1
|
Singh A, Singh J, Rattan S. Evidence for the presence and release of BDNF in the neuronal and non-neuronal structures of the internal anal sphincter. Neurogastroenterol Motil 2022; 34:e14099. [PMID: 33624396 PMCID: PMC9558559 DOI: 10.1111/nmo.14099] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/31/2020] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Data on the neuromodulatory effects of brain-derived neurotrophic factor (BDNF) in the gastrointestinal tract were recently reported, but there are still no data on the presence, distribution, and release of BDNF in the gastrointestinal tract, including the internal anal sphincter (IAS). METHODS We examined the presence and distribution of BDNF and its receptor TrkB in the different IAS structures (neuronal and non-neuronal) via immunohistochemical and immunocytochemical analyses. We also monitored the release of BDNF in an IAS muscle bath (consisting of smooth muscle cells [SMCs], myenteric plexus, and submucosal plexus) before and after different agonists, and electrical field stimulation in the absence and presence of neurotoxin tetrodotoxin. KEY RESULTS BDNF/TrkB was found to be present in all layers of the IAS, especially the smooth muscle, mucosa, myenteric plexus, and submucosal plexus. Detailed analyses revealed a significant colocalization between BDNF and TrkB in different structures, especially in the smooth muscle, the SMCs, and both plexuses. Data further showed higher levels of BDNF in the cytosol and that of TrkB toward the periphery of the SMCs. CONCLUSIONS & INFERENCES These studies showed that BDNF/TrkB was present not only in the enteric nervous system (ENS), but also in the SMCs. For the neuromodulatory effects, BDNF is released locally from the ENS ((myenteric (10.01 ± 0.23 pg/ml) and submucosal plexus (9.05 ± 0.51 pg/ml)) and the SMCs (18.63 ± 1.63 pg/ml). Collectively, these findings have pathophysiological and therapeutic implications regarding the role of BDNF/TrkB in the IAS-associated rectoanal motility disorders.
Collapse
Affiliation(s)
- Arjun Singh
- Department of Medicine, Division of Gastroenterology & Hepatology, Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut Street, Room #320 College, Philadelphia, Pennsylvania 19107, USA
| | - Jagmohan Singh
- Department of Pharmacology and Experimental Therapeutics, Jefferson Alumni Hall, Thomas Jefferson University, 1020 Locust Street, Philadelphia, Pennsylvania 19107, USA
| | - Satish Rattan
- Department of Medicine, Division of Gastroenterology & Hepatology, Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut Street, Room #320 College, Philadelphia, Pennsylvania 19107, USA
| |
Collapse
|
2
|
Kikuchi R, Ambe K, Kon H, Takada S, Watanabe H. Nitric Oxide Synthase (NOS) Isoform Expression after Peripheral Nerve Transection in Mice. THE BULLETIN OF TOKYO DENTAL COLLEGE 2019; 59:15-25. [PMID: 29563358 DOI: 10.2209/tdcpublication.2017-0007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Localization of the nitric oxide (NO)-producing enzyme, nitric oxide synthase (NOS), and its functions are currently being investigated in several tissues and organs. It has been suggested that NO is involved in nerve cell death and the development of neurodegenerative disease. The purpose of this study was to immunohistochemically investigate expression of NOS to clarify its function in the degeneration and regeneration of transected mouse sciatic nerve. Scattered neuronal NOS (nNOS)-positive Schwann cells observed on the central side of the stump on day 1 after transection showed an increase in number on day 7. None were observed at the stump on day 14, however. Expression of nNOS was observed in axons extending from the stump. The number of nNOS-positive axons increased on day 21. Inducible NOS was expressed in inflammatory cells at the stump on day 1. This positive reaction subsequently weakened by day 7, however. Endothelial NOS was expressed in blood vessels at the stump on day 7, but decreased thereafter. The results of the present study suggest that NO is involved in the proliferation and migration of Schwann cells, as well as in axon regeneration at an early stage following nerve transection.
Collapse
Affiliation(s)
- Ryuta Kikuchi
- Department of Oral and Maxillofacial Surgery, Ohu University, Graduate School of Dentistry
| | - Kimiharu Ambe
- Division of Oral Histology, Department of Morphological Biology, Ohu University School of Dentistry
| | - Hideki Kon
- Department of Oral and Maxillofacial Surgery, Ohu University School of Dentistry
| | - Satoshi Takada
- Department of Oral and Maxillofacial Surgery, Ohu University School of Dentistry
| | - Hiroki Watanabe
- Division of Oral Histology, Department of Morphological Biology, Ohu University School of Dentistry
| |
Collapse
|
3
|
Meng XM, Huang X, Lu HL, Zhang CM, Kim YC, Chen J, Xu WX. H 2 S-induced gastric fundus smooth muscle tension potentiation is mediated by the phosphoinositide 3-kinase/Akt/endothelial nitric oxide synthase pathway. Exp Physiol 2017; 102:779-790. [PMID: 28383821 DOI: 10.1113/ep086288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/03/2017] [Indexed: 01/07/2023]
Abstract
NEW FINDINGS What is the central question of this study? The present study investigated the relationship between H2 S and NO in regulation of gastric fundus tension. What is the main finding and its importance? Endogenous or exogenous H2 S and NO have opposite effects on fundus tension, and H2 S-induced gastric fundus tension enhancements are mediated by inhibition of NO generation through the phosphoinositide 3-kinase/Akt pathway. These results are very important in exploring the mechanism of physiological accommodation and accommodation disorder. Hydrogen sulphide (H2 S) is considered a new gasotransmitter, along with NO and CO. It was recently confirmed that H2 S and NO play important roles in the regulation of gastrointestinal smooth muscle tension. The present study was designed to elucidate the interactions between H2 S and NO with respect to the regulation of gastric fundus smooth muscle tension using Western blotting, physiological and electrochemical techniques. Real-time H2 S and NO generation was detected in gastric smooth muscle tissue. NaHS, an H2 S donor, enhanced fundus smooth muscle tension, whereas SNP, an NO donor, decreased fundus smooth muscle tension in a dose-dependent manner. NaHS-induced increases in fundus smooth muscle tension were suppressed by l-NAME, an NO synthase inhibitor. Aminooxyacetic acid (AOAA), a cystathionine β-synthase inhibitor, exerted inhibitory effects on fundus smooth muscle tension; these effects were also suppressed by l-NAME. Real-time NO generation was significantly potentiated by AOAA. Endothelial nitric oxide synthase (eNOS) phosphorylation at serine 1177 and Akt phosphorylation at serine 308 and threonine 473 were significantly inhibited by NaHS. LY294002, a phosphoinositide 3-kinase inhibitor, blocked these NaHS-mediated effects. However, eNOS phosphorylation at serine 1177 and Akt phosphorylation at serine 308 and threonine 473 were significantly potentiated by AOAA. Cystathionine β-synthase siRNA interference significantly increased eNOS phosphorylation at serine 1177 and Akt phosphorylation at serine 308 and threonine 473. Cystathionine β-synthase siRNA interference also increased total eNOS protein expression levels but did not significantly change total Akt kinase protein expression levels. These results suggest that H2 S-induced enhancement of gastric fundus tension is mediated by inhibition of NO generation through the phosphoinositide 3-kinase/Akt pathway.
