selectively permeabilized apical membranes of confluent T84 cell monolayers using the ionophore amphotericin B. This technique permits direct measurement of basolateral K+ transport. We found that CLT and a stable des-imidazolyl derivative inhibited directly two pharmacologically distinct basolateral membrane K+conductances, but had no effect on apical membrane Cl- conductances. The effects of CLT on Cl- secretion were also examined in intact tissue. CLT inhibited forskolin-induced Cl- secretion in rabbit colonic mucosal sheets mounted in Ussing chambers by 91%. CLT also inhibited cholera toxin-induced intestinal Cl- secretion in intact mice by 94%. These data provide direct evidence that CLT blocks Cl- secretion in intestinal T84 cells by inhibition of basolateral K+ conductances, and show that CLT inhibits salt and water secretion from intact tissue in vitro and in vivo. The results further support the suggestion that CLT and its metabolites may show clinical efficacy in the treatment of secretory diarrheas of diverse etiologies.
Collapse
Affiliation(s)
- P A Rufo
- Combined Program in Pediatric Gastroenterology and Nutrition, Children's Hospital, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Stelling JW, Jacob TJ. Functional coupling in bovine ciliary epithelial cells is modulated by carbachol. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:C1876-81. [PMID: 9435492 DOI: 10.1152/ajpcell.1997.273.6.c1876] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The functional coupling of the ciliary epithelium was studied in isolated pairs (couplets) of pigmented ciliary epithelial (PCE) and nonpigmented ciliary epithelial (NPCE) cells using the whole cell patch clamp and the fluorescent dye lucifer yellow. One cell of the pair (usually the NPCE cell of a NPCE-PCE cell couplet) was accessed with a 2-5 M omega electrode, containing 1-2 mM lucifer yellow, in the whole cell configuration of the patch clamp. After voltage-clamp experiments were completed, cells were viewed under a fluorescent microscope to confirm that the cells were coupled. The electrical coupling of the cells was also studied by calculating the capacitance (using the time-domain technique), assuming a "supercell" model for coupled cells. The mean capacitance of coupled pairs was 79.8 +/- 4.3 (SE) pF (n = 47) compared with single cell capacitances of 36.8 +/- 3.4 pF (n = 10) for PCE cells and 38.1 +/- 3.1 pF (n = 15) for NPCE cells. Octanol, carbachol (CCh), and raised extracellular Ca2+ concentration ([Ca2+]o) all caused uncoupling in pairs (couplets) of coupled NPCE and PCE cells. At room temperature (22-24 degrees C), the capacitance of the couplets decreased from 70.5 +/- 8.0 to 48.0 +/- 5.2 pF (n = 5) when exposed to octanol (1 mM), from 73.8 +/- 9.2 to 43.2 +/- 9.5 pF (n = 4) when exposed to CCh (100 microM), and from 80.5 +/- 6.7 to 49.9 +/- 7.8 pF (n = 4) when exposed to 10 mM [Ca2+]o. The response to CCh was dose dependent; at higher temperatures of 34-37 degrees C, 10 microM CCh caused a 38% reduction in capacitance, from 53.7 +/- 9.7 to 33.5 +/- 3.3 pF (n = 7) with a half-time of 249 s, and 100 microM CCh caused a 49% reduction in capacitance, from 51.3 +/- 5.6 to 26.0 +/- 2.4 pF (n = 7) with a half-time of 124 s. After pairs uncoupled and the uncoupling agent was washed out, the cell pairs often exhibited an increase in capacitance that we interpreted as "recoupling" or a reopening of the gap junctional communication pathway; the half-time for this process was 729 s after uncoupling with 100 microM CCh and 211 s after uncoupling with 10 microM CCh. This interpretation was confirmed optically by the spread of lucifer yellow into both cells of an uncoupled pair with a time course corresponding to the increase in electrical coupling. The controllable coupling of ciliary epithelial cells extends the idea of a functional syncytium involved in active transport. PCE cells take up solute and water from the blood, which then cross to NPCE cells via gap junctions and from there are secreted into the posterior chamber of the eye. Modulation of the coupling between NPCE and PCE cells may provide a mechanism to control secretion.
Collapse
Affiliation(s)
- J W Stelling
- Physiology Unit, University of Wales, Cardiff, United Kingdom
| | | |
Collapse
|
25
|
Sand P, Svenberg T, Rydqvist B. Carbachol induces oscillations in membrane potential and intracellular calcium in a colonic tumor cell line, HT-29. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:C1186-93. [PMID: 9357762 DOI: 10.1152/ajpcell.1997.273.4.c1186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The patch-clamp technique was used to study the effects of carbachol (CCh) on HT-29 cells. During CCh exposure, the cells (n = 23) depolarized close to the equilibrium potential for Cl- (E(Cl-); -48 mV) and the membrane potential then started to oscillate (16/23 cells). In voltage-clamp experiments, similar oscillations in whole cell currents could be demonstrated. The whole cell conductance increased from 225 +/- 25 pS in control solution to 6,728 +/- 1,165 pS (means +/- SE, n = 17). In substitution experiments (22 mM Cl- in bath solution, E(Cl-) = 0 mV), the reversal potential changed from -41.6 +/- 2.2 mV (means +/- SE, n = 9) to -3.2 +/- 2.0 mV (means +/- SE, n = 7). When the cells were loaded with the calcium-sensitive fluorescent dye, fluo 3, and simultaneously patch clamped, CCh caused a synchronous oscillating pattern of fluorescence and membrane potential. In cell-attached patches, the CCh-activated currents reversed at a relative membrane potential of 1.9 +/- 3.7 mV (means +/- SE, n = 11) with control solution in the pipette and at 46.2 +/- 5.3 mV (means +/- SE, n = 10) with a 15 mM Cl- solution in the pipette. High K+ (144 mM) did not change the reversal potential significantly (P < or = 0.05, n = 8). In inside-out patches, calcium-dependent Cl- channels could be demonstrated with a conductance of 19 pS (n = 7). It is concluded that CCh causes oscillations in membrane potential that involve calcium-dependent Cl- channels and a K+ permeability.
Collapse
Affiliation(s)
- P Sand
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
26
|
Mundiña-Weilenmann C, Vittone L, Ortale M, de Cingolani GC, Mattiazzi A. Immunodetection of phosphorylation sites gives new insights into the mechanisms underlying phospholamban phosphorylation in the intact heart. J Biol Chem 1996; 271:33561-7. [PMID: 8969222 DOI: 10.1074/jbc.271.52.33561] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Phosphorylation site-specific antibodies, quantification of 32P incorporation into phospholamban, and simultaneous measurements of mechanical activity were used in Langendorff-perfused rat hearts to provide further insights into the underlying mechanisms of phospholamban phosphorylation. Immunological detection of phospholamban phosphorylation sites showed that the isoproterenol concentration-dependent increase in phospholamban phosphorylation was due to increases in phosphorylation of both Ser16 and Thr17 residues. When isoproterenol concentration was increased at extremely low Ca2+ supply to the myocardium, phosphorylation of Thr17 was virtually absent. Under these conditions, 32P incorporation into phospholamban, due to Ser16, decreased by 50%. Changes in Ca2+ supply to the myocardium either at constant beta-adrenergic stimulation or in the presence of okadaic acid, a phosphatase inhibitor, exclusively modified Thr17 phosphorylation. Changes in phospholamban phosphorylation due to either Ser16 and/or Thr17 were paralleled by changes in myocardial relaxation. The results indicate that cAMP- (Ser16) and Ca2+-calmodulin (Thr17)-dependent pathways of phospholamban phosphorylation can occur independently of each other. However, in the absence of beta-adrenergic stimulation, phosphorylation of Thr17 could only be detected after simultaneous activation of Ca2+-calmodulin-dependent protein kinase and inactivation of phosphatase. It is suggested that under physiological conditions, this requisite is only filled by cAMP-dependent mechanisms.
Collapse
Affiliation(s)
- C Mundiña-Weilenmann
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Argentina.
| | | | | | | | | |
Collapse
|
27
|
Schirgi-Degen A, Beubler E. Involvement of K+ channel modulation in the proabsorptive effect of nitric oxide in the rat jejunum in vivo. Eur J Pharmacol 1996; 316:257-62. [PMID: 8982696 DOI: 10.1016/s0014-2999(96)00683-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The role of K+ channels in the mediation of the nitric oxide(NO)-induced proabsorptive effect in intestinal fluid transport was investigated in a functional study, using a model of ligated jejunal loops of anaesthetized rats in vivo. The K+ channel opener cromakalim and the K+ channel blocker glibenclamide were administered under basal conditions as well as under conditions, when fluid secretion was influenced by N omega-nitro-L-arginine methyl ester (L-NAME), prostaglandin E2, Escherichia coli heat stable enterotoxin a (E. coli STa) or L-arginine. Intravenous infusion of cromakalim (63.5 micrograms/kg per min) significantly enhanced net fluid absorption compared to controls, totally abolished net fluid secretion induced by L-NAME (0.55 mg/kg per min), reversed net fluid secretion induced by intraluminal instillation of E. coli STa (10 units/ml) to absorption, but did not influence fluid secretion elicited by close i.a. infusion of prostaglandin E2 (79 ng/min). Close i.a. infusion of glibenclamide (0.16 mg/kg per min) reversed net fluid absorption to net secretion, blocked the absorptive effect of L-arginine (8.88 mg/kg per min) and reduced the proabsorptive effect of cromakalim. The secretory effect of L-NAME was not further enhanced by glibenclamide. These results suggest that modulation of basolateral K+ channels by NO is involved in the mediation of its proabsorptive effect, since opening and closure of K+ channels mimicked, respectively counteracted, the action of NO-donors and inhibitors of NO-synthesis on intestinal fluid transport. The role of prostaglandins in the proabsorptive effect of NO remains to be elucidated. These results furthermore support the role of K+ channel openers as potential new antidiarrheal drugs.
Collapse
Affiliation(s)
- A Schirgi-Degen
- Department of Experimental and Clinical Pharmacology, Karl-Franzens-University of Graz, Austria
| | | |
Collapse
|
28
|
Rufo PA, Jiang L, Moe SJ, Brugnara C, Alper SL, Lencer WI. The antifungal antibiotic, clotrimazole, inhibits Cl- secretion by polarized monolayers of human colonic epithelial cells. J Clin Invest 1996; 98:2066-75. [PMID: 8903326 PMCID: PMC507651 DOI: 10.1172/jci119012] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Clotrimazole (CLT) prevents dehydration of the human HbSS red cell through inhibition of Ca++-dependent (Gardos) K+ channels in vitro (1993. J. Clin Invest. 92:520-526.) and in patients (1996. J. Clin Invest. 97:1227-1234.). Basolateral membrane K+ channels of intestinal crypt epithelial cells also participate in secretagogue-stimulated Cl- secretion. We examined the ability of CLT to block intestinal Cl- secretion by inhibition of K+ transport. Cl- secretion was measured as short-circuit current (Isc) across monolayers of T84 cells. CLT reversibly inhibited Cl- secretory responses to both cAMP- and Ca2+-dependent agonists with IC50 values of approximately 5 microM. Onset of inhibition was more rapid when CLT was applied to the basolateral cell surface. Apical Cl- channel and basolateral NaK2Cl cotransporter activities were unaffected by CLT treatment as assessed by isotopic flux measurement. In contrast, CLT strongly inhibited basolateral 86Rb efflux. These data provide evidence that CLT reversibly inhibits Cl- secretion elicited by cAMP-, cGMP-, or Ca2+-dependent agonists in T84 cells. CLT acts distal to the generation of cAMP and Ca2+ signals, and appears to inhibit basolateral K+ channels directly. CLT and related drugs may serve as novel antidiarrheal agents in humans and animals.
Collapse
Affiliation(s)
- P A Rufo
- Combined Program in Pediatric Gastroenterology and Nutrition, Children's Hospital, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Verma V, Carter C, Keable S, Bennett D, Thorn P. Identification and function of type-2 and type-3 ryanodine receptors in gut epithelial cells. Biochem J 1996; 319 ( Pt 2):449-54. [PMID: 8912680 PMCID: PMC1217789 DOI: 10.1042/bj3190449] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Reverse transcription-PCR (RT-PCR) techniques were used to identify the expression of ryanodine receptor (RyR) isoforms in gut epithelial cells. Restriction digest and sequence analysis of the PCR product showed the presence of RyR 2 and RyR 3. [3H]Ry binding studies on a microsome preparation, in a high-salt buffer, showed specific binding with an EC50 of 15 microM. In order to determine a potential functional role for these RyRs, we first characterized the response of the cells to acetylcholine. At all concentrations used acetylcholine induced sinusoidal cytosolic Ca2+ concentration ([Ca2+]i) oscillations. In response to 10(-4) M acetylcholine, levels of inositol 1,4,5-trisphosphate (InsP3) showed a peak of six times the basal level, at 30 s after stimulation. Application of caffeine alone failed to elicit a rise in cytosolic Ca2+. However, caffeine (5-50 mM) did rapidly and reversibly inhibit the acetylcholine-induced [Ca2+]i oscillations. The effects of Ry were more complex. Applied alone, Ry had no effect on the [Ca2+]i signal. When applied during agonist-evoked [Ca2+]i oscillations, Ry (10 microM) slowly blocked the response. In the continuous presence of Ry (10 microM) a short application of acetylcholine elicited a [Ca2+]i response that continued as oscillations even when the agonist was removed. The oscillations, in the presence of Ry (10 microM) but absence of agonist, were blocked either by removal of extracellular Ca2+ or by an application of a higher concentration of Ry (100 microM). These effects are consistent with the known use-dependence and dose-dependence for Ry action at the RyR. We conclude that the RyR 2 and RyR 3, identified by RT-PCR, play a central role in [Ca2+]i oscillations in gut epithelial cells.
Collapse
Affiliation(s)
- V Verma
- Department of Pharmacology, Cambridge University, U.K
| | | | | | | | | |
Collapse
|
30
|
Higuchi A, Hara M. Oscillation of Membrane Potential in Chemically Modified Poly(α-amino acid) Membranes. ACTA ACUST UNITED AC 1996. [DOI: 10.1021/jp9516001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Akon Higuchi
- Department of Industrial Chemistry, Faculty of Engineering, Seikei University, 3 Kichijoji Kita-machi, Musashino, Tokyo 180, Japan
| | - Mariko Hara
- Department of Industrial Chemistry, Faculty of Engineering, Seikei University, 3 Kichijoji Kita-machi, Musashino, Tokyo 180, Japan
| |
Collapse
|
31
|
Abstract
BACKGROUND/AIMS Little is known about the mechanisms controlling colonic migrating electrical activity. This study investigates the neural processes involved in the generation of migrating myoelectric complexes in the isolated mouse colon. METHODS Intracellular electrophysiological recordings were obtained from the circular muscle layer of the mouse colon in vitro in the presence of 2 mumol/L nifedipine. RESULTS Complexes occurred approximately every 3 minutes and consisted of 1 mumol/L hyoscine-sensitive rapid oscillations (approximately 2 Hz) superimposed on a slow depolarization (approximately 17 mV); the latter was often preceded by a precomplex hyperpolarization (approximately 7 mV) that was reduced by 250 nmol/L apamin. Five hundred micromolars of hexamethonium or 2 mumol/L of tetrodotoxin abolished the complexes and depolarized the muscle by 8.7 +/- 1.3 mV (n = 9) or 12.1 +/- 1.4 mV (n = 5), respectively. Carbachol (50 nmol/L to 5 mumol/L) produced dose-dependent depolarizations but without rapid oscillations. The nitric oxide synthase inhibitor NG-nitro-L-arginine (100 mumol/L) depolarized the tissue by 17.2 +/- 1.6 mV (n = 8) but had no effect on the rapid oscillations. In the presence of 2 mumol/L tetrodotoxin, 5 mumol/L sodium nitroprusside produced a sustained hyperpolarization (15.5 +/- 2.0 mV; n = 5) but did not restore complexes. CONCLUSIONS In the isolated mouse colon, the membrane potential between complexes is maintained by the release of inhibitory neurotransmitters (including nitric oxide), and the formation of complexes involves disinhibition and the simultaneous activation of cholinergic motor nerves.
Collapse
Affiliation(s)
- D J Lyster
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | | | | |
Collapse
|
32
|
Lohrmann E, Greger R. The effect of secretagogues on ion conductances of in vitro perfused, isolated rabbit colonic crypts. Pflugers Arch 1995; 429:494-502. [PMID: 7617439 DOI: 10.1007/bf00704154] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Several secretagogues were used in this study, including those which enhance intracellular cyclic adenosine monophosphate (cAMP) production, as well as others which elevate intracellular Ca2+ activity and are known to increase Cl- secretion in the intact colon and in colonic carcinoma cell lines. They were examined with respect to their effects on electrophysiological properties in isolated rabbit distal colonic crypts. Crypts were dissected manually and perfused in vitro. Transepithelial voltage (Vte), transepithelial resistance (Rte), membrane voltage across the basolateral membrane (Vbl), and fractional basolateral membrane resistance (FRbl), were estimated. Basolateral prostaglandin E2 (PGE2, > or = 0.1 mumol/l), vasoactive intestinal peptide (VIP, 1 nmol/l) and adenosine (0.1 mmol/l) induced an initial depolarisation and a secondary partial repolarisation of Vbl. In the case of adenosine, the initial depolarization of Vbl was by 31 +/- 2 mV (n = 47). Rte fell significantly from 16.4 +/- 3.6 to 14.2 +/- 3.7 omega.cm2 (n = 6), and FRbl increased significantly from 0.11 +/- 0.02 to 0.51 +/- 0.10 (n = 6). In the second phase the repolarisation of Vbl amounted 11 +/- 2 mV (n = 47) and a steady-state (Vbl) of -51 +/- 2 mV (n = 47) was reached. Rte fell further and significantly to a steady-state value of 12.4 +/- 3.8 omega.cm2 (n = 6) and FRbl fell significantly to 0.42 +/- 0.13 (n = 6). In 30% of the experiments, a transient hyperpolarisation of Vbl by 8 +/- 2 mV (n = 14) was seen during wash out of adenosine.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- E Lohrmann
- Bayer AG, Pharma-Forschungszentrum, Institut für Herz-Kreislauf- und Arterioskleroseforschung, Wuppertal, Germany
| | | |
Collapse
|
33
|
Abstract
Pinacidil (N"-cyano-N-4-pyridyl-N'-1,2,2-trimethylpropylguanidine monohydrate) and BRL 38227, a benzopyran derivative, two K+ channel activators, were found to decrease short-circuit current (ISC), a measure for ion movement across the intestinal tissue. This decrease in ISC was correlated with an increase in NaCl absorption. These results suggest the possibility of new forms of drug therapy for diarrheal diseases. The effects of pinacidil were compared to galanin which also increased NaCl absorption. Galanin increased potassium currents in whole-cell patch clamp studies. The effects of galanin and pinacidil on Isc were not additive suggesting a common pathway in their mechanism of action.
Collapse
Affiliation(s)
- F R Homaidan
- Division of Gastroenterology, Winthrop-University Hospital, Mineola, NY 11501
| | | |
Collapse
|
34
|
Petroff MV, Mundiña-Weilenmann C, Vittone L, Chiappe de Cingolani G, Mattiazzi A. Lusitropic effects of alpha- and beta-adrenergic stimulation in amphibian heart. Mol Cell Biochem 1994; 141:87-95. [PMID: 7891675 DOI: 10.1007/bf00926171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effects of beta and alpha-adrenergic stimulation in amphibian superfused hearts and ventricular strips were studied. Superfusion with 3 x 10(-8) M isoproterenol produced a positive inotropic effect, as detected by a 92 +/- 24% increase in the maximal rate of contraction (+T) and a positive lusitropic effect characterized by a decrease in both the ratio +T/-T (23 +/- 5%) and the half relaxation time (t1/2) (19 +/- 4%). The mechanical behavior induced by the beta-agonist was associated with an increase in the intracellular cAMP levels from control values of 173 +/- 19 to 329 +/- 28 nmol/mg wet tissue. Hearts superfused with 32P in the presence of isoproterenol showed a significant increase in Tn 1 phosphorylation (from 151 +/- 13 to 240 +/- 44 pmol 32P/mg MF protein) without consistent changes in phosphorylation of C-protein. In sarcoplasmic reticulum membrane vesicles, no phospholamban phosphorylation was detected either by beta-adrenergic stimulation of superfused hearts or when phosphorylation conditions were optimized by direct treatment of the vesicles with cAMP-dependent protein kinase (PKA) and [gamma 32P] ATP. The effect of alpha-adrenergic stimulation on ventricular strips was studied at 30 and 22 degrees C. At 30 degrees C, the effects of 10(-5) to 10(-4) M phenylephrine on myocardial contraction and relaxation were diminished to non significant levels by addition of propranolol. At 22 degrees C, blockage with propranolol left a remanent positive inotropic effect (10% of the total effect of phenylephrine) and changed the phenylephrine-induced positive lusitropic effect into a negative lusitropic action.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M V Petroff
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médias, Universidad Nacional de La Plata, Argentina
| | | | | | | | | |
Collapse
|
35
|
Baró I, Roch B, Hongre AS, Escande D. Concomitant activation of Cl- and K+ currents by secretory stimulation in human epithelial cells. J Physiol 1994; 478 Pt 3:469-82. [PMID: 7965857 PMCID: PMC1155667 DOI: 10.1113/jphysiol.1994.sp020266] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
1. Whole-cell currents were investigated in the model salt-secreting epithelium, human T84 cell line, by means of the perforated patch-clamp technique. In the control extracellular medium containing Cl-, depolarizing voltage ramps evoked current responses which peaked at 5.43 +/- 0.81 pA pF-1 at +60 mV and had a reversal potential (Erev) of -38.4 +/- 2.5 mV (n = 23). 2. Activation of the cAMP pathway with forskolin increased the current at +60 mV from 3.81 +/- 0.61 to 20.79 +/- 5.08 pA pF-1 (n = 18). In thirteen cells, Erev was initially shifted towards positive potentials (Erev of the cAMP-activated initial current was -18.2 +/- 1.2 mV) and subsequently shifted towards more negative potentials, consistent with the activation of both Cl- and K+ currents during cAMP stimulation. 3. Increasing the intracellular Ca2+ concentration, [Ca2+]i, with ionomycin (1 microM) or with acetylcholine (1 microM), increased the current at +60 mV from 7.79 +/- 1.57 to 57.50 +/- 12.10 pA pF-1 (n = 6) and from 6.36 to 34.13 pA pF-1 (n = 4), respectively. With both agonists, Erev was shifted either towards the reversal potential for potassium, EK, or towards the reversal potential for chloride, ECl, depending on the cell. 4. In the absence of chloride ions (gluconate substituted), stimulation of the Ca2+ pathway activated a time-independent outward current of large amplitude. This current exhibited inward rectification at positive voltages, reverted at -89.5 +/- 0.2 mV and was markedly reduced by charybdotoxin (10 nM), a specific blocker of Ca(2+)-activated K+ channels. When a voltage step protocol was used, increased [Ca2+]i also activated an outward current at potentials more positive than -40 mV which slowly relaxed during depolarizing steps. 5. The activation of both (i) a time-dependent inwardly rectifying charybdotoxin-sensitive K+ current, and (ii) a time-dependent slowly inactivating current was also produced by cAMP stimulation. 6. We concluded that (i) in the T84 epithelial cells, both Cl- and K+ currents are concomitantly increased by secretagogue stimulation, and (ii) two different types of K+ conductances are activated by either the cAMP or the intracellular Ca2+ secreting pathways.
Collapse
Affiliation(s)
- I Baró
- Laboratoire de Physiologie Cellulaire, URA CNRS 1121, Université Paris XI, Orsay, France
| | | | | | | |
Collapse
|
36
|
Huflejt ME, Blum RA, Miller SG, Moore HP, Machen TE. Regulated Cl transport, K and Cl permeability, and exocytosis in T84 cells. J Clin Invest 1994; 93:1900-10. [PMID: 8182123 PMCID: PMC294297 DOI: 10.1172/jci117181] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We measured stimulant-induced changes of exocytosis that are associated with increases in Cl secretion (i.e., short circuit current, ISC, in microA/cm2) and apical (ap) Cl permeability (PCl) and basolateral (bl) K permeability (PK) (both in cm/s) in T84 monolayers. PCl and PK were measured by permeabilizing the bl or ap membrane with nystatin. PCl was also measured with a fluorescent dye 6-methoxy-N-(3-sulfopropyl)quinolinium (SPQ). A noninvasive and sensitive method (release of 35SO4-labeled glycosaminoglycan [GAG], a fluid-phase marker of Golgi-derived vesicles) was used to measure exocytosis at both ap and bl membranes. At rest, ISC = 3.6, PK = 0.8 x 10(-6), PCl = 2.1 x 10(-6) with SPQ and 2.4 x 10(-6) electrically, and there was constitutive GAG secretion (i.e., exocytosis) to both ap and bl sides (bl > 2 x ap). Carbachol (C) increased: ISC (delta = 18.6), PK (6.5x), PCl (1.8-2.9x), and exocytosis to both ap (2.2-3.5x) and bl (2.0-3.0x) membranes. Forskolin (F) increased ISC (delta = 29), PCl (5.5-11x) and ap exocytosis (1.5-2x), but had no effect on PK or bl exocytosis. Synergistic effects on ISC occurred when C was added to F-treated cells but not vice versa, even though the characteristic effects of F+C on PCl, PK, and/or GAG secretion were identical to those exhibited when stimulants were added individually. Cl secretion results from coordinated activation of channels at ap and bl membranes, and exocytosis may play a role in these events.
Collapse
Affiliation(s)
- M E Huflejt
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | | | | | | | |
Collapse
|
37
|
McEwan GT, Hirst BH, Simmons NL. Carbachol stimulates Cl- secretion via activation of two distinct apical Cl- pathways in cultured human T84 intestinal epithelial monolayers. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1220:241-7. [PMID: 8305495 DOI: 10.1016/0167-4889(94)90144-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The mode of action of carbachol in stimulation of transepithelial Cl- secretion in intact human intestinal T84 epithelial monolayers has been investigated in order to determine whether a DIDS-insensitive exit pathway (via CFTR) coexists with a DIDS-sensitive exit pathway at the apical membrane. Carbachol stimulates a transient inward Isc due to Cl- secretion whose magnitude is related to the basal level of inward Isc. The inward current responses to both carbachol and hypo-osmotic media are abolished in nominally Ca(2+)-free media. The action of apical DIDS (100 microM) upon carbachol-stimulated Isc depends on the initial value of the basal Isc. At basal Isc levels < 10 microA cm-2, 100 microM DIDS applied to the apical cell border abolishes the inward Isc following exposure to both carbachol and hypo-osmotic media. In contrast a VIP-stimulated inward Isc is observed in the presence of 100 microM DIDS. After VIP stimulation of inward Isc, or if spontaneous basal values of Isc were > 10 microA cm-2, the carbachol stimulation of inward Isc was largely insensitive to 100 microM DIDS. The data are consistent with the participation of both DIDS-sensitive and DIDS insensitive pathways for Cl- at the apical membrane of human intestinal T84 epithelial cells.
Collapse
Affiliation(s)
- G T McEwan
- Department of Physiological Sciences, University of Newcastle upon Tyne, Medical School, UK
| | | | | |
Collapse
|
38
|
Clarke LL, Grubb BR, Yankaskas JR, Cotton CU, McKenzie A, Boucher RC. Relationship of a non-cystic fibrosis transmembrane conductance regulator-mediated chloride conductance to organ-level disease in Cftr(-/-) mice. Proc Natl Acad Sci U S A 1994; 91:479-83. [PMID: 7507247 PMCID: PMC42972 DOI: 10.1073/pnas.91.2.479] [Citation(s) in RCA: 267] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Although loss of cystic fibrosis transmembrane conductance regulator (CFTR)-mediated Cl- channel function is common to all epithelia in cystic fibrosis (CF) patients, the severity of disease varies in different organs. We hypothesized that differences in disease severity in CF relate to the expression of an "alternative" plasma membrane Cl- conductance. In CF mice [Cftr(-/-); mice homozygous for Ser-489 to Xaa mutation], which do not express cAMP CFTR-mediated Cl- secretion, we surveyed organs that exhibit a range of disease severity for a Ca(2+)-mediated apical membrane epithelial Cl- conductance. This alternative conductance (Cl-a) was detected in epithelia of organs from CF mice that exhibit a mild disease phenotype (airway, pancreas) but not in epithelia with a severe phenotype (small, large intestine). We conclude that (i) there is an intracellular Ca(2+)-regulated Cl- conductance that is molecularly distinct from CFTR; and (ii) the level of expression of this alternative Cl- conductance in the epithelium is an important determinant of the severity of organ-level disease in CF.
Collapse
Affiliation(s)
- L L Clarke
- Department of Medicine, University of North Carolina, Chapel Hill 27599-7020
| | | | | | | | | | | |
Collapse
|
39
|
Valverde MA, Mintenig GM, Sepúlveda FV. Differential effects of tamoxifen and I- on three distinguishable chloride currents activated in T84 intestinal cells. Pflugers Arch 1993; 425:552-4. [PMID: 8134272 DOI: 10.1007/bf00374885] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The whole-cell mode of the patch-clamp technique has been used to monitor ionic currents in T84 colonic carcinoma cells. The cells were stimulated by either a cAMP cocktail, ionomycin or hypotonicity. Sizeable currents with distinct kinetics were observed after the stimulation with the different agonists. These kinetically distinct Cl- currents also presented a differential sensitivity to the anti-oestrogen Tamoxifen and to the halide I-. Tamoxifen only inhibits the volume activated Cl- current without affecting the other two. Substitution of extracellular Cl- by I- shifted the reversal potential towards more negative values both in the hypotonicity and ionomycin activated Cl- currents. The cAMP activated current responded to the Cl- substitution by I- with a blockade of both outward and inward currents, in addition to the displacement of the zero current level towards positive values. Thus, the use of these two simple tools, I- and tamoxifen, allows the distinction of Cl- channels in epithelial cells.
Collapse
Affiliation(s)
- M A Valverde
- Department of Cellular Physiology, AFRC Babraham Institute, Cambridge, UK
| | | | | |
Collapse
|
40
|
Devor DC, Sekar MC, Frizzell RA, Duffey ME. Taurodeoxycholate activates potassium and chloride conductances via an IP3-mediated release of calcium from intracellular stores in a colonic cell line (T84). J Clin Invest 1993; 92:2173-81. [PMID: 7693758 PMCID: PMC288396 DOI: 10.1172/jci116819] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Whole-cell patch-clamp techniques and fluorescence measurements of intracellular Ca2+ concentration, (Ca2+)i, were used to investigate the mechanism of taurodeoxycholate (TDC) stimulation of Cl- secretion in the T84 colonic cell line. During perforated whole-cell recordings, the cell membrane voltage was alternately clamped to EK and ECl. Initially, TDC (0.75 mM) stimulated inward nonselective cation currents that were composed of discrete large conductance single-channel events. This initial response was followed by activation of K+ and Cl- currents with peak values of 385 +/- 41 pA and 98 +/- 28 pA, respectively (n = 12). The K+ and Cl- currents oscillated while TDC was present and returned to baseline levels upon its removal. The threshold for activation of the oscillatory currents was 0.1 mM TDC. Taurocholate, a bile acid that does not stimulate colonic Cl- secretion, induced no current response. The TDC-induced currents could be activated in Ca(2+)-free bathing solutions. Preincubation of cells with the Ca2+ chelator, bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid, tetra(acetoxymethy)-ester (20 microM), (BAPTA-AM), eliminated the K+ and Cl- current responses, although the nonselective cation channel events were still present. Replacement of bath Na+ with NMDG+ inhibited the TDC-induced nonselective cation current but did not affect the K+ or Cl- currents. TDC induced a transient (Ca2+)i rise of 575 +/- 70 nM from a baseline of 71 +/- 5 nM (n = 15); thereafter, (Ca2+)i either plateaued or oscillated. TDC-induced (Ca2+)i oscillations were observed in the absence of bath Ca2+; however, removal of bath Ca2+ during the TDC response caused (Ca2+)i to return to near baseline values. Simultaneous K+ current and (Ca2+)i measurements confirmed that the initial nonselective cation current was independent of (Ca2+)i, while K+ current oscillations were in phase with the (Ca2+)i oscillations. TDC induced inositol monophosphate (IP) accumulation, reflecting production of inositol 1,4,5-trisphosphate (IP3) during TDC stimulation. The response to TDC during standard whole-cell patch-clamp was similar to that observed with perforated whole-cell recordings, except the nonselective cation current was prolonged. When heparin (1 mg/ml) was added to the pipette under these conditions, the Ca(2+)-activated currents were inhibited, but the nonselective cation currents were unaffected. These data suggest that TDC induces a Ca(2+)-independent nonselective cation conductance, perhaps by directly permeabilizing the plasma membrane. TDC stimulates Cl- secretion by activating K+ and Cl- conductances via an IP3-mediated release of Ca2+ from intracellular stores.
Collapse
Affiliation(s)
- D C Devor
- Department of Physiology, State University of New York at Buffalo 14214
| | | | | | | |
Collapse
|
41
|
Vittone L, Mundiña C, Chiappe de Cingolani G, Mattiazzi A. Role of Ca(2+)-calmodulin dependent phospholamban phosphorylation on the relaxant effect of beta-adrenergic agonists. Mol Cell Biochem 1993; 124:33-42. [PMID: 8232275 DOI: 10.1007/bf01096379] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The role of the Ca(2+)-calmodulin dependent pathway of phospholamban phosphorylation on the relaxant effect of beta-adrenergic agonists was studied in isolated perfused rat heart. Administration of the calmodulin antagonist W7 or lowering [Ca]o from 1.35 mM (control) to 0.25 mM, were used as experimental tools to inhibit the Ca(2+)-calmodulin dependent protein kinase activity. 3 x 10(-8) M isoproterenol increased cAMP levels from 0.613 +/- 0.109 pmol/mg wet weight to 1.581 +/- 0.123, phospholamban phosphorylation from 36 +/- 6 pmol 32P/mg protein to 277 +/- 26 and decreased time to half relaxation (t1/2) from 61 +/- 2 msec to 39 +/- 2. Simultaneous perfusion of isoproterenol with 10(-6) M W7, decreased phospholamban phosphorylation to 170 +/- 23 and prolongated t1/2 to 47 +/- 3 but did not affect the increase either in cAMP levels or myocardial contractility produced by isoproterenol. Similar effects on phospholamban phosphorylation and myocardial relaxation were obtained when isoproterenol was perfused in low [Ca]o. Low [Ca]o did not affect the increase in cAMP elicited by isoproterenol but offset the positive inotropic effect of the beta-agonist. The results suggest a physiological role of the Ca(2+)-calmodulin dependent phospholamban phosphorylation pathway as a mechanism that supports, in part, the beta-adrenergic cardiac relaxant effect.
Collapse
Affiliation(s)
- L Vittone
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Argentina
| | | | | | | |
Collapse
|
42
|
Berger H, Travis S, Welsh M. Regulation of the cystic fibrosis transmembrane conductance regulator Cl- channel by specific protein kinases and protein phosphatases. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53959-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
43
|
Reenstra WW. Inhibition of cAMP- and Ca-dependent Cl- secretion by phorbol esters: inhibition of basolateral K+ channels. THE AMERICAN JOURNAL OF PHYSIOLOGY 1993; 264:C161-8. [PMID: 7679250 DOI: 10.1152/ajpcell.1993.264.1.c161] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pretreating confluent T84 cells with the phorbol ester phorbol 12-myristate 13-acetate (PMA) inhibits adenosine 3',5'-cyclic monophosphate (cAMP)- and carbachol-induced Cl secretion. Both a sustained short-circuit current (Isc), seen after the addition of 50 microM 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate (CPT-cAMP) and 100 microM 3-isobutyl-1-methylxanthine (IBMX), and a transient current, seen after the subsequent addition of 100 microM carbachol, are inhibited by 80% following pretreatment with 100 nM PMA for 2 h. Pretreatment with PMA has no effect on the level of cystic fibrosis transmembrane conductance regulator protein or apical cAMP-dependent Cl conductance. Carbachol does not induce an increase in apical Cl conductance. Basolateral K conductance was measured in monolayers treated with apical nystatin and exposed to a K gradient. Agonist-independent K conductance is 10-fold greater in Cl media than in gluconate media. Pretreatment with PMA inhibits agonist-independent K conductance by 57% in Cl media but stimulates K conductance by 1.9-fold in gluconate media. The addition of carbachol induces a transient increase in basolateral K conductance, and pretreatment with PMA inhibits the agonist-dependent K conductance by 66% in Cl media and by 92% in gluconate media. In Cl media, serosal barium, at 3 mM, inhibits agonist-independent K conductance but has no significant effect on the carbachol-induced conductance. In nonpermeabilized monolayers, serosal barium inhibits the cAMP-dependent Isc by 56% but has no effect on the carbachol-induced Isc. These results demonstrate that the primary effect of PMA on Cl secretion is not inhibition of apical Cl channels but inhibition of basolateral K channels.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- W W Reenstra
- Children's Hospital Oakland Research Institute, California
| |
Collapse
|
44
|
Stelling JW, Jacob TJ. The inward rectifier K+ current underlies oscillatory membrane potential behaviour in bovine pigmented ciliary epithelial cells. J Physiol 1992; 458:439-56. [PMID: 1302273 PMCID: PMC1175164 DOI: 10.1113/jphysiol.1992.sp019426] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
1. Fresh bovine, pigmented ciliary epithelial cells possess an inward rectifier current activated by hyperpolarization. This current was investigated using whole-cell patch-clamp techniques. At the holding potential of -70 mV, and with EK (potassium equilibrium potential) set at -84 mV, a small outward current flowed through the inward rectifier that was sensitive to external K+, becoming more outward in 0.5 mM K+ and progressively more inward in 20 and 50 mM K+. 2. The inward rectifier showed V-EK dependence; increasing [K+]o increased the inward conductance from 1.28 nS in 5 mM K+ to 7.42 nS in 50 mM K+. The conductance at a given V-EK was proportional to the square root of [K+]o. 3. It was blocked by external Cs+ but replacing K+ in the pipette with Cs+ blocked only outward ion movement through the inward rectifier. Inward rectification was also blocked by Ba2+ (85% with Ki (concentration giving half-maximal inhibition) = 3.1 x 10(-5) M) and TEA+ (74% with Ki = 2.9 x 10(-4) M). 4. The activation time constant was voltage dependent, decreasing from 5 ms to 0.7 ms over the voltage range -90 to -170 mV. With increasing hyperpolarization the current exhibited time-dependent decay. The time constant for this process was voltage sensitive but the steady-state inactivation was independent of external [K+]. 5. The current disappeared in culture within 8 days. 6. Solution flow over the cell inactivated the inward rectifier, a property that may be related to [K+]o. 7. In current clamp the cells exhibited an unstable region at a potential of around -70 mV. Once in this region oscillations and regenerative hyperpolarizing potentials were observed. This behaviour was eliminated by treatments that blocked (Cs+, Ba2+) or removed (0.5 mM K+) active inward rectification. 8. It is suggested that these oscillations may represent a process of cation loading, the first step in the secretion of aqueous humour.
Collapse
Affiliation(s)
- J W Stelling
- Department of Physiology, University of Wales, Cardiff
| | | |
Collapse
|
45
|
Vittone L, Mundiña C, Napolitano R, Chiappe de Cingolani G, Mattiazzi A. Characteristics of ryanodine-induced tetani in the perfused rat heart. Tetanic tension is not the highest force that cardiac muscle can generate. ARCHIVES INTERNATIONALES DE PHYSIOLOGIE, DE BIOCHIMIE ET DE BIOPHYSIQUE 1992; 100:349-54. [PMID: 1282388 DOI: 10.3109/13813459209000725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The aim of the present study was to elucidate the conditions required to obtain tetanic contractions in rat intact heart and to investigate whether tetanic tension was actually the maximal tension that isolated rat heart is able to generate. Experiments were performed on isolated rat hearts (Langendorff technique) perfused at constant coronary flow (8-9 ml/min). Rapid repetitive stimulation (400 to 3000 pulses/min) failed to elicit a fused tetanus. The first twitch that occurred at the end of the rapid stimulation period was a potentiated beat (PSP) of significantly greater magnitude than that of the regular twitch. This potentiation declined in successive beats. When rapid electrical stimulation (600 to 3000 pulses/min) was applied to hearts treated with 5 x 10(-6) M ryanodine, the result was a fused and steady tetanic tension. Ryanodine suppressed PSP. Tetanic tension could be graded by stepwise increase of [Ca2+]o from 0.25 to 5 mM. Maximal tetanic tension occurred at a [Ca2+]o between 3.85 and 5 mM. At any of the [Ca2+]o, tetanic tension was significantly greater than the tension of the twitch obtained at approximately the natural frequency of rat heart in the intact animal (250 beats/min) but it did not differ significantly from the twitch obtained at 100 beats/min. Moreover, the tension of PSP at 0.25 and 1.35 mM [Ca2+]o was significantly greater than the maximal tetanic tension that could be obtained. Similar results to that obtained with ryanodine, were obtained in additional experiments in which caffeine was used to evoke tetanic contraction.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L Vittone
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Argentina
| | | | | | | | | |
Collapse
|
46
|
Walters RJ, O'Brien JA, Valverde MA, Sepúlveda FV. Membrane conductance and cell volume changes evoked by vasoactive intestinal polypeptide and carbachol in small intestinal crypts. Pflugers Arch 1992; 421:598-605. [PMID: 1437521 DOI: 10.1007/bf00375057] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have used the perforated-patch whole-cell recording mode of the patch-clamp technique to monitor membrane potential and measured cell volume changes by image analysis, to determine the nature of the response to secretagogues of isolated whole guinea-pig small-intestinal crypts. Vasoactive intestinal polypeptide (VIP) produced a dose-dependent depolarisation (EC50 = 30 nM) and an increase in membrane conductance that could be potentiated by carbachol. Similar depolarisations were observed with forskolin. The depolarisation induced by 100 nM VIP was smaller when pipette [Cl-] was 60 mM than when it was 145 mM, suggesting an effect through Cl- conductance activation. Carbachol alone produced a hyperpolarisation (EC50 = 2 microM). The Cl- channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) produced a small hyperpolarization. When VIP was added in the presence of NPPB, the depolarisation was observed instead, consistent with the parallel activation of a K+ conductance. Both carbachol (100 microM) and VIP (100 nM) induced a 25%-30% shrinkage of crypts, which was maximal 8 min after addition of the secretagogue. The induced shrinkage was sustained in the continued presence of agonist and was reversed upon washout. Shrinkage induced by the agonists was abolished by increasing extracellular K+ from 6 mM to 20 mM and was inhibited partially in the presence of 100 microM anthracene-9-carboxylic acid in the bath. The decrease in volume induced by 100 nM VIP was totally abolished in the presence of 100 microM NPPB. The results are consistent with the view that both VIP and carbachol induce secretion in small-intestinal crypts.
Collapse
Affiliation(s)
- R J Walters
- AFRC Institute of Animal Physiology and Genetics Research, Babraham, Cambridge, UK
| | | | | | | |
Collapse
|
47
|
Böhme M, Diener M, Rummel W. Calcium- and cyclic-AMP-mediated secretory responses in isolated colonic crypts. Pflugers Arch 1991; 419:144-51. [PMID: 1660128 DOI: 10.1007/bf00373000] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Whole-cell recordings were performed at isolated crypts from the distal colon of the rat. Enterocytes in intact crypts, patched from the basolateral side, exhibited a gradient in the resting zero-current potential. Along the axis of the crypt, the highest potentials were measured in the ground region, the lowest in the surface region. The cholinergic agonist, carbachol, induced a hyperpolarization and an increase of the outward current in both the middle and the ground cells of intact crypts. This effect could be prevented by Ba2+ or by the intracellular Ca2+ antagonist, 8-(N, N-diethylamino)-octyl-3,4,5-trimethoxy-benzoate hydrochloride (TMB-8). Its action, however, was not dependent on the presence of external Ca2+. Both ground cells and the cells in the middle part of the crypt responded to forskolin, an activator of the adenylate cyclase, with a depolarization. In the middle part of the crypt, the depolarization induced by forskolin was associated with an increase of the outward current. It could be blocked by the Cl- channel blocker, 5-nitro-2-(3-phenylpropylamino)-benzoate, indicating an increase of Cl- conductance. In contrast, the forskolin-induced depolarization in the ground part of the crypt was associated with a decrease of the outward current. This effect could be prevented by Ba2+, indicating a decrease of a potassium conductance. The changes in outward current could be prevented by the presence of an inhibitor of protein kinase A in the pipette solution. In conclusion, these results suggest that carbachol, an agonist acting on the Ca2+ pathway, indirectly causes Cl- secretion by an increase of the driving force, i.e. the membrane potential. Only the activation of cyclic AMP synthesis by forskolin is able to increase Cl- conductance in the rat colon. The latter response seems to be dependent on the state of differentiation of the enterocytes.
Collapse
Affiliation(s)
- M Böhme
- Institut für Pharmakologie und Toxikologie, Universität des Saarlandes, Homburg/Saar, Federal Republic of Germany
| | | | | |
Collapse
|
48
|
Napolitano R, Vittone L, Mundiña C, Chiappe de Cingolani G, Mattiazzi A. Decrease in tetanic tension elicited by beta-adrenergic stimulation. ARCHIVES INTERNATIONALES DE PHYSIOLOGIE, DE BIOCHIMIE ET DE BIOPHYSIQUE 1991; 99:303-7. [PMID: 1723319 DOI: 10.3109/13813459109146941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effect of beta-adrenergic stimulation on tetanic tension (TT), maximal rate of rise of tension (+TT) and phospholamban (PHL) phosphorylation were studied in the perfused rat heart. 3 x 10(-8) M isoproterenol perfused at different [Ca2+]o 0.25, 1.35 and 3.85 mM, significantly decreased TT while increased +TT and PHL phosphorylation at the three [Ca2+]o studied. Regression lines of the relationship between +TT and TT from individual data obtained at each [Ca2+]o in the presence and in the absence of isoproterenol, show that for the same level of +TT, TT is lower in the presence of isoproterenol, i.e. at high levels of PHL phosphorylation. The slopes of the lines were 0.137 s and 0.427 s (P less than 0.05) in the presence and absence of isoproterenol respectively. The decrease in TT produced by the beta-agonist can be attributed to its relaxant action prevailing over its inotropic effect and may represent the mechanical expression of the enhanced phosphorylation of phospholamban.
Collapse
Affiliation(s)
- R Napolitano
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Argentina
| | | | | | | | | |
Collapse
|
49
|
Pickles RJ, Brayden DJ, Cuthbert AW. Synchronous transporting activity in epithelial cells in relation to intracellular calcium concentration. Proc Biol Sci 1991; 245:53-8. [PMID: 1682929 DOI: 10.1098/rspb.1991.0087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cultured monolayers of human sweat-gland epithelia have been used to measure electrogenic sodium transport, as short-circuit current, and intracellular Ca2+ concentration ([Ca]i) from Fura-2 fluorescence. The sodium currents in response to the agonists lysylbradykinin, histamine and carbachol show oscillatory behaviour in the 1-2 per minute frequency range. The oscillations can be terminated either by using specific antagonists or with amiloride, which prevents sodium entry into the epithelium. Oscillatory behaviour is also seen when [Ca]i is measured and occurs in the same frequency range. Sodium transport in these cultured epithelia is thought to result from an increase in [Ca]i, which in turn activates calcium-sensitive potassium channels, so increasing the electrochemical gradient for sodium entry. The oscillatory behaviour implies that the epithelial cells behave in synchrony to increase [Ca]i, so inducing synchronous changes in sodium current. It is shown that the behaviour is not unique to sodium-absorbing epithelia, and the possible utility of synchronous behaviour in epithelial tissues is discussed.
Collapse
Affiliation(s)
- R J Pickles
- Department of Pharmacology, University of Cambridge, U.K
| | | | | |
Collapse
|
50
|
Anderson MP, Welsh MJ. Calcium and cAMP activate different chloride channels in the apical membrane of normal and cystic fibrosis epithelia. Proc Natl Acad Sci U S A 1991; 88:6003-7. [PMID: 1712478 PMCID: PMC52010 DOI: 10.1073/pnas.88.14.6003] [Citation(s) in RCA: 277] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The genetic disease cystic fibrosis (CF) causes decreased Cl- transport in several epithelia. cAMP-dependent regulation of apical membrane Cl- channels is defective in CF airway epithelia; as a result, CF epithelia fail to secrete Cl-. In contrast, Ca(2+)-stimulated Cl- secretion is intact in CF airway epithelia and thus has the potential to bypass the CF Cl- secretory defect. For a Cl- channel to govern Cl- secretion, it must be located in the apical membrane. To specifically investigate apical membrane Cl- channels, we studied cells grown on permeable filter supports and measured Cl- currents across the apical membrane. We found that Ca2+ and cAMP activate different Cl- channels in the apical membrane. (i) Ca(2+)-activated Cl- channels were present in the apical membrane of airway but not in intestinal epithelia. (ii) cAMP- but not Ca(2+)-activated Cl- channels were defective in CF airway epithelia. (iii) Ca(2+)- but not cAMP-activated Cl- channels were blocked by 4,4'-diisothiocyanato-2,2'-stilbenedisulfonate. (iv) Ca(2+)- and cAMP-activated apical channels had different anion permeabilities. (v) An increase in both second messengers produced an additive increase in Cl- current. These results also explain the puzzling observation that Ca(2+)-stimulated Cl- secretion is defective in CF intestine: the Ca(2+)-activated Cl- channels that could circumvent the Cl- secretory defect in CF airway are missing from the apical membrane of intestinal epithelia.
Collapse
Affiliation(s)
- M P Anderson
- Howard Hughes Medical Institute, Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242
| | | |
Collapse
|