1
|
Hladky SB, Barrand MA. Regulation of brain fluid volumes and pressures: basic principles, intracranial hypertension, ventriculomegaly and hydrocephalus. Fluids Barriers CNS 2024; 21:57. [PMID: 39020364 PMCID: PMC11253534 DOI: 10.1186/s12987-024-00532-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/21/2024] [Indexed: 07/19/2024] Open
Abstract
The principles of cerebrospinal fluid (CSF) production, circulation and outflow and regulation of fluid volumes and pressures in the normal brain are summarised. Abnormalities in these aspects in intracranial hypertension, ventriculomegaly and hydrocephalus are discussed. The brain parenchyma has a cellular framework with interstitial fluid (ISF) in the intervening spaces. Framework stress and interstitial fluid pressure (ISFP) combined provide the total stress which, after allowing for gravity, normally equals intracerebral pressure (ICP) with gradients of total stress too small to measure. Fluid pressure may differ from ICP in the parenchyma and collapsed subarachnoid spaces when the parenchyma presses against the meninges. Fluid pressure gradients determine fluid movements. In adults, restricting CSF outflow from subarachnoid spaces produces intracranial hypertension which, when CSF volumes change very little, is called idiopathic intracranial hypertension (iIH). Raised ICP in iIH is accompanied by increased venous sinus pressure, though which is cause and which effect is unclear. In infants with growing skulls, restriction in outflow leads to increased head and CSF volumes. In adults, ventriculomegaly can arise due to cerebral atrophy or, in hydrocephalus, to obstructions to intracranial CSF flow. In non-communicating hydrocephalus, flow through or out of the ventricles is somehow obstructed, whereas in communicating hydrocephalus, the obstruction is somewhere between the cisterna magna and cranial sites of outflow. When normal outflow routes are obstructed, continued CSF production in the ventricles may be partially balanced by outflow through the parenchyma via an oedematous periventricular layer and perivascular spaces. In adults, secondary hydrocephalus with raised ICP results from obvious obstructions to flow. By contrast, with the more subtly obstructed flow seen in normal pressure hydrocephalus (NPH), fluid pressure must be reduced elsewhere, e.g. in some subarachnoid spaces. In idiopathic NPH, where ventriculomegaly is accompanied by gait disturbance, dementia and/or urinary incontinence, the functional deficits can sometimes be reversed by shunting or third ventriculostomy. Parenchymal shrinkage is irreversible in late stage hydrocephalus with cellular framework loss but may not occur in early stages, whether by exclusion of fluid or otherwise. Further studies that are needed to explain the development of hydrocephalus are outlined.
Collapse
Affiliation(s)
- Stephen B Hladky
- Department of Pharmacology, Tennis Court Rd, Cambridge, CB2 1PD, UK.
| | | |
Collapse
|
2
|
Abstract
The brain harbors a unique ability to, figuratively speaking, shift its gears. During wakefulness, the brain is geared fully toward processing information and behaving, while homeostatic functions predominate during sleep. The blood-brain barrier establishes a stable environment that is optimal for neuronal function, yet the barrier imposes a physiological problem; transcapillary filtration that forms extracellular fluid in other organs is reduced to a minimum in brain. Consequently, the brain depends on a special fluid [the cerebrospinal fluid (CSF)] that is flushed into brain along the unique perivascular spaces created by astrocytic vascular endfeet. We describe this pathway, coined the term glymphatic system, based on its dependency on astrocytic vascular endfeet and their adluminal expression of aquaporin-4 water channels facing toward CSF-filled perivascular spaces. Glymphatic clearance of potentially harmful metabolic or protein waste products, such as amyloid-β, is primarily active during sleep, when its physiological drivers, the cardiac cycle, respiration, and slow vasomotion, together efficiently propel CSF inflow along periarterial spaces. The brain's extracellular space contains an abundance of proteoglycans and hyaluronan, which provide a low-resistance hydraulic conduit that rapidly can expand and shrink during the sleep-wake cycle. We describe this unique fluid system of the brain, which meets the brain's requisites to maintain homeostasis similar to peripheral organs, considering the blood-brain-barrier and the paths for formation and egress of the CSF.