Collapse
Affiliation(s)
- Xiang-Min Meng
- Department of Physiology, College of Basic Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, China
| | - Xu Huang
- Department of Physiology, College of Basic Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, China
| | - Hong-Li Lu
- Department of Physiology, College of Basic Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, China
| | - Chun-Mei Zhang
- Department of Physiology, College of Basic Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, China
| | - Young-Chul Kim
- Department of Physiology, Chungbuk National University College of Medicine, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Jie Chen
- Department of Pediatric Surgery, Xin Hua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, 1665 Kong Jiang Road, 200092, Shanghai, China
| | - Wen-Xie Xu
- Department of Physiology, College of Basic Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, China
| |
Collapse
|
4
|
Rego SL, Raghavan S, Zakhem E, Bitar KN. Enteric neural differentiation in innervated, physiologically functional, smooth muscle constructs is modulated by bone morphogenic protein 2 secreted by sphincteric smooth muscle cells. J Tissue Eng Regen Med 2015; 11:1251-1261. [PMID: 25926098 DOI: 10.1002/term.2027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/09/2015] [Accepted: 03/19/2015] [Indexed: 01/01/2023]
Abstract
The enteric nervous system (ENS) controls gastrointestinal (GI) functions, including motility and digestion, which are impaired in ENS disorders. Differentiation of enteric neurons is mediated by factors released by the gut mesenchyme, including smooth muscle cells (SMCs). SMC-derived factors involved in adult enteric neural progenitor cells (NPCs) differentiation remain elusive. Furthermore, physiologically relevant in vitro models to investigate the innervations of various regions of the gut, such as the pylorus and lower oesophageal sphincter (LES), are not available. Here, neural differentiation in bioengineered innervated circular constructs composed of SMCs isolated from the internal anal sphincter (IAS), pylorus, LES and colon of rabbits was investigated. Additionally, SMC-derived factors that induce neural differentiation were identified to optimize bioengineered construct innervations. Sphincteric and non-sphincteric bioengineered constructs aligned circumferentially and SMCs maintained contractile phenotypes. Sphincteric constructs generated spontaneous basal tones. Higher levels of excitatory and inhibitory motor neuron differentiation and secretion of bone morphogenic protein 2 (BMP2) were observed in bioengineered, innervated, sphincteric constructs compared to non-sphincteric constructs. The addition of BMP2 to non-sphincteric colonic SMC constructs increased nitrergic innervations, and inhibition of BMP2 with noggin in sphincteric constructs decreased functional relaxation. These studies provide: (a) the first bioengineered innervated pylorus and LES constructs; (b) physiologically relevant models to investigate SMCs and adult NPCs interactions; and (c) evidence of the region-specific effects of SMCs on neural differentiation mediated by BMP2. Furthermore, this study paves the way for the development of innervated bioengineered GI tissue constructs tailored to specific disorders and locations within the gut. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Stephen L Rego
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Shreya Raghavan
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Elie Zakhem
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Khalil N Bitar
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
5
|
Huang X, Meng XM, Liu DH, Wu YS, Guo X, Lu HL, Zhuang XY, Kim YC, Xu WX. Different regulatory effects of hydrogen sulfide and nitric oxide on gastric motility in mice. Eur J Pharmacol 2013; 720:276-85. [PMID: 24157974 DOI: 10.1016/j.ejphar.2013.10.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 10/02/2013] [Accepted: 10/14/2013] [Indexed: 01/18/2023]
Abstract
NO and H2S are gaseous signaling molecules that modulate smooth muscle motility. We aimed to identify expressions of enzymes that catalyze H2S and NO generation in mouse gastric smooth muscle, and determine relationships between endogenous H2S and NO in regulation of smooth muscle motility. Western blotting and immunocytochemistry methods were used to track expressions of neuronal nitric oxide synthase (nNOS), endothelial nitric oxide synthase (eNOS), cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) in gastric smooth muscles. Smooth muscle motility was recorded by isometric force transducers. cGMP production was measured by a specific radioimmunoassay. We found that CBS, CSE, eNOS, and nNOS were all expressed in mice gastric antral smooth muscle tissues, and in cultured gastric antral smooth muscle cells. AOAA significantly inhibited smooth muscle contractions in the gastric antrum, which was significantly recovered by NaHS, while PAG had no significant effect. l-NAME enhanced contractions. NaHS at low concentrations increased basal tension but decreased it at high concentrations. SNP significantly inhibited the contractions, which could be recovered by NaHS both in the absence and presence of CuSO4. ODQ did not block NaHS-induced excitatory effect, while IBMX partially blocked this effect. cGMP production in smooth muscle was significantly increased by SNP but was not affected by NaHS. All these results suggest that endogenous H2S and NO appear to play opposite roles in regulating gastric motility and their effects may be via separate signal transduction pathways. Intracellular H2S/NO levels may be maintained in a state of balance to warrant normal smooth muscle motility.
