1
|
Wang Y, Zhang J, Wier WG, Chen L, Blaustein MP. NO-induced vasodilation correlates directly with BP in smooth muscle-Na/Ca exchanger-1-engineered mice: elevated BP does not attenuate endothelial function. Am J Physiol Heart Circ Physiol 2021; 320:H221-H237. [PMID: 33124883 PMCID: PMC7847073 DOI: 10.1152/ajpheart.00487.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/29/2022]
Abstract
Arterial smooth muscle Na+/Ca2+ exchanger-1 (SM-NCX1) promotes vasoconstriction or vasodilation by mediating, respectively, Ca2+ influx or efflux. In vivo, SM-NCX1 mediates net Ca2+ influx to help maintain myogenic tone (MT) and neuronally activated constriction. SM-NCX1-TG (overexpressing transgenic) mice have increased MT and mean blood pressure (MBP; +13.5 mmHg); SM-NCX1-KO (knockout) mice have reduced MT and MBP (-11.1 mmHg). Endothelium-dependent vasodilation (EDV) is often impaired in hypertension. We tested whether genetically engineered SM-NCX1 expression and consequent BP changes similarly alter EDV. Isolated, pressurized mesenteric resistance arteries with MT from SM-NCX1-TG and conditional SM-NCX1-KO mice, and femoral arteries in vivo from TG mice were studied. Acetylcholine (ACh)-dilated TG arteries with MT slightly more than control or KO arteries, implying that SM-NCX1 overexpression does not impair EDV. In preconstricted KO, but not TG mouse arteries, however, ACh- and bradykinin-triggered vasodilation was markedly attenuated. To circumvent the endothelium, phenylephrine-constricted resistance arteries were tested with Na-nitroprusside [SNP; nitric oxide (NO) donor] and cGMP. This endothelium-independent vasodilation was augmented in TG but attenuated in KO arteries that lack NCX1-mediated Ca2+ clearance. Baseline cytosolic Ca2+ ([Ca2+]cyt) was elevated in TG femoral arteries in vivo, supporting the high BP; furthermore, SNP-triggered [Ca2+]cyt decline and vasodilation were augmented as NO and cGMP promote myocyte polarization thereby enhancing NCX1-mediated Ca2+ efflux. The TG mouse data indicate that BP elevation does not attenuate endothelium-dependent vasodilation. Thus, in essential hypertension and many models the endothelial impairment that supports the hypertension apparently is not triggered by BP elevation but by extravascular mechanisms.NEW & NOTEWORTHY Endothelium-dependent, ACh-induced vasodilation (EDV) is attenuated, and arterial myocyte Na+/Ca2+ exchangers (NCX1) are upregulated in many forms of hypertension. Surprisingly, mildly hypertensive smooth muscle-specific (SM)-NCX1 transgenic mice exhibited modestly enhanced EDV and augmented endothelium-independent vasodilation (EIV). Conversely, mildly hypotensive SM-NCX1-knockout mice had greatly attenuated EIV. These adaptations help compensate for NCX1 expression-induced alterations in cytosolic Ca2+ and blood pressure (BP) and belie the view that elevated BP, itself, causes the endothelial dysregulation in hypertension.
Collapse
Affiliation(s)
- Youhua Wang
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Physical Education, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Jin Zhang
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - W Gil Wier
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ling Chen
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
2
|
Clifford PS, Ferguson BS, Jasperse JL, Hill MA. Arteriolar vasodilation involves actin depolymerization. Am J Physiol Heart Circ Physiol 2018; 315:H423-H428. [PMID: 29727217 DOI: 10.1152/ajpheart.00723.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is generally assumed that relaxation of arteriolar vascular smooth muscle occurs through hyperpolarization of the cell membrane, reduction in intracellular Ca2+ concentration, and activation of myosin light chain phosphatase/inactivation of myosin light chain kinase. We hypothesized that vasodilation is related to depolymerization of F-actin. Cremaster muscles were dissected in rats under pentobarbital sodium anesthesia (50 mg/kg). First-order arterioles were dissected, cannulated on glass micropipettes, pressurized, and warmed to 34°C. Internal diameter was monitored with an electronic video caliper. The concentration of G-actin was determined in flash-frozen intact segments of arterioles by ultracentrifugation and Western blot analyses. Arterioles dilated by ~40% of initial diameter in response to pinacidil (1 × 10-6 mM) and sodium nitroprusside (5 × 10-5 mM). The G-actin-to-smooth muscle 22α ratio was 0.67 ± 0.09 in arterioles with myogenic tone and increased significantly to 1.32 ± 0.34 ( P < 0.01) when arterioles were dilated with pinacidil and 1.14 ± 0.18 ( P < 0.01) with sodium nitroprusside, indicating actin depolymerization. Compared with control vessels (49 ± 5%), the percentage of phosphorylated myosin light chain was significantly reduced by pinacidil (24 ± 2%, P < 0.01) but not sodium nitroprusside (42 ± 4%). These findings suggest that actin depolymerization is an important mechanism for vasodilation of resistance arterioles to external agonists. Furthermore, pinacidil produces smooth muscle relaxation via both decreases in myosin light chain phosphorylation and actin depolymerization, whereas sodium nitroprusside produces smooth muscle relaxation primarily via actin depolymerization. NEW & NOTEWORTHY This article adds to the accumulating evidence on the contribution of the actin cytoskeleton to the regulation of vascular smooth muscle tone in resistance arterioles. Actin depolymerization appears to be an important mechanism for vasodilation of resistance arterioles to pharmacological agonists. Dilation to the K+ channel opener pinacidil is produced by decreases in myosin light chain phosphorylation and actin depolymerization, whereas dilation to the nitric oxide donor sodium nitroprusside occurs primarily via actin depolymerization.
Collapse
Affiliation(s)
- Philip S Clifford
- College of Applied Health Sciences, University of Illinois at Chicago , Chicago, Illinois
| | - Brian S Ferguson
- College of Applied Health Sciences, University of Illinois at Chicago , Chicago, Illinois
| | - Jeffrey L Jasperse
- Department of Sports Medicine, Pepperdine University , Malibu, California
| | - Michael A Hill
- Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri , Columbia, Missouri
| |
Collapse
|
3
|
Hocking KM, Putumbaka G, Wise ES, Cheung-Flynn J, Brophy CM, Komalavilas P. Papaverine Prevents Vasospasm by Regulation of Myosin Light Chain Phosphorylation and Actin Polymerization in Human Saphenous Vein. PLoS One 2016; 11:e0154460. [PMID: 27136356 PMCID: PMC4852981 DOI: 10.1371/journal.pone.0154460] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 04/13/2016] [Indexed: 11/18/2022] Open
Abstract
Objective Papaverine is used to prevent vasospasm in human saphenous veins (HSV) during vein graft preparation prior to implantation as a bypass conduit. Papaverine is a nonspecific inhibitor of phosphodiesterases, leading to increases in both intracellular cGMP and cAMP. We hypothesized that papaverine reduces force by decreasing intracellular calcium concentrations ([Ca2+]i) and myosin light chain phosphorylation, and increasing actin depolymerization via regulation of actin regulatory protein phosphorylation. Approach and Results HSV was equilibrated in a muscle bath, pre-treated with 1 mM papaverine followed by 5 μM norepinephrine, and force along with [Ca2+]i levels were concurrently measured. Filamentous actin (F-actin) level was measured by an in vitro actin assay. Tissue was snap frozen to measure myosin light chain and actin regulatory protein phosphorylation. Pre-treatment with papaverine completely inhibited norepinephrine-induced force generation, blocked increases in [Ca2+]i and led to a decrease in the phosphorylation of myosin light chain. Papaverine pre-treatment also led to increased phosphorylation of the heat shock-related protein 20 (HSPB6) and the vasodilator stimulated phosphoprotein (VASP), as well as decreased filamentous actin (F-actin) levels suggesting depolymerization of actin. Conclusions These results suggest that papaverine-induced force inhibition of HSV involves [Ca2+]i-mediated inhibition of myosin light chain phosphorylation and actin regulatory protein phosphorylation-mediated actin depolymerization. Thus, papaverine induces sustained inhibition of contraction of HSV by the modulation of both myosin cross-bridge formation and actin cytoskeletal dynamics and is a pharmacological alternative to high pressure distention to prevent vasospasm.
Collapse
Affiliation(s)
- Kyle M. Hocking
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| | - Gowthami Putumbaka
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Eric S. Wise
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Joyce Cheung-Flynn
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Colleen M. Brophy
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Padmini Komalavilas
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
4
|
SZADUJKIS-SZADURSKA KATARZYNA, GRZESK GRZEGORZ, SZADUJKIS-SZADURSKI LESZEK, GAJDUS MARTA, MALINOWSKI BARTOSZ, WICINSKI MICHAL. Role of endothelium, acetylocholine and calcium ions in Bay K8644- and KCl-induced contraction. Mol Med Rep 2013; 8:914-8. [DOI: 10.3892/mmr.2013.1574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 06/13/2013] [Indexed: 11/06/2022] Open
|
5
|
Hocking KM, Baudenbacher FJ, Putumbaka G, Venkatraman S, Cheung-Flynn J, Brophy CM, Komalavilas P. Role of cyclic nucleotide-dependent actin cytoskeletal dynamics:Ca(2+)](i) and force suppression in forskolin-pretreated porcine coronary arteries. PLoS One 2013; 8:e60986. [PMID: 23593369 PMCID: PMC3625185 DOI: 10.1371/journal.pone.0060986] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 03/06/2013] [Indexed: 11/18/2022] Open
Abstract
Initiation of force generation during vascular smooth muscle contraction involves a rise in intracellular calcium ([Ca(2+)]i) and phosphorylation of myosin light chains (MLC). However, reversal of these two processes alone does not account for the force inhibition that occurs during relaxation or inhibition of contraction, implicating that other mechanisms, such as actin cytoskeletal rearrangement, play a role in the suppression of force. In this study, we hypothesize that forskolin-induced force suppression is dependent upon changes in actin cytoskeletal dynamics. To focus on the actin cytoskeletal changes, a physiological model was developed in which forskolin treatment of intact porcine coronary arteries (PCA) prior to treatment with a contractile agonist resulted in complete suppression of force. Pretreatment of PCA with forskolin suppressed histamine-induced force generation but did not abolish [Ca(2+)]i rise or MLC phosphorylation. Additionally, forskolin pretreatment reduced filamentous actin in histamine-treated tissues, and prevented histamine-induced changes in the phosphorylation of the actin-regulatory proteins HSP20, VASP, cofilin, and paxillin. Taken together, these results suggest that forskolin-induced complete force suppression is dependent upon the actin cytoskeletal regulation initiated by the phosphorylation changes of the actin regulatory proteins and not on the MLC dephosphorylation. This model of complete force suppression can be employed to further elucidate the mechanisms responsible for smooth muscle tone, and may offer cues to pathological situations, such as hypertension and vasospasm.