Collapse
Affiliation(s)
- Martin Kaag Rasmussen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
3
|
Fang Y, Huang L, Wang X, Si X, Lenahan C, Shi H, Shao A, Tang J, Chen S, Zhang J, Zhang JH. A new perspective on cerebrospinal fluid dynamics after subarachnoid hemorrhage: From normal physiology to pathophysiological changes. J Cereb Blood Flow Metab 2022; 42:543-558. [PMID: 34806932 PMCID: PMC9051143 DOI: 10.1177/0271678x211045748] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/14/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022]
Abstract
Knowledge about the dynamic metabolism and function of cerebrospinal fluid (CSF) physiology has rapidly progressed in recent decades. It has traditionally been suggested that CSF is produced by the choroid plexus and drains to the arachnoid villi. However, recent findings have revealed that the brain parenchyma produces a large portion of CSF and drains through the perivascular glymphatic system and meningeal lymphatic vessels into the blood. The primary function of CSF is not limited to maintaining physiological CNS homeostasis but also participates in clearing waste products resulting from neurodegenerative diseases and acute brain injury. Aneurysmal subarachnoid hemorrhage (SAH), a disastrous subtype of acute brain injury, is associated with high mortality and morbidity. Post-SAH complications contribute to the poor outcomes associated with SAH. Recently, abnormal CSF flow was suggested to play an essential role in the post-SAH pathophysiological changes, such as increased intracerebral pressure, brain edema formation, hydrocephalus, and delayed blood clearance. An in-depth understanding of CSF dynamics in post-SAH events would shed light on potential development of SAH treatment options. This review summarizes and updates the latest physiological characteristics of CSF dynamics and discusses potential pathophysiological changes and therapeutic targets after SAH.
Collapse
Affiliation(s)
- Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lei Huang
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoli Si
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cameron Lenahan
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
- Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Hui Shi
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
- Department of Neurosurgery, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiping Tang
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
- Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - John H Zhang
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
- Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
4
|
Kumar V, Umair Z, Kumar S, Goutam RS, Park S, Kim J. The regulatory roles of motile cilia in CSF circulation and hydrocephalus. Fluids Barriers CNS 2021; 18:31. [PMID: 34233705 PMCID: PMC8261947 DOI: 10.1186/s12987-021-00265-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/25/2021] [Indexed: 11/10/2022] Open
Abstract
Background Cerebrospinal fluid (CSF) is an ultra-filtrated colorless brain fluid that circulates within brain spaces like the ventricular cavities, subarachnoid space, and the spine. Its continuous flow serves many primary functions, including nourishment, brain protection, and waste removal. Main body The abnormal accumulation of CSF in brain cavities triggers severe hydrocephalus. Accumulating evidence had indicated that synchronized beats of motile cilia (cilia from multiciliated cells or the ependymal lining in brain ventricles) provide forceful pressure to generate and restrain CSF flow and maintain overall CSF circulation within brain spaces. In humans, the disorders caused by defective primary and/or motile cilia are generally referred to as ciliopathies. The key role of CSF circulation in brain development and its functioning has not been fully elucidated. Conclusions In this review, we briefly discuss the underlying role of motile cilia in CSF circulation and hydrocephalus. We have reviewed cilia and ciliated cells in the brain and the existing evidence for the regulatory role of functional cilia in CSF circulation in the brain. We further discuss the findings obtained for defective cilia and their potential involvement in hydrocephalus. Furthermore, this review will reinforce the idea of motile cilia as master regulators of CSF movements, brain development, and neuronal diseases.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Gangwon-Do, Chuncheon, 24252, Republic of Korea
| | - Zobia Umair
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Gangwon-Do, Chuncheon, 24252, Republic of Korea.,Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Shiv Kumar
- School of Psychology and Neuroscience, University of St. Andrews, St. Mary's Quad, South Street. St. Andrews, Fife, KY16 9JP, UK
| | - Ravi Shankar Goutam
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Gangwon-Do, Chuncheon, 24252, Republic of Korea
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Gangwon-Do, Chuncheon, 24252, Republic of Korea.