Collapse
Affiliation(s)
- Xu Huang
- Department of Physiology, Shanghai Jiao Tong University School of Medicine, 800 Dongchuan Road, Minhang, 328 Wenxuan Medical Building, Shanghai 200240, China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Internal anal sphincter parasympathetic-nitrergic and sympathetic-adrenergic innervation: a 3-dimensional morphological and functional analysis. Dis Colon Rectum 2012; 55:473-81. [PMID: 22426273 DOI: 10.1097/dcr.0b013e318245190e] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Little detailed information is available concerning morphological and functional autonomic nerve supply to the internal anal sphincter. However, denervation of the sphincter potentially affects anal function after rectal surgery for cancer. OBJECTIVE The aim of this study was to identify the location and type (nitrergic, adrenergic, and cholinergic) of nerve fibers in the internal anal sphincter and to provide a 3-dimensional representation of their structural relationship in the human fetus. MATERIALS AND METHODS serial transverse sections were obtained from 14 human fetuses (7 male, 7 female, 15-31 weeks of gestation) and were studied histologically and immunohistochemically; digitized serial sections were used to construct a 3-dimensional representation of the pelvis. MAIN OUTCOMES MEASURES The location and type of internal anal sphincter nerves were assessed qualitatively. RESULTS Posteroinferior fibers originating from the inferior hypogastric plexus posteroinferior angle projected to the posterolateral and posterior rectal wall and internal anal sphincter, forming the inferior rectal plexus. The inferior rectal plexus contained vesicular acetylcholine transporter-positive (cholinergic), tyrosine hydroxylase-positive (adrenergic/sympathetic), and neural nitric oxide synthase-positive (nitrergic) fibers. The intrasphincteric vesicular acetylcholine transporter-positive fibers included both neural nitric oxide synthase-negative fibers and neural nitric oxide synthase-positive fibers (nitrergic-parasympathetic). LIMITATIONS The study focused on topographic and functional anatomy, so that quantitative data were not obtained. A small number of fetal specimens were available. CONCLUSIONS We report the precise location and distribution of the autonomic neural supply to the internal anal sphincter. This description contributes to the understanding of neurogenic postoperative sphincteric dysfunction. Three-dimensional cartography of pelvic-perineal neurotransmitters provides an anatomical and physiological basis for the selection and development of pharmacological agents to be used in the treatment of primary or postoperative continence and evacuation disorders.
Collapse
|
7
|
Patel BA, Galligan JJ, Swain GM, Bian X. Electrochemical monitoring of nitric oxide released by myenteric neurons of the guinea pig ileum. Neurogastroenterol Motil 2008; 20:1243-50. [PMID: 18694441 PMCID: PMC2585606 DOI: 10.1111/j.1365-2982.2008.01177.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nitric oxide (NO) released by myenteric neurons in isolated segments of guinea pig ileum was monitored in vitro using continuous amperometry. NO was detected as an oxidation current recorded with a boron-doped diamond microelectrode held at 1 V vs a Ag|AgCl reference electrode. This potential was sufficient to oxidize NO. Longitudinal muscle-myenteric plexus (LMMP) and circular muscle strip preparations were used. In the LMMP preparation, NO release was evoked by superfusion of 1 mumol L(-1) nicotine, which activates nicotinic acetylcholine receptors expressed by myenteric neurons and myenteric nerve endings. The oxidation current was ascribed to NO based on the following observations: (i) no response was detected at less positive potentials (0.75 V) at which only catecholamines and biogenic amines are oxidized, (ii) the current was abolished in the presence of the nitric oxide synthase antagonist, N-nitro-l-arginine (l-NNA) and (iii) oxidation currents were attenuated by addition of the NO scavenger, myoglobin, to the superfusing solution. In the LMMP preparation, stimulated release produced a maximum current that corresponded nominally to 46 nmol L(-1) of NO. The oxidation currents decreased to 10 and 2 nmol L(-1), respectively, when the tissue was perfused with tetrodotoxin and l-NNA. Oxidation currents recorded from circular muscle strips (stimulated using nicotine) were threefold larger than those recorded from the LMMP. This study shows that NO release can be detected from various in vitro preparations of the guinea pig ileum using real-time electroanalytical techniques.
Collapse
Affiliation(s)
- Bhavik Anil Patel
- Department of Bioengineering, Imperial College London, London, SW7 2AZ,Department of Chemistry, Michigan State University, East Lansing, MI 48824
| | - James J. Galligan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824,Neuroscience Program, Michigan State University, East Lansing, MI 48824
| | - Greg M. Swain
- Department of Chemistry, Michigan State University, East Lansing, MI 48824,Neuroscience Program, Michigan State University, East Lansing, MI 48824
| | - Xiaochun Bian
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824,Neuroscience Program, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
8
|
Milone M, DiBaise JK. A pilot study of the effects of sildenafil on stool characteristics, colon transit, anal sphincter function, and rectal sensation in healthy men. Dig Dis Sci 2005; 50:1005-11. [PMID: 15986845 DOI: 10.1007/s10620-005-2695-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Nitric oxide is an important mediator of gut smooth muscle relaxation and visceral sensation. Sildenafil results in stimulation of the nitric oxide-cyclic GMP pathway. We sought to determine the effects of daily sildenafil administration on colorectal function. Over a 4-week period, sildenafil was administered during weeks 2 and 3. Stool frequency and consistency were assessed daily. Anorectal manometry, rectal sensation, and colon transit testing were performed at the end of weeks 1 and 3. Ten healthy men were studied. No significant differences in segmental or total colon transit time were noted; however, significant changes in stool frequency and trends toward decreased stool consistency were noted during sildenafil use. A trend toward reduced resting anal sphincter pressure was seen after sildenafil. Rectal volumes to first sensation and desire to defecate were significantly increased after sildenafil on test day 2 only. Additionally, volumes to desire to defecate and maximal tolerable volume were significantly increased before sildenafil on test day 2 compared to before sildenafil on test day 1. We conclude that daily administration of sildenafil is well tolerated and results in alterations in colorectal function.
Collapse
Affiliation(s)
- Mark Milone
- Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | |
Collapse
|
9
|
Abstract
Basal tone in the internal anal sphincter (IAS) is primarily myogenic. Neurohumoral substances like angiotensin II may partially provide external signal for the basal tone in the IAS. The sphincteric relaxation on the contrary is neurogenic by activation of non-adrenergic non-cholinergic (NANC) nerves that release nitric oxide (NO), vasoactive intestinal polypeptide (VIP) and perhaps carbon monoxide. Because of the presence of spontaneous tone, the IAS offers an excellent model to investigate the nature of the inhibitory neurotransmission for NANC relaxation. Work from different laboratories in different species concludes that NO is the major contributor in the NANC relaxation. This may invoke the role of other inhibitory neurotransmitters such as VIP, working partly via NO. An understanding of the basic regulation of basal tone in the IAS and nature of inhibitory neurotransmission are critical in the pathophysiology and therapeutic potentials in the anorectal motility disorders.
Collapse
Affiliation(s)
- S Rattan
- Division of Gastroenterology & Hepatology, Department of Medicine, Jefferson Medical College of Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Daniels I, Cavill D, Murray IA, Long RG. Elevated expression of iNOS mRNA and protein in coeliac disease. Clin Chim Acta 2005; 356:134-42. [PMID: 15936309 DOI: 10.1016/j.cccn.2005.01.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 01/11/2005] [Accepted: 01/11/2005] [Indexed: 11/21/2022]
Abstract
BACKGROUND The role of nitric oxide synthase (NOS) in the pathophysiology of coeliac disease (CD) was investigated. METHODS We examined mRNA (reverse transcription multiplex polymerase chain reaction) and protein expression (Western blotting) of i,e and nNOS in enterocytes isolated from the duodenum of patients with untreated CD (n=22) and iron deficiency anaemia (IDA, n=22). Expression of IL1beta and TNFalpha, two pivotal "NOS-controlling" cytokines, was also studied. RESULTS Enterocytes from both patient groups were negative for eNOS and TNF(alpha) message but positive for n and iNOS. nNOS gene expression was not statistically different between groups (158.38+/-29.11% vs. 114.95+/-24.17%, IDA vs. CD, p=0.07, Mann-Whitney U). iNOS expression was higher in patients with CD when compared to patients with IDA (96.95+/-17.82% vs. 48.76+/-8.07%, p<0.006). Low levels of IL1beta mRNA (15.66+/-3.70%) were detected in nine samples-all of these samples were isolated from patients with CD representing a positive result in 40% of coeliac patients. In support of these observations, patients with CD expressed more iNOS protein than those with IDA (159.7+/-14.9% vs. 69.8+/-20%, p<0.05). CONCLUSION These results suggest that iNOS could be an important mediator in coeliac disease. Expression of this regulatory protein may be under the control of IL1beta.
Collapse
Affiliation(s)
- Ian Daniels
- David Evans Medical Research Centre, City Hospital, Nottingham, NG5 1PB, UK.
| | | | | | | |
Collapse
|
11
|
Rattan S, Al Haj R, De Godoy MAF. Mechanism of internal anal sphincter relaxation by CORM-1, authentic CO, and NANC nerve stimulation. Am J Physiol Gastrointest Liver Physiol 2004; 287:G605-11. [PMID: 15331353 DOI: 10.1152/ajpgi.00070.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The present studies compared the effects of CO-releasing molecule (CORM-1), authentic CO, and nonadrenergic noncholinergic (NANC) nerve stimulation in the internal anal sphincter (IAS). Functional in vitro experiments and Western blot studies were conducted in rat IAS smooth muscle. We examined the effects of CORM-1 (50-600 microM) and authentic CO (5-100 microM) and NANC nerve stimulation by electrical field stimulation (EFS; 0.5-20 Hz, 0.5-ms pulse, 12 V, 4-s train). The experiments were repeated after preincubation of the tissues with the neurotoxin TTX, the guanylate cyclase inhibitor 1H-(1,2,4)oxadiazolo-(4,3-a)quinoxalin-1-one (ODQ), the selective heme oxygenase (HO) inhibitor tin protoporphyrin IX (SnPP-IX), the nitric oxide synthase inhibitor N(omega)-nitro-L-arginine (L-NNA), and SnPP-IX + L-NNA. We also investigated the effects of the HO substrate hematin (100 microM). CORM-1, as well as CO, produced concentration-dependent IAS relaxation, whereas hematin had no effect. TTX abolished and L-NNA significantly blocked IAS relaxation by EFS without any effect on CORM-1 and CO. ODQ blocked IAS relaxation by CORM-1, authentic CO, and EFS. SnPP-IX had no significant effect on IAS relaxation by CORM-1, CO, or EFS. The presence of neuronal nitric oxide synthase, HO-1, and HO-2 in IAS smooth muscle was confirmed by Western blot studies. CORM-1 and CO, as well as NANC nerve stimulation, produced IAS relaxation via guanylate cyclase/cGMP-dependent protein kinase activation. The advent of CORM-1 with potent effects in the IAS has significant implications in anorectal motility disorders with regard to pathophysiology and therapeutic potentials.
Collapse
Affiliation(s)
- Satish Rattan
- Division of Gastroenterology and Hepatology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | |
Collapse
|
12
|
Abstract
Nitric oxide is an intracellular and intercellular messenger with important functions in a number of physiologic and pathobiologic processes within gastroenterology and hepatology, including gastrointestinal tract motility, mucosal function, inflammatory responses, gastrointestinal malignancy, and blood flow regulation. Since the broad review of this topic in Gastroenterology more than 10 years ago, a number of advances have been made in the area of NO biology and its relevance to the gastrointestinal system. The aim of this review is to focus on our expanded understanding of the role NO plays in human gastrointestinal and hepatic physiology and disease processes by drawing on data from relevant in vitro and animal models as well as observational human studies.
Collapse
Affiliation(s)
- Vijay Shah
- GI Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA.
| | | | | | | |
Collapse
|
13
|
Van Geldre LA, Fraeyman NH, Peeters TL, Timmermans JP, Lefebvre RA. Further characterisation of particulate neuronal nitric oxide synthase in rat small intestine. Auton Neurosci 2004; 110:8-18. [PMID: 14766320 DOI: 10.1016/j.autneu.2003.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2003] [Revised: 05/19/2003] [Accepted: 05/25/2003] [Indexed: 11/23/2022]
Abstract
Neuronal NO-synthase (nNOS) was investigated in rat longitudinal muscle/myenteric plexus (LM/MP) tissue at the cellular and subcellular level. Using preparations and double immune staining and light and electron microscopy, we concluded that, in these preparations, nNOS is only present in neuronal cells. However, in spite of numerous attempts to morphologically identify the NOS-containing subcellular structure, no firm conclusions were possible. Consequently, the problem was approached by biochemical methods including gradient centrifugation followed by analysis of the fractions. Using a protocol involving gentle homogenisation of the tissue, we found that about 10% of the nNOS immune reactivity was particle-bound confirming previous results (Biochem. Pharmacol. 60 (2000) 145). However, applying a different protocol including strong homogenisation, we now demonstrated that about 50% of the immune reactive nNOS was sedimentable. The results suggested that particulate nNOS is associated with one single subcellular structure, which is different from the plasma membrane, rough and smooth endoplasmic reticulum, mitochondria and lysosomes. The equilibrium sedimentation characteristics of the nNOS containing particles corresponded partly to those containing vasoactive intestinal polypeptide (VIP) or synaptobrevin. Application of non-equilibrium centrifugation conditions, however, demonstrated that almost no co-localisation occurred. We conclude that, in the LM/MP tissue, nNOS is about 50% particle-bound in a subcellular structure, which is different from the VIP-containing particle and from synaptobrevin-containing exocytotic particles.
Collapse
Affiliation(s)
- Lieve A Van Geldre
- Heymans Institute of Pharmacology, Ghent University, De Pintelaan 185, B-9000 Ghent, Belgium
| | | | | | | | | |
Collapse
|
14
|
Rattan S, Puri RN, Fan YP. Involvement of rho and rho-associated kinase in sphincteric smooth muscle contraction by angiotensin II. Exp Biol Med (Maywood) 2003; 228:972-81. [PMID: 12968070 DOI: 10.1177/153537020322800814] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The tonic smooth muscles of lower esophageal sphincter (LES) and internal anal sphincter (IAS) are subject to modulation by the neurohumoral agents. We report that angiotensin (Ang) II-induced contraction of rat IAS and LES smooth muscle cells (SMC) was inhibited by Clostridium botulinum C3 exozyme, HA 1077 and Y 27632, suggesting a role for Rho kinase and a Rho-associated kinase (ROK). Ang II-induced contraction of the SMC was also attenuated by genistein, antibodies to the pp60(c-src), p(190) RhoGTPase-activating protein (p190 RhoGAP), carboxyl terminus of Galpha13, carboxyl terminus peptide, and ADP ribosylation factor (ARF) antibody. Ang II-induced increase in p(190) RhoGAP tyrosine phosphorylation was attenuated by genistein. Furthermore, Ang II-induced increase in smooth muscle tone and phosphorylation of myosin light chain (MLC; 20 kDa; MLC20-P) were attenuated by Y 27632 and genistein. The results suggest an important role for Galpha13 and pp60(c-src) in the intracellular events responsible for the activation of RhoA/ROK in Ang II-induced contraction of LES and IAS SMC.
Collapse
Affiliation(s)
- Satish Rattan
- Department of Medicine, Division of Gastroenterology and Hepatology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | |
Collapse
|
15
|
King BN, Haque SM, Stoner MC, Ellis ZM, Kellum JM. Inhibition of neural nitric oxide synthase attenuates the chloride secretory response to stroking in human jejunum. Surgery 2003; 134:255-9. [PMID: 12947326 DOI: 10.1067/msy.2003.230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Stroking of human jejunal mucosa induces serotonin release and a rise in short-circuit current (DeltaI(sc)). Nitric oxide is known to function as a nonadrenergic, noncholinergic neurotransmitter in response to neural serotonin receptor activation in the rat. We hypothesize that neural nitrergic mechanisms mediate the chloride secretory response to mucosal stroking in human jejunum. METHODS Segments of normal proximal jejunum were obtained from patients having gastric bypass surgery for obesity. Muscle-stripped segments of jejunum were mounted in Ussing chambers under short-circuit conditions. The neural nitric oxide synthase inhibitor, l-thiocitrulline, was added to experimental tissues. Mucosal stroking of control and experimental segments was then performed. RESULTS Pretreatment with l-thiocitrulline attenuated the short circuit rise seen after stroking in the experimental group when compared with the control (5.4 +/- 1.5 microA/cm(2) vs 8.0 +/- 1.6 microA/cm(2); P <.05, Student t test, paired data, n = 11), but did not affect baseline I(sc) before stroking. Serotonin released by stroking was not different in experimental versus control tissue. CONCLUSIONS The significantly reduced DeltaI(sc) in the group pretreated with the neural nitric oxide synthase inhibitor suggests that nitric oxide liberated from enteric neurons participates in the chloride secretory response to stroking in human jejunum in vitro.
Collapse
Affiliation(s)
- Brian N King
- Department of Surgery, Medical College of Virginia/Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | |
Collapse
|
16
|
Puri RN, Fan YP, Rattan S. Role of pp60(c-src) and p(44/42) MAPK in ANG II-induced contraction of rat tonic gastrointestinal smooth muscles. Am J Physiol Gastrointest Liver Physiol 2002; 283:G390-9. [PMID: 12121887 DOI: 10.1152/ajpgi.00025.2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We examined the role of mitogen-activated protein kinase (p(44/42) MAPK) in ANG II-induced contraction of lower esophageal sphincter (LES) and internal anal sphincter (IAS) smooth muscles. Studies were performed in the isolated smooth muscles and cells (SMC). ANG II-induced changes in the levels of phosphorylation of different signal transduction and effector proteins were determined before and after selective inhibitors. ANG II-induced contraction of the rat LES and IAS SMC was inhibited by genistein, PD-98059 [a specific inhibitor of MAPK kinases (MEK 1/2)], herbimycin A (a pp60(c-src) inhibitor), and antibodies to pp60(c-src) and p(120) ras GTPase-activating protein (p(120) rasGAP). ANG II-induced contraction of the tonic smooth muscles was accompanied by an increase in tyrosine phosphorylation of p(120) rasGAP. These were attenuated by genistein but not by PD-98059. ANG II-induced increase in phosphorylations of p(44/42) MAPKs and caldesmon was attenuated by both genistein and PD-98059. We conclude that pp60(c-src) and p(44/42) MAPKs play an important role in ANG II-induced contraction of LES and IAS smooth muscles.
Collapse
Affiliation(s)
- Rajinder N Puri
- Department of Medicine, Division of Gastroenterology and Hepatology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
17
|
Saur D, Neuhuber WL, Gengenbach B, Huber A, Schusdziarra V, Allescher HD. Site-specific gene expression of nNOS variants in distinct functional regions of rat gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 2002; 282:G349-58. [PMID: 11804857 DOI: 10.1152/ajpgi.00226.2001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
5' mRNA variants of neuronal nitric oxide synthase (nNOS) are generated either by alternative promoter usage resulting in different mRNAs that encode for the same protein (nNOSalpha) or alternative splicing encoding NH(2)-terminally truncated proteins (nNOSbeta/gamma) that lack the PDZ/GLGF domain for protein-protein interaction of nNOSalpha. We studied the expression of 5' nNOS mRNA forms and nNOS-interacting proteins (postsynaptic density protein-95; PSD-95) in the rat gastrointestinal tract and analyzed the more distinct localization of nNOS protein variants in the duodenum by immunohistochemistry with COOH- and NH(2)-terminal nNOS antibodies. 5' nNOS mRNA variants showed a site-specific expression along the gastrointestinal tract with presence of all forms (nNOSalpha-a, -b, -c; nNOSbeta) in the muscle layer of esophagus, stomach, duodenum, longitudinal muscle layer of jejunum/ileum, proximal colon, and rectum. In contrast, a lack of nNOSalpha-a and nNOSbeta mRNA was observed in pylorus, circular muscle layer of jejunum/ileum, and cecum. Expression of nNOSalpha and nNOSbeta cDNAs revealed proteins of ~155 kDa and 135/125 kDa, respectively. Immunohistochemistry showed a differential distribution of COOH- and NH(2)-terminal nNOS immunoreactivity in distinct layers of rat duodenum, suggesting a cell-specific expression and distinct compartmentalization of nNOS proteins. Observed distribution of 5' nNOS mRNA variants and proteins argue for a complex control of nNOS expression by usage of separate promoters, cell- and site-specific splicing mechanisms, and translational initiation. These mechanisms could be involved in gastrointestinal motor diseases and may explain the phenotype of nNOSalpha knockout mice with gastric stasis and pyloric stenosis, due to a total loss of nNOS in the pyloric sphincter region.
Collapse
Affiliation(s)
- Dieter Saur
- Department of Internal Medicine II, Technical University of Munich, Ismaningerstrasse 22, 81675 Munich, Germany.
| | | | | | | | | | | |
Collapse
|
18
|
Dick JMC, Van Molle W, Brouckaert P, Lefebvre RA. Relaxation by vasoactive intestinal polypeptide in the gastric fundus of nitric oxide synthase-deficient mice. J Physiol 2002; 538:133-43. [PMID: 11773322 PMCID: PMC2290014 DOI: 10.1113/jphysiol.2001.012906] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In many gastrointestinal tissues nitric oxide (NO) and vasoactive intestinal polypeptide (VIP) both play a role as inhibitory non-adrenergic non-cholinergic neurotransmitters. As the mode of interaction between NO and VIP remains controversial, the aim of this study was to investigate the interplay between NO and VIP in the mouse gastric fundus and to evaluate the nitric oxide synthase (NOS) isoform involved in VIP-induced relaxation by using inducible NOS (iNOS), endothelial NOS (eNOS) and neuronal NOS (nNOS) knockout mice. The influence of NOS inhibitors on the relaxant effect of VIP was determined in isolated smooth muscle cells and smooth muscle strips of wild-type and knockout mice. In isolated smooth muscle cells from wild-type, eNOS knockout and nNOS knockout mice, the relaxation induced by VIP (10(-9) M) was inhibited by approximately 70-95 % by both the non-selective NOS inhibitor N(G)-nitro-L-arginine (L-NA; 10(-4) M) and the selective inducible NOS inhibitor N-(3-(aminomethyl)-benzyl)acetamidine (1400W; 10(-6) M). In cells isolated from iNOS knockout mice, VIP still induced full relaxation but it was not influenced by L-NA or 1400W. In smooth muscle strips from wild-type and knockout mice, the concentration-dependent relaxation by VIP (10(-9) to 3 x 10(-7) M) was not influenced by L-NA or 1400W. These results suggest that the experimental method determines the influence of NOS inhibitors on the relaxant effect of VIP. iNOS, probably induced by the isolation procedure, might be involved in the relaxant effect of VIP in isolated smooth muscle cells but not in classic smooth muscle strips.
Collapse
Affiliation(s)
- Joëlle M C Dick
- Heymans Institute of Pharmacology, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, B-9000 Ghent, Belgium
| | | | | | | |
Collapse
|
19
|
Premaratne S, Xue C, McCarty JM, Zaki M, McCuen RW, Johns RA, Schepp W, Neu B, Lippman R, Melone PD, Schubert ML. Neuronal nitric oxide synthase: expression in rat parietal cells. Am J Physiol Gastrointest Liver Physiol 2001; 280:G308-13. [PMID: 11208555 DOI: 10.1152/ajpgi.2001.280.2.g308] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nitric oxide synthases (NOS) are enzymes that catalyze the generation of nitric oxide (NO) from L-arginine and require nicotinamide adenine dinucleotide phosphate (NADPH) as a cofactor. At least three isoforms of NOS have been identified: neuronal NOS (nNOS or NOS I), inducible NOS (iNOS or NOS II), and endothelial NOS (eNOS or NOS II). Recent studies implicate NO in the regulation of gastric acid secretion. The aim of the present study was to localize the cellular distribution and characterize the isoform of NOS present in oxyntic mucosa. Oxyntic mucosal segments from rat stomach were stained by the NADPH-diaphorase reaction and with isoform-specific NOS antibodies. The expression of NOS in isolated, highly enriched (>98%) rat parietal cells was examined by immunohistochemistry, Western blot analysis, and RT-PCR. In oxyntic mucosa, histochemical staining revealed NADPH-diaphorase and nNOS immunoreactivity in cells in the midportion of the glands, which were identified as parietal cells in hematoxylin and eosin-stained step sections. In isolated parietal cells, decisive evidence for nNOS expression was obtained by specific immunohistochemistry, Western blotting, and RT-PCR. Cloning and sequence analysis of the PCR product confirmed it to be nNOS (100% identity). Expression of nNOS in parietal cells suggests that endogenous NO, acting as an intracellular signaling molecule, may participate in the regulation of gastric acid secretion.
Collapse
Affiliation(s)
- S Premaratne
- Department of Medicine, Medical College of Virginia-Virginia Commonwealth University, Richmond, Virginia 23249, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Dick JM, Van Geldre LA, Timmermans JP, Lefebvre RA. Investigation of the interaction between nitric oxide and vasoactive intestinal polypeptide in the guinea-pig gastric fundus. Br J Pharmacol 2000; 129:751-63. [PMID: 10683200 PMCID: PMC1571883 DOI: 10.1038/sj.bjp.0703089] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The interaction between nitric oxide (NO) and vasoactive intestinal polypeptide (VIP) was investigated in isolated circular smooth muscle cells and strips of the guinea-pig gastric fundus. VIP induced a concentration-dependent inhibition of carbachol-induced contraction in smooth muscle cells with a maximum at 10(-6) M. The relaxation by 10(-6) M VIP was inhibited for 79.1+/-5.8% (mean+/-s.e. mean) by the NO-synthase (NOS) inhibitor L-N(G)-nitroarginine (L-NOARG; 10(-4) M) in a L-arginine reversible way. Also the inducible NOS (iNOS) selective inhibitor N-(3-(acetaminomethyl)-benzyl)acetamide (1400 W; 10(-6) M) inhibited the VIP-induced relaxation, but its inhibitory effect was not reversed by L-arginine. When cells were incubated with the guanylyl cyclase inhibitor 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one (ODQ, 10(-6) M), the protein kinase A-inhibitor (R)-p-cyclic adenosine-3', 5'-monophosphothioate ((R)-p-cAMPS, 10(-6) M) and the glucocorticoid dexamethasone (10(-5) M), the relaxant effect of VIP was decreased by respectively 80.9+/-7.6, 77.0+/-11.6 and 87.1+/-4.5%. In circular smooth muscle strips of the guinea-pig gastric fundus, the VIP (10(-9) - 10(-7) M)-induced relaxations were not significantly influenced by 10(-4) M L-NOARG, 10(-6) M 1400 W, 10(-6) M ODQ and 10(-5) M dexamethasone. These results suggest that iNOS, possibly induced by the procedure to prepare the smooth muscle cells, is involved in the relaxant effect of VIP in isolated smooth muscle cells but not in smooth muscle strips of the guinea-pig gastric fundus. This study illustrates the importance of the experimental method when studying the influence of NOS inhibitors on the relaxation induced by VIP in gastrointestinal smooth muscle preparations.
Collapse
Affiliation(s)
- J M Dick
- Heymans Institute of Pharmacology, University of Gent, De Pintelaan 185, B-9000 Gent, Belgium
| | | | | | | |
Collapse
|
21
|
Bartlett SR, Bennett PR, Campa JS, Dennes WJ, Slater DM, Mann GE, Poston L, Poston R. Expression of nitric oxide synthase isoforms in pregnant human myometrium. J Physiol 1999; 521 Pt 3:705-16. [PMID: 10601500 PMCID: PMC2269695 DOI: 10.1111/j.1469-7793.1999.00705.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
1. Endogenous nitric oxide has been proposed to play a role in the control of myometrial contractility in pregnancy. In this study, the expression, localisation and regulation of nitric oxide synthase (NOS) isoforms have been examined in human pregnant myometrium and cultured human myometrial smooth muscle cells, by immunoblotting, immunohistochemistry and reverse transcription-polymerase chain reaction. 2. Immunoblotting of extracts from freshly isolated myometrial tissue, affinity-enriched for NOS proteins by precipitation with ADP-sepharose, revealed expression of endothelial NOS (eNOS or NOS3) in tissues from preterm, term non-labour and active labour at term. Inducible NOS (iNOS or NOS2) and neuronal NOS (nNOS or NOS1) proteins were not detected at any stage of pregnancy. 3. Immunohistochemical detection showed that expression of eNOS protein was restricted to the endothelium of the myometrial vasculature, with no staining detected in myometrial smooth muscle cells. 4. Messenger RNA for all three NOS isoforms was detected, although iNOS and nNOS mRNAs were detectable only with high cycle number, implying a low copy number. 5. NOS isoforms were not detectable in human myometrial smooth muscle cells cultured from term non-labour pregnancies. Cytokine stimulation of cultured myometrial cells did not induce iNOS expression or nitrite accumulation in the culture medium, although both iNOS protein and nitrite release were detected in the human pulmonary epithelial cell line A549. 6. Levels of eNOS protein and of NOS mRNA expression were not correlated with gestational stage, suggesting that endogenously produced NO is not likely to be a modulator of myometrial tone during human pregnancy.
Collapse
Affiliation(s)
- S R Bartlett
- Centre for Cardiovascular Biology and Medicine, GKT Schools of Biomedical Sciences and Medicine, King's College London, UK
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kim CD, Goyal RK, Mashimo H. Neuronal NOS provides nitrergic inhibitory neurotransmitter in mouse lower esophageal sphincter. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:G280-4. [PMID: 10444441 DOI: 10.1152/ajpgi.1999.277.2.g280] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To identify the enzymatic source of nitric oxide (NO) in the lower esophageal sphincter (LES), studies were performed in wild-type and genetically engineered endothelial nitric oxide synthase [eNOS(-)] and neuronal NOS [nNOS(-)] mice. Under nonadrenergic noncholinergic (NANC) conditions, LES ring preparations developed spontaneous tone in all animals. In the wild-type mice, electrical field stimulation produced frequency-dependent intrastimulus relaxation and a poststimulus rebound contraction. NOS inhibitor N(omega)-nitro-L-arginine methyl ester (100 microM) abolished intrastimulus relaxation and rebound contraction. In nNOS(-) mice, both the intrastimulus relaxation and rebound contraction were absent. However, in eNOS(-) mice there was no significant difference in either the relaxation or rebound contraction from the wild-type animal. Both nNOS(-) and eNOS(-) tissues showed concentration-dependent relaxation to NO donor diethylenetriamine-NO and there was no difference in the sensitivity to the NO donor in nNOS(-), eNOS(-), or wild-type animals. These results indicate that in mouse LES, nNOS rather than eNOS is the enzymatic source of the NO that mediates NANC relaxation and rebound contraction.
Collapse
Affiliation(s)
- C D Kim
- Center for Swallowing and Motility Disorders, Brockton/West Roxbury Veterans Affairs Medical Center, Boston, Massachusetts 02132, USA
| | | | | |
Collapse
|
23
|
Ahmed B, Van Den Oord JJ. Expression of the neuronal isoform of nitric oxide synthase (nNOS) and its inhibitor, protein inhibitor of nNOS, in pigment cell lesions of the skin. Br J Dermatol 1999; 141:12-9. [PMID: 10417510 DOI: 10.1046/j.1365-2133.1999.02915.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nitric oxide (NO) is involved in many physiological processes. In cancer, low levels of NO are thought to enhance tumour progression and metastasis. NO is generated from arginine by NO synthase (NOS); the Ca2+-dependent neuronal isoform or nNOS (expressed by neurones and inhibited by the protein inhibitor of nNOS, PIN), is also expressed by cultured normal melanocytes and by all malignant melanoma (MM) cell lines. We studied the expression of nNOS and PIN in paraffin sections of 177 and 58 pigment cell lesions, respectively, using immunohistochemistry; the activity of the necessary cofactor NADPH was studied in 26 frozen cases. Normal melanocytes in situ lacked nNOS and PIN expression, but were NADPH +. Almost half of common acquired benign naevi expressed nNOS; however, halo naevi and congenital naevi expressed nNOS very frequently. Dysplastic naevi and MM showed variable nNOS immunoreactivity in 72% and 83% of cases, respectively. Early (Clark I and Clark II) MM displayed nNOS staining most frequently, and all MM with an invasive radial growth phase expressed nNOS in the papillary dermis. In contrast, only 67% of metastatic MM were nNOS +. PIN was coexpressed with nNOS in 40 of 58 lesions. NADPH activity was present in all nNOS + naevi, but in two malignant cases, NADPH activity was not accompanied by nNOS expression. We conclude that nNOS expression is induced de novo in benign and malignant pigment cell lesions which have all the requirements (NADPH, PIN) necessary for the production and modulation of NO. We postulate that the frequent expression of nNOS in the junctional part of dysplastic naevi may be responsible for their particular histological features. NO generated by the neoplastic dermal cells in the invasive radial growth phase may contribute to the increased number of blood vessels in the papillary dermis.
Collapse
Affiliation(s)
- B Ahmed
- Department of Pathology, Laboratory of Histochemistry and Cytochemistry, University Hospital St Rafael, Katholieke Universiteit Leuven, Minderbroedersstraat 12, B-3000 Leuven, Belgium
| | | |
Collapse
|
24
|
Fan YP, Chakder S, Rattan S. Mechanism of action of cholera toxin on the opossum internal anal sphincter smooth muscle. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:G152-60. [PMID: 10409162 DOI: 10.1152/ajpgi.1999.277.1.g152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Cholera toxin (CTX), an activator of G(s) protein, is an important pharmacological tool in G protein research. The effect and the mechanism of action of CTX in the gastrointestinal smooth muscle, including the internal anal sphincter (IAS), are not known. The present investigation was carried out to examine the effects of CTX on the signal transduction associated with the adenylate cyclase (AC) pathway on the basal tone of the IAS smooth muscle. CTX caused a prompt and dose-dependent fall in the basal tone of the IAS that was not affected by the neurotoxins TTX and omega-conotoxin or the nitric oxide synthase inhibitor N(G)-nitro-L-arginine. The cyclooxygenase inhibitor indomethacin, cAMP-dependent protein kinase inhibitor Rp-8-bromoadenosine 3',5' cyclic monophosphorothioate inhibited CTX-induced IAS smooth muscle relaxation. Furthermore, CTX caused a concentration-dependent relaxation of the isolated smooth muscle cells (SMC) of the IAS, which was blocked by G(s)alpha antibody (G(s)alpha-Ab). The IAS smooth muscle relaxation was accompanied with an increase in the GTPase activity that was also specifically blocked by G(s)alpha-Ab. We conclude that a major part of the inhibitory action of CTX in the IAS is via the direct response of the SMC that is linked with G(s) protein to the AC pathway. A part of the inhibitory action of CTX on the smooth muscle occurs via the activation of cyclooxygenase pathway. The relative contribution of such actions of CTX in the smooth muscle in the gastrointestinal motility disturbances following cholera infection remains to be determined.
Collapse
Affiliation(s)
- Y P Fan
- Department of Medicine, Division of Gastroenterology and Hepatology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
25
|
Huber A, Saur D, Kurjak M, Schusdziarra V, Allescher HD. Characterization and splice variants of neuronal nitric oxide synthase in rat small intestine. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:G1146-56. [PMID: 9815045 DOI: 10.1152/ajpgi.1998.275.5.g1146] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The aim of this study was to characterize neuronal nitric oxide synthase (nNOS) activity and 5'-end splice variants in rat small intestine. nNOS was predominantly expressed in the longitudinal muscle layer, with attached myenteric plexus (LM-MP). The biochemical properties of NOS activity in enriched nerve terminals resemble those of nNOS isolated from the brain. Western blot analysis of purified NOS protein with an nNOS antibody showed a single band in the particulate fraction and three bands in the soluble fraction. Rapid amplification of 5' cDNA ends-PCR revealed the presence of three different 5'-end splice variants of nNOS. Two variants encode for nNOSalpha, which has a specific domain for membrane association. The third variant encodes for nNOSbeta, which lacks the domain for membrane association and should therefore be soluble. nNOS is predominantly expressed in LM-MP and can be enriched in enteric nerve terminals. We present the first evidence that three 5'-end splice variants of nNOS encoding two different proteins are expressed in rat small intestine. These two nNOS enzymes exhibit different subcellular locations and might be implicated in different biological functions.
Collapse
Affiliation(s)
- A Huber
- Department of Internal Medicine II, Technical University of Munich, D-81675 Munich, Germany
| | | | | | | | | |
Collapse
|
26
|
Teng B, Murthy KS, Kuemmerle JF, Grider JR, Sase K, Michel T, Makhlouf GM. Expression of endothelial nitric oxide synthase in human and rabbit gastrointestinal smooth muscle cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:G342-51. [PMID: 9688662 DOI: 10.1152/ajpgi.1998.275.2.g342] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The aim of this study was to identify the nitric oxide synthase (NOS) isoform expressed in freshly dispersed rabbit gastric smooth muscle cells and in cultured rabbit gastric, human intestinal, and guinea pig taenia coli smooth muscle cells. RT-PCR products of the predicted size (354 bp) were obtained with endothelial NOS (eNOS)-specific primers, but not neuronal NOS (nNOS)- or inducible NOS (iNOS)-specific primers, in all smooth muscle preparations except guinea pig taenia coli. Control RT-PCR studies showed absence of the endothelial markers, platelet endothelial cell adhesion molecule-1 (PECAM-1) and vascular endothelial growth factor receptor (VEGFR), and the interstitial cell marker, c-kit, from cultures of smooth muscle cells. Cloning and sequence analysis showed that the predicted amino acid sequence (117 residues) in rabbit and human smooth muscle cells differed by only one residue from that of human eNOS. Northern blot analysis, using the PCR-generated and cloned eNOS cDNA from rabbits and humans as probes, demonstrated the expression of eNOS mRNA (4.4 kb) in both species. eNOS, but not nNOS or iNOS, transcripts were localized by in situ RT-PCR in single, freshly dispersed rabbit gastric smooth muscle cells; expression was evident in the majority of cells in each preparation. We conclude that eNOS is selectively expressed in rabbit gastric and human intestinal smooth muscle cells. The results confirm functional evidence for the existence of a constitutive NOS in smooth muscle cells of the gut in different species, except for guinea pig taenia coli.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cells, Cultured
- Cloning, Molecular
- Colon/cytology
- Colon/enzymology
- DNA Primers
- Endothelium, Vascular/enzymology
- Humans
- Intestine, Small/cytology
- Intestine, Small/enzymology
- Jejunum/cytology
- Jejunum/enzymology
- Molecular Sequence Data
- Muscle, Smooth/cytology
- Muscle, Smooth/enzymology
- Nitric Oxide Synthase/biosynthesis
- Nitric Oxide Synthase/chemistry
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase Type III
- Platelet Endothelial Cell Adhesion Molecule-1/biosynthesis
- Platelet Endothelial Cell Adhesion Molecule-1/genetics
- Polymerase Chain Reaction
- Rabbits
- Receptor Protein-Tyrosine Kinases/biosynthesis
- Receptor Protein-Tyrosine Kinases/genetics
- Receptors, Growth Factor/biosynthesis
- Receptors, Growth Factor/genetics
- Receptors, Vascular Endothelial Growth Factor
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/chemistry
- Sequence Alignment
- Sequence Homology, Amino Acid
- Stomach/cytology
- Stomach/enzymology
- Transcription, Genetic
Collapse
Affiliation(s)
- B Teng
- Department of Medicine, Medical College of Virginia, Richmond, Virginia 23298-0711, USA
| | | | | | | | | | | | | |
Collapse
|