Collapse
Affiliation(s)
- Kyle M. Hocking
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Franz J. Baudenbacher
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Gowthami Putumbaka
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Sneha Venkatraman
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Joyce Cheung-Flynn
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Colleen M. Brophy
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Padmini Komalavilas
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
6
|
Hai CM. Systems biology of HBOC-induced vasoconstriction. Curr Drug Discov Technol 2012; 9:204-11. [PMID: 21726185 DOI: 10.2174/157016312802650751] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 01/25/2011] [Accepted: 07/01/2011] [Indexed: 01/24/2023]
Abstract
Vasoconstriction is a major adverse effect of HBOCs. The use of a single drug for attenuating HBOC-induced vasoconstriction has been tried with limited success. Since HBOC causes disruptions at multiple levels of organization in the vascular system, a systems approach is helpful to explore avenues to counteract the effects of HBOC at multiple levels by targeting multiple sites in the system. A multi-target approach is especially appropriate for HBOC-induced vasoconstriction, because HBOC disrupts the cascade of amplification by NO-cGMP signaling and protein phosphorylation, ultimately resulting in vasoconstriction. Targeting multiple steps in the cascade may alter the overall gain of amplification, thereby limiting the propagation of disruptive effects through the cascade. As a result, targeting multiple sites may accomplish a relatively high overall efficacy at submaximal drug doses. Identifying targets and doses for developing a multi-target combination HBOC regimen for oxygen therapeutics requires a detailed understanding of the systems biology and phenotypic heterogeneity of the vascular system at multiple layers of organization, which can be accomplished by successive iterations between experimental studies and mathematical modeling at multiple levels of vascular systems and organ systems. Towards this goal, this article addresses the following topics: a) NO-scavenging by HBOC, b) HBOC autoxidation-induced reactive oxygen species generation and endothelial barrier dysfunction, c) NO- cGMP signaling in vascular smooth muscle cells, d) NO and cGMP-dependent regulation of contractile filaments in vascular smooth muscle cells, e) phenotypic heterogeneity of vascular systems, f) systems biology as an approach to developing a multi-target HBOC regimen.
Collapse
Affiliation(s)
- Chi-Ming Hai
- Department of Molecular Pharmacology, Physiology & Biotechnology, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
7
|
Karami-Tehrani F, Moeinifard M, Aghaei M, Atri M. Evaluation of PDE5 and PDE9 expression in benign and malignant breast tumors. Arch Med Res 2012; 43:470-5. [PMID: 22960860 DOI: 10.1016/j.arcmed.2012.08.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 08/06/2012] [Indexed: 01/27/2023]
Abstract
BACKGROUND AND AIMS Phosphodiesterases 5 and 9 (PDE5, PDE9) are enzymes responsible for regulating second messenger signaling by hydrolyzing 3',5' cyclic guanosine monophosphate (cGMP). PDE isoforms are deregulated in some types of human cancer. The present study was carried out to evaluate the expression of phosphodiesterase isoenzymes, PDE5 and PDE9, in benign and malignant breast tumors. METHODS The expression levels of PDE5 and PDE9 were assayed in malignant and benign breast tumors and corresponding normal breast tissues using quantitative real-time RT-PCR. Moreover, the correlation between PDE5, PDE9 relative expression and clinicopathological characteristics were analyzed. RESULTS The relative expressions of PDE5 and PDE9 in malignant tumors were significantly higher than those of respective normal breast tissues and benign tumors (5.5-fold, p <0.001 and 6-fold, p <0.001, respectively). Furthermore, a significant positive correlation was found between PDE5 and PDE9 overexpression and tumor grade, stage, and lymph node involvement. However, a negative correlation was observed with age. CONCLUSIONS Based on the present results, it is concluded that assessment of PDE5 and PDE9 expression may be useful in the differential diagnosis of benign and malignant breast disease and successful treatment of breast cancer. To the best of our knowledge, this is the first study to show that PDE5 and PDE9 expression levels are higher in malignant breast tumors than those of normal and benign breast tissue.
Collapse
Affiliation(s)
- Fatemeh Karami-Tehrani
- Cancer Research Laboratory, Department of Clinical Biochemistry, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | | | | | | |
Collapse
|
8
|
New insights into myosin phosphorylation during cyclic nucleotide-mediated smooth muscle relaxation. J Muscle Res Cell Motil 2012; 33:471-83. [PMID: 22711245 PMCID: PMC3521644 DOI: 10.1007/s10974-012-9306-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/25/2012] [Indexed: 02/03/2023]
Abstract
Nitrovasodilators and agonists, via an increase in intracellular cyclic nucleotide levels, can induce smooth muscle relaxation without a concomitant decrease in phosphorylation of the regulatory light chains (RLC) of myosin. However, since cyclic nucleotide-induced relaxation is associated with a decrease in intracellular [Ca2+], and hence, a decreased activity of MLCK, we tested the hypothesis that the site responsible for the elevated RLC phosphorylation is not Ser19. Smooth muscle strips from gastric fundus were isometrically contracted with ET-1 which induced an increase in monophosphorylation from 9 ± 1 % under resting conditions (PSS) to 36 ± 1 % determined with 2D-PAGE. Electric field stimulation induced a rapid, largely NO-mediated relaxation with a half time of 8 s, which was associated with an initial decline in RLC phosphorylation to 18 % within 2 s and a rebound to 34 % after 30 s whereas relaxation was sustained. In contrast, phosphorylation of RLC at Ser19 probed with phosphospecific antibodies declined in parallel with force. LC/MS and western blot analysis with phosphospecific antibodies against monophosphorylated Thr18 indicate that Thr18 is significantly monophosphorylated during sustained relaxation. We therefore suggest that (i) monophosphorylation of Thr18 rather than Ser19 is responsible for the phosphorylation rebound during sustained EFS-induced relaxation of mouse gastric fundus, and (ii) that relaxation can be ascribed to dephosphorylation of Ser19, the site considered to be responsible for regulation of smooth muscle tone.
Collapse
|
9
|
Cazzola M, Page CP, Calzetta L, Matera MG. Pharmacology and therapeutics of bronchodilators. Pharmacol Rev 2012; 64:450-504. [PMID: 22611179 DOI: 10.1124/pr.111.004580] [Citation(s) in RCA: 317] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bronchodilators are central in the treatment of of airways disorders. They are the mainstay of the current management of chronic obstructive pulmonary disease (COPD) and are critical in the symptomatic management of asthma, although controversies around the use of these drugs remain. Bronchodilators work through their direct relaxation effect on airway smooth muscle cells. at present, three major classes of bronchodilators, β(2)-adrenoceptor (AR) agonists, muscarinic receptor antagonists, and xanthines are available and can be used individually or in combination. The use of the inhaled route is currently preferred to minimize systemic effects. Fast- and short-acting agents are best used for rescue of symptoms, whereas long-acting agents are best used for maintenance therapy. It has proven difficult to discover novel classes of bronchodilator drugs, although potential new targets are emerging. Consequently, the logical approach has been to improve the existing bronchodilators, although several novel broncholytic classes are under development. An important step in simplifying asthma and COPD management and improving adherence with prescribed therapy is to reduce the dose frequency to the minimum necessary to maintain disease control. Therefore, the incorporation of once-daily dose administration is an important strategy to improve adherence. Several once-daily β(2)-AR agonists or ultra-long-acting β(2)-AR-agonists (LABAs), such as indacaterol, olodaterol, and vilanterol, are already in the market or under development for the treatment of COPD and asthma, but current recommendations suggest the use of LABAs only in combination with an inhaled corticosteroid. In addition, some new potentially long-acting antimuscarinic agents, such as glycopyrronium bromide (NVA-237), aclidinium bromide, and umeclidinium bromide (GSK573719), are under development, as well as combinations of several classes of long-acting bronchodilator drugs, in an attempt to simplify treatment regimens as much as possible. This review will describe the pharmacology and therapeutics of old, new, and emerging classes of bronchodilator.
Collapse
Affiliation(s)
- Mario Cazzola
- Università di Roma Tor Vergata, Dipartimento di Medicina Interna, Via Montpellier 1, 00133 Roma, Italy.
| | | | | | | |
Collapse
|
10
|
A new nitrosyl ruthenium complex nitric oxide donor presents higher efficacy than sodium nitroprusside on relaxation of airway smooth muscle. Eur J Pharm Sci 2011; 43:370-7. [PMID: 21605670 DOI: 10.1016/j.ejps.2011.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 05/02/2011] [Accepted: 05/08/2011] [Indexed: 11/21/2022]
Abstract
Nitric oxide (NO) has been demonstrated to be the primary agent in relaxing airways in humans and animals. We investigated the mechanisms involved in the relaxation induced by NO-donors, ruthenium complex [Ru(terpy)(bdq)NO(+)](3+) (TERPY) and sodium nitroprusside (SNP) in isolated trachea of rats contracted with carbachol in an isolated organs chamber. For instance, we verified the contribution of K(+) channels, the importance of sGC/cGMP pathway, the influence of the extra and intracellular Ca(2+) sources and the contribution of the epithelium on the relaxing response. Additionally, we have used confocal microscopy in order to analyze the action of the NO-donors on cytosolic Ca(2+) concentration. The results demonstrated that both compounds led to the relaxation of trachea in a dependent-concentration way. However, the maximum effect (E(max)) of TERPY is higher than the SNP. The relaxation induced by SNP (but not TERPY) was significantly reduced by pretreatment with ODQ (sGC inhibitor). Only TERPY-induced relaxation was reduced by tetraethylammonium (K(+) channels blocker) and by pre-contraction with 75mM KCl (membrane depolarization). The response to both NO-donors was not altered by the presence of thapsigargin (sarcoplasmic reticulum Ca(2+)-ATPase inhibitor). The epithelium removal has reduced the relaxation only to SNP, and it has no effect on TERPY. The both NO-donors reduced the contraction evoked by Ca(2+) influx, while TERPY have shown a higher inhibitory effect on contraction. Moreover, the TERPY was more effective than SNP in reducing the cytosolic Ca(2+) concentration measured by confocal microscopy. In conclusion, these results show that TERPY induces airway smooth muscle relaxation by cGMP-independent mechanisms, it involves the fluxes of Ca(2+) and K(+) across the membrane, it is more effective in reducing cytosolic Ca(2+) concentration and inducing relaxation in the rat trachea than the standard drug, SNP.
Collapse
|
11
|
Tyson EK, Macintyre DA, Smith R, Chan EC, Read M. Evidence that a protein kinase A substrate, small heat-shock protein 20, modulates myometrial relaxation in human pregnancy. Endocrinology 2008; 149:6157-65. [PMID: 18755793 DOI: 10.1210/en.2008-0593] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
For a successful human pregnancy, the phasic smooth muscle of the myometrium must remain quiescent until labor. Activation of cAMP/cAMP-dependent protein kinase A (PKA) pathways contributes to this quiescence. The small heat-shock protein 20 (HSP20) is a target of PKA, and phosphorylated HSP20 (pHSP20) modulates relaxation of tonic vascular smooth muscle via interaction with actin, independent of myosin dephosphorylation. Our objective was to determine whether relaxation in human myometrium is associated with changes in phosphorylation of HSP20. Myometrium was obtained at elective cesarean. Elevating cAMP with forskolin or rolipram (a phosphodiesterase inhibitor) caused substantial relaxation of spontaneously contracting human myometrial strips, of 92 +/- 4% (mean +/- sem, n = 10) and 84 +/- 7% (n = 6), respectively. Subsequent two-dimensional electrophoresis with immunoblotting of strip extracts showed a significant 2.6- and 2.1-fold increase in phosphorylated HSP20 (pHSP20) after forskolin (P < 0.01; n = 5) or rolipram treatment (P < 0.05; n = 4). Noncyclic-nucleotide-mediated relaxation, induced by the calcium channel blocker nifedipine, did not alter pHSP20. Inhibition of PKA with H89 significantly attenuated rolipram-induced relaxation (P < 0.01; n = 4), and partially reduced rolipram-stimulated pHSP20. Total and pHSP20 protein was unchanged in term laboring and nonlaboring myometria. Coimmunoprecipitation studies revealed a specific association of HSP20 with alpha-smooth muscle actin and HSP27, a key regulator of actin filament dynamics. Finally, coimmunofluorescence demonstrated moderate colocalization of HSP20 with alpha-smooth muscle actin in the cytoplasm of laboring myometria. Our data support a novel role for pHSP20 in the modulation of cyclic-nucleotide-mediated myometrial relaxation, through interaction with actin. pHSP20 represents an important new target for future tocolytic therapy.