| |
Collapse
|
5
|
Esposito E, Ahn BJ, Shi J, Nakamura Y, Park JH, Mandeville ET, Yu Z, Chan SJ, Desai R, Hayakawa A, Ji X, Lo EH, Hayakawa K. Brain-to-cervical lymph node signaling after stroke. Nat Commun 2019; 10:5306. [PMID: 31757960 PMCID: PMC6876639 DOI: 10.1038/s41467-019-13324-w] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 10/27/2019] [Indexed: 12/24/2022] Open
Abstract
After stroke, peripheral immune cells are activated and these systemic responses may amplify brain damage, but how the injured brain sends out signals to trigger systemic inflammation remains unclear. Here we show that a brain-to-cervical lymph node (CLN) pathway is involved. In rats subjected to focal cerebral ischemia, lymphatic endothelial cells proliferate and macrophages are rapidly activated in CLNs within 24 h, in part via VEGF-C/VEGFR3 signalling. Microarray analyses of isolated lymphatic endothelium from CLNs of ischemic mice confirm the activation of transmembrane tyrosine kinase pathways. Blockade of VEGFR3 reduces lymphatic endothelial activation, decreases pro-inflammatory macrophages, and reduces brain infarction. In vitro, VEGF-C/VEGFR3 signalling in lymphatic endothelial cells enhances inflammatory responses in co-cultured macrophages. Lastly, surgical removal of CLNs in mice significantly reduces infarction after focal cerebral ischemia. These findings suggest that modulating the brain-to-CLN pathway may offer therapeutic opportunities to ameliorate systemic inflammation and brain injury after stroke.
Collapse
Affiliation(s)
- Elga Esposito
- 0000 0004 0386 9924grid.32224.35Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA
| | - Bum Ju Ahn
- 0000 0004 0386 9924grid.32224.35Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA
| | - Jingfei Shi
- 0000 0004 0386 9924grid.32224.35Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA ,0000 0004 0369 153Xgrid.24696.3fChina-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yoshihiko Nakamura
- 0000 0004 0386 9924grid.32224.35Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA ,0000 0004 0594 9821grid.411556.2Department of Emergency and Critical Care Medicine, Fukuoka University Hospital, Jonan, Fukuoka Japan
| | - Ji Hyun Park
- 0000 0004 0386 9924grid.32224.35Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA
| | - Emiri T. Mandeville
- 0000 0004 0386 9924grid.32224.35Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA
| | - Zhanyang Yu
- 0000 0004 0386 9924grid.32224.35Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA
| | - Su Jing Chan
- 0000 0004 0386 9924grid.32224.35Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA ,0000 0001 2180 6431grid.4280.eDepartment of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore
| | - Rakhi Desai
- 0000 0004 0386 9924grid.32224.35Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA
| | - Ayumi Hayakawa
- 0000 0004 0386 9924grid.32224.35Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA
| | - Xunming Ji
- 0000 0004 0369 153Xgrid.24696.3fChina-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Eng H. Lo
- 0000 0004 0386 9924grid.32224.35Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA
| | - Kazuhide Hayakawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
6
|
Tsutsumi S, Ono H, Yasumoto Y, Ishii H. Possible cerebrospinal fluid pathways in the middle fossa floor and pterional diploe: a magnetic resonance imaging study. Surg Radiol Anat 2019; 41:1045-1051. [PMID: 31312895 DOI: 10.1007/s00276-019-02290-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 07/11/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE There has not been a study documenting the distribution of cerebrospinal fluid (CSF) pathways in the anterolateral base of the middle fossa (ALB) and diploe of the pterional region (Pt). The present study aimed to delineate these pathways using magnetic resonance imaging. METHODS Thin-sliced, axial, and coronal T2-weighted sequences were performed for a total of 358 outpatients, including 20 pediatric patients. RESULTS Adult population: CSF-filled channels were identified on axial images in the ALB in 57% and in the diploe of the Pt in 65% of 338 patients. These pathways showed variable morphology and number bilaterally. CSF-filled channels were identified on coronal images in the ALB in 14% and in the diploe of the Pt in 100% of 59 patients. These were delineated as linear structures of variable number and thickness. Eleven percent of the pathways identified in the ALB was connected with extracranial channels. Pediatric population: CSF-filled channels were identified on axial images in the ALB in 75% and in the diploe of the Pt in 80% of 20 patients. CONCLUSIONS The ALB and diploe of the Pt may function as CSF pathways in children and adults. The pathways in the ALB can be a CSF-drainage route connecting to the extracranial sites.
Collapse
Affiliation(s)
- Satoshi Tsutsumi
- Department of Neurological Surgery, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu, Chiba, 279-0021, Japan.
| | - Hideo Ono
- Division of Radiological Technology, Medical Satellite Yaesu Clinic, Tokyo, Japan
| | - Yukimasa Yasumoto
- Department of Neurological Surgery, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu, Chiba, 279-0021, Japan
| | - Hisato Ishii
- Department of Neurological Surgery, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu, Chiba, 279-0021, Japan
| |
Collapse
|
7
|
Lymphatic drainage of cerebrospinal fluid in mammals - are arachnoid granulations the main route of cerebrospinal fluid outflow? Biologia (Bratisl) 2018; 73:563-568. [PMID: 30147112 PMCID: PMC6097054 DOI: 10.2478/s11756-018-0074-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/18/2018] [Indexed: 11/26/2022]
Abstract
The outflow of the cerebrospinal fluid (CSF) in animals was over the years the subject of detailed analysis. For a long time it was stated that arachnoid granulations of the venous sinuses play a key role in CSF circulation. However, recent studies on this subject have shown that a considerable part of the CSF is drained to the lymphatic vessels. Moreover, disorders in the CSF passage may result in severe central nervous system diseases such as e.g. hydrocephalus. In this paper, we summarize the current knowledge concerning the lymphatic drainage of the CSF in mammals. We present in detail comparative anatomy of different species taking into account cranial and spinal compartment. In addition, we clarified role of the lymphatic vessels in the CSF outflow and the relationship between impairment in this transport and central nervous system diseases. In the author’s opinion knowledge on CSF circulation is still poorly examined and therefore required comment.
Collapse
|
8
|
Sokołowski W, Czubaj N, Skibniewski M, Barszcz K, Kupczyńska M, Kinda W, Kiełbowicz Z. Rostral cranial fossa as a site for cerebrospinal fluid drainage - volumetric studies in dog breeds of different size and morphotype. BMC Vet Res 2018; 14:162. [PMID: 29776403 PMCID: PMC5960198 DOI: 10.1186/s12917-018-1483-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 05/02/2018] [Indexed: 11/16/2022] Open
Abstract
Background Hydrocephalus is a multifactorial condition, whose aetiology is not fully understood. Congenital hydrocephalus frequently occurs in small and brachycephalic dog breeds. Although it is widely accepted that the cribriform plate located in the rostral cranial fossa (RCF) is a site of cerebrospinal fluid (CSF) drainage, the RCF has not been studied extensively. Literature reports indicate that a decreased caudal cranial fossa (CCF) volume in the course of the Chiari-like malformation may obstruct CSF circulation. We hypothesised that morphological diversity among different breeds in the volume of the RCF may affect CSF circulation. The aim of the study was to carry out a volumetric analysis of the RCF and the cranial cavity and to determine the ratio between them in dog breeds of different size and morphotype. We performed computed tomography (CT) morphometric analysis of the RCF compartment by obtaining volume measurements from the transverse and reformatted sagittal and dorsal planes. Results The rostral cranial fossa percentage – volume of the rostral cranial fossa/volume of cranial cavity × 100 (volRCF/volCC × 100) was lower in small and brachycephalic dog breeds than in the other dogs. Conclusions A reduced RCF volume was detected in small and brachycephalic dog breeds, some of which are predisposed to congenital hydrocephalus. This may lead to overcrowding of brain parenchyma in the RCF and may impede CSF circulation. Our observations may be useful for future studies focusing on the causes and new therapies to treat conditions such as hydrocephalus and syringomyelia. Electronic supplementary material The online version of this article (10.1186/s12917-018-1483-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wojciech Sokołowski
- Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Norbert Czubaj
- Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Michał Skibniewski
- Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Karolina Barszcz
- Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Marta Kupczyńska
- Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Wojciech Kinda
- Department of Surgery, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 51, 50-366, Wroclaw, Poland
| | - Zdzisław Kiełbowicz
- Department of Surgery, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 51, 50-366, Wroclaw, Poland
| |
Collapse
|
9
|
Orbital Interstitial Fluid: Evidence of a Potential Pathway for Extracranial Cerebrospinal Fluid Absorption. J Comput Assist Tomogr 2018; 42:497-501. [PMID: 29489593 DOI: 10.1097/rct.0000000000000716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND PURPOSE The aim of the study was to describe the prevalence and characteristics of orbital interstitial fluid seen on magnetic resonance (MR) images of infants and young children. MATERIALS AND METHODS Fat-suppressed axial T2-weighted MR images of 100 consecutive infants and young children (<6 years) without orbital pathology were retrospectively reviewed by 2 neuroradiologists. The presence, location, and extent of high-signal orbital interstitial fluid were characterized and tabulated as a function of age. RESULTS Orbital interstitial fluid was detected in 90 (90%) of the 100 subjects overall, present in 100% (75/75) of infants and children younger than 3 years, 75% (12/16) of those aged 3 to 5 years, and 33% (3/9) of those aged 5 to 6 years. The fluid was bilateral and symmetric in all cases. Two morphologic patterns were distinguished, which often co-existed: (1) a focal discrete curvilinear band of fluid in the posterior-lateral orbit, more common in younger patients, and (2) an ill-defined, lace-like pattern primarily in the superior orbit seen in subjects of all ages. CONCLUSIONS Orbital interstitial fluid as detected by fat-suppressed T2-weighted MR imaging is a nearly universal finding in infants and young children and should not be considered pathologic. It may have either a focal or lace-like pattern or both. Orbital interstitial fluid decreases in size and prevalence as a function of age but is still present in nearly half of children aged 4 to 6 years. Possible explanations concerning the nature and origin of this fluid are presented, including the fascinating possibility that the fluid represents an extracranial pathway for outflow of cerebrospinal fluid.
Collapse
|
10
|
Jaggi GP, Mironov A, Huber AR, Killer HE. Optic Nerve Compartment Syndrome in a Patient with Optic Nerve Sheath Meningioma. Eur J Ophthalmol 2018; 17:454-8. [PMID: 17534836 DOI: 10.1177/112067210701700334] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE To report a patient with optic nerve (ON) sheath meningioma, unilateral optic disc swelling, and inhomogeneous cerebrospinal fluid (CSF) composition between lumbar CSF and CSF from the subarachnoid space (SAS) of the affected ON. METHODS A 39-year-old woman presented with unilateral optic disc swelling and slight deterioration of visual function in the left eye. Extensive laboratory workup and magnetic resonance imaging (MRI) of the brain and orbits were performed. As radiotherapy was refused by the patient, ON sheath fenestration (ONSF) was offered and performed in order to stop deterioration. CSF from the SAS of the ON was sampled. RESULTS Laboratory workup was within normal limits. MRI of the left orbit demonstrated enhancement of the dura in the precanalicular portion of the ON and distension of the SAS, most prominent in the bulbar portion of the ON. On lumbar puncture the opening pressure measured 19 (cm H2O). Compared to the lumbar CSF the CSF of the affected ON SAS showed markedly elevated measurements for albumin, IgG, and beta-trace protein. Visual function remained stable over a follow-up time of 18 months. CONCLUSIONS Composition of CSF is considered to be homogenous throughout all CSF spaces. In this patient the authors found a marked concentration-gradient of albumin, IgG, and beta-trace protein between the CSF in the spinal canal and the CSF in the SAS of the affected ON. Based on the radiologic features of the left ON and the dissociated beta-trace protein concentrations in the CSF of the SAS of the ON and the lumbar CSF, the diagnosis of an ON sheath compartment syndrome due to an ON sheath meningioma was made.
Collapse
Affiliation(s)
- G P Jaggi
- Department of Ophthalmology, Kantonsspital Aarau, Aarau, Switzerland
| | | | | | | |
Collapse
|
11
|
Ma Q, Ineichen BV, Detmar M, Proulx ST. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat Commun 2017; 8:1434. [PMID: 29127332 PMCID: PMC5681558 DOI: 10.1038/s41467-017-01484-6] [Citation(s) in RCA: 465] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 09/18/2017] [Indexed: 11/09/2022] Open
Abstract
Cerebrospinal fluid (CSF) has been commonly accepted to drain through arachnoid projections from the subarachnoid space to the dural venous sinuses. However, a lymphatic component to CSF outflow has long been known. Here, we utilize lymphatic-reporter mice and high-resolution stereomicroscopy to characterize the anatomical routes and dynamics of outflow of CSF. After infusion into a lateral ventricle, tracers spread into the paravascular spaces of the pia mater and cortex of the brain. Tracers also rapidly reach lymph nodes using perineural routes through foramina in the skull. Using noninvasive imaging techniques that can quantify the transport of tracers to the blood and lymph nodes, we find that lymphatic vessels are the major outflow pathway for both large and small molecular tracers in mice. A significant decline in CSF lymphatic outflow is found in aged compared to young mice, suggesting that the lymphatic system may represent a target for age-associated neurological conditions.
Collapse
Affiliation(s)
- Qiaoli Ma
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093, Zurich, Switzerland
| | | | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093, Zurich, Switzerland
| | - Steven T Proulx
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093, Zurich, Switzerland.
| |
Collapse
|
12
|
MRI-derived diffusion parameters in the human optic nerve and its surrounding sheath during head-down tilt. NPJ Microgravity 2017. [PMID: 28649640 PMCID: PMC5479856 DOI: 10.1038/s41526-017-0023-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
More than half of astronauts present with significant neuro-ophthalmic findings during 6-month missions onboard the International Space Station. Although the underlying cause of this Microgravity Ocular Syndrome is currently unknown, alterations in cerebrospinal fluid dynamics within the optic nerve sheath may play a role. In the presented study, diffusion tensor imaging was used to assess changes in diffusivity of the optic nerve and its surrounding sheath during head-down tilt, a ground-based model of microgravity. Nine healthy male subjects (mean age ± SD: 25 ± 2.4 years; mean body mass index ± SD: 24.1 ± 2.4 kg/m2) underwent 5 head-down tilt conditions: −6°,−12°, −18°,−12° and 1% CO2, and −12° and lower body negative pressure. Mean diffusivity, fractional anisotropy, axial diffusivity, radial diffusivity were quantified in the left and right optic nerves and surrounding sheaths at supine baseline and after 4.5 h head-down tilt for each condition. In the optic nerve sheath, mean diffusivity was increased with all head-down tilt conditions by (Best Linear Unbiased Predictors) 0.147 (SE: 0.04) × 10−3 mm2/s (P < 0.001), axial diffusivity by 0.188 (SE: 0.064) × 10−3 mm2/s (P < 0.001), and radial diffusivity by 0.126 (SE: 0.04) × 10−3 mm2/s (P = 0.0019). Within the optic nerve itself, fractional anisotropy was increased by 0.133 (SE: 0.047) (P = 0.0051) and axial diffusivity increased by 0.135 (SE: 0.08) × 10−3 mm2/s (P = 0.014) during head-down tilt, whilst mean diffusivity and radial diffusivity were unaffected (P > 0.3). These findings could be due to increased perioptic cerebral spinal fluid hydrodynamics during head-down tilt, as well as increased cerebral spinal fluid volume and movement within the optic nerve sheath. Changes to the optic nerve and surrounding sheath during microgravity could explain why space flight is harmful to an astronaut’s vision. Darius Gerlach from the German Aerospace Center in Cologne and colleagues studied the tissue architecture of the optic nerve and its surrounding sheath in nine healthy men who experienced head-down tilt, a commonly used ground-based model of weightlessness. Using a neuroimaging technique called diffusion tensor imaging, the researchers documented fluid dynamic changes wrought by the microgravity-like conditions that could be due to alterations in the volume and movement of cerebrospinal fluid within and around the optic nerve. The findings may help explain why many astronauts experience poorer vision after long-duration space flights, although more work is needed to explore the effects of true microgravity on the visual system.
Collapse
|
13
|
Johnston MG, Boulton M, Flessner M. Cerebrospinal Fluid Absorption Revisited: Do Extracranial Lymphatics Play a Role? Neuroscientist 2016. [DOI: 10.1177/107385840000600206] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
It would seem heretical to suggest that extracranial lymphatic vessels play a major role in the volumetric clearance of cerebrospinal fluid (CSF) from the cranial vault. It is well established that there are no lymphatics within the brain parenchyma, and it has been assumed that the drainage of CSF into the venous system occurs predominantly through the arachnoid villi and granulations. Nonetheless, a physiological association between extracellular fluid in the brain and extracranial lymph has been appreciated for more than 100 years. More important, recent studies in adult experimental animals have demonstrated that on average, one-half of the total volume of CSF absorbed from the cranial compartment was removed by extracranial lymphatics. Our objective in writing this review is to outline the experimental data that support the hypothesis that extracranial lymphatic vessels play an important role in CSF transport in the adult. Additionally, we will develop the hypothesis that lymphatic vessels may provide the primary route through which CSF is cleared from the cranial subarachnoid space in the fetus. With this new conceptual framework, we will reassess hydrocephalus from a lymphatic perspective to determine if impaired CSF transport through extracranial lymphatics might contribute to the development of this disease.
Collapse
Affiliation(s)
- M. G. Johnston
- Trauma Research Program, Department of Laboratory Medicine and Pathobiology, Sunnybrook & Women’s College, Health Sciences Centre, University of Toronto, Department of Medicine, University of Rochester, Rochester, New York
| | - M. Boulton
- Trauma Research Program, Department of Laboratory Medicine and Pathobiology, Sunnybrook & Women’s College, Health Sciences Centre, University of Toronto, Department of Medicine, University of Rochester, Rochester, New York
| | - M. Flessner
- Trauma Research Program, Department of Laboratory Medicine and Pathobiology, Sunnybrook & Women’s College, Health Sciences Centre, University of Toronto, Department of Medicine, University of Rochester, Rochester, New York
| |
Collapse
|
14
|
The Oral Antimalarial Drug Tafenoquine Shows Activity against Trypanosoma brucei. Antimicrob Agents Chemother 2015. [PMID: 26195527 DOI: 