1
|
Dhalla NS, Elimban V, Adameova AD. Role of Na +-K + ATPase Alterations in the Development of Heart Failure. Int J Mol Sci 2024; 25:10807. [PMID: 39409137 PMCID: PMC11476929 DOI: 10.3390/ijms251910807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Na+-K+ ATPase is an integral component of cardiac sarcolemma and consists of three major subunits, namely the α-subunit with three isoforms (α1, α2, and α3), β-subunit with two isoforms (β1 and β2) and γ-subunit (phospholemman). This enzyme has been demonstrated to transport three Na and two K ions to generate a trans-membrane gradient, maintain cation homeostasis in cardiomyocytes and participate in regulating contractile force development. Na+-K+ ATPase serves as a receptor for both exogenous and endogenous cardiotonic glycosides and steroids, and a signal transducer for modifying myocardial metabolism as well as cellular survival and death. In addition, Na+-K+ ATPase is regulated by different hormones through the phosphorylation/dephosphorylation of phospholemman, which is tightly bound to this enzyme. The activity of Na+-K+ ATPase has been reported to be increased, unaltered and depressed in failing hearts depending upon the type and stage of heart failure as well as the association/disassociation of phospholemman and binding with endogenous cardiotonic steroids, namely endogenous ouabain and marinobufagenin. Increased Na+-K+ ATPase activity in association with a depressed level of intracellular Na+ in failing hearts is considered to decrease intracellular Ca2+ and serve as an adaptive mechanism for maintaining cardiac function. The slight to moderate depression of Na+-K+ ATPase by cardiac glycosides in association with an increased level of Na+ in cardiomyocytes is known to produce beneficial effects in failing hearts. On the other hand, markedly reduced Na+-K+ ATPase activity associated with an increased level of intracellular Na+ in failing hearts has been demonstrated to result in an intracellular Ca2+ overload, the occurrence of cardiac arrhythmias and depression in cardiac function during the development of heart failure. Furthermore, the status of Na+-K+ ATPase activity in heart failure is determined by changes in isoform subunits of the enzyme, the development of oxidative stress, intracellular Ca2+-overload, protease activation, the activity of inflammatory cytokines and sarcolemmal lipid composition. Evidence has been presented to show that marked alterations in myocardial cations cannot be explained exclusively on the basis of sarcolemma alterations, as other Ca2+ channels, cation transporters and exchangers may be involved in this event. A marked reduction in Na+-K+ ATPase activity due to a shift in its isoform subunits in association with intracellular Ca2+-overload, cardiac energy depletion, increased membrane permeability, Ca2+-handling abnormalities and damage to myocardial ultrastructure appear to be involved in the progression of heart failure.
Collapse
Affiliation(s)
- Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada;
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Vijayan Elimban
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada;
| | - Adriana Duris Adameova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 83232 Bratislava, Slovakia;
| |
Collapse
|
2
|
Angelovski M, Hadzi-Petrushev N, Mitrokhin V, Kamkin A, Mladenov M. Myocardial infarction and oxidative damage in animal models: objective and expectations from the application of cysteine derivatives. Toxicol Mech Methods 2023; 33:1-17. [PMID: 35450505 DOI: 10.1080/15376516.2022.2069530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Reactive oxygen species (ROS) and associated oxidative stress are the main contributors to pathophysiological changes following myocardial infarction (MI), which is the principal cause of death from cardiovascular disease. The glutathione (GSH)/glutathione peroxidase (GPx) system appears to be the main and most active cardiac antioxidant mechanism. Hence, enhancement of the myocardial GSH system might have protective effects in the setting of MI. It follows that by increasing antioxidant capacity, the heart will be able to reduce the damage associated with MI and even prevent/weaken the occurrence of oxidative stress, which is highly ranked among the factors responsible for the occurrence of acute MI. For these reasons, the primary goal of future investigations should be to address the effects of different antioxidative compounds and especially cysteine derivatives like N-acetyl cysteine (NAC) and L-2-oxothiazolidine-4-carboxylic acid (OTC) as precursors responsible for the enhancement of the GSH-related antioxidant system's capacity. It is assumed that this will lay down the basis for elucidation of the mechanisms throughout which applicable doses of OTC will manifest a potentially positive impact in the reduction of adverse effects of acute MI. The inclusion of OTC in the models for prediction of the distribution of oxygen in infarcted animal hearts can help to upgrade existing computational models. Such a model would be based on computational geometries of the heart, but the inclusion of biochemical redox features in addition to angiogenic therapy, despite improvement of the post-infarcted oxygenated outcome could enhance the accuracy of the predictive values of oxygenation.
Collapse
Affiliation(s)
- Marija Angelovski
- Institute of Biology, Faculty of Natural Science and Mathematics, Ss Cyril and Methodius University, Skopje, North Macedonia
| | - Nikola Hadzi-Petrushev
- Institute of Biology, Faculty of Natural Science and Mathematics, Ss Cyril and Methodius University, Skopje, North Macedonia
| | - Vadim Mitrokhin
- Department of Fundamental and Applied Physiology, Russian National Research Medical University, Moscow, Russia
| | - Andre Kamkin
- Department of Fundamental and Applied Physiology, Russian National Research Medical University, Moscow, Russia
| | - Mitko Mladenov
- Institute of Biology, Faculty of Natural Science and Mathematics, Ss Cyril and Methodius University, Skopje, North Macedonia.,Department of Fundamental and Applied Physiology, Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
3
|
Costa TGF, Oliveira MM, Toledo MM, Santos HB, Thome RG, Cortes VF, Santos HL, Quintas LEM, Sousa L, Fontes CFL, Barbosa LA. Effect of Fe 3+ on Na,K-ATPase: Unexpected activation of ATP hydrolysis. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183868. [PMID: 35063401 DOI: 10.1016/j.bbamem.2022.183868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 01/01/2023]
Abstract
Iron is a key element in cell function; however, its excess in iron overload conditions can be harmful through the generation of reactive oxygen species (ROS) and cell oxidative stress. Activity of Na,K-ATPase has been shown to be implicated in cellular iron uptake and iron modulates the Na,K-ATPase function from different tissues. In this study, we determined the effect of iron overload on Na,K-ATPase activity and established the role that isoforms and conformational states of this enzyme has on this effect. Total blood and membrane preparations from erythrocytes (ghost cells), as well as pig kidney and rat brain cortex, and enterocytes cells (Caco-2) were used. In E1-related subconformations, an enzyme activation effect by iron was observed, and in the E2-related subconformations enzyme inhibition was observed. The enzyme's kinetic parameters were significantly changed only in the Na+ curve in ghost cells. In contrast to Na,K-ATPase α2 and α3 isoforms, activation was not observed for the α1 isoform. In Caco-2 cells, which only contain Na,K-ATPase α1 isoform, the FeCl3 increased the intracellular storage of iron, catalase activity, the production of H2O2 and the expression levels of the α1 isoform. In contrast, iron did not affect lipid peroxidation, GSH content, superoxide dismutase and Na,K-ATPase activities. These results suggest that iron itself modulates Na,K-ATPase and that one or more E1-related subconformations seems to be determinant for the sensitivity of iron modulation through a mechanism in which the involvement of the Na, K-ATPase α3 isoform needs to be further investigated.
Collapse
Affiliation(s)
- Tamara G F Costa
- Laboratório de Bioquímica Celular, Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, Divinopolis, MG, Brazil
| | - Marina M Oliveira
- Laboratório de Bioquímica Celular, Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, Divinopolis, MG, Brazil
| | - Marina M Toledo
- Laboratório de Bioquímica Celular, Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, Divinopolis, MG, Brazil
| | - Helio B Santos
- Laboratório de Processamento de Tecidos, Universidade Federal de São João del-Rei (UFSJ), Campus Centro-Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil
| | - Ralph G Thome
- Laboratório de Processamento de Tecidos, Universidade Federal de São João del-Rei (UFSJ), Campus Centro-Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil
| | - Vanessa F Cortes
- Laboratório de Bioquímica Celular, Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, Divinopolis, MG, Brazil
| | - Herica L Santos
- Laboratório de Bioquímica Celular, Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, Divinopolis, MG, Brazil
| | - Luis Eduardo M Quintas
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Leilismara Sousa
- Laboratório de Bioquímica Celular, Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, Divinopolis, MG, Brazil
| | - Carlos Frederico L Fontes
- Laboratório de Estrutura e Regulação de Proteínas e ATPases, Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Leandro A Barbosa
- Laboratório de Bioquímica Celular, Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, Divinopolis, MG, Brazil.
| |
Collapse
|
4
|
Bhullar S, Shah A, Dhalla N. Mechanisms for the development of heart failure and improvement of cardiac function by angiotensin-converting enzyme inhibitors. SCRIPTA MEDICA 2022. [DOI: 10.5937/scriptamed53-36256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) inhibitors, which prevent the conversion of angiotensin I to angiotensin II, are well-known for the treatments of cardiovascular diseases, such as heart failure, hypertension and acute coronary syndrome. Several of these inhibitors including captopril, enalapril, ramipril, zofenopril and imidapril attenuate vasoconstriction, cardiac hypertrophy and adverse cardiac remodeling, improve clinical outcomes in patients with cardiac dysfunction and decrease mortality. Extensive experimental and clinical research over the past 35 years has revealed that the beneficial effects of ACE inhibitors in heart failure are associated with full or partial prevention of adverse cardiac remodeling. Since cardiac function is mainly determined by coordinated activities of different subcellular organelles, including sarcolemma, sarcoplasmic reticulum, mitochondria and myofibrils, for regulating the intracellular concentration of Ca2+ and myocardial metabolism, there is ample evidence to suggest that adverse cardiac remodelling and cardiac dysfunction in the failing heart are the consequence of subcellular defects. In fact, the improvement of cardiac function by different ACE inhibitors has been demonstrated to be related to the attenuation of abnormalities in subcellular organelles for Ca2+-handling, metabolic alterations, signal transduction defects and gene expression changes in failing cardiomyocytes. Various ACE inhibitors have also been shown to delay the progression of heart failure by reducing the formation of angiotensin II, the development of oxidative stress, the level of inflammatory cytokines and the occurrence of subcellular defects. These observations support the view that ACE inhibitors improve cardiac function in the failing heart by multiple mechanisms including the reduction of oxidative stress, myocardial inflammation and Ca2+-handling abnormalities in cardiomyocytes.
Collapse
|
5
|
Shackebaei D, Hesari M, Ramezani-Aliakbari S, Hoseinkhani Z, Ramezani-Aliakbari F. Gallic acid protects against isoproterenol-induced cardiotoxicity in rats. Hum Exp Toxicol 2022; 41:9603271211064532. [PMID: 35193428 DOI: 10.1177/09603271211064532] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Gallic acid (GA) is a polyphenolic agent with interesting pharmacological impacts on the cardiovascular system. OBJECTIVE The present study purposed to study the protective effects of GA at 25 and 50 mg/kg against isoproterenol (ISO)-induced cardiac damage in ischemia/reperfusion (I/R) in rats. METHODS Male Wistar rats were randomly assigned into six groups: Control, Control treated with GA at 25 mg/kg (GA25), Control treated with GA at 50 mg/kg (GA50), Hypertrophic rats induced by ISO (ISO), Hypertrophic rats treated with GA at 25 mg/kg (ISO+GA25), and Hypertrophic rats treated with GA at 50 mg/kg (ISO+GA50). Heart isolation was performed to induce a cardiac I/R injury model. Cardiac hemodynamic parameters were recorded. Serum Lactate Dehydrogenase (LDH) and Creatine Kinase-MB (CK-MB) and cardiac Superoxide dismutases (SOD) levels were evaluated. The gene expression of Sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) was assessed. RESULTS We found that GA at 50 mg/kg was significantly increased cardiac function at post I/R period in ISO-induced hypertrophic hearts. Moreover, it suppressed cardiac hypertrophy, the serum LDH and CK-MB levels in ISO injected rats. Administration of GA at 50 mg/kg was significantly increased SOD level and SERCA2a gene expression in the hypertrophic hearts. CONCLUSION GA at 50 mg/kg could improve cardiac performance possibly by increasing antioxidant defense enzymes, reducing cell damage, and enhancing SERCA2a gene expression in hypertrophic heart induced by ISO in I/R injury conditions.
Collapse
Affiliation(s)
- Dareuosh Shackebaei
- Medical Biology Research Center, Health Technology Institute, 48464Kermanshah University of Medical Sciences, Kermanshah, Iran.,Cardiovascular Research Center, 48464Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahvash Hesari
- Medical Biology Research Center, Health Technology Institute, 48464Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soudabeh Ramezani-Aliakbari
- Medical Biology Research Center, Health Technology Institute, 48464Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical School, 48464Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Hoseinkhani
- Medical Biology Research Center, Health Technology Institute, 48464Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Ramezani-Aliakbari
- Medical Biology Research Center, Health Technology Institute, 48464Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Physiology, School of Medicine, 48430Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
6
|
Diabetes, Heart Failure and Beyond: Elucidating the Cardioprotective Mechanisms of Sodium Glucose Cotransporter 2 (SGLT2) Inhibitors. Am J Cardiovasc Drugs 2022; 22:35-46. [PMID: 34189716 DOI: 10.1007/s40256-021-00486-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Approximately 5 million individuals in the US are living with congestive heart failure (CHF), with 650,000 new cases being diagnosed every year. CHF has a multifactorial etiology, ranging from coronary artery disease, hypertension, valvular abnormalities and diabetes mellitus. Currently, guidelines by the American College of Cardiology advocate the use of angiotensin-converting enzyme (ACE) inhibitors, angiotensin II receptor blockers, β-blockers, diuretics, aldosterone antagonists, and inotropes for the medical management of heart failure. The sodium glucose cotransporter 2 (SGLT2) inhibitors are a class of drug that have been widely used in the management of type 2 diabetes mellitus that work by inhibiting the reabsorption of glucose in the proximal convoluted tubule. Since the EMPA-REG OUTCOME trial, several studies have demonstrated the benefits of SGLT2 inhibitors in reducing cardiovascular risk related to heart failure. While the cardiovascular benefits could be explained by their ability to reduce weight, improve glycemic index and lower blood pressure, several recent trials have suggested that SGLT2 inhibitors exhibit pleiotropic effects that underlie their cardioprotective properties. These findings have led to an expansion in preclinical and clinical research aiming to understand the mechanisms by which SGLT2 inhibitors improve heart failure outcomes.
Collapse
|
7
|
Trum M, Riechel J, Wagner S. Cardioprotection by SGLT2 Inhibitors-Does It All Come Down to Na +? Int J Mol Sci 2021; 22:ijms22157976. [PMID: 34360742 PMCID: PMC8347698 DOI: 10.3390/ijms22157976] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
Sodium-glucose co-transporter 2 inhibitors (SGLT2i) are emerging as a new treatment strategy for heart failure with reduced ejection fraction (HFrEF) and—depending on the wistfully awaited results of two clinical trials (DELIVER and EMPEROR-Preserved)—may be the first drug class to improve cardiovascular outcomes in patients suffering from heart failure with preserved ejection fraction (HFpEF). Proposed mechanisms of action of this class of drugs are diverse and include metabolic and hemodynamic effects as well as effects on inflammation, neurohumoral activation, and intracellular ion homeostasis. In this review we focus on the growing body of evidence for SGLT2i-mediated effects on cardiac intracellular Na+ as an upstream mechanism. Therefore, we will first give a short overview of physiological cardiomyocyte Na+ handling and its deterioration in heart failure. On this basis we discuss the salutary effects of SGLT2i on Na+ homeostasis by influencing NHE1 activity, late INa as well as CaMKII activity. Finally, we highlight the potential relevance of these effects for systolic and diastolic dysfunction as well as arrhythmogenesis.
Collapse
|
8
|
Sousa L, Oliveira MM, Pessôa MTC, Barbosa LA. Iron overload: Effects on cellular biochemistry. Clin Chim Acta 2019; 504:180-189. [PMID: 31790701 DOI: 10.1016/j.cca.2019.11.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023]
Abstract
Iron is an essential element for human life. However, it is a pro-oxidant agent capable of reacting with hydrogen peroxide. An iron overload can cause cellular changes, such as damage to the plasma membrane leading to cell death. Effects of iron overload in cellular biochemical processes include modulating membrane enzymes, such as the Na, K-ATPase, impairing the ionic transport and inducing irreversible damage to cellular homeostasis. To avoid such damage, cells have an antioxidant system that acts in an integrated manner to prevent oxidative stress. In addition, the cells contain proteins responsible for iron transport and storage, preventing its reaction with other substances during absorption. Moreover, iron is associated with cellular events coordinated by iron-responsive proteins (IRPs) that regulate several cellular functions, including a process of cell death called ferroptosis. This review will address the biochemical aspects of iron overload at the cellular level and its effects on important cellular structures.
Collapse
Affiliation(s)
- Leilismara Sousa
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Marina M Oliveira
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Marco Túlio C Pessôa
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Leandro A Barbosa
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil.
| |
Collapse
|
9
|
González-Montero J, Brito R, Gajardo AIJ, Rodrigo R. Myocardial reperfusion injury and oxidative stress: Therapeutic opportunities. World J Cardiol 2018; 10:74-86. [PMID: 30344955 PMCID: PMC6189069 DOI: 10.4330/wjc.v10.i9.74] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/27/2018] [Accepted: 05/10/2018] [Indexed: 02/06/2023] Open
Abstract
Acute myocardial infarction (AMI) is the leading cause of death worldwide. Its associated mortality, morbidity and complications have significantly decreased with the development of interventional cardiology and percutaneous coronary angioplasty (PCA) treatment, which quickly and effectively restore the blood flow to the area previously subjected to ischemia. Paradoxically, the restoration of blood flow to the ischemic zone leads to a massive production of reactive oxygen species (ROS) which generate rapid and severe damage to biomolecules, generating a phenomenon called myocardial reperfusion injury (MRI). In the clinical setting, MRI is associated with multiple complications such as lethal reperfusion, no-reflow, myocardial stunning, and reperfusion arrhythmias. Despite significant advances in the understanding of the mechanisms accounting for the myocardial ischemia reperfusion injury, it remains an unsolved problem. Although promising results have been obtained in experimental studies (mainly in animal models), these benefits have not been translated into clinical settings. Thus, clinical trials have failed to find benefits from any therapy to prevent MRI. There is major evidence with respect to the contribution of oxidative stress to MRI in cardiovascular diseases. The lack of consistency between basic studies and clinical trials is not solely based on the diversity inherent in epidemiology but is also a result of the methodological weaknesses of some studies. It is quite possible that pharmacological issues, such as doses, active ingredients, bioavailability, routes of administration, co-therapies, startup time of the drug intervention, and its continuity may also have some responsibility for the lack of consistency between different studies. Furthermore, the administration of high ascorbate doses prior to reperfusion appears to be a safe and rational therapy against the development of oxidative damage associated with myocardial reperfusion. In addition, the association with N-acetylcysteine (a glutathione donor) and deferoxamine (an iron chelator) could improve the antioxidant cardioprotection by ascorbate, making it even more effective in preventing myocardial reperfusion damage associated with PCA following AMI.
Collapse
Affiliation(s)
- Jaime González-Montero
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 70058, Chile
| | - Roberto Brito
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 70058, Chile
- Internal Medicine Department, University of Chile, Clinical Hospital, Santiago 70058, Chile
| | - Abraham IJ Gajardo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 70058, Chile
- Internal Medicine Department, University of Chile, Clinical Hospital, Santiago 70058, Chile
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 70058, Chile
| |
Collapse
|
10
|
Sousa L, Pessoa MTC, Costa TGF, Cortes VF, Santos HL, Barbosa LA. Iron overload impact on P-ATPases. Ann Hematol 2018; 97:377-385. [PMID: 29307086 DOI: 10.1007/s00277-017-3222-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 12/23/2017] [Indexed: 12/16/2022]
Abstract
Iron is a chemical element that is active in the fundamental physiological processes for human life, but its burden can be toxic to the body, mainly because of the stimulation of membrane lipid peroxidation. For this reason, the action of iron on many ATPases has been studied, especially on P-ATPases, such as the Na+,K+-ATPase and the Ca2+-ATPase. On the Fe2+-ATPase activity, the free iron acts as an activator, decreasing the intracellular Fe2+ and playing a protection role for the cell. On the Ca2+-ATPase activity, the iron overload decreases the enzyme activity, raising the cytoplasmic Ca2+ and decreasing the sarco/endoplasmic reticulum and the Golgi apparatus Ca2+ concentrations, which could promote an enzyme oxidation, nitration, and fragmentation. However, the iron overload effect on the Na+,K+-ATPase may change according to the tissue expressions. On the renal cells, as well as on the brain and the heart, iron promotes an enzyme inactivation, whereas its effect on the erythrocytes seems to be the opposite, directly stimulating the ATPase activity, or stimulating it by signaling pathways involving ROS and PKC. Modulations in the ATPase activity may impair the ionic transportation, which is essential for cell viability maintenance, inducing irreversible damage to the cell homeostasis. Here, we will discuss about the iron overload effect on the P-ATPases, such as the Na+,K+-ATPase, the Ca2+-ATPase, and the Fe2+-ATPase.
Collapse
Affiliation(s)
- Leilismara Sousa
- Laboratório de Bioquímica Celular, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João del Rei, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, 35501-296, Brazil
| | - Marco Tulio C Pessoa
- Laboratório de Bioquímica Celular, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João del Rei, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, 35501-296, Brazil
| | - Tamara G F Costa
- Laboratório de Bioquímica Celular, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João del Rei, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, 35501-296, Brazil
| | - Vanessa F Cortes
- Laboratório de Bioquímica Celular, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João del Rei, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, 35501-296, Brazil
| | - Herica L Santos
- Laboratório de Bioquímica Celular, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João del Rei, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, 35501-296, Brazil
| | - Leandro Augusto Barbosa
- Laboratório de Bioquímica Celular, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João del Rei, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, 35501-296, Brazil.
| |
Collapse
|
11
|
Soumya RS, Vineetha VP, Salin Raj P, Raghu KG. Beneficial properties of selenium incorporated guar gum nanoparticles against ischemia/reperfusion in cardiomyoblasts (H9c2). Metallomics 2014; 6:2134-47. [DOI: 10.1039/c4mt00241e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Rodrigo R, Libuy M, Feliú F, Hasson D. Oxidative stress-related biomarkers in essential hypertension and ischemia-reperfusion myocardial damage. DISEASE MARKERS 2013; 35:773-90. [PMID: 24347798 PMCID: PMC3856219 DOI: 10.1155/2013/974358] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/07/2013] [Indexed: 12/22/2022]
Abstract
Cardiovascular diseases are a leading cause of mortality and morbidity worldwide, with hypertension being a major risk factor. Numerous studies support the contribution of reactive oxygen and nitrogen species in the pathogenesis of hypertension, as well as other pathologies associated with ischemia/reperfusion. However, the validation of oxidative stress-related biomarkers in these settings is still lacking and novel association of these biomarkers and other biomarkers such as endothelial progenitor cells, endothelial microparticles, and ischemia modified albumin, is just emerging. Oxidative stress has been suggested as a pathogenic factor and therapeutic target in early stages of essential hypertension. Systolic and diastolic blood pressure correlated positively with plasma F2-isoprostane levels and negatively with total antioxidant capacity of plasma in hypertensive and normotensive patients. Cardiac surgery with extracorporeal circulation causes an ischemia/reperfusion event associated with increased lipid peroxidation and protein carbonylation, two biomarkers associated with oxidative damage of cardiac tissue. An enhancement of the antioxidant defense system should contribute to ameliorating functional and structural abnormalities derived from this metabolic impairment. However, data have to be validated with the analysis of the appropriate oxidative stress and/or nitrosative stress biomarkers.
Collapse
Affiliation(s)
- Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Independencia 1027, Casilla 70058, Santiago 7, Chile
| | - Matías Libuy
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Independencia 1027, Casilla 70058, Santiago 7, Chile
| | - Felipe Feliú
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Independencia 1027, Casilla 70058, Santiago 7, Chile
| | - Daniel Hasson
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Independencia 1027, Casilla 70058, Santiago 7, Chile
| |
Collapse
|
13
|
Molecular basis of cardioprotective effect of antioxidant vitamins in myocardial infarction. BIOMED RESEARCH INTERNATIONAL 2013; 2013:437613. [PMID: 23936799 PMCID: PMC3726017 DOI: 10.1155/2013/437613] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/18/2013] [Indexed: 02/07/2023]
Abstract
Acute myocardial infarction (AMI) is the leading cause of mortality worldwide. Major advances in the treatment of acute coronary syndromes and myocardial infarction, using cardiologic interventions, such as thrombolysis or percutaneous coronary angioplasty (PCA) have improved the clinical outcome of patients. Nevertheless, as a consequence of these procedures, the ischemic zone is reperfused, giving rise to a lethal reperfusion event accompanied by increased production of reactive oxygen species (oxidative stress). These reactive species attack biomolecules such as lipids, DNA, and proteins enhancing the previously established tissue damage, as well as triggering cell death pathways. Studies on animal models of AMI suggest that lethal reperfusion accounts for up to 50% of the final size of a myocardial infarct, a part of the damage likely to be prevented. Although a number of strategies have been aimed at to ameliorate lethal reperfusion injury, up to date the beneficial effects in clinical settings have been disappointing. The use of antioxidant vitamins could be a suitable strategy with this purpose. In this review, we propose a systematic approach to the molecular basis of the cardioprotective effect of antioxidant vitamins in myocardial ischemia-reperfusion injury that could offer a novel therapeutic opportunity against this oxidative tissue damage.
Collapse
|
14
|
Abstract
It is believed that cardiac remodeling due to geometric and structural changes is a major mechanism for the progression of heart failure in different pathologies including hypertension, hypertrophic cardiomyopathy, dilated cardiomyopathy, diabetic cardiomyopathy, and myocardial infarction. Increases in the activities of proteolytic enzymes such as matrix metalloproteinases, calpains, cathepsins, and caspases contribute to the process of cardiac remodeling. In addition to modifying the extracellular matrix, both matrix metalloproteinases and cathepsins have been shown to affect the activities of subcellular organelles in cardiomyocytes. The activation of calpains and caspases has been identified to induce subcellular remodeling in failing hearts. Proteolytic activities associated with different proteins including caspases, calpain, and the ubiquitin-proteasome system have been shown to be involved in cardiomyocyte apoptosis, which is an integral part of cardiac remodeling. This article discusses and compares how the activities of various proteases are involved in different cardiac abnormalities with respect to alterations in apoptotic pathways, cardiac remodeling, and cardiac dysfunction. An imbalance appears to occur between the activities of some proteases and their endogenous inhibitors in various types of hypertrophied and failing hearts, and this is likely to further accentuate subcellular remodeling and cardiac dysfunction. The importance of inhibiting the activities of both extracellular and intracellular proteases specific to distinct etiologies, in attenuating cardiac remodeling and apoptosis as well as biochemical changes of subcellular organelles, in heart failure has been emphasized. It is suggested that combination therapy to inhibit different proteases may prove useful for the treatment of heart failure.
Collapse
Affiliation(s)
- Alison L Müller
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | | |
Collapse
|
15
|
Miller BA, Wang J, Hirschler-Laszkiewicz I, Gao E, Song J, Zhang XQ, Koch WJ, Madesh M, Mallilankaraman K, Gu T, Chen SJ, Keefer K, Conrad K, Feldman AM, Cheung JY. The second member of transient receptor potential-melastatin channel family protects hearts from ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2013; 304:H1010-22. [PMID: 23376831 DOI: 10.1152/ajpheart.00906.2012] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The second member of the transient receptor potential-melastatin channel family (TRPM2) is expressed in the heart and vasculature. TRPM2 channels were expressed in the sarcolemma and transverse tubules of adult left ventricular (LV) myocytes. Cardiac TRPM2 channels were functional since activation with H2O2 resulted in Ca(2+) influx that was dependent on extracellular Ca(2+), was significantly higher in wild-type (WT) myocytes compared with TRPM2 knockout (KO) myocytes, and inhibited by clotrimazole in WT myocytes. At rest, there were no differences in LV mass, heart rate, fractional shortening, and +dP/dt between WT and KO hearts. At 2-3 days after ischemia-reperfusion (I/R), despite similar areas at risk and infarct sizes, KO hearts had lower fractional shortening and +dP/dt compared with WT hearts. Compared with WT I/R myocytes, expression of the Na(+)/Ca(2+) exchanger (NCX1) and NCX1 current were increased, expression of the α1-subunit of Na(+)-K(+)-ATPase and Na(+) pump current were decreased, and action potential duration was prolonged in KO I/R myocytes. Post-I/R, intracellular Ca(2+) concentration transients and contraction amplitudes were equally depressed in WT and KO myocytes. After 2 h of hypoxia followed by 30 min of reoxygenation, levels of ROS were significantly higher in KO compared with WT LV myocytes. Compared with WT I/R hearts, oxygen radical scavenging enzymes (SODs) and their upstream regulators (forkhead box transcription factors and hypoxia-inducible factor) were lower, whereas NADPH oxidase was higher, in KO I/R hearts. We conclude that TRPM2 channels protected hearts from I/R injury by decreasing generation and enhancing scavenging of ROS, thereby reducing I/R-induced oxidative stress.
Collapse
Affiliation(s)
- Barbara A Miller
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cheung JY, Zhang XQ, Song J, Gao E, Chan TO, Rabinowitz JE, Koch WJ, Feldman AM, Wang J. Coordinated regulation of cardiac Na(+)/Ca (2+) exchanger and Na (+)-K (+)-ATPase by phospholemman (FXYD1). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 961:175-90. [PMID: 23224879 DOI: 10.1007/978-1-4614-4756-6_15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Phospholemman (PLM) is the founding member of the FXYD family of regulators of ion transport. PLM is a 72-amino acid protein consisting of the signature PFXYD motif in the extracellular N terminus, a single transmembrane (TM) domain, and a C-terminal cytoplasmic tail containing three phosphorylation sites. In the heart, PLM co-localizes and co-immunoprecipitates with Na(+)-K(+)-ATPase, Na(+)/Ca(2+) exchanger, and L-type Ca(2+) channel. The TM domain of PLM interacts with TM9 of the α-subunit of Na(+)-K(+)-ATPase, while its cytoplasmic tail interacts with two small regions (spanning residues 248-252 and 300-304) of the proximal intracellular loop of Na(+)/Ca(2+) exchanger. Under stress, catecholamine stimulation phosphorylates PLM at serine(68), resulting in relief of inhibition of Na(+)-K(+)-ATPase by decreasing K(m) for Na(+) and increasing V(max), and simultaneous inhibition of Na(+)/Ca(2+) exchanger. Enhanced Na(+)-K(+)-ATPase activity lowers intracellular Na(+), thereby minimizing Ca(2+) overload and risks of arrhythmias. Inhibition of Na(+)/Ca(2+) exchanger reduces Ca(2+) efflux, thereby preserving contractility. Thus, the coordinated actions of PLM during stress serve to minimize arrhythmogenesis and maintain inotropy. In acute cardiac ischemia and chronic heart failure, either expression or phosphorylation of PLM or both are altered. PLM regulates important ion transporters in the heart and offers a tempting target for development of drugs to treat heart failure.
Collapse
Affiliation(s)
- Joseph Y Cheung
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hu F, Koon CM, Chan JYW, Lau KM, Fung KP. The cardioprotective effect of danshen and gegen decoction on rat hearts and cardiomyocytes with post-ischemia reperfusion injury. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 12:249. [PMID: 23228089 PMCID: PMC3537695 DOI: 10.1186/1472-6882-12-249] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 11/30/2012] [Indexed: 02/02/2023]
Abstract
Background Danshen (Salviae Miltiorrhizae Radix) and Gegen (Puerariae Lobatae Radix) have been used for treating heart disease for several thousand years in China. It has been found that a Danshen and Gegen decoction (DG) exhibiting an anti-atherosclerosis effect, which improves the patients’ heart function recovery. Pre-treatment with DG was reported to have protective effects on myocardium against ischemia/reperfusion injury. In the present study, we aim to investigate the post-treatment effect of DG on ischemic-reperfusion injuries ex vivo or in vitro and the underlying mechanisms involved. Methods The rat heart function in an ischemia and reperfusion (I/R) model was explored by examining three parameters including contractile force, coronary flow rate and the release of heart specific enzymes within the heart perfusate. In vitro model of hypoxia and reoxygenation (H/R), the protective effect of DG on damaged cardiomyocytes was investigated by examining the cell structure integrity, the apoptosis and the functionality of mitochondria. Results Our results showed that DG significantly improved rat heart function after I/R challenge and suppressed the release of enzymes by damaged heart muscles in a dose-dependent manner. DG also significantly inhibited the death of cardiomyocytes, H9c2 cells, with a H/R challenge. It obviously decreased cell apoptosis, protected the mitochondrial function and cell membrane skeleton integrity on H9c2 cells. The cardio-protection was also found to be related to a decrease in intracellular calcium accumulation within H9c2 cells after I/R challenge. Conclusion The potential application of DG in treating rat hearts with an I/R injury has been implied in this study. Our results suggested that DG decoction could act as an anti-apoptotic and anti-ion stunning agent to protect hearts against an I/R injury.
Collapse
|
18
|
Zalvidea S, André L, Loyer X, Cassan C, Sainte-Marie Y, Thireau J, Sjaastad I, Heymes C, Pasquié JL, Cazorla O, Aimond F, Richard S. ACE inhibition prevents diastolic Ca2+ overload and loss of myofilament Ca2+ sensitivity after myocardial infarction. Curr Mol Med 2012; 12:206-17. [PMID: 22280358 DOI: 10.2174/156652412798889045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 11/22/2011] [Accepted: 11/23/2011] [Indexed: 01/14/2023]
Abstract
Prevention of adverse cardiac remodeling after myocardial infarction (MI) remains a therapeutic challenge. Angiotensin-converting enzyme inhibitors (ACE-I) are a well-established first-line treatment. ACE-I delay fibrosis, but little is known about their molecular effects on cardiomyocytes. We investigated the effects of the ACE-I delapril on cardiomyocytes in a mouse model of heart failure (HF) after MI. Mice were randomly assigned to three groups: Sham, MI, and MI-D (6 weeks of treatment with a non-hypotensive dose of delapril started 24h after MI). Echocardiography and pressure-volume loops revealed that MI induced hypertrophy and dilation, and altered both contraction and relaxation of the left ventricle. At the cellular level, MI cardiomyocytes exhibited reduced contraction, slowed relaxation, increased diastolic Ca2+ levels, decreased Ca2+-transient amplitude, and diminished Ca2+ sensitivity of myofilaments. In MI-D mice, however, both mortality and cardiac remodeling were decreased when compared to non-treated MI mice. Delapril maintained cardiomyocyte contraction and relaxation, prevented diastolic Ca2+ overload and retained the normal Ca2+ sensitivity of contractile proteins. Delapril maintained SERCA2a activity through normalization of P-PLB/PLB (for both Ser16- PLB and Thr17-PLB) and PLB/SERCA2a ratios in cardiomyocytes, favoring normal reuptake of Ca2+ in the sarcoplasmic reticulum. In addition, delapril prevented defective cTnI function by normalizing the expression of PKC, enhanced in MI mice. In conclusion, early therapy with delapril after MI preserved the normal contraction/relaxation cycle of surviving cardiomyocytes with multiple direct effects on key intracellular mechanisms contributing to preserve cardiac function.
Collapse
Affiliation(s)
- S Zalvidea
- INSERM U-1046, Université Montpellier1 & Montpellier2, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Song J, Gao E, Wang J, Zhang XQ, Chan TO, Koch WJ, Shang X, Joseph JI, Peterson BZ, Feldman AM, Cheung JY. Constitutive overexpression of phosphomimetic phospholemman S68E mutant results in arrhythmias, early mortality, and heart failure: potential involvement of Na+/Ca2+ exchanger. Am J Physiol Heart Circ Physiol 2011; 302:H770-81. [PMID: 22081699 DOI: 10.1152/ajpheart.00733.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expression and activity of cardiac Na(+)/Ca(2+) exchanger (NCX1) are altered in many disease states. We engineered mice in which the phosphomimetic phospholemman S68E mutant (inhibits NCX1 but not Na(+)-K(+)-ATPase) was constitutively overexpressed in a cardiac-specific manner (conS68E). At 4-6 wk, conS68E mice exhibited severe bradycardia, ventricular arrhythmias, increased left ventricular (LV) mass, decreased cardiac output (CO), and ∼50% mortality compared with wild-type (WT) littermates. Protein levels of NCX1, calsequestrin, ryanodine receptor, and α(1)- and α(2)-subunits of Na(+)-K(+)-ATPase were similar, but sarco(endo)plasmic reticulum Ca(2+)-ATPase was lower, whereas L-type Ca(2+) channels were higher in conS68E hearts. Resting membrane potential and action potential amplitude were similar, but action potential duration was dramatically prolonged in conS68E myocytes. Diastolic intracellular Ca(2+) ([Ca(2+)](i)) was higher, [Ca(2+)](i) transient and maximal contraction amplitudes were lower, and half-time of [Ca(2+)](i) transient decline was longer in conS68E myocytes. Intracellular Na(+) reached maximum within 3 min after isoproterenol addition, followed by decline in WT but not in conS68E myocytes. Na(+)/Ca(2+) exchange, L-type Ca(2+), Na(+)-K(+)-ATPase, and depolarization-activated K(+) currents were decreased in conS68E myocytes. At 22 wk, bradycardia and increased LV mass persisted in conS68E survivors. Despite comparable baseline CO, conS68E survivors at 22 wk exhibited decreased chronotropic, inotropic, and lusitropic responses to isoproterenol. We conclude that constitutive overexpression of S68E mutant was detrimental, both in terms of depressed cardiac function and increased arrhythmogenesis.
Collapse
Affiliation(s)
- Jianliang Song
- Division of Nephrology, Thomas Jefferson Univ., 833 Chestnut St., Suite 700, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hughes E, Whittaker CAP, Barsukov IL, Esmann M, Middleton DA. A study of the membrane association and regulatory effect of the phospholemman cytoplasmic domain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:1021-31. [PMID: 21130070 DOI: 10.1016/j.bbamem.2010.11.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 11/18/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022]
Abstract
Phospholemman (PLM) is a single-span transmembrane protein belonging to the FXYD family of proteins. PLM (or FXYD1) regulates the Na,K-ATPase (NKA) ion pump by altering its affinity for K(+) and Na(+) and by reducing its hydrolytic activity. Structural studies of PLM in anionic detergent micelles have suggested that the cytoplasmic domain, which alone can regulate NKA, forms a partial helix which is stabilized by interactions with the charged membrane surface. This work examines the membrane affinity and regulatory function of a 35-amino acid peptide (PLM(38-72)) representing the PLM cytoplasmic domain. Isothermal titration calorimetry and solid-state NMR measurements confirm that PLM(38-72) associates strongly with highly anionic phospholipid membranes, but the association is weakened substantially when the negative surface charge is reduced to a more physiologically relevant environment. Membrane interactions are also weakened when the peptide is phosphorylated at S68, one of the substrate sites for protein kinases. PLM(38-72) also lowers the maximal velocity of ATP hydrolysis (V(max)) by NKA, and phosphorylation of the peptide at S68 gives rise to a partial recovery of V(max). These results suggest that the PLM cytoplasmic domain populates NKA-associated and membrane-associated states in dynamic equilibrium and that phosphorylation may alter the position of the equilibrium. Interestingly, peptides representing the cytoplasmic domains of two other FXYD proteins, Mat-8 (FXYD3) and CHIF (FXYD4), have little or no interaction with highly anionic phospholipid membranes and have no effect on NKA function. This suggests that the functional and physical properties of PLM are not conserved across the entire FXYD family.
Collapse
Affiliation(s)
- Eleri Hughes
- School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | | | | | | | | |
Collapse
|
21
|
Cheung JY, Zhang XQ, Song J, Gao E, Rabinowitz JE, Chan TO, Wang J. Phospholemman: a novel cardiac stress protein. Clin Transl Sci 2010; 3:189-96. [PMID: 20718822 DOI: 10.1111/j.1752-8062.2010.00213.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phospholemman (PLM), a member of the FXYD family of regulators of ion transport, is a major sarcolemmal substrate for protein kinases A and C in cardiac and skeletal muscle. In the heart, PLM co-localizes and co-immunoprecipitates with Na(+)-K(+)-ATPase, Na(+)/Ca(2+) exchanger, and L-type Ca(2+) channel. Functionally, when phosphorylated at serine(68), PLM stimulates Na(+)-K(+)-ATPase but inhibits Na(+)/Ca(2+) exchanger in cardiac myocytes. In heterologous expression systems, PLM modulates the gating of cardiac L-type Ca(2+) channel. Therefore, PLM occupies a key modulatory role in intracellular Na(+) and Ca(2+) homeostasis and is intimately involved in regulation of excitation-contraction (EC) coupling. Genetic ablation of PLM results in a slight increase in baseline cardiac contractility and prolongation of action potential duration. When hearts are subjected to catecholamine stress, PLM minimizes the risks of arrhythmogenesis by reducing Na(+) overload and simultaneously preserves inotropy by inhibiting Na(+)/Ca(2+) exchanger. In heart failure, both expression and phosphorylation state of PLM are altered and may partly account for abnormalities in EC coupling. The unique role of PLM in regulation of Na(+)-K(+)-ATPase, Na(+)/Ca(2+) exchanger, and potentially L-type Ca(2+) channel in the heart, together with the changes in its expression and phosphorylation in heart failure, make PLM a rational and novel target for development of drugs in our armamentarium against heart failure. Clin Trans Sci 2010; Volume 3: 189-196.
Collapse
Affiliation(s)
- Joseph Y Cheung
- Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Non-steady-state calcium handling in failing hearts from the spontaneously hypertensive rat. Pflugers Arch 2010; 460:991-1001. [DOI: 10.1007/s00424-010-0876-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Revised: 08/12/2010] [Accepted: 08/20/2010] [Indexed: 10/19/2022]
|
23
|
Singh RB, Elimban V, Dhalla NS. Differences in ischemia-reperfusion-induced endothelial changes in hearts perfused at constant flow and constant pressure. J Appl Physiol (1985) 2008; 105:1779-87. [DOI: 10.1152/japplphysiol.00076.2008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Isolated hearts subjected to ischemia-reperfusion (I/R) exhibit depressed cardiac performance and alterations in subcellular function. Since hearts perfused at constant flow (CF) and constant pressure (CP) show differences in their contractile response to I/R, this study was undertaken to examine mechanisms responsible for these I/R-induced alterations in CF-perfused and CP-perfused hearts. Rat hearts, perfused at CF (10 ml/min) or CP (80 mmHg), were subjected to I/R (30 min global ischemia followed by 60 min reperfusion), and changes in cardiac function as well as sarcolemmal (SL) Na+-K+-ATPase activity, sarcoplasmic reticulum (SR) Ca2+uptake, and endothelial function were monitored. The I/R-induced depressions in cardiac function, SL Na+-K+-ATPase, and SR Ca2+-uptake activities were greater in hearts perfused at CF than in hearts perfused at CP. In hearts perfused at CF, I/R-induced increase in calpain activity and decrease in nitric oxide (NO) synthase (endothelial NO synthase) protein content in the heart as well as decrease in NO concentration of the perfusate were greater than in hearts perfused at CP. These changes in contractile activity and biochemical parameters due to I/R in hearts perfused at CF were attenuated by treatment with l-arginine, a substrate for NO synthase, while those in hearts perfused at CP were augmented by treatment with NG-nitro-l-arginine methyl ester, an inhibitor of NO synthase. The results indicate that the I/R-induced differences in contractile responses and alterations in subcellular organelles between hearts perfused at CF and CP may partly be attributed to greater endothelial dysfunction in CF-perfused hearts than that in CP-perfused hearts.
Collapse
|
24
|
Dhalla NS, Saini-Chohan HK, Rodriguez-Leyva D, Elimban V, Dent MR, Tappia PS. Subcellular remodelling may induce cardiac dysfunction in congestive heart failure. Cardiovasc Res 2008; 81:429-38. [DOI: 10.1093/cvr/cvn281] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
25
|
Cardiac contractility modulation electrical signals normalize activity, expression, and phosphorylation of the Na+-Ca2+ exchanger in heart failure. J Card Fail 2008; 15:48-56. [PMID: 19181294 DOI: 10.1016/j.cardfail.2008.08.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 08/18/2008] [Accepted: 08/29/2008] [Indexed: 11/20/2022]
Abstract
BACKGROUND Expression and phosphorylation of the cardiac Na(+)-Ca(2+) exchanger-1 (NCX-1) are up-regulated in heart failure (HF). We examined the effects of chronic cardiac contractility modulation (CCM) therapy on the expression and phosphorylation of NCX-1 and its regulators GATA-4 and FOG-2 in HF dogs. METHODS AND RESULTS Studies were performed in LV tissue from 7 CCM-treated HF dogs, 7 untreated HF dogs, and 6 normal (NL) dogs. mRNA expression of NCX-1, GATA-4, and FOG-2 was measured using reverse transcriptase polymerase chain reaction, and protein level was determined by Western blotting. Phosphorylated NCX-1 (P-NCX) was determined using a phosphoprotein enrichment kit. Compared with NL dogs, NCX-1 mRNA and protein expression and GATA-4 mRNA and protein expression increased in untreated HF dogs, whereas FOG-2 expression decreased. Compared with NL dogs, the level of P-NCX-1 normalized to total NCX-1 increased in untreated HF dogs (0.80+/-0.10 vs 0.37+/-0.04; P < .05). CCM therapy normalized NCX-1 expression, GATA-4, and FOG-2 expression, and the ratio of P-NCX-1 to total NCX-1 (0.62+/-0.10). CONCLUSION Chronic monotherapy with CCM restores expression and phosphorylation of NCX-1. These findings are consistent with previous observations of improved LV function and normalized sarcoplasmic reticulum calcium cycling in the left ventricles of HF dogs treated with CCM therapy.
Collapse
|
26
|
Guo X, Wang J, Elimban V, Dhalla NS. Both enalapril and losartan attenuate sarcolemmal Na+-K+-ATPase remodeling in failing rat heart due to myocardial infarctionThis article is one of a selection of papers published in the special issue Bridging the Gap: Where Progress in Cardiovascular and Neurophysiologic Research Meet. Can J Physiol Pharmacol 2008; 86:139-47. [DOI: 10.1139/y08-006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate the mechanisms underlying the depressed sarcolemmal (SL) Na+-K+-ATPase activity in congestive heart failure (CHF), different isoforms and gene expression of Na+-K+-ATPase were examined in the failing left ventricle (LV) at 8 weeks after myocardial infarction (MI). In view of the increased activity of renin–angiotensin system (RAS) in CHF, these parameters were also studied after 5 weeks of treatment with enalapril (10 mg·kg–1·day–1), an angiotensin-converting enzyme inhibitor, and losartan (20 mg·kg–1·day–1), an angiotensin II type 1 receptor antagonist, starting at 3 weeks after the coronary ligation in rats. The infarcted animals showed LV dysfunction and depressed SL Na+-K+-ATPase activity. Protein content and mRNA levels for Na+-K+-ATPase α2isoform were decreased whereas those for Na+-K+-ATPase α3isoform were increased in the failing LV. On the other hand, no significant changes were observed in protein content or mRNA levels for Na+-K+-ATPase α1and β1isoforms. The treatment of infarcted animals with enalapril or losartan improved LV function and attenuated the depression in Na+-K+-ATPase α2isoform as well as the increase in α3isoform, at both the protein and mRNA levels; however, combination therapy with enalapril and losartan did not produce any additive effects. These results provide further evidence that CHF due to MI is associated with remodeling of SL membrane and suggest that the blockade of RAS plays an important role in preventing these alterations in the failing heart.
Collapse
Affiliation(s)
- Xiaobing Guo
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre and Department of Physiology, 351 Tache Ave, Faculty of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Jingwei Wang
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre and Department of Physiology, 351 Tache Ave, Faculty of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Vijayan Elimban
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre and Department of Physiology, 351 Tache Ave, Faculty of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre and Department of Physiology, 351 Tache Ave, Faculty of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
27
|
Chen HP, He M, Huang QR, Liu D, Huang M. Sasanquasaponin protects rat cardiomyocytes against oxidative stress induced by anoxia-reoxygenation injury. Eur J Pharmacol 2007; 575:21-7. [PMID: 17761161 DOI: 10.1016/j.ejphar.2007.07.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 07/18/2007] [Accepted: 07/23/2007] [Indexed: 11/21/2022]
Abstract
Reactive oxygen species can play an important role in the pathogenesis of anoxia-reoxygenation injury. Sasanquasaponin (SQS) is a biologically active ingredient extracted from the Chinese medicinal plant Camellia oleifera Abel. Some studies have shown that SQS possesses potent antioxidant activities. However, it has not been elucidated whether SQS diminishes reactive oxygen species stress induced by anoxia-reoxygenation injury in cardiomyocytes. In this work, neonatal rat cardiomyocytes pretreated with the test compound were subjected to anoxia-reoxygenation. The extent of cellular damage was accessed by cell viability and the amount of released lactate dehydrogenase (LDH). Superoxide dismutase, catalase and glutathione peroxidase activities, reduced (GSH) and oxidized glutathione (GSSG) levels, and malondialdehyde contents were measured by a colorimetric method. The levels of intracellular reactive oxygen species and calcium were determined by flow cytometry. The results showed that SQS reduced LDH release and increased cell viability in a dose-dependent manner up to 10 microM and concomitantly decreased malondialdehyde and GSSG contents, while significantly increased GSH contents and the activities of superoxide dismutase, catalase and glutathione peroxidase. Moreover, treatment with SQS decreased intracellular reactive oxygen species levels and alleviated calcium accumulation in cardiomyocytes undergoing anoxia-reoxygenation. It is suggested that SQS could protect cardiomyocytes against oxidative stress induced by anoxia-reoxygenation by attenuating reactive oxygen species generation and increasing activities of endogenous antioxidants.
Collapse
Affiliation(s)
- He-Ping Chen
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | | | | | | | | |
Collapse
|
28
|
Cheung JY, Rothblum LI, Moorman JR, Tucker AL, Song J, Ahlers BA, Carl LL, Wang J, Zhang XQ. Regulation of cardiac Na+/Ca2+ exchanger by phospholemman. Ann N Y Acad Sci 2007; 1099:119-34. [PMID: 17446450 DOI: 10.1196/annals.1387.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Phospholemman (PLM) is the first sequenced member of the FXYD family of regulators of ion transport. The mature protein has 72 amino acids and consists of an extracellular N terminus containing the signature FXYD motif, a single transmembrane (TM) domain, and a cytoplasmic C-terminal domain containing four potential sites for phosphorylation. PLM and other members of the FXYD family are known to regulate Na+-K+-ATPase. Using adenovirus-mediated gene transfer into adult rat cardiac myocytes, we showed that changes in contractility and intracellular Ca2+ homeostasis associated with PLM overexpression or downregulation are not consistent with the effects expected from inhibition of Na+-K+-ATPase by PLM. Additional studies with heterologous expression of PLM and cardiac Na+/Ca2+ exchanger 1 (NCX1) in HEK293 cells and cardiac myocytes isolated from PLM-deficient mice demonstrated by co-localization, co-immunoprecipitation, and electrophysiological and radioactive tracer uptake techniques that PLM associates with NCX1 in the sarcolemma and transverse tubules and that PLM inhibits NCX1, independent of its effects on Na+-K+-ATPase. Mutational analysis indicates that the cytoplasmic domain of PLM is required for its regulation of NCX1. In addition, experiments using phosphomimetic and phospho-deficient PLM mutants, as well as activators of protein kinases A and C, indicate that PLM phosphorylated at serine68 is the active form that inhibits NCX1. This is in sharp contrast to the finding that the unphosphorylated PLM form inhibits Na+-K+-ATPase. We conclude that PLM regulates cardiac contractility by modulating the activities of NCX and Na+-K+-ATPase.
Collapse
Affiliation(s)
- Joseph Y Cheung
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Babick AP, Dhalla NS. Role of subcellular remodeling in cardiac dysfunction due to congestive heart failure. Med Princ Pract 2007; 16:81-9. [PMID: 17303941 DOI: 10.1159/000098358] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2005] [Accepted: 07/06/2006] [Indexed: 11/19/2022] Open
Abstract
Although alterations in the size and shape of the heart (cardiac remodeling) are considered in explaining cardiac dysfunction during the development of congestive heart failure (CHF), there are several conditions including initial stages of cardiac hypertrophy, where cardiac remodeling has also been found to be associated with either an increased or no change in heart function. Extensive studies have indicated that cardiac dysfunction is related to defects in one or more subcellular organelles such as myofibrils, sarcoplasmic reticulum and sarcolemma, depending upon the stage of CHF. Such subcellular abnormalities in the failing hearts have been shown to occur at both genetic and protein levels. Blockade of the renin-angiotensin system has been reported to partially attenuate changes in subcellular protein, gene expression, functional activities and cardiac performance in CHF. These observations provide support for the role of subcellular remodeling (alterations in molecular and biochemical composition of subcellular organelles) in cardiac dysfunction in the failing heart. On the basis of existing knowledge, it appears that subcellular remodeling during the process of cardiac remodeling plays a major role in the development of cardiac dysfunction in CHF.
Collapse
Affiliation(s)
- Andrea P Babick
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Center and Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
30
|
Chakraborti S, Das S, Kar P, Ghosh B, Samanta K, Kolley S, Ghosh S, Roy S, Chakraborti T. Calcium signaling phenomena in heart diseases: a perspective. Mol Cell Biochem 2006; 298:1-40. [PMID: 17119849 DOI: 10.1007/s11010-006-9355-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2006] [Accepted: 10/12/2006] [Indexed: 01/24/2023]
Abstract
Ca(2+) is a major intracellular messenger and nature has evolved multiple mechanisms to regulate free intracellular (Ca(2+))(i) level in situ. The Ca(2+) signal inducing contraction in cardiac muscle originates from two sources. Ca(2+) enters the cell through voltage dependent Ca(2+) channels. This Ca(2+) binds to and activates Ca(2+) release channels (ryanodine receptors) of the sarcoplasmic reticulum (SR) through a Ca(2+) induced Ca(2+) release (CICR) process. Entry of Ca(2+) with each contraction requires an equal amount of Ca(2+) extrusion within a single heartbeat to maintain Ca(2+) homeostasis and to ensure relaxation. Cardiac Ca(2+) extrusion mechanisms are mainly contributed by Na(+)/Ca(2+) exchanger and ATP dependent Ca(2+) pump (Ca(2+)-ATPase). These transport systems are important determinants of (Ca(2+))(i) level and cardiac contractility. Altered intracellular Ca(2+) handling importantly contributes to impaired contractility in heart failure. Chronic hyperactivity of the beta-adrenergic signaling pathway results in PKA-hyperphosphorylation of the cardiac RyR/intracellular Ca(2+) release channels. Numerous signaling molecules have been implicated in the development of hypertrophy and failure, including the beta-adrenergic receptor, protein kinase C, Gq, and the down stream effectors such as mitogen activated protein kinases pathways, and the Ca(2+) regulated phosphatase calcineurin. A number of signaling pathways have now been identified that may be key regulators of changes in myocardial structure and function in response to mutations in structural components of the cardiomyocytes. Myocardial structure and signal transduction are now merging into a common field of research that will lead to a more complete understanding of the molecular mechanisms that underlie heart diseases. Recent progress in molecular cardiology makes it possible to envision a new therapeutic approach to heart failure (HF), targeting key molecules involved in intracellular Ca(2+) handling such as RyR, SERCA2a, and PLN. Controlling these molecular functions by different agents have been found to be beneficial in some experimental conditions.
Collapse
Affiliation(s)
- Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Díaz-Muñoz M, Alvarez-Pérez MA, Yáñez L, Vidrio S, Martínez L, Rosas G, Yáñez M, Ramírez S, de Sánchez VC. Correlation between oxidative Stress and Alteration of Intracellular Calcium Handling in Isoproterenol-Induced Myocardial Infarction. Mol Cell Biochem 2006; 289:125-36. [PMID: 16820956 DOI: 10.1007/s11010-006-9155-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Accepted: 02/13/2006] [Indexed: 10/24/2022]
Abstract
Myocardial Ca(2+) overload and oxidative stress are well documented effects associated to isoproterenol (ISO)-induced myocardial necrosis, but information correlating these two issues is scarce. Using an ISO-induced myocardial infarction model, 3 stages of myocardial damage were defined: pre-infarction (0-12 h), infarction (12-24 h) and post-infarction (24-96 h). Alterations in Ca(2+) homeostasis and oxidative stress were studied in mitochondria, sarcoplasmic reticulum and plasmalemma by measuring the Ca(2+) content, the activity of Ca(2+) handling proteins, and by quantifying TBARs, nitric oxide (NO) and oxidative protein damage (changes in carbonyl and thiol groups). Free radicals generated system, antioxidant enzymes and oxidative stress (GSH/GSSG ratio) were also monitored at different times of ISO-induced cardiotoxicity. The Ca(2+) overload induced by ISO was counterbalanced by a diminution in the ryanodine receptor activity and the Na(+)-Ca(+2) exchanger as well as by the increase in both calcium ATPases activities (vanadate- and thapsigargine-sensitive) and mitochondrial Ca(2+) uptake during pre-infarction and infarction stages. Pro-oxidative reactions and antioxidant defences during the 3 stages of cardiotoxicity were observed, with maximal oxidative stress during the infarction. Significant correlations were found among pro-oxidative reactions with plasmalemma and sarcoplasmic reticulum Ca(2+) ATPases, and ryanodine receptor activities at the onset and development of ISO-induced infarction. These findings could be helpful in the design of antioxidant therapies in this pathology.
Collapse
Affiliation(s)
- Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla-Querétaro, México, México
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Dhalla NS, Dent MR, Tappia PS, Sethi R, Barta J, Goyal RK. Subcellular remodeling as a viable target for the treatment of congestive heart failure. J Cardiovasc Pharmacol Ther 2006; 11:31-45. [PMID: 16703218 DOI: 10.1177/107424840601100103] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It is now well known that congestive heart failure (CHF) is invariably associated with cardiac hypertrophy, and changes in the shape and size of cardiomyocytes (cardiac remodeling) are considered to explain cardiac dysfunction in CHF. However, the mechanisms responsible for the transition of cardiac hypertrophy to heart failure are poorly understood. Several lines of evidence both from various experimental models of CHF and from patients with different types of CHF have indicated that the functions of different subcellular organelles such as extracellular matrix, sarcolemma, sarcoplasmic reticulum, myofibrils, mitochondria, and nucleus are defective. Subcellular abnormalities for protein contents, gene expression, and enzyme activities in the failing heart become evident as a consequence of prolonged hormonal imbalance, metabolic derangements, and cation maldistribution. In particular, the occurrence of oxidative stress, development of intracellular Ca2+ overload, activation of proteases and phospholipases, and alterations in cardiac gene expression result in changes in the biochemical composition, molecular structure, and function of different subcellular organelles (subcellular remodeling). Not only does subcellular remodeling appear to be intimately involved in the transition of cardiac hypertrophy to heart failure, the mismatching of the function of different subcellular organelles leads to the development of cardiac dysfunction. Although blockade of the renin-angiotensin system, sympathetic nervous system, and various other hormonal actions have been reported to produce beneficial effects on cardiac remodeling and heart dysfunction in CHF, the actions of various cardiac drugs on subcellular remodeling have not been examined extensively. Some recent studies have indicated that both the angiotensin-converting enzyme inhibitors and angiotensin receptor antagonists attenuate changes in sarcolemma, sarcoplasmic reticulum, and myofibril enzyme activities, protein contents, and gene expression, and partly improve cardiac function in the failing hearts. It is suggested that subcellular remodeling is an excellent target for the development of improved drug therapy for CHF. Furthermore, extensive studies should investigate the effects of different agents individually or in combination on reverse subcellular remodeling, cardiac remodeling, and cardiac dysfunction in various experimental models of CHF.
Collapse
Affiliation(s)
- Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, and Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada.
| | | | | | | | | | | |
Collapse
|
33
|
Trivedi CJ, Balaraman R, Majithiya JB, Bothara SB. Effect of Atorvastatin Treatment on Isoproterenol-Induced Myocardial Infarction in Rats. Pharmacology 2006; 77:25-32. [PMID: 16567950 DOI: 10.1159/000092308] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Accepted: 01/20/2006] [Indexed: 11/19/2022]
Abstract
In the present study, chronic treatment of atorvastatin was evaluated on isoproterenol-induced myocardial infarction. Male Sprague-Dawley rats (200 +/- 25 g) were randomized into the following four groups: (1) control group, (2) isoproterenol-treated group, (3) atorvastatin-treated group, and (4) isoproterenol- and atorvastatin-treated group. Various serum and tissue parameters as well as histopathological studies were carried out in all groups. Isoproterenol administration produced severe myocardial damage and oxidative stress in rats. Atorvastatin treatment reduced myocardial infarction which has been reflected by improvement in serum parameters, ATPase activities and histopathological lesions. However, it could not reduce oxidative stress and hypertrophy induced by isoproterenol. Hence, it can be concluded that atorvastatin may protect myocardial infarction induced by isoproterenol independent of its antioxidant properties.
Collapse
Affiliation(s)
- Chitrang J Trivedi
- Pharmacy Department, Faculty of Technology and Engineering, M.S. University of Baroda, Kalabhavan, Baroda, Gujarat, India.
| | | | | | | |
Collapse
|
34
|
Zhang XQ, Moorman JR, Ahlers BA, Carl LL, Lake DE, Song J, Mounsey JP, Tucker AL, Chan YM, Rothblum LI, Stahl RC, Carey DJ, Cheung JY. Phospholemman overexpression inhibits Na+-K+-ATPase in adult rat cardiac myocytes: relevance to decreased Na+ pump activity in postinfarction myocytes. J Appl Physiol (1985) 2005; 100:212-20. [PMID: 16195392 PMCID: PMC1351072 DOI: 10.1152/japplphysiol.00757.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Messenger RNA levels of phospholemman (PLM), a member of the FXYD family of small single-span membrane proteins with putative ion-transport regulatory properties, were increased in postmyocardial infarction (MI) rat myocytes. We tested the hypothesis that the previously observed reduction in Na+-K+-ATPase activity in MI rat myocytes was due to PLM overexpression. In rat hearts harvested 3 and 7 days post-MI, PLM protein expression was increased by two- and fourfold, respectively. To simulate increased PLM expression post-MI, PLM was overexpressed in normal adult rat myocytes by adenovirus-mediated gene transfer. PLM overexpression did not affect the relative level of phosphorylation on serine68 of PLM. Na+-K+-ATPase activity was measured as ouabain-sensitive Na+-K+ pump current (Ip). Compared with control myocytes overexpressing green fluorescent protein alone, Ip measured in myocytes overexpressing PLM was significantly (P < 0.0001) lower at similar membrane voltages, pipette Na+ ([Na+]pip) and extracellular K+ ([K+]o) concentrations. From -70 to +60 mV, neither [Na+]pip nor [K+]o required to attain half-maximal Ip was significantly different between control and PLM myocytes. This phenotype of decreased V(max) without appreciable changes in K(m) for Na+ and K+ in PLM-overexpressed myocytes was similar to that observed in MI rat myocytes. Inhibition of Ip by PLM overexpression was not due to decreased Na+-K+-ATPase expression because there were no changes in either protein or messenger RNA levels of either alpha1- or alpha2-isoforms of Na+-K+-ATPase. In native rat cardiac myocytes, PLM coimmunoprecipitated with alpha-subunits of Na+-K+-ATPase. Inhibition of Na+-K+-ATPase by PLM overexpression, in addition to previously reported decrease in Na+-K+-ATPase expression, may explain altered V(max) but not K(m) of Na+-K+-ATPase in postinfarction rat myocytes.
Collapse
Affiliation(s)
- Xue-Qian Zhang
- Department of Cellular and Molecular Physiology and
- Weis Center for Research, Geisinger Medical Center, Danville, PA 17822; and
| | - J. Randall Moorman
- Department of Internal Medicine (Cardiovascular Division), University of Virginia Health Sciences Center, Charlottesville, VA 22908
| | - Belinda A. Ahlers
- Department of Cellular and Molecular Physiology and
- Weis Center for Research, Geisinger Medical Center, Danville, PA 17822; and
| | - Lois L. Carl
- Department of Cellular and Molecular Physiology and
- Weis Center for Research, Geisinger Medical Center, Danville, PA 17822; and
| | - Douglas E. Lake
- Department of Internal Medicine (Cardiovascular Division), University of Virginia Health Sciences Center, Charlottesville, VA 22908
| | - Jianliang Song
- Department of Cellular and Molecular Physiology and
- Weis Center for Research, Geisinger Medical Center, Danville, PA 17822; and
| | - J. Paul Mounsey
- Department of Internal Medicine (Cardiovascular Division), University of Virginia Health Sciences Center, Charlottesville, VA 22908
| | - Amy L. Tucker
- Department of Internal Medicine (Cardiovascular Division), University of Virginia Health Sciences Center, Charlottesville, VA 22908
| | - Yiu-mo Chan
- Weis Center for Research, Geisinger Medical Center, Danville, PA 17822; and
| | | | - Richard C. Stahl
- Weis Center for Research, Geisinger Medical Center, Danville, PA 17822; and
| | - David J. Carey
- Weis Center for Research, Geisinger Medical Center, Danville, PA 17822; and
| | - Joseph Y. Cheung
- Department of Cellular and Molecular Physiology and
- Department of Medicine, Milton S. Hershey Medical Center, Pennsylvania State University, PA 17033
- Weis Center for Research, Geisinger Medical Center, Danville, PA 17822; and
- Address Correspondence To: Joseph Y. Cheung, M.D., Ph.D., Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center MC-H166, Hershey, PA 17033, Tel. 717-531-5748, Fax. 717-531-7667,
| |
Collapse
|
35
|
Shao Q, Ren B, Elimban V, Tappia PS, Takeda N, Dhalla NS. Modification of sarcolemmal Na+-K+-ATPase and Na+/Ca2+exchanger expression in heart failure by blockade of renin-angiotensin system. Am J Physiol Heart Circ Physiol 2005; 288:H2637-46. [PMID: 15681692 DOI: 10.1152/ajpheart.01304.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The activities of both sarcolemmal (SL) Na+-K+-ATPase and Na+/Ca2+exchanger, which maintain the intracellular cation homeostasis, have been shown to be depressed in heart failure due to myocardial infarction (MI). Because the renin-angiotensin system (RAS) is activated in heart failure, this study tested the hypothesis that attenuation of cardiac SL changes in congestive heart failure (CHF) by angiotensin-converting enzyme (ACE) inhibitors is associated with prevention of alterations in gene expression for SL Na+-K+-ATPase and Na+/Ca2+exchanger. CHF in rats due to MI was induced by occluding the coronary artery, and 3 wk later the animals were treated with an ACE inhibitor, imidapril (1 mg·kg−1·day−1), for 4 wk. Heart dysfunction and cardiac hypertrophy in the infarcted animals were associated with depressed SL Na+-K+-ATPase and Na+/Ca2+exchange activities. Protein content and mRNA levels for Na+/Ca2+exchanger as well as Na+-K+-ATPase α1-, α2- and β1-isoforms were depressed, whereas those for α3-isoform were increased in the failing heart. These changes in SL activities, protein content, and gene expression were attenuated by treating the infarcted animals with imidapril. The beneficial effects of imidapril treatment on heart function and cardiac hypertrophy as well as SL Na+-K+-ATPase and Na+/Ca2+exchange activities in the infarcted animals were simulated by enalapril, an ACE inhibitor, and losartan, an angiotensin receptor antagonist. These results suggest that blockade of RAS in CHF improves SL Na+-K+-ATPase and Na+/Ca2+exchange activities in the failing heart by preventing changes in gene expression for SL proteins.
Collapse
Affiliation(s)
- Qiming Shao
- St. Boniface General Hospital Research Centre, 351 Tache Ave., Winnipeg, Manitoba, Canada
| | | | | | | | | | | |
Collapse
|
36
|
Saini HK, Elimban V, Dhalla NS. Attenuation of extracellular ATP response in cardiomyocytes isolated from hearts subjected to ischemia-reperfusion. Am J Physiol Heart Circ Physiol 2005; 289:H614-23. [PMID: 15821038 DOI: 10.1152/ajpheart.00101.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Extracellular ATP is known to augment cardiac contractility by increasing intracellular Ca2+ concentration ([Ca2+]i) in cardiomyocytes; however, the status of ATP-mediated Ca2+ mobilization in hearts undergoing ischemia-reperfusion (I/R) has not been examined previously. In this study, therefore, isolated rat hearts were subjected to 10-30 min of global ischemia and 30 min of reperfusion, and the effect of extracellular ATP on [Ca2+]i was measured in purified cardiomyocytes by fura-2 microfluorometry. Reperfusion for 30 min of 20-min ischemic hearts, unlike 10-min ischemic hearts, revealed a partial depression in cardiac function and ATP-induced increase in [Ca2+]i; no changes in basal [Ca2+]i were evident in 10- or 20-min I/R preparations. On the other hand, reperfusion of 30-min ischemic hearts for 5, 15, or 30 min showed a marked depression in both cardiac function and ATP-induced increase in [Ca2+]i and a dramatic increase in basal [Ca2+]i. The positive inotropic effect of extracellular ATP was attenuated, and the maximal binding characteristics of 35S-labeled adenosine 5'-[gamma-thio]triphosphate with crude membranes from hearts undergoing I/R was decreased. ATP-induced increase in [Ca2+]i in cardiomyocytes was depressed by verapamil and Cibacron Blue in both control and I/R hearts; however, this response in I/R hearts, unlike control hearts, was not affected by ryanodine. I/R-induced alterations in cardiac function and ATP-induced increase in [Ca2+]i were attenuated by treatment with an antioxidant mixture and by ischemic preconditioning. The observed changes due to I/R were simulated in hearts perfused with H2O2. The results suggest an impairment of extracellular ATP-induced Ca2+ mobilization in I/R hearts, and this defect appears to be mediated through oxidative stress.
Collapse
Affiliation(s)
- Harjot K Saini
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, 351 Tache Ave., Winnipeg, MB, Canada R2H 2A6
| | | | | |
Collapse
|
37
|
Barr DJ, Green HJ, Lounsbury DS, Rush JWE, Ouyang J. Na+-K+-ATPase properties in rat heart and skeletal muscle 3 mo after coronary artery ligation. J Appl Physiol (1985) 2005; 99:656-64. [PMID: 15817721 DOI: 10.1152/japplphysiol.00343.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
This study was designed to determine whether chronic heart failure (CHF) results in changes in Na(+)-K(+)-ATPase properties in heart and skeletal muscles of different fiber-type composition. Adult rats were randomly assigned to a control (Con; n = 8) or CHF (n = 8) group. CHF was induced by ligation of the left main coronary artery. Examination of Na(+)-K(+)-ATPase activity (means +/- SE) 12 wk after the ligation measured, using the 3-O-methylfluorescein phosphatase assay (3-O-MFPase), indicated higher (P < 0.05) levels in soleus (Sol) (250 +/- 13 vs. 179 +/- 18 nmol.mg protein(-1).h(-1)) and lower (P < 0.05) levels in diaphragm (Dia) (200 +/- 12 vs. 272 +/- 27 nmol.mg protein(-1).h(-1)) and left ventricle (LV) (760 +/- 62 vs. 992 +/- 16 nmol.mg protein(-1).h(-1)) in CHF compared with Con, respectively. Na(+)-K(+)-ATPase protein content, measured by the [(3)H]ouabain binding technique, was higher (P < 0.05) in white gastrocnemius (WG) (166 +/- 12 vs. 135 +/- 7.6 pmol/g wet wt) and lower (P < 0.05) in Sol (193 +/- 20 vs. 260 +/- 8.6 pmol/g wet wt) and LV (159 +/- 10 vs. 221 +/- 10 pmol/g wet wt) in CHF compared with Con, respectively. Isoform content in CHF, measured by Western blot techniques, showed both increases (WG; P < 0.05) and decreases (Sol; P < 0.05) in alpha(1). For alpha(2), only increases [red gastrocnemius (RG), Sol, and Dia; P < 0.05] occurred. The beta(2)-isoform was decreased (LV, Sol, RG, and WG; P < 0.05) in CHF, whereas the beta(1) was both increased (WG and Dia; P < 0.05) and decreased (Sol and LV; P < 0.05). For beta(3), decreases (P < 0.05) in RG were observed in CHF, whereas no differences were found in Sol and WG between CHF and Con. It is concluded that CHF results in alterations in Na(+)-K(+)-ATPase that are muscle specific and property specific. Although decreases in Na(+)-K(+)-ATPase content would appear to explain the lower 3-O-MFPase in the LV, such does not appear to be the case in skeletal muscles where a dissociation between these properties was observed.
Collapse
Affiliation(s)
- D J Barr
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | | | |
Collapse
|
38
|
Ahlers BA, Zhang XQ, Moorman JR, Rothblum LI, Carl LL, Song J, Wang J, Geddis LM, Tucker AL, Mounsey JP, Cheung JY. Identification of an endogenous inhibitor of the cardiac Na+/Ca2+ exchanger, phospholemman. J Biol Chem 2005; 280:19875-82. [PMID: 15774479 DOI: 10.1074/jbc.m414703200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rapid and precise control of Na(+)/Ca(2+) exchanger (NCX1) activity is essential in the maintenance of beat-to-beat Ca(2+) homeostasis in cardiac myocytes. Here, we show that phospholemman (PLM), a 15-kDa integral sarcolemmal phosphoprotein, is a novel endogenous protein inhibitor of cardiac NCX1. Using a heterologous expression system that is devoid of both endogenous PLM and NCX1, we first demonstrated by confocal immunofluorescence studies that both exogenous PLM and NCX1 co-localized at the plasma membrane. Reciprocal co-immunoprecipitation studies revealed specific protein-protein interaction between PLM and NCX1. The functional consequences of direct association of PLM with NCX1 was the inhibition of NCX1 activity, as demonstrated by whole-cell patch clamp studies to measure NCX1 current density and radiotracer flux assays to assess Na(+)-dependent (45)Ca(2+) uptake. Inhibition of NCX1 by PLM was specific, because a single mutation of serine 68 to alanine in PLM resulted in a complete loss of inhibition of NCX1 current, although association of the PLM mutant with NCX1 was unaltered. In native adult cardiac myocytes, PLM co-immunoprecipitated with NCX1. We conclude that PLM, a member of the FXYD family of small ion transport regulators known to modulate Na(+)-K(+)-ATPase, also regulates Na(+)/Ca(2+) exchange in the heart.
Collapse
Affiliation(s)
- Belinda A Ahlers
- Department of Cellular and Molecular Physiology, Pennsylvania State University, Hershey, 17033, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Farvin KHS, Anandan R, Sankar TV, Nair PGV. Protective Effect of Squalene against Isoproterenol-Induced Myocardial Infarction in Rats. J Clin Biochem Nutr 2005. [DOI: 10.3164/jcbn.37.55] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
40
|
Ren B, Shao Q, Ganguly PK, Tappia PS, Takeda N, Dhalla NS. Influence of long-term treatment of imidapril on mortality, cardiac function, and gene expression in congestive heart failure due to myocardial infarction. Can J Physiol Pharmacol 2004; 82:1118-27. [PMID: 15644955 DOI: 10.1139/y04-115] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although it is generally accepted that the efficacy of imidapril, an angiotensin-converting enzyme inhibitor, in congestive heart failure (CHF) is due to improvement of hemodynamic parameters, the significance of its effect on gene expression for sarcolemma (SL) and sarcoplasmic reticulum (SR) proteins has not been fully understood. In this study, we examined the effects of long-term treatment of imidapril on mortality, cardiac function, and gene expression for SL Na+/K+ATPase and Na+–Ca2+exchanger as well as SR Ca2+pump ATPase, Ca2+release channel (ryanodine receptor), phospholamban, and calsequestrin in CHF due to myocardial infarction. Heart failure subsequent to myocardial infarction was induced by occluding the left coronary artery in rats, and treatment with imidapril (1 mg·kg–1·day–1) was started orally at the end of 3 weeks after surgery and continued for 37 weeks. The animals were assessed hemody nam ically and the heart and lung were examined morphologically. Some hearts were immediately frozen at –70 °C for the isolation of RNA as well as SL and SR membranes. The mortality of imidapril-treated animals due to heart failure was 31% whereas that of the untreated heart failure group was 64%. Imidapril treatment improved cardiac performance, attenuated cardiac remodeling, and reduced morphological changes in the heart and lung. The depressed SL Na+/K+ATPase and increased SL Na+–Ca2+exchange activities as well as reduced SR Ca2+pump and SR Ca2+release activities in the failing hearts were partially prevented by imidapril. Although changes in gene expression for SL Na+/K+ATPase isoforms as well as Na+–Ca2+exchanger and SR phospholamban were attenuated by treatments with imidapril, no alterations in mRNA levels for SR Ca2+pump proteins and Ca2+release channels were seen in the untreated or treated rats with heart failure. These results suggest that the beneficial effects of imidapril in CHF may be due to improvements in cardiac performance and changes in SL gene expression.Key words: sarcolemmal Na+/K+ATPase, Na+–Ca2+exchange, sarcoplasmic reticulum, heart failure, ACE inhibition.
Collapse
Affiliation(s)
- Bin Ren
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, 351 Tache Avenue, Winnipeg, Manitoba R2H 2A6, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Ostadal P, Elmoselhi AB, Zdobnicka I, Lukas A, Elimban V, Dhalla NS. Role of oxidative stress in ischemia-reperfusion-induced changes in Na+,K(+)-ATPase isoform expression in rat heart. Antioxid Redox Signal 2004; 6:914-23. [PMID: 15345151 DOI: 10.1089/ars.2004.6.914] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this study was to assess whether depression of cardiac Na+,K(+)-ATPase activity during ischemia/reperfusion (I/R) is associated with alterations in Na+,K(+)-ATPase isoforms, and if oxidative stress participates in these I/R-induced changes. Na+,K(+)-ATPase alpha1, alpha2, alpha3, beta1, beta2, and beta3 isoform contents were measured in isolated rat hearts subjected to I/R (30 min of global ischemia followed by 60 min of reperfusion) in the presence or absence of superoxide dismutase plus catalase (SOD+CAT). Effects of oxidative stress on Na+,K(+)-ATPase isoforms were also examined by perfusing the hearts for 20 min with 300 microM hydrogen peroxide or 2 mM xanthine plus 0.03 U/ml xanthine oxidase (XXO). I/R significantly reduced the protein levels of all alpha and beta isoforms. Treatment of I/R hearts with SOD+CAT preserved the levels of alpha2, alpha3, beta1, beta2, and beta3 isoforms, but not that of the alpha1 isoform. Perfusion of hearts with hydrogen peroxide and XXO depressed all Na+,K(+)-ATPase alpha and beta isoforms, except for alpha1. These results indicate that the I/R-induced decrease in Na+,K(+)-ATPase may be due to changes in Na+,K(+)-ATPase isoform expression and that oxidative stress plays a role in this alteration. Antioxidant treatment attenuated the I/R-induced changes in expression of all isoforms except alpha1, which appears to be more resistant to oxidative stress.
Collapse
Affiliation(s)
- Petr Ostadal
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, and Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Fedorova OV, Talan MI, Agalakova NI, Lakatta EG, Bagrov AY. Coordinated shifts in Na/K-ATPase isoforms and their endogenous ligands during cardiac hypertrophy and failure in NaCl-sensitive hypertension. J Hypertens 2004; 22:389-97. [PMID: 15076199 DOI: 10.1097/00004872-200402000-00025] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES NaCl loading of Dahl salt-sensitive rats (DS) stimulates marinobufagenin (MBG), an alpha1 Na/K-ATPase (NKA) isoform ligand. Cardiac function depends on NKA, which is regulated in part by endogenous digitalis-like ligands. Our goal was to study whether changes occur in MBG and endogenous ouabain (EO) production during cardiac remodelling in hypertensive DS, and whether these are associated with changes in myocardial NKA isoforms and sensitivity to MBG and ouabain. METHODS Changes in MBG and EO levels, changes in myocardial NKA isoform composition, and sensitivity to endogenous ligands during development of cardiac hypertrophy and the transition to heart failure were studied in DS rats with an 8% NaCl intake. RESULTS The animals developed compensated left ventricular hypertrophy after 4 weeks, which progressed to heart failure at 9-12 weeks. The hypertrophic stage was associated with increased plasma MBG levels (mean +/- SEM of 1.22 +/- 0.22 versus 0.31 +/- 0.03 nmol/l; P < 0.01), increased sensitivity of NKA to MBG, and an increased abundance of alpha1 NKA. Plasma levels of EO did not change, and the sensitivity of NKA to ouabain decreased. The transition to heart failure was accompanied by a decrease in alpha1 NKA, a reduction in plasma MBG, and decreased sensitivity of NKA to MBG. In addition, an increased abundance of ouabain-sensitive alpha3 NKA, a three-fold rise in plasma EO (1.01 +/- 0.13 versus 0.27 +/- 0.06 nmol/l), and a seven-fold increase in the ouabain sensitivity of NKA compared with controls were observed. CONCLUSIONS During cardiac hypertrophy and the transition to heart failure, a shift in endogenous NKA ligands production is linked to a shift in myocardial NKA isoforms.
Collapse
Affiliation(s)
- Olga V Fedorova
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA.
| | | | | | | | | |
Collapse
|
43
|
Mirza MA, Zhang XQ, Ahlers BA, Qureshi A, Carl LL, Song J, Tucker AL, Mounsey JP, Moorman JR, Rothblum LI, Zhang TS, Cheung JY. Effects of phospholemman downregulation on contractility and [Ca(2+)]i transients in adult rat cardiac myocytes. Am J Physiol Heart Circ Physiol 2003; 286:H1322-30. [PMID: 14684371 DOI: 10.1152/ajpheart.00997.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phospholemman (PLM) expression was increased in rat hearts after myocardial infarction (MI). Overexpression of PLM in normal adult rat cardiac myocytes altered contractile function and cytosolic Ca(2+) concentration ([Ca(2+)](i)) homeostasis in a manner similar to that observed in post-MI myocytes. In this study, we tested whether PLM downregulation in normal adult rat myocytes resulted in contractility and [Ca(2+)](i) transient changes opposite to those observed in post-MI myocytes. Compared with control myocytes infected with adenovirus (Adv) expressing green fluorescent protein (GFP) alone, myocytes infected with Adv expressing both GFP and rat antisense PLM (rASPLM) had 23% less PLM protein (P < 0.012) at 3 days, but no differences were found in sarcoplasmic reticulum (SR) Ca(2+)-ATPase, Na(+)/Ca(2+) exchanger (NCX1), Na(+)-K(+)-ATPase, and calsequestrin levels. SR Ca(2+) uptake and whole cell capacitance were not affected by rASPLM treatment. Relaxation from caffeine-induced contracture was faster, and NCX1 current amplitudes were higher in rASPLM myocytes, indicating that PLM downregulation enhanced NCX1 activity. In native rat cardiac myocytes, coimmunoprecipitation experiments indicated an association of PLM with NCX1. At 0.6 mM [Ca(2+)](o), rASPLM myocytes had significantly (P < 0.003) lower contraction and [Ca(2+)](i) transient amplitudes than control GFP myocytes. At 5 mM [Ca(2+)](o), both contraction and [Ca(2+)](i) transient amplitudes were higher in rASPLM myocytes. This pattern of contractile and [Ca(2+)](i) transient behavior in rASPLM myocytes was opposite to that observed in post-MI rat myocytes. We conclude that downregulation of PLM in normal rat cardiac myocytes enhanced NCX1 function and affected [Ca(2+)](i) transient and contraction amplitudes. We suggest that PLM downregulation offers a potential therapeutic strategy for ameliorating contractile abnormalities in MI myocytes.
Collapse
Affiliation(s)
- M Ayoub Mirza
- Department of Medicine, Geisinger Medical Center, Danville, PA 17822-2619, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Elmoselhi AB, Lukas A, Ostadal P, Dhalla NS. Preconditioning attenuates ischemia-reperfusion-induced remodeling of Na+-K+-ATPase in hearts. Am J Physiol Heart Circ Physiol 2003; 285:H1055-63. [PMID: 12763751 DOI: 10.1152/ajpheart.00865.2002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to determine whether changes in protein content and/or gene expression of Na+-K+-ATPase subunits underlie its decreased enzyme activity during ischemia and reperfusion. We measured protein and mRNA subunit levels in isolated rat hearts subjected to 30 min of ischemia and 30 min of reperfusion (I/R). The effect of ischemic preconditioning (IP), induced by three cycles of ischemia and reperfusion (10 min each), was also assessed on the molecular changes in Na+-K+-ATPase subunit composition due to I/R. I/R reduced the protein levels of the alpha2-, alpha3-, beta1-, and beta2-isoforms by 71%, 85%, 27%, and 65%, respectively, whereas the alpha1-isoform was decreased by <15%. A similar reduction in mRNA levels also occurred for the isoforms of Na+-K+-ATPase. IP attenuated the reduction in protein levels of Na+-K+-ATPase alpha2-, alpha3-, and beta2-isoforms induced by I/R, without affecting the alpha1- and beta1-isoforms. Furthermore, IP prevented the reduction in mRNA levels of Na+-K+-ATPase alpha2-, alpha3-, and beta1-isoforms following I/R. Similar alterations in protein contents and mRNA levels for the Na+/Ca2+ exchanger were seen due to I/R as well as IP. These findings indicate that remodeling of Na+-K+-ATPase may occur because of I/R injury, and this may partly explain the reduction in enzyme activity in ischemic heart disease. Furthermore, IP may produce beneficial effects by attenuating the remodeling of Na+-K+-ATPase and changes in Na+/Ca2+ exchanger in hearts after I/R.
Collapse
Affiliation(s)
- Adel B Elmoselhi
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, 351 Tache Avenue, Winnipeg, Manitoba, Canada R2H 2A6
| | | | | | | |
Collapse
|
45
|
Fedorova OV, Talan MI, Agalakova NI, Droy-Lefaix MT, Lakatta EG, Bagrov AY. Myocardial PKC beta2 and the sensitivity of Na/K-ATPase to marinobufagenin are reduced by cicletanine in Dahl hypertension. Hypertension 2003; 41:505-11. [PMID: 12623951 DOI: 10.1161/01.hyp.0000053446.43894.9f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Marinobufagenin (MBG), an endogenous ligand of alpha-1 Na/K-ATPase, becomes elevated and contributes to hypertension in NaCl-loaded Dahl-S rats (DS). Protein kinase C (PKC) phosphorylates alpha-1 Na/K-ATPase and increases its MBG sensitivity. Cicletanine, an antihypertensive compound with PKC-inhibitory activity, reverses MBG-induced Na/K-ATPase inhibition and vasoconstriction. We hypothesized that increased PKC levels in sodium-loaded hypertensive DS would sensitize alpha-1 Na/K-ATPase to MBG and that PKC inhibition by cicletanine would produce an opposite effect. We studied the effects of cicletanine on systolic blood pressure, left ventricular PKC isoforms, cardiac alpha-1 Na/K-ATPase levels, and sensitivity to MBG in hypertensive DS. Seven DS received 50 mg x kg(-1) x d(-1) cicletanine, and 7 DS received vehicle during 4 weeks of an 8% NaCl diet. Vehicle-treated rats exhibited an increase in blood pressure, left ventricular mass, MBG excretion (74+/-11 vs 9+/-1 pmol/24 h, P<0.01), myocardial alpha-1 Na/K-ATPase protein, and PKC beta2 and delta. The sensitivity of Na/K-ATPase to MBG was enhanced at the level of high-affinity binding sites (IC50, 0.8 vs 4.4 nmol/L, P<0.01). Cicletanine-treated rats exhibited a 56-mm Hg reduction in blood pressure (P<0.01) and a 30% reduction in left ventricular weight, whereas cardiac alpha-1 Na/K-ATPase protein and MBG levels were unchanged. In cicletanine-treated rats, PKC beta2 was not increased, the sensitivity of Na/K-ATPase to MBG was decreased (IC50=20 micromol/L), and phorbol diacetate-induced alpha-1 Na/K-ATPase phosphorylation was reduced versus vehicle-treated rats. In vitro cicletanine treatment of sarcolemma from vehicle-treated rats also desensitized Na/K-ATPase to MBG, indicating that this effect was not solely attributable to a reduction in blood pressure. Thus, PKC-induced phosphorylation of cardiac alpha-1 Na/K-ATPase is a likely target for cicletanine treatment.
Collapse
Affiliation(s)
- Olga V Fedorova
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Dr, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
46
|
Tappia PS, Maddaford TG, Hurtado C, Panagia V, Pierce GN. Depressed phosphatidic acid-induced contractile activity of failing cardiomyocytes. Biochem Biophys Res Commun 2003; 300:457-63. [PMID: 12504106 DOI: 10.1016/s0006-291x(02)02835-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effects of phosphatidic acid (PA), a known inotropic agent, on Ca(2+) transients and contractile activity of cardiomyocytes in congestive heart failure (CHF) due to myocardial infarction were examined. In control cells, PA induced a significant increase (25%) in active cell shortening and Ca(2+) transients. The phospholipase C (PLC) inhibitor, 2-nitro-4-carboxyphenyl N,N-diphenylcarbonate, blocked the positive inotropic action induced by PA, indicating that PA induces an increase in contractile activity and Ca(2+) transients through stimulation of PLC. Conversely, in failing cardiomyocytes there was a loss of PA-induced increase in active cell shortening and Ca(2+) transients. PA did not alter resting cell length. Both diastolic and systolic [Ca(2+)] were significantly elevated in the failing cardiomyocytes. In vitro assessment of the cardiac sarcolemmal (SL) PLC activity revealed that the impaired failing cardiomyocyte response to PA was associated with a diminished stimulation of SL PLC activity by PA. Our results identify an important defect in the PA-PLC signaling pathway in failing cardiomyocytes, which may have significant implications for the depressed contractile function during CHF.
Collapse
Affiliation(s)
- Paramjit S Tappia
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre (R3020), 351 Tache Avenue, Winnipeg, Manitoba, Canada R2H 2A6.
| | | | | | | | | |
Collapse
|
47
|
Zhang XQ, Song J, Qureshi A, Rothblum LI, Carl LL, Tian Q, Cheung JY. Rescue of contractile abnormalities by Na+/Ca2+ exchanger overexpression in postinfarction rat myocytes. J Appl Physiol (1985) 2002; 93:1925-31. [PMID: 12391043 DOI: 10.1152/japplphysiol.00583.2002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies on myocytes isolated from rat hearts 3 wk after myocardial infarction (MI) demonstrated increased cell length, reduced Na(+)/Ca(2+) exchange (NCX1) activity, altered contractility, and intracellular Ca(2+) concentration ([Ca(2+)](i)) transients. In the present study, we investigated whether NCX1 overexpression in MI myocytes would restore contraction and [Ca(2+)](i) transients to normal. When myocytes were placed in culture under continued electrical-field stimulation conditions, differences in contraction amplitudes and cell lengths between sham and MI myocytes were preserved for at least 48 h. Infection of both sham and MI myocytes by adenovirus expressing green fluorescent protein resulted in >95% infection, as evidenced by green fluorescent protein fluorescence, but contraction amplitudes at 6-, 24-, and 48-h postinfection were not affected. NCX1 overexpression in MI myocytes resulted in lower diastolic [Ca(2+)](i) levels at all extracellular Ca(2+) concentrations ([Ca(2+)](o)) examined, suggesting enhanced forward NCX1 activity. At 5 mM [Ca(2+)](o), subnormal contraction and [Ca(2+)](i) transient amplitudes in MI myocytes (compared with sham myocytes) were restored toward normal levels by overexpressing NCX1. At 0.6 mM [Ca(2+)](o), supranormal contraction and [Ca(2+)](i) transient amplitudes in MI myocytes (compared with sham myocytes) were lowered by NCX1 overexpression. We conclude that overexpression of NCX1 in MI myocytes was effective in improving contractile dysfunction, most likely because of enhancement of both Ca(2+) efflux and influx during a cardiac cycle. We suggest that decreased NCX1 activity may play an important role in contractile abnormalities in postinfarction myocytes.
Collapse
Affiliation(s)
- Xue-Qian Zhang
- Weis Center for Research, Geisinger Medical Center, Danville, Pennsylvania 17822, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Makielski JC, Fozzard HA. Ion Channels and Cardiac Arrhythmia in Heart Disease. Compr Physiol 2002. [DOI: 10.1002/cphy.cp020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Xu Z, Cohen MV, Downey JM, Vanden Hoek TL, Yao Z. Attenuation of oxidant stress during reoxygenation by AMP 579 in cardiomyocytes. Am J Physiol Heart Circ Physiol 2001; 281:H2585-9. [PMID: 11709426 DOI: 10.1152/ajpheart.2001.281.6.h2585] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
AMP 579, an adenosine A(1)/A(2) receptor agonist, has a strong anti-infarct effect when administered just before reperfusion. Because oxidative stress has been proposed to contribute to myocardial reperfusion injury, we tested whether AMP 579 can reduce the production of reactive oxidant species (ROS) during reoxygenation in cultured chick embryonic cardiomyocytes. The intracellular fluorescent probe 2',7'-dichlorofluorescin diacetate (DCFH) was used to detect ROS. The cells were subjected to 60 min of simulated ischemia, followed by either 15 min or 3 h of reoxygenation. AMP 579 (0.5 and 1 microM), when started 10 min before reoxygenation, significantly reduced ROS generation from 4.86 +/- 0.30 (arbitrary units) in untreated cells to 2.72 +/- 0.31 and 1.85 +/- 0.14, respectively (P < 0.05). Cell death that was assessed by propidium iodide uptake was markedly reduced by AMP 579 (49.6 +/- 4.7% of control cells vs. 25.4 +/- 2.4%, P < 0.05). In contrast, adenosine did not alter ROS generation or cell death. Attenuation of ROS production by AMP 579 was completely prevented by simultaneous exposure of cells to the selective adenosine A(2) antagonist 8-(13-chlorostyryl) caffeine. These results indicate that AMP 579 directly protects cardiomyocytes from reperfusion injury by a mechanism that attenuates intracellular oxidant stress. Furthermore, adenosine could not duplicate these effects.
Collapse
Affiliation(s)
- Z Xu
- Department of Physiology, College of Medicine, University of South Alabama, Mobile, Alabama 36688, USA
| | | | | | | | | |
Collapse
|
50
|
el-Missiry MA, Othman AI, Amer MA, Abd el-Aziz MA. Attenuation of the acute adriamycin-induced cardiac and hepatic oxidative toxicity by N-(2-mercaptopropionyl) glycine in rats. Free Radic Res 2001; 35:575-81. [PMID: 11767415 DOI: 10.1080/10715760100301581] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The protective effect of the synthetic aminothiol, N-(2-mercaptopropionyl) glycine (MPG) on adriamycin (ADR) induced acute cardiac and hepatic oxidative toxicity was evaluated in rats. ADR toxicity, induced by a single intraperitoneal injection (15 mg/kg), was indicated by an elevation in the level of serum glutamic pyruvic transaminase (GPT), glutamic oxaloacetic transaminase (GOT), creatine kinase isoenzyme (CK-MB), and lactic dehydrogenase (LDH). ADR produced significant elevation in thiobarbituric acid reactive substances (TBARS), indicating lipid peroxidation, and significantly inhibited the activity of superoxide dismutase (SOD) in heart and liver tissues. In contrast, a single injection of ADR did not affect the cardiac or hepatic glutathione (GSH) content and cardiac catalase (CAT) activity but elevated hepatic CAT. Pretreatment with MPG, (2.5 mg/kg) intragastrically, significantly reduced TBARS concentration in both heart and liver and ameliorated the inhibition of cardiac and hepatic SOD activity. In addition, MPG significantly decreased the serum level of GOT, GPT, CK-MB, and LDH of ADR treated rats. These results suggest that MPG exhibited antioxidative potentials that may protect heart and liver against ADR-induced acute oxidative toxicity. This protective effect might be mediated, at least in part, by the high redox potential of sulfhydryl groups that limit the activity of free radicals generated by ADR.
Collapse
Affiliation(s)
- M A el-Missiry
- Zoology Department, Faculty of Sciences, Mansoura University, Mansoura, 35516 Egypt.
| | | | | | | |
Collapse
|