Collapse
Affiliation(s)
- Elisa K Tyson
- Department of Endocrinology, Mothers and Babies Research Centre, John Hunter Hospital, Lookout Road, New Lambton Heights, Newcastle 2305, Australia.
| | | | | | | | | |
Collapse
|
12
|
Zhang L, Xiao D, Hu X. Effect of cGMP on pharmacomechanical coupling in the uterine artery of near-term pregnant sheep. J Pharmacol Exp Ther 2008; 327:425-31. [PMID: 18682570 DOI: 10.1124/jpet.108.141283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The present study examined the role of cGMP in the regulation of alpha(1)-adrenoceptor-mediated pharmacomechanical coupling in the uterine artery of near-term pregnant sheep. The cell-permeable cGMP analog 8-bromo-cGMP produced a dose-dependent relaxation of the uterine artery and shifted norepinephrine (NE) dose-response curve to the right with a decreased maximal contraction. Accordingly, 8-bromo-cGMP significantly decreased the potency and the maximal response of NE-induced inositol 1,4,5-trisphosphate (IP(3)) synthesis in the uterine artery. In addition, 8-bromo-cGMP significantly reduced the binding affinity of IP(3) to the IP(3) receptor. The density of IP(3) receptors was not affected. Simultaneous measurement of intracellular Ca2+ concentrations ([Ca2+](i)) and tensions in the same tissue indicated that 8-bromo-cGMP decreased NE-induced contractions by 92% but only blocked 44% [Ca2+](i). In accordance, 8-bromo-cGMP significantly decreased tension generation for a given [Ca2+](i) (g/R(f340/380), 24.87 +/- 3.43 versus 3.10 +/- 0.35). In the absence of extracellular Ca2+, NE produced a transient increase in [Ca2+](i) and contraction, which were inhibited by 8-bromo-cGMP by 47 and 76%, respectively. In contrast to NE-induced responses, 8-bromo-cGMP had no significant effects on KCl-induced [Ca2+](i) and contractions. The results indicate that cGMP suppresses alpha(1)-adrenoceptor-mediated pharmacomechanical coupling in the uterine artery by inhibiting IP(3) synthesis and Ca2+ release from intracellular stores, as well as inhibiting the agonist-mediated Ca2+ sensitization of myofilaments, which is likely to play an important role in the adaptation of uterine artery contractility during pregnancy.
Collapse
Affiliation(s)
- Lubo Zhang
- Center for Perinatal Biology, Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | | | | |
Collapse
|
13
|
Komalavilas P, Penn RB, Flynn CR, Thresher J, Lopes LB, Furnish EJ, Guo M, Pallero MA, Murphy-Ullrich JE, Brophy CM. The small heat shock-related protein, HSP20, is a cAMP-dependent protein kinase substrate that is involved in airway smooth muscle relaxation. Am J Physiol Lung Cell Mol Physiol 2007; 294:L69-78. [PMID: 17993590 DOI: 10.1152/ajplung.00235.2007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of the cAMP/cAMP-dependent PKA pathway leads to relaxation of airway smooth muscle (ASM). The purpose of this study was to examine the role of the small heat shock-related protein HSP20 in mediating PKA-dependent ASM relaxation. Human ASM cells were engineered to constitutively express a green fluorescent protein-PKA inhibitory fusion protein (PKI-GFP) or GFP alone. Activation of the cAMP-dependent signaling pathways by isoproterenol (ISO) or forskolin led to increases in the phosphorylation of HSP20 in GFP but not PKI-GFP cells. Forskolin treatment in GFP but not PKI-GFP cells led to a loss of central actin stress fibers and decreases in the number of focal adhesion complexes. This loss of stress fibers was associated with dephosphorylation of the actin-depolymerizing protein cofilin in GFP but not PKI-GFP cells. To confirm that phosphorylated HSP20 plays a role in PKA-induced ASM relaxation, intact strips of bovine ASM were precontracted with serotonin followed by ISO. Activation of the PKA pathway led to relaxation of bovine ASM, which was associated with phosphorylation of HSP20 and dephosphorylation of cofilin. Finally, treatment with phosphopeptide mimetics of HSP20 possessing a protein transduction domain partially relaxed precontracted bovine ASM strips. In summary, ISO-induced phosphorylation of HSP20 or synthetic phosphopeptide analogs of HSP20 decreases phosphorylation of cofilin and disrupts actin in ASM, suggesting that one possible mechanism by which HSP20 mediates ASM relaxation is via regulation of actin filament dynamics.
Collapse
Affiliation(s)
- Padmini Komalavilas
- Center for Metabolic Biology, College of Liberal Arts and Sciences, Arizona State University, PO Box 873704, Tempe, AZ 85287-3704, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Meeks MK, Han S, Tucker AL, Rembold CM. Phospholemman does not participate in forskolin-induced swine carotid artery relaxation. Physiol Res 2007; 57:669-675. [PMID: 17949246 PMCID: PMC2577124 DOI: 10.33549/physiolres.931348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Phosphorylation of phospholemman (PLM) on ser68 has been proposed to at least partially mediate cyclic AMP (cAMP) mediated relaxation of arterial smooth muscle. We evaluated the time course of the phosphorylation of phospholemman (PLM) on ser68, myosin regulatory light chains (MRLC) on ser19, and heat shock protein 20 (HSP20) on ser16 during a transient forskolin-induced relaxation of histamine-stimulated swine carotid artery. We also evaluated the dose response for forskolin- and nitroglycerin-induced relaxation in phenylephrine-stimulated PLM-/- and PLM+/+ mice. The time course for changes in ser19 MRLC dephosphorylation and ser16 HSP20 phosphorylation was appropriate to explain the forskolin-induced relaxation and the recontraction observed upon washout of forskolin. However, the time course for changes in ser68 PLM phosphorylation was too slow to explain forskolin-induced changes in force. There was no difference in the phenylephrine contractile dose response or in forskolin-induced relaxation dose response observed in PLM-/- and PLM+/+ aortae. In aortae precontracted with phenylephrine, nitroglycerin induced a slightly, but significantly greater relaxation in PLM-/- compared to PLM+/+ aortae. These data are consistent with the hypothesis that ser19 MRLC dephosphorylation and ser16 HSP20 phosphorylation are involved in forskolin-induced relaxation. Our data suggest that PLM phosphorylation is not significantly involved in forskolin-induced arterial relaxation.
Collapse
Affiliation(s)
- M K Meeks
- Cardiovascular Division, Department of Internal Medicine, University of Virginia Health System, Charlottesville, Virginia, USA
| | | | | | | |
Collapse
|
15
|
Abstract
Cyclic nucleotides can relax arterial smooth muscle without reductions in crossbridge phosphorylation, a process termed force suppression. There are two potential mechanisms for force suppression: 1) phosphorylated crossbridges binding to thin filaments could be inhibited or 2) the attachment of thin filaments to anchoring structures could be disrupted. These mechanisms were evaluated by comparing histamine-stimulated swine arterial smooth muscle with and without forskolin-induced force suppression and with and without latrunculin-A-induced actin filament disruption. At matched force, force suppression was associated with higher crossbridge phosphorylation and shortening velocity at low loads when compared with tissues without force suppression. Shortening velocity at high loads, noise temperature, hysteresivity, and stiffness did not differ with and without force suppression. These data suggest that crossbridge phosphorylation regulates the crossbridge cycle during force suppression. Actin disruption with latrunculin-A was associated with higher crossbridge phosphorylation when compared with tissues without actin disruption. Shortening velocity, noise temperature, hysteresivity, and stiffness did not differ with and without actin disruption. These data suggest that actin disruption interferes with regulation of crossbridge cycling by crossbridge phosphorylation. Stiffness was linearly dependent on stress, suggesting that the force per attached crossbridge was not altered with force suppression or actin disruption. These data suggest a difference in the mechanical characteristics observed during force suppression and actin disruption, implying that force suppression does not mechanistically involve actin disruption. These data are most consistent with a model where force suppression involves the inhibition of phosphorylated crossbridge binding to thin filaments.
Collapse
Affiliation(s)
- Christopher M Rembold
- Box 800146, Cardiovascular Division, Univ. of Virginia Health System, Charlottesville, VA 22908-0146, USA.
| |
Collapse
|
16
|
Rembold CM, Meeks MK, Ripley ML, Han S. Longer muscle lengths recapitulate force suppression in swine carotid artery. Am J Physiol Heart Circ Physiol 2006; 292:H1065-70. [PMID: 17056671 PMCID: PMC2259221 DOI: 10.1152/ajpheart.00775.2006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclic nucleotide can relax arterial smooth muscle without reductions in myosin regulatory light chain (MRLC) phosphorylation, a process termed force suppression. Smooth muscle contractile force also depends on tissue length. It is not known how tissue length affects force suppression. Swine carotid artery rings were equilibrated at various lengths (as a fraction of L(o), the optimal length for force development). They were then frozen during contractile activation with or without forskolin-induced relaxation. Frozen tissue homogenates were then analyzed for Ser(19)-MRLC phosphorylation and Ser(16)-heat shock protein 20 (HSP20) phosphorylation (HSP20 is the proposed mediator of force suppression). Higher values of MRLC phosphorylation were required to induce a histamine contraction at longer tissue lengths. At 1.4 L(o), the dependence of force on MRLC phosphorylation observed with histamine stimulation alone was shifted to the right, a response similar to that observed during force suppression at 1.0 L(o). The rightward shift in the dependence of force on MRLC phosphorylation seen with histamine stimulation alone at 1.4 L(o) was not associated with increased HSP20 phosphorylation. Addition of forskolin to histamine-stimulated tissues at 1.4 L(o) induced a relaxation associated with increased HSP20 phosphorylation and reduced MRLC phosphorylation, i.e., there was no additional force suppression. At shorter tissue lengths (0.6 L(o)), the dependence of force on MRLC phosphorylation with histamine stimulation alone was steep, a response similar to that observed during normal contractile activation at 1.0 L(o). Addition of forskolin induced force suppression at 0.6 L(o). The sensitivity of swine carotid to the concentration of histamine was greater at longer tissue lengths compared with shorter tissue lengths, suggesting a physiological mechanism to restore optimal tissue length. These data suggest that longer tissue lengths induced a force suppression-like state that was 1) not additive with forskolin and 2) not associated with HSP20 phosphorylation. Further research is required to determine this length-dependent mechanism.
Collapse
Affiliation(s)
- Christopher M Rembold
- Cardiovascular Division, Department of Internal Medicine, University of Virginia Health System, Charlottesville, Virginia 22908-0146, USA.
| | | | | | | |
Collapse
|
17
|
Batts TW, Klausner AP, Jin Z, Meeks MK, Ripley ML, Yang SK, Tuttle JB, Steers WD, Rembold CM. Increased Expression of Heat Shock Protein 20 and Decreased Contractile Stress in Obstructed Rat Bladder. J Urol 2006; 176:1679-84. [PMID: 16952713 DOI: 10.1016/j.juro.2006.06.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Indexed: 10/24/2022]
Abstract
PURPOSE Bladder outlet obstruction induces detrusor hypertrophy and it can eventually lead to decreased bladder smooth muscle contractility. Heat shock protein 20 is the proposed mediator of force suppression in vascular smooth muscle. We investigated whether heat shock protein 20 could also mediate the decreased contractility observed in partially obstructed rat bladders. MATERIALS AND METHODS Female Wistar rats (Harlan Laboratories, Indianapolis, Indiana) were randomized to partial urethral ligation or sham ligation. After 3 weeks the rats were sacrificed, and the bladders were harvested, frozen, homogenized and analyzed for heat shock protein 20 content by Western blot immunoreactivity. The content of myosin regulatory light chain, a constitutively expressed protein, was determined as a control. Bladder smooth muscle strips were dissected from some rats and mounted for force generation measurement. RESULTS At cystectomy obstructed bladders were significantly heavier and had more residual urine compared to sham operated bladders. Heat shock protein 20 immunoreactivity was significantly increased a mean +/- 1 SEM of 1.9 +/- 0.3-fold in obstructed vs sham operated bladders. Control protein myosin regulatory light chain immunoreactivity did not significantly differ in obstructed and sham operated bladders. Maximal stress, that is force per cross-sectional area, was significantly decreased in obstructed vs sham operated bladders. Human bladder was found to express immunoreactive heat shock protein 20. CONCLUSIONS We noted that partially obstructed rat bladders 1) express higher levels of heat shock protein 20 and 2) generate less stress than sham operated bladders. These data suggest the possibility that heat shock protein 20 over expression could at least partially mediate the decreased contractile activity observed with partial bladder outlet obstruction. The mechanism for increased heat shock protein 20 expression is unknown but it may involve increased mechanical stress or hypoxia from urethral obstruction. Human bladder expressed immunoreactive heat shock protein 20, suggesting that a similar mechanism could potentially occur in humans. If confirmed in humans, patients with clinical conditions that result in detrusor hypocontractility could potentially benefit from pharmacological interventions aimed at inhibiting heat shock protein 20.
Collapse
Affiliation(s)
- Timothy W Batts
- Department of Internal Medicine, University of Virginia, Charlottesville, Virginia 22908-1395, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chen X, Pavlish K, Zhang HY, Benoit JN. Effects of chronic portal hypertension on agonist-induced actin polymerization in small mesenteric arteries. Am J Physiol Heart Circ Physiol 2006; 290:H1915-21. [PMID: 16339838 DOI: 10.1152/ajpheart.00643.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ability of arterial smooth muscle to respond to vasoconstrictor stimuli is reduced in chronic portal hypertension (PHT). Additional evidence supports the existence of a postreceptor defect in vascular smooth muscle excitation contraction coupling. However, the nature of this defect is unclear. Recent studies have shown that vasoconstrictor stimuli induce actin polymerization in smooth muscle and that the associated increase in F-actin is necessary for force development. In the present study we have tested the hypothesis that impaired actin polymerization contributes to reduced vasoconstrictor function in small mesenteric arteries derived from rats with chronic prehepatic PHT. In vitro studies were conducted on small mesenteric artery vessel rings isolated from normal and PHT rats. Isometric tension responses to incremental concentrations of phenylephrine were significantly reduced in PHT arteries. The ability to polymerize actin in portal hypertensive mesenteric arteries stimulated by phenylephrine was attenuated compared with control. Inhibition of cAMP-dependent protein kinase (PKA) restored agonist-induced actin polymerization of arteries from PHT rats to normal levels. Depolymerization of actin in arteries from normal rats reduced maximal contractile force but not myosin phosphorylation, suggesting a key role for the dynamic regulation of actin polymerization in the maintenance of vascular smooth muscle contraction. We conclude that reductions in agonist-induced maximal force development of PHT vascular smooth muscle is due, in part, to impaired actin polymerization, and prolonged PKA activation may underlie these changes.
Collapse
Affiliation(s)
- Xuesong Chen
- Deparment of Pharmacology, Physiology, and Therapeutics, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | | | | | | |
Collapse
|
19
|
Abstract
In contrast to striated muscle, both normalized force and shortening velocities are regulated functions of cross-bridge phosphorylation in smooth muscle. Physiologically this is manifested as relatively fast rates of contraction associated with transiently high levels of cross-bridge phosphorylation. In sustained contractions, Ca2+, cross-bridge phosphorylation, and ATP consumption rates fall, a phenomenon termed "latch". This review focuses on the Hai and Murphy (1988a) model that predicted the highly non-linear dependence of force on phosphorylation and a directly proportional dependence of shortening velocity on phosphorylation. This model hypothesized that (i) cross-bridge phosphorylation was obligatory for cross-bridge attachment, but also that (ii) dephosphorylation of an attached cross-bridge reduced its detachment rate. The resulting variety of cross-bridge cycles as predicted by the model could explain the observed dependencies of force and velocity on cross-bridge phosphorylation. New evidence supports modifications for more general applicability. First, myosin light chain phosphatase activity is regulated. Activation of myosin phosphatase is best demonstrated with inhibitory regulatory mechanisms acting via nitric oxide. The second modification of the model incorporates cooperativity in cross-bridge attachment to predict improved data on the dependence of force on phosphorylation. The molecular basis for cooperativity is unknown, but may involve thin filament proteins absent in striated muscle.
Collapse
Affiliation(s)
- Richard A Murphy
- Department of Molecular Physiology and Biological Physics, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
20
|
Buus NH, Simonsen U, Pilegaard HK, Mulvany MJ. Intracellular smooth muscle [Ca2+] in acetylcholine and nitric oxide-mediated relaxation of human small arteries. Eur J Pharmacol 2006; 535:243-7. [PMID: 16522319 DOI: 10.1016/j.ejphar.2006.01.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 01/12/2006] [Accepted: 01/20/2006] [Indexed: 11/28/2022]
Abstract
In human resistance arteries the role of intracellular calcium during receptor agonist and nitric oxide (NO)-mediated vasorelaxation is almost unknown. We examined changes in smooth muscle calcium concentration ([Ca2+]i) caused by acetylcholine and the NO donor S-nitroso-N-acetylpenicillamine (SNAP) in isolated human subcutaneous small arteries. In arteries constricted with 50 mM KCl, acetylcholine and SNAP induced relaxation without any change in [Ca2+]i, whereas in noradrenaline constricted vessels, both acetylcholine and to a lesser degree also SNAP-mediated relaxation were associated with a decrease in [Ca2+]i. Furthermore incubation with SNAP (1 microM) induced a rightward shift in the [Ca2+]i-force relationship. These results suggest that relaxation mediated by endothelium derived hyperpolarizing factors (EDHF) is associated with reduction in [Ca2+]i, whereas NO-mediated relaxation can take place without changes in [Ca2+]i. This finding seems to be, at least partly, due to NO-mediated desensitization of the contractile apparatus to calcium.
Collapse
Affiliation(s)
- Niels H Buus
- Department of Pharmacology, University of Aarhus, University Park 240, DK-8000 Aarhus C, Denmark.
| | | | | | | |
Collapse
|
21
|
Porter M, Evans MC, Miner AS, Berg KM, Ward KR, Ratz PH. Convergence of Ca2+-desensitizing mechanisms activated by forskolin and phenylephrine pretreatment, but not 8-bromo-cGMP. Am J Physiol Cell Physiol 2006; 290:C1552-9. [PMID: 16421202 DOI: 10.1152/ajpcell.00534.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Contractile stimuli can sensitize myosin to Ca2+ by activating RhoA kinase (ROK) and PKC that inhibit myosin light chain phosphatase (MLCP) activity. Relaxant stimuli, acting through PKA and PKG (cyclic nucleotide-dependent protein kinases), and pretreatment with contractile agents such as phenylephrine (PE), can desensitize myosin to Ca2+. It is unknown precisely how these stimuli cause Ca2+ desensitization. To test the hypothesis that PKA, PKG, and PE pretreatment signaling systems converge to cause relaxation by inhibition of ROK in intact, isolated tissues, we examined the effects of forskolin (FSK; PKA activation), 8-bromo-cGMP (8br-cGMP; PKG activation), and PE pretreatment on KCl-induced force maintenance in rabbit arteries, a response nearly completely dependent on ROK activation. PE pretreatment and agents activating PKA and PKG caused Ca2+ desensitization by inhibiting KCl-induced tonic force and MLC phosphorylation without inhibiting intracellular [Ca2+]. At pCa 5 in beta-escin-permeabilized muscle, FSK and 8b-cGMP accelerated the relaxation rate when tissues were returned to pCa 9, suggesting that both agents can elevate MLCP activity. However, a component of the Ca2+ desensitization attributed to PKG activation in intact tissues appeared to involve a MLC phosphorylation-independent component. Inhibition of KCl-induced tonic force by the ROK inhibitor, Y-27632, and by PE pretreatment, were synergistically potentiated by 8b-cGMP, but not FSK. FSK and PE pretreatment, but not 8b-cGMP, inhibited the KCl-induced increase in site-specific myosin phosphatase target protein-1 phosphorylation at Thr853. These data support the hypothesis that PKA and PE pretreatment converge on a common Ca2+-desensitization pathway, but that PKG can act by a mechanism different from that activated by PKA and PE pretreatment.
Collapse
Affiliation(s)
- Melissa Porter
- Virginia Commonwealth Univ. School of Medicine, Dept of Biochemistry, 1101 E. Marshall St., PO Box 980614, Richmond, VA 23298-0614, USA
| | | | | | | | | | | |
Collapse
|
22
|
Batts TW, Walker JS, Murphy RA, Rembold CM. Absence of force suppression in rabbit bladder correlates with low expression of heat shock protein 20. BMC PHYSIOLOGY 2005; 5:16. [PMID: 16266435 PMCID: PMC1285364 DOI: 10.1186/1472-6793-5-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Accepted: 11/02/2005] [Indexed: 11/23/2022]
Abstract
Background Nitroglycerin can induce relaxation of swine carotid artery without sustained reductions in [Ca2+]i or myosin regulatory light chain (MRLC) phosphorylation. This has been termed force suppression and been found to correlate with ser16-phosphorylation of heat shock protein 20 (HSP20). We tested for the existence of this mechanism in a smooth muscle that is not responsive to nitric oxide. Methods Isometrically mounted mucosa free rabbit bladder strips were contracted with carbachol and relaxed with 8-Br-cGMP, forskolin, or isoprenaline. Results Contraction was associated with a highly cooperative relation between MRLC phosphorylation and force such that very small increases in MRLC phosphorylation induced large increases in force. Relaxation induced by 8-Br-cGMP, forskolin, or isoprenaline did not shift the MRLC phosphorylation-force relation from that observed with carbachol alone, i.e. there was no force suppression. HSP20 content was negligible (approximately two hundred-fold less than swine carotid). Conclusion The lack of force suppression in the absence of HSP20 is consistent with the hypothesized role for HSP20 in the force suppression observed in tonic smooth muscles.
Collapse
Affiliation(s)
- Timothy W Batts
- Cardiovascular Division, Department of Internal Medicine, University of Virginia, Charlottesville, Virginia 22908 USA
- Department of Molecular Physiology and Cellular Biophysics, University of Virginia, Charlottesville, Virginia 22908 USA
| | - John S Walker
- Department of Molecular Physiology and Cellular Biophysics, University of Virginia, Charlottesville, Virginia 22908 USA
| | - Richard A Murphy
- Department of Molecular Physiology and Cellular Biophysics, University of Virginia, Charlottesville, Virginia 22908 USA
| | - Christopher M Rembold
- Cardiovascular Division, Department of Internal Medicine, University of Virginia, Charlottesville, Virginia 22908 USA
- Department of Molecular Physiology and Cellular Biophysics, University of Virginia, Charlottesville, Virginia 22908 USA
| |
Collapse
|
23
|
SILVERMAN MARNIN, PEARCE BRADD, BIRON CHRISTINEA, MILLER ANDREWH. Immune modulation of the hypothalamic-pituitary-adrenal (HPA) axis during viral infection. Viral Immunol 2005; 18:41-78. [PMID: 15802953 PMCID: PMC1224723 DOI: 10.1089/vim.2005.18.41] [Citation(s) in RCA: 325] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Compelling data has been amassed indicating that soluble factors, or cytokines, emanating from the immune system can have profound effects on the neuroendocrine system, in particular the hypothalamic- pituitary-adrenal (HPA) axis. HPA activation by cytokines (via the release of glucocorticoids), in turn, has been found to play a critical role in restraining and shaping immune responses. Thus, cytokine-HPA interactions represent a fundamental consideration regarding the maintenance of homeostasis and the development of disease during viral infection. Although reviews exist that focus on the bi-directional communication between the immune system and the HPA axis during viral infection (188,235), others have focused on the immunomodulatory effects of glucocorticoids during viral infection (14,225). This review, however, concentrates on the other side of the bi-directional loop of neuroendocrine-immune interactions, namely, the characterization of HPA axis activity during viral infection and the mechanisms employed by cytokines to stimulate glucocorticoid release.
Collapse
Affiliation(s)
- MARNI N. SILVERMAN
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - BRAD D. PEARCE
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - CHRISTINE A. BIRON
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, Rhode Island
| | - ANDREW H. MILLER
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
- Address reprint requests to: Dr. Andrew H. Miller, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 101 Woodruff Circle, WMRB Suite 4000, Atlanta, Georgia 30322, E-mail:
| |
Collapse
|
24
|
Soloviev A, Lehen'kyi V, Zelensky S, Hellstrand P. Nitric oxide relaxes rat tail artery smooth muscle by cyclic GMP-independent decrease in calcium sensitivity of myofilaments. Cell Calcium 2005; 36:165-73. [PMID: 15193864 DOI: 10.1016/j.ceca.2004.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2003] [Revised: 01/26/2004] [Accepted: 02/10/2004] [Indexed: 11/18/2022]
Abstract
The effects of authentic nitric oxide (NO, 10(-6) M) and NO-donors such as sodium nitroprusside (SNP, 10(-5) M) and glyceryl trinitrate (GTN, 10(-4) M) on contractile force and free intracellular calcium level ([Ca2+]i) were studied on precontracted with high potassium chloride (KCl, 70 mM) isolated rings of rat tail artery. The sensitivity of contractile myofilaments to Ca2+ was measured using chemically permeabilized (alpha-toxin, beta-escin, Triton X-100) vascular rings. [Ca2+]i and contractile activity were measured simultaneously. The relationship of [Ca2+]i and tension developed was studied in endothelium-denuded rings and controlled calcium response was evaluated in both endothelium-denuded and permeabilized vascular rings. Both authentic NO and NO-donors decreased [Ca2+]i and high potassium-induced tension with a different time course. Inhibitor of soluble guanylyl cyclase (sGC) LY83583 (10(-5) M) did not affect SNP-induced relaxation whereas the other sGC inhibitor ODQ (10(-6) M) attenuated SNP-induced relaxation. Both inhibitors had no effect on NO- and SNP-induced reduction in [Ca2+]i. On the contrary, GTN induced neither relaxation nor decrease in [Ca2+]i on application of both LY83583 and ODQ. Tail artery rings permeabilized with alpha-toxin, beta-escin, but not with Triton X-100 were relaxed by authentic NO and NO-donors, but to a less extent than non-permeabilized rings. Dithioerythritol (DTE, 5 x 10(-3) M) that maintains sulfhydryl (SH) groups in reduced state preventing their nitrosylation attenuated NO-induced relaxation in both non-permeabilized and permeabilized tail artery rings. The cyclic heptapeptide mycrocystin-LR (MC-LR) (10(-5) M), an inhibitor of type 1 and 2A phosphatases, induced sustained increase in tension of beta-escin permeabilized rings in low Ca2+ (10(-8) M) solution. The tension was not affected by authentic NO and SNP. We conclude that authentic NO and SNP relax rat tail artery smooth muscle (SM) in the presence of inhibitors of sGC via cyclic guanosine monophosphate (cGMP)-independent pathway, whereas relaxation induced by GTN is inhibited. The data demonstrate that cGMP-dependent pathway in vascular smooth muscle is ubiquitous, but not the only way of relaxation induced by NO. NO can modulate vascular tone directly by reducing sensitivity of contractile myofilaments to [Ca2+]i and may involve activation of protein phosphatase(s).
Collapse
Affiliation(s)
- A Soloviev
- Department of Experimental Therapeutics, Institute of Pharmacology and Toxicology, Academy of Medical Sciences, 14 Ezhena Pot'e, 03057 Kiev, Ukraine.
| | | | | | | |
Collapse
|
25
|
Meeks MK, Ripley ML, Jin Z, Rembold CM. Heat shock protein 20-mediated force suppression in forskolin-relaxed swine carotid artery. Am J Physiol Cell Physiol 2004; 288:C633-9. [PMID: 15509660 DOI: 10.1152/ajpcell.00269.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increases in cyclic nucleotide levels induce smooth muscle relaxation by deactivation [reductions in myosin regulatory light chain (MRLC) phosphorylation (e.g., by reduced [Ca(2+)])] or force suppression (reduction in force without reduction in MRLC phosphorylation). Ser(16)-heat shock protein 20 (HSP20) phosphorylation is the proposed mediator of force suppression. We evaluated three potential hypotheses whereby Ser(16)-HSP20 phosphorylation could regulate smooth muscle force: 1) a threshold level of HSP20 phosphorylation could inactivate a thin filament as a whole, 2) phosphorylation of a single HSP20 could fully inactivate a small region of a thin filament, or 3) HSP20 phosphorylation could weakly inhibit myosin binding at either the thin- or thick-filament level. We tested these hypotheses by analyzing the dependence of force on Ser(16)-HSP20 phosphorylation in swine carotid media. First, we determined that swine HSP20 has a second phosphorylation site at Ser(157). Ser(157)-HSP20 phosphorylation values were high and did not change during contractile activation or forskolin-induced relaxation. Forskolin significantly increased Ser(16)-HSP20 phosphorylation. The relationship between Ser(16)-HSP20 phosphorylation and force remained linear and was shifted downward in partially activated muscles relaxed with forskolin. Neither forskolin nor nitroglycerin induced actin depolymerization as detected using the F/G-actin ratio method in smooth muscle homogenates. These results suggest that force suppression does not occur in accordance with the first hypothesis (inactivation of a thin filament as a whole). Our data are more consistent with the second and third hypotheses that force suppression is mediated by full or partial inhibition of local myosin binding at the thin- or thick-filament level.
Collapse
Affiliation(s)
- Melissa K Meeks
- Cardiovascular Division, Department of Internal Medicine, University of Virginia Health System, Charlottesville, VA 22908-1395, USA
| | | | | | | |
Collapse
|
26
|
Rembold CM, Kaufman E. Heat induced HSP20 phosphorylation without increased cyclic nucleotide levels in swine carotid media. BMC PHYSIOLOGY 2003; 3:3. [PMID: 12716456 PMCID: PMC155685 DOI: 10.1186/1472-6793-3-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2003] [Accepted: 04/25/2003] [Indexed: 11/10/2022]
Abstract
BACKGROUND Heat pretreatment of swine carotid artery has been shown to increase ser16-heat shock protein 20 (HSP20) phosphorylation and suppress force, i.e., reduce force with only minimal reduction in ser19-myosin regulatory light chain (MRLC) phosphorylation. RESULTS We further investigated this response in intact histamine stimulated swine carotid artery rings. There was a heat threshold such that increased ser16-HSP20 phosphorylation and force suppression were observed between 43 degrees C and 46 degrees C. The increased ser16-HSP20 phosphorylation persisted up to 16 hours after 44.5 degrees C heat treatment. Pretreatment of swine carotid media at 44.5 degrees C increased ser16-HSP20 phosphorylation without increases in [cAMP] or [cGMP], suggesting an alternate mechanism, perhaps phosphatase inhibition, for the increase in ser16-HSP20 phosphorylation. Heat pretreatment at 47.5 degrees C reduced force by decreasing MRLC phosphorylation rather than by large increases in ser16-HSP20 phosphorylation. HSP20 phosphorylation at the putative PKC site did not change with any treatment. CONCLUSION These results demonstrate that multiple mechanisms can induce force suppression that is correlated with ser16-HSP20 phosphorylation: 1) nitrovasodilators via cGMP, 2) forskolin via cAMP, and 2) thermal stress in a cyclic nucleotide independent manner.
Collapse
Affiliation(s)
- Christopher M Rembold
- Cardiovascular Division, Departments of Internal Medicine and Physiology, University of Virginia Health System, Charlottesville, Virginia 22908 USA
| | - Elizabeth Kaufman
- Cardiovascular Division, Departments of Internal Medicine and Physiology, University of Virginia Health System, Charlottesville, Virginia 22908 USA
| |
Collapse
|
27
|
|
28
|
White TA, Walseth TF, Kannan MS. Nitric oxide inhibits ADP-ribosyl cyclase through a cGMP-independent pathway in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2002; 283:L1065-71. [PMID: 12376359 DOI: 10.1152/ajplung.00064.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is evidence for a role of cyclic ADP-ribose (cADPR) in intracellular Ca2+ regulation in smooth muscle. cADPR is synthesized and degraded by ADP-ribosyl cyclase and cADPR hydrolase, respectively, by a bifunctional protein, CD38. Nitric oxide (NO) inhibits intracellular Ca2+ mobilization in airway smooth muscle. The present study was designed to determine whether this inhibition is due to regulation of ADP-ribosyl cyclase and/or cADPR hydrolase activity. Sodium nitroprusside (SNP) and S-nitroso-N-acetylpenicillamine, NO donors, produced a concentration-dependent decrease in ADP-ribosyl cyclase, but not cADPR hydrolase, activity. The NO scavenger carboxy-PTIO prevented and reversed, and reduced glutathione prevented, the inhibition of ADP-ribosyl cyclase by SNP, suggesting S-nitrosylation by NO as a mechanism. N-ethylmaleimide, which covalently modifies protein sulfhydryl groups, making them incapable of nitrosylation, produced a marked inhibition of ADP-ribosyl cyclase, but not cADPR hydrolase, activity. SNP and N-ethylmaleimide significantly inhibited the ADP-ribosyl cyclase activity in recombinant human CD38 without affecting the cADPR hydrolase activity. These results provide a novel mechanism for differential regulation of CD38 by NO through a cGMP-independent pathway involving S-nitrosylation of thiols.
Collapse
Affiliation(s)
- Thomas A White
- Department of Veterinary PathoBiology, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | |
Collapse
|
29
|
O'Connor MJ, Rembold CM. Heat-induced force suppression and HSP20 phosphorylation in swine carotid media. J Appl Physiol (1985) 2002; 93:484-8. [PMID: 12133854 DOI: 10.1152/japplphysiol.00009.2002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In vascular smooth muscle, cyclic nucleotide-dependent phosphorylation of heat shock protein 20 (HSP20) on serine-16 (Ser16) has been suggested to cause force suppression, i.e., reduced force with only minimal myosin regulatory light chain (MRLC) dephosphorylation. We hypothesized that heat pretreatment also suppresses force by increasing HSP20 phosphorylation. After heat pretreatment of swine carotid artery at 44.5 degrees C for 4 h and reduction to 37 degrees C for 1 h, Ser16-HSP20 phosphorylation was increased and histamine-induced increases in contractile force were suppressed. Subsequent addition of nitroglycerin induced additive force suppression. Heat and nitroglycerin induced a similar relation between Ser16-HSP20 phosphorylation and force. Heat pretreatment induced a small, but significant, increase in total HSP20 immunostaining. These results demonstrate that vascular smooth muscle responds to thermal stress by increasing Ser16-HSP20 phosphorylation in addition to a possible small increase in total HSP20 concentration. The resulting heat-induced reduction in force should be considered "force suppression" because histamine-induced increases in MRLC phosphorylation were not significantly altered by heat pretreatment. These processes may bring about a resistance to contractile agonists, which could have clinical significance in conditions such as hyperthermia and/or sepsis with vasodilatory shock.
Collapse
Affiliation(s)
- Matthew J O'Connor
- Cardiovascular Division, Department of Internal Medicine, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
30
|
Rho EH, Perkins WJ, Lorenz RR, Warner DO, Jones KA. Differential effects of soluble and particulate guanylyl cyclase on Ca(2+) sensitivity in airway smooth muscle. J Appl Physiol (1985) 2002; 92:257-63. [PMID: 11744668 DOI: 10.1152/jappl.2002.92.1.257] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Maximal relaxation of airway smooth muscle (ASM) in response to atrial natriuretic peptide (ANP), which stimulates particulate guanylyl cyclase (pGC), is less than that produced by nitric oxide (NO) and other compounds that stimulate soluble guanylyl cyclase (sGC). We hypothesized that stimulation of pGC relaxes ASM only by decreasing intracellular Ca(2+) concentration ([Ca(2+)](i)), whereas stimulation of sGC decreases both [Ca(2+)](i) and the force developed for a given [Ca(2+)](i) (i.e., the Ca(2+) sensitivity) during muscarinic stimulation. We measured the relationship between force and [Ca(2+)](i) (using fura 2) under control conditions (using diltiazem to change [Ca(2+)](i)) and during exposure to ANP, diethylamine-NO (DEA-NO), sodium nitroprusside (SNP), and the Sp diastereoisomer of beta-phenyl-1,N(2)-etheno-8-bromoguanosine-3',5'-cyclic monophosphorothionate (Sp-8-Br-PET-cGMPS), a cell-permeant analog of cGMP. Addition of DEA-NO, SNP, or Sp-8-Br-PET-cGMPS decreased both [Ca(2+)](i) and force, causing a significant rightward shift of the force-[Ca(2+)](i) relationship. In contrast, with ANP exposure, the force-[Ca(2+)](i) relationship was identical to control, such that ANP produced relaxation solely by decreasing [Ca(2+)](i). Thus, during muscarinic stimulation, stimulation of pGC relaxes ASM exclusively by decreasing [Ca(2+)](i), whereas stimulation of sGC decreases both [Ca(2+)](i) and Ca(2+) sensitivity.
Collapse
Affiliation(s)
- Edwin H Rho
- Department of Anesthesiology, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
31
|
Barron JT, Gu L, Parrillo JE. Endothelial- and nitric oxide-dependent effects on oxidative metabolism of intact artery. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1506:204-11. [PMID: 11779553 DOI: 10.1016/s0005-2728(01)00214-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Oxidative metabolism and its possible modulation by nitric oxide (NO) was examined in endothelial-intact and endothelial-denuded segments of porcine carotid arteries. Endothelial-intact arteries displayed appropriate NO-mediated vasorelaxation to acetylcholine (ACh). Endothelial-denuded arteries demonstrated absent vasorelaxation to ACh stimulation and depressed contractile responsiveness to K(+) depolarization, which was normalized by inhibition of NO synthesis by N(omega)-nitro-L-arginine methylester (L-NAME). Confirmation that carotid arteries continued to produce NO despite removal of the endothelium was indicated by detection of NO metabolites in the incubation medium bathing the arteries. O(2) consumption and the oxidation of glucose and fatty acid were depressed in endothelial-denuded arteries. Depression of O(2) consumption and glucose oxidation was completely reversed by treatment with L-NAME. We conclude that endogenous NO produced by non-endothelial vascular cells depresses contractility, O(2) consumption, and oxidation of energy substrates in vascular smooth muscle. The endothelium may play a role in oxidative metabolism of vascular smooth muscle possibly by modulating the effects of NO produced by other cells of the vessel wall, or by other factors.
Collapse
Affiliation(s)
- J T Barron
- Section of Cardiology, Department of Internal Medicine, Rush Medical College, Rush-Presbyterian-St. Luke's Medical Center, 1653 West Congress Parkway, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
32
|
Etter EF, Eto M, Wardle RL, Brautigan DL, Murphy RA. Activation of myosin light chain phosphatase in intact arterial smooth muscle during nitric oxide-induced relaxation. J Biol Chem 2001; 276:34681-5. [PMID: 11461918 DOI: 10.1074/jbc.m104737200] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated whether myosin light chain phosphatase activity changes during nitric oxide-induced relaxation of contracted intact carotid media and how changes in phosphatase activity mediate this relaxation. We also investigated one mechanism for regulating this phosphatase. Myosin phosphatase activity, myosin light chain phosphorylation, guanosine 3',5'-cyclic monophosphate (cGMP) concentration, and phosphorylation of the inhibitory protein CPI-17 were all assayed in homogenates of one carotid media ring at each time point during nitric oxide-induced relaxation. The application of sodium nitroprusside to histamine-contracted media caused rapid declines in light chain phosphorylation and force. These were temporally correlated with a rapid elevation of cGMP and a large transient increase in myosin phosphatase activity. During the early response to nitroprusside, when force declined, increases in myosin phosphatase activity, concurrent with cGMP-mediated decreases in calcium and myosin light chain kinase activity, could accelerate light chain dephosphorylation. CPI-17 was dephosphorylated upon application of nitroprusside at the same time that myosin phosphatase activity increased, suggesting that the removal of inhibition by phospho-CPI-17 contributed to the increase in myosin phosphatase activity. After 20 min of nitroprusside, myosin phosphatase activity had declined to basal levels, however low force was sustained. Additional light chain phosphorylation-independent mechanisms may be involved in sustaining the relaxation.
Collapse
Affiliation(s)
- E F Etter
- Department of Molecular Physiology and Biological Physics and the Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, Virginia 22908-0577, USA.
| | | | | | | | | |
Collapse
|
33
|
Rembold CM, O'Connor M, Clarkson M, Wardle RL, Murphy RA. Selected contribution: HSP20 phosphorylation in nitroglycerin- and forskolin-induced sustained reductions in swine carotid media tone. J Appl Physiol (1985) 2001; 91:1460-6. [PMID: 11509549 DOI: 10.1152/jappl.2001.91.3.1460] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cyclic nucleotide-induced relaxation of maximally activated arterial smooth muscle has two phases. 1) The initial relaxation transient is typically characterized by a rapid reduction in force associated with brief reductions in myoplasmic Ca(2+) concentration ([Ca(2+)](i)) and myosin regulatory light chain (MRLC) phosphorylation on serine (Ser)-19 (Ser(19)). 2) The sustained inhibitory response is typically associated with Ser(16) phosphorylation of heat shock protein 20 (HSP20) without sustained reductions in [Ca(2+)](i) or MRLC phosphorylation. We investigated whether the extent of Ser(16)-HSP20 phosphorylation quantitatively correlated with the sustained inhibitory response. With addition of nitroglycerin to histamine-stimulated swine carotid media, the initial relaxation transient was associated with a decrease in MRLC phosphorylation without an increase in Ser(16)-HSP20 phosphorylation. During the sustained phase of nitroglycerin-induced relaxation and during force redevelopment induced by washout of nitroglycerin in the continued presence of histamine, the level of Ser(16)-HSP20 phosphorylation, but not MRLC phosphorylation, correlated with inhibition of force. Forskolin, which increases cAMP concentration, also induced a sustained inhibitory response that was associated with increases in Ser(16)-HSP20 phosphorylation without reductions in MRLC phosphorylation levels. Forskolin increased Ser(16)-HSP20 phosphorylation to a greater extent and inhibited force more completely than that observed with nitroglycerin. Increases in Ser(16)-HSP20 phosphorylation correlated with the degree of force inhibition regardless of whether the relaxation was induced by nitroglycerin or forskolin. These data are consistent with the hypothesis that Ser(16)-HSP20 phosphorylation may be a cyclic nucleotide-dependent, yet MRLC phosphorylation-independent, inhibitor of smooth muscle contractile force.
Collapse
Affiliation(s)
- C M Rembold
- Cardiovascular Division, Department of Internal Medicine, University of Virginia Health System, Charlottesville, Virginia 22908, USA.
| | | | | | | | | |
Collapse
|
34
|
Rembold CM, Zhang E. Localization of heat shock protein 20 in swine carotid artery. BMC PHYSIOLOGY 2001; 1:10. [PMID: 11532202 PMCID: PMC48151 DOI: 10.1186/1472-6793-1-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2001] [Accepted: 08/14/2001] [Indexed: 11/10/2022]
Abstract
BACKGROUND Cyclic nucleotides can relax vascular smooth muscle by mechanisms distal to myosin regulatory light chain (MRLC) phosphorylation. This mechanism, termed relaxation without MRLC dephosphorylation, may be regulated by ser16 phosphorylation of heat shock protein 20 (HSP20). RESULTS Confocal imaging of HSP20 in smooth muscle tissues revealed that HSP20 was present throughout the cytoplasm, although some focal regions of the cytoplasm were found to contain more HSP20 than the remaining cytoplasm. The distribution of HSP20 within the cytoplasm was not altered by histamine, forskolin, or nitroglycerin. CONCLUSION Cytoplasmic localization of HSP20 is consistent with a potential function of HSP20 as a regulator of smooth muscle contractile force.
Collapse
Affiliation(s)
- Christopher M Rembold
- Cardiovascular Division, Departments of Internal Medicine and Physiology, University of Virginia, Health System Charlottesville, Virginia 22908 USA
| | - Erik Zhang
- Cardiovascular Division, Departments of Internal Medicine and Physiology, University of Virginia, Health System Charlottesville, Virginia 22908 USA
| |
Collapse
|
35
|
Sohn UD, Cao W, Tang DC, Stull JT, Haeberle JR, Wang CL, Harnett KM, Behar J, Biancani P. Myosin light chain kinase- and PKC-dependent contraction of LES and esophageal smooth muscle. Am J Physiol Gastrointest Liver Physiol 2001; 281:G467-78. [PMID: 11447027 DOI: 10.1152/ajpgi.2001.281.2.g467] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In smooth muscle cells enzymatically isolated from circular muscle of the esophagus (ESO) and lower esophageal sphincter (LES), ACh-induced contraction and myosin light chain (MLC) phosphorylation were similar. Contraction and phosphorylation induced by purified MLC kinase (MLCK) were significantly greater in LES than ESO. ACh-induced contraction and MLC phosphorylation were inhibited by calmodulin and MLCK inhibitors in LES and by protein kinase C (PKC) inhibitors in ESO. Contraction of LES and ESO induced by the PKC agonist 1,2-dioctanoylglycerol (DG) was unaffected by MLCK inhibitors. Caldesmon and calponin concentration-dependently inhibited ACh-induced contraction of ESO and not LES. In ESO, caldesmon antagonist GS17C reversed caldesmon- but not calponin-induced ACh inhibition. GS17C caused contraction of permeabilized ESO but had much less effect on LES. GS17C-induced contraction was not affected by MLCK inhibitors, suggesting that MLCK may not regulate caldesmon-mediated contraction. DG-induced contraction of ESO and LES was inhibited by caldesmon and calponinin, suggesting that these proteins may regulate PKC-dependent contraction. We conclude that calmodulin and MLCK play a role in ACh-induced LES contraction, whereas the classical MLCK may not be the major kinase responsible for contraction and phosphorylation of MLC in ESO. ESO contraction is PKC dependent. Caldesmon and/or calponin may play a role in PKC-dependent contraction.
Collapse
Affiliation(s)
- U D Sohn
- Department of Pharmacology, College of Pharmacy, Chung Ang University, Seoul 156-756, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Xiao D, Pearce WJ, Zhang L. Pregnancy enhances endothelium-dependent relaxation of ovine uterine artery: role of NO and intracellular Ca(2+). Am J Physiol Heart Circ Physiol 2001; 281:H183-90. [PMID: 11406484 DOI: 10.1152/ajpheart.2001.281.1.h183] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study tested the hypothesis that the pregnancy-associated increase in endothelium-dependent relaxation of the uterine artery was mediated primarily by an increase in nitric oxide (NO) release, resulting in a reduction in smooth muscle intracellular Ca(2+) concentration ([Ca(2+)](i)). Uterine arteries obtained from nonpregnant and near-term (140 days gestation) pregnant sheep were used. The Ca(2+) ionophore A23187 induced endothelium-dependent relaxations in both nonpregnant and pregnant uterine arteries, with an increased relaxation in the pregnant tissue. In contrast, endothelium-independent relaxations induced by sodium nitroprusside were the same in nonpregnant and pregnant arteries. In addition, removal of the endothelium significantly increased noradrenaline-induced contractions in pregnant, but not nonpregnant, uterine arteries. In accordance, pregnancy increased both basal and A23187-stimulated NO releases in the uterine artery. Simultaneous measurement of tension and [Ca(2+)](i) in the smooth muscle demonstrated a linear correlation with the slope of unity between A23187-induced relaxation and the reduction of [Ca(2+)](i) in both nonpregnant and pregnant uterine arteries. The A23187-induced reduction of [Ca(2+)](i) was significantly enhanced in pregnant, compared with nonpregnant, uterine arteries. The results indicate that pregnancy increases NO release, which, through decreasing [Ca(2+)](i) in the smooth muscle, accounts for the increased endothelium-dependent relaxation of the uterine artery. Signal transduction pathways distal to NO production are not changed by pregnancy.
Collapse
Affiliation(s)
- D Xiao
- Center for Perinatal Biology, Department of Pharmacology and Physiology, Loma Linda University School of Medicine, Loma Linda, California 92350, USA
| | | | | |
Collapse
|
37
|
Abstract
Phosphorylation of the regulatory light chains of myosin II (rMLC) by the Ca(2+)/calmodulin-dependent myosin light-chain kinase (MLCK) and dephosphorylation by a type 1 phosphatase (MLCP), which is targeted to myosin by a regulatory subunit (MYPT1), are the predominant mechanisms of regulation of smooth muscle tone. The activities of both enzymes are modulated by several protein kinases. MLCK is inhibited by the Ca(2+)/calmodulin-dependent protein kinase II, whereas the activity of MLCP is increased by cGMP and perhaps also cAMP-dependent protein kinases. In either case, this results in a decrease in the Ca(2+) sensitivity of rMLC phosphorylation and force production. The activity of MLCP is inhibited by Rho-associated kinase, one of the effectors of the monomeric GTPase Rho, and protein kinase C, leading to an increase in Ca(2+) sensitivity. Hence, smooth muscle tone appears to be regulated by a network of activating and inactivating intracellular signaling cascades.
Collapse
Affiliation(s)
- G Pfitzer
- Department of Physiology, University of Cologne, D-50931 Koeln, Germany.
| |
Collapse
|
38
|
Abstract
Vascular smooth muscle tone is controlled by a balance between the cellular signaling pathways that mediate the generation of force (contraction) and the release of force (relaxation). The signaling events that activate contraction include Ca(2+)-dependent myosin light chain phosphorylation. The signaling events that mediate relaxation include the removal of a contractile agonist (passive relaxation) and activation of cyclic nucleotide-dependent signaling pathways in the continued presence of a contractile agonist (active relaxation). The major questions that remain in contractile physiology include (1) how is tonic force maintained when intracellular Ca(2+) levels and myosin light chain phosphorylation have returned to basal levels; and (2) what is the mechanism of cyclic nucleotide-dependent relaxation? This review focuses on these specific controversies surrounding the molecular mechanisms of contraction and relaxation of vascular smooth muscle.
Collapse
Affiliation(s)
- D A Woodrum
- Institute for Molecular Medicine and Genetics, Medical College of Georgia, 1120 15th Street, Augusta, GA, USA
| | | |
Collapse
|
39
|
Tanaka Y, Masuzawa T, Saito M, Yamada T. Inhibitory effects of verapamil and nitroglycerin on contraction and cytosolic Ca2+ levels in cerebrovascular smooth muscle during chronic cerebral vasospasm. Neurol Med Chir (Tokyo) 2001; 41:238-44; discussion 244-5. [PMID: 11396303 DOI: 10.2176/nmc.41.238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms of the inhibitory effects of verapamil and nitroglycerin on vasospasm were investigated by measuring cytosolic Ca2+ level ([Ca2+]i) and muscle tension in 28 normal specimens and 28 spastic vascular specimens of smooth muscle. Experimental vasospasm was produced by the two-hemorrhage method in the canine basilar artery. [Ca2+]i and tension were recorded simultaneously with a fluorimeter using fura-2. High K+ concentration (72.4 mM) and U-46619 (thromboxane A2 analogue, 10(-8) M) were used as stimulants, and the inhibitory effects of verapamil or nitroglycerin on muscle contraction and increased [Ca2+]i were examined. Verapamil inhibited [Ca2+]i and contraction in high K+ concentration-stimulated arteries. Verapamil inhibited [Ca2+]i more strongly than contraction in U-46619-stimulated arteries. There were no significant differences in the effects of verapamil in the control and vasospasm groups. Nitroglycerin inhibited contraction with little effect on [Ca2+]i in high K+ concentration-stimulated arteries in both the control and vasospasm groups. Nitroglycerin inhibited contraction with little effect on [Ca2+]i in U-46619-stimulated arteries and the inhibitory effect was weaker in the vasospasm group than in the control group. The inhibitory effects of verapamil on muscle tension and [Ca2+]i in vasospastic vessels were as strong as those in normal vessels. In contrast, the inhibitory effects of nitroglycerin were reduced in vasospastic vessels. Increased Ca2+ sensitivity in vasospastic vessels may have reduced the inhibitory effects of nitroglycerin.
Collapse
Affiliation(s)
- Y Tanaka
- Department of Surgical Neurology, Jichi Medical School, Tochigi
| | | | | | | |
Collapse
|
40
|
Kwon SC, Ozaki H, Karaki H. NO donor sodium nitroprusside inhibits excitation-contraction coupling in guinea pig taenia coli. Am J Physiol Gastrointest Liver Physiol 2000; 279:G1235-41. [PMID: 11093946 DOI: 10.1152/ajpgi.2000.279.6.g1235] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In guinea pig taenia coli, the nitric oxide (NO) donor sodium nitroprusside (SNP, 1 microM) reduced the carbachol-stimulated increases in muscle force in parallel with a decrease in intracellular Ca(2+) concentration ([Ca(2+)](i)). A decrease in the myosin light chain phosphorylation was also observed that was closely correlated with the decrease in [Ca(2+)](i). With the patch-clamp technique, 10 microM SNP decreased the peak Ba(2+) current, and this effect was blocked by an inhibitor of soluble guanylate cyclase. Carbachol (10 microM) induced an inward current, and this effect was markedly inhibited by SNP. SNP markedly increased the depolarization-activated outward K(+) currents, and this current was completely blocked by 0.3 micorM iberiotoxin. SNP (1 microM) significantly increased cGMP content without changing cAMP content. Decreased Ca(2+) sensitivity by SNP of contractile elements was not prominent in the permeabilized taenia, which was consistent with the [Ca(2+)](i)-force relationship in the intact tissue. These results suggest that SNP inhibits myosin light chain phosphorylation and smooth muscle contraction stimulated by carbachol, mainly by decreasing [Ca(2+)](i), which resulted from the combination of the inhibition of voltage-dependent Ca(2+) channels, the inhibition of nonselective cation currents, and the activation of Ca(2+)-activated K(+) currents.
Collapse
Affiliation(s)
- S C Kwon
- Department of Physiology, Yonsei University College of Medicine, Seoul 120-752, Korea
| | | | | |
Collapse
|
41
|
Li N, Zou AP, Ge ZD, Campbell WB, Li PL. Effect of nitric oxide on calcium-induced calcium release in coronary arterial smooth muscle. GENERAL PHARMACOLOGY 2000; 35:37-45. [PMID: 11679204 DOI: 10.1016/s0306-3623(01)00089-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The present study was designed to determine whether nitric oxide (NO)-induced reduction of [Ca(2+)](i) is associated with Ca(2+)-induced Ca(2+) release (CICR) in coronary arterial smooth muscle cells (CASMCs). Caffeine was used as a CICR activator to induce Ca(2+) release in these cells. The effects of NO donor, sodium nitroprusside (SNP), on caffeine-induced Ca(2+) release were examined in freshly dissociated bovine CASMCs using single cell fluorescence microscopic spectrometry. The effects of NO donor on caffeine-induced coronary vasoconstriction were examined by isometric tension recordings. Caffeine, a CICR or ryanodine receptor (RYR) activator, produced a rapid Ca(2+) release with a 330 nM increase in [Ca(2+)](i). Pretreatment of the CASMCs with SNP, CICR inhibitor tetracaine or RYR blocker ryanodine markedly decreased caffeine-induced Ca(2+) release. Addition of caffeine to the Ca(2+)-free bath solution produced a transient coronary vasoconstriction. SNP, tetracaine and ryanodine, but not guanylyl cyclase inhibitor, ODQ, significantly attenuated caffeine-induced vasoconstriction. These results suggest that CICR is functioning in CASMCs and participates in the vasoconstriction in response to caffeine-induced Ca(2+) release and that inhibition of CICR is of importance in mediating the vasodilator response of coronary arteries to NO.
Collapse
Affiliation(s)
- N Li
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 53226, Milwaukee, WI, USA
| | | | | | | | | |
Collapse
|
42
|
Heaps CL, Sturek M, Rapps JA, Laughlin MH, Parker JL. Exercise training restores adenosine-induced relaxation in coronary arteries distal to chronic occlusion. Am J Physiol Heart Circ Physiol 2000; 278:H1984-92. [PMID: 10843897 DOI: 10.1152/ajpheart.2000.278.6.h1984] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously reported that canine collateral-dependent coronary arteries exhibit impaired relaxation to adenosine but not sodium nitroprusside. In contrast, exercise training enhances adenosine sensitivity of normal porcine coronary arteries. These results stimulated the hypothesis that chronic coronary occlusion and exercise training produce differential effects on cAMP- versus cGMP-mediated relaxation. To test this hypothesis, Ameroid occluders were surgically placed around the proximal left circumflex coronary artery (LCx) of female Yucatan miniature swine 8 wk before initiating sedentary or exercise training (treadmill run, 16 wk) protocols. Relaxation to the cAMP-dependent vasodilators adenosine (10(-7) to 10(-3) M) and isoproterenol (3 x 10(-8) to 3 x 10(-5) M) were impaired in collateral-dependent LCx versus nonoccluded left anterior descending (LAD) arterial rings isolated from sedentary but not exercise-trained pigs. Furthermore, adenosine-mediated reductions in simultaneous tension and myoplasmic free Ca(2+) were impaired in LCx versus LAD arteries isolated from sedentary but not exercise-trained pigs. In contrast, relaxation in response to the cAMP-dependent vasodilator forskolin (10(-9) to 10(-5) M) and the cGMP-dependent vasodilator sodium nitroprusside (10(-9) to 10(-4) M) was not different in LCx versus LAD arteries of sedentary or exercise-trained animals. These data suggest that chronic occlusion impairs receptor-dependent, cAMP-mediated relaxation; receptor-independent cAMP- and cGMP-mediated relaxation were unimpaired. Importantly, exercise training restores cAMP-mediated relaxation of collateral-dependent coronary arteries.
Collapse
Affiliation(s)
- C L Heaps
- Dalton Cardiovascular Research Center, University of Missouri, Columbia 65211, USA
| | | | | | | | | |
Collapse
|
43
|
Pauvert O, Marthan R, Savineau J. NO-induced modulation of calcium-oscillations in pulmonary vascular smooth muscle. Cell Calcium 2000; 27:329-38. [PMID: 11013463 DOI: 10.1054/ceca.2000.0123] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The effect of the nitric oxide (NO) donor sodium nitroprusside (SNP) on both [Ca(2+)](i)and mechanical activity was studied in the rat isolated pulmonary artery (RPA). In freshly isolated myocytes loaded with 1 microM indo-lacetoxymethyl ester for 30 min, short (40-60 s) application of ATP (100 microM) or ET-1 (0.1 microM) induced 3-6 cyclic rises in [Ca(2+)](i)(Ca-oscillations) of decreasing amplitude. Preincubation of cells with SNP (10-250 microM) for 10 min had no effect on the resting [Ca(2+)](i)value, but progressively abolished the oscillations. A similar effect was obtained with 8-bromo-cGMP (100-500 microM). SNP (0.001-100 microM) concentration-dependently relaxed ATP (10 mM, n = 4) and ET-1 (0.1 microM, n = 4)-precontracted RPA. 1H-[1,2,4]oxadiazolol [4,3,-a]quinoxalin-1-one (ODQ, 10 microM), a potent inhibitor of the cytosolic guanylyl cyclase, fully reversed the effect of SNP on ATP-induced [Ca(2+)](i)oscillations as well as on ATP-precontracted RPA. In contrast, N-[2-(methylamino)ethyl]-5-isoquinolinesulfonamide (H8, 10 microM), a potent inhibitor of cGMP-dependent protein kinase (PKG), did not alter the effect of SNP. Caffeine (5 mM) induced only one transient [Ca(2+)](i)-increase (n = 24), the amplitude of which was altered neither by SNP nor by 8-bromo-cGMP. Our results show that the relaxing effect of NO in RPA is related, at least in part, to its action on the Ca-signalling pathway. NO interacts with inositol trisphosphate pathway without interacting with the ryanodine-sensitive receptor. Finally, the effect of NO involves an increase in cGMP but appears independent of activation of PKG.
Collapse
Affiliation(s)
- O Pauvert
- Laboratoire de Physiologie Cellulaire Respiratoire (INSERM E9937), Université Bordeaux 2, Bordeaux Cédex, France
| | | | | |
Collapse
|
44
|
Rembold CM, Foster DB, Strauss JD, Wingard CJ, Eyk JE. cGMP-mediated phosphorylation of heat shock protein 20 may cause smooth muscle relaxation without myosin light chain dephosphorylation in swine carotid artery. J Physiol 2000; 524 Pt 3:865-78. [PMID: 10790164 PMCID: PMC2269896 DOI: 10.1111/j.1469-7793.2000.00865.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Nitrovasodilators such as nitroglycerine, via production of nitric oxide and an increase in [cGMP], can induce arterial smooth muscle relaxation without proportional reduction in myosin light chain (MLC) phosphorylation or myoplasmic [Ca2+]. These findings suggest that regulatory systems, other than MLC phosphorylation and Ca2+, partially mediate nitroglycerine-induced relaxation. In swine carotid artery, we found that a membrane-permeant cGMP analogue induced relaxation without MLC dephosphorylation, suggesting that cGMP mediated the relaxation. Nitroglycerine-induced relaxation was associated with a reduction in O2 consumption, suggesting that the interaction between phosphorylated myosin and the thin filament was inhibited. Nitroglycerine-induced relaxation was associated with a 10-fold increase in the phosphorylation of a protein on Ser16. We identified this protein as heat shock protein 20 (HSP20), a member of a family of proteins known to bind to thin filaments. When homogenates of nitroglycerine-relaxed tissues were centrifuged at 6000 g, phosphorylated HSP20 preferentially sedimented in the pellet, suggesting that phosphorylation of HSP20 may increase its affinity for the thin filament. We noted that a domain of HSP20 is partially homologous to the 'minimum inhibitory sequence' of skeletal troponin I. The peptide HSP20110-121, which contains this domain, bound to actin-containing filaments only in the presence of tropomyosin, a characteristic of troponin I. High concentrations of HSP20110-121 abolished Ca2+-activated force in skinned swine carotid artery. HSP20110-121 also partially decreased actin-activated myosin S1 ATPase activity. These data suggest that cGMP-mediated phosphorylation of HSP20 on Ser16 may have a role in smooth muscle relaxation without MLC dephosphorylation. HSP20 contains an actin-binding sequence at amino acid residues 110-121 that inhibited force production in skinned carotid artery. We hypothesize that phosphorylation of HSP20 regulates force independent of MLC phosphorylation via binding of HSP20 to thin filaments and inhibition of cross-bridge cycling.
Collapse
Affiliation(s)
- C M Rembold
- Department of Internal Medicine, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA.
| | | | | | | | | |
Collapse
|
45
|
Rembold CM, O'Connor M. Caldesmon and heat shock protein 20 phosphorylation in nitroglycerin- and magnesium-induced relaxation of swine carotid artery. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1500:257-64. [PMID: 10699367 DOI: 10.1016/s0925-4439(99)00112-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nitrovasodilators, high extracellular Mg(2+), and some other relaxing agents can cause smooth muscle relaxation without reductions in myosin regulatory light chain (MRLC) phosphorylation. Relaxations without MRLC dephosphorylation suggest that other regulatory systems, beyond MRLC phosphorylation, are present in smooth muscle. We tested whether changes in caldesmon phosphorylation, heat shock protein 20 (HSP20) phosphorylation, or intracellular pH (pH(i)) could be responsible for relaxation without MRLC dephosphorylation. In unstimulated tissues, caldesmon was phosphorylated 1.02+/-0.10 mol P(i)/mol caldesmon (mean+/-1 S.E.M.), HSP20 was phosphorylated 0.005+/-0.003 mol P(i)/mol HSP20, and estimated pH(i) was 7.21+/-0.07. Histamine stimulation induced a contraction, an intracellular acidosis, but did not significantly change caldesmon or HSP20 phosphorylation. Addition of nitroglycerin induced a relaxation, significantly increased HSP20 phosphorylation to 0.18+/-0.02 mol P(i)/mol HSP20, did not significantly change caldesmon phosphorylation, and pH(i) returned to near unstimulated values. Increase in extracellular Mg(2+) to 10 mM induced a relaxation, but did not significantly change HSP20 or caldesmon phosphorylation. These data suggest that changes in caldesmon phosphorylation, HSP20 phosphorylation, or pH(i) cannot be the sole explanation for relaxation without MRLC dephosphorylation. However, it is possible that HSP20 phosphorylation may be involved in nitroglycerin-induced relaxation without MRLC dephosphorylation.
Collapse
Affiliation(s)
- C M Rembold
- Cardiovascular Division, Departments of Internal Medicine and Physiology, University of Virginia Health System, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
46
|
Pabelick CM, Warner DO, Perkins WJ, Jones KA. S-nitrosoglutathione-induced decrease in calcium sensitivity of airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2000; 278:L521-7. [PMID: 10710524 DOI: 10.1152/ajplung.2000.278.3.l521] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to examine whether the nitric oxide donor S-nitrosoglutathione (GSNO) relaxes canine tracheal smooth muscle (CTSM) strips by decreasing Ca(2+) sensitivity [i.e., the amount of force for a given intracellular Ca(2+) concentration ([Ca(2+)](i))]. We further investigated whether GSNO decreases Ca(2+) sensitivity by altering the relationship between regulatory myosin light chain (rMLC) phosphorylation and [Ca(2+)](i) and the relationship between force and rMLC phosphorylation. GSNO (100 microM) relaxed intact CTSM strips contracted with 45 mM KCl by decreasing Ca(2+) sensitivity in comparison to control strips without significantly decreasing [Ca(2+)](i). GSNO reduced the amount of rMLC phosphorylation for a given [Ca(2+)](i) but did not affect the relationship between isometric force and rMLC phosphorylation. These results show that in CTSM strips contracted with KCl, GSNO decreases Ca(2+) sensitivity by affecting the level of rMLC phosphorylation for a given [Ca(2+)](i), suggesting that myosin light chain kinase is inhibited or that smooth muscle protein phosphatases are activated by GSNO.
Collapse
Affiliation(s)
- C M Pabelick
- Department of Anesthesiology, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
47
|
Rokolya A, Singer HA. Inhibition of CaM kinase II activation and force maintenance by KN-93 in arterial smooth muscle. Am J Physiol Cell Physiol 2000; 278:C537-45. [PMID: 10712242 DOI: 10.1152/ajpcell.2000.278.3.c537] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca(+)/calmodulin-dependent protein kinase II (CaM kinase II) has been implicated in the regulation of smooth muscle contractility. The goals of this study were to determine: 1) to what extent CaM kinase II is activated by contractile stimuli in intact arterial smooth muscle, and 2) the effect of a CaM kinase II inhibitor (KN-93) on CaM kinase II activation, phosphorylation of myosin regulatory light chains (MLC(20)), and force. Both histamine (1 microM) and KCl depolarization activated CaM kinase II with a time course preceding maximal force development, and suprabasal CaM kinase II activation was sustained during tonic contractions. CaM kinase II activation was inhibited by KN-93 pretreatment (IC(50) approximately 1 microM). KN-93 inhibited histamine-induced tonic force maintenance, whereas early force development and MLC(20) phosphorylation responses during the entire time course were unaffected. Both force development and maintenance in response to KCl were inhibited by KN-93. Rapid increases in KCl-induced MLC(20) phosphorylation were also inhibited by KN-93, whereas steady-state MLC(20) phosphorylation responses were unaffected. In contrast, phorbol 12,13-dibutyrate (PDBu) did not activate CaM kinase II and PDBu-stimulated force development was unaffected by KN-93. Thus KN-93 appears to target a step(s) essential for force maintenance in response to physiological stimuli, suggesting a role for CaM kinase II in regulating tonic contractile responses in arterial smooth muscle. Pharmacological activation of protein kinase C bypasses the KN-93 sensitive step.
Collapse
Affiliation(s)
- A Rokolya
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208,
| | | |
Collapse
|
48
|
Tate Y, Kawasaki K, Ishibashi S, Ikeda U, Shimada K. Effects of N-acetylcysteine on nitroglycerin-induced relaxation and protein phosphorylation of porcine coronary arteries. Heart Vessels 2000; 13:263-8. [PMID: 10651168 DOI: 10.1007/bf03257230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We investigated the effects of the sulfhydryl-donor, N-acetylcysteine (NAC), on nitroglycerin (NTG)-induced relaxation of the vascular smooth muscle. Addition of histamine to isolated porcine coronary arteries induced an initial rapid contraction followed by a gradual decrease in tonic contraction. NTG applied to the coronary artery strips before histamine caused relaxation of the histamine-induced rapid (3 min) and tonic (48 min) contraction. The inhibition of the tonic contraction by NTG was less at 48 min than at 3 min. Application of NAC (NTG-NAC) enhanced the relaxing effects of NTG on the histamine-induced tonic contraction rather than the acute contraction. In phosphorylation studies, changes in the phosphorylation of an intermediate filament, desmin, were parallel with changes in contraction in NTG-treated and NTG-NAC samples at 48 min. These phosphorylation changes of desmin at 48 min, which might be responsible for tonic phase contraction, were more extensive than those of myosin light chain (MLC) phosphorylation at 3 min, which might be responsible for acute contraction. These results suggest that treatment with the sulfhydryl donor, NAC, inhibited the phosphorylation of desmin associated with the enhancement of NTG-induced relaxation, which might be related to the mechanisms of recovery from NTG tolerance by sulfhydryl groups.
Collapse
Affiliation(s)
- Y Tate
- Department of Cardiology, Jichi Medical School, Minamikawachi-machi, Tochigi, Japan
| | | | | | | | | |
Collapse
|
49
|
Cyclic nucleotides in smooth muscle. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1569-2590(00)08008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
50
|
McCarty MF. Endothelial membrane potential regulates production of both nitric oxide and superoxide--a fundamental determinant of vascular health. Med Hypotheses 1999; 53:277-89. [PMID: 10608262 DOI: 10.1054/mehy.1998.0758] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
There is recent evidence that the membrane potential of vascular endothelium regulates not only nitric oxide (NO) synthesis, but also superoxide generation, such that hyperpolarization stimulates NO production while suppressing that of superoxide. Given that NO works in a variety of ways to inhibit atherothrombotic disease and hypertension, whereas superoxide not only vetoes the benefits of NO but also disrupts endothelial metabolism and promotes LDL oxidation through its oxidant activity, it is thus evident that endothelium membrane potential is a crucial determinant of cardiovascular risk. Membrane polarization can be enhanced by measures which increase the synthesis or availability of the Na+-K+-ATPase, moderately enhance serum K+ and increase the conductance of membrane K+ channels. Such measures may include high-K+/low-Na+ natural diets, insulin sensitizing modalities, 'euthyroid replacement therapy' and ACE inhibitors. Epidemiological correlations of insulin resistance with hypertension and cardiovascular risk may reflect the low membrane potential of insulin-resistant vascular endothelium. Adjunctive measures for suppressing the generation or half-life of endothelial superoxide are suggested.
Collapse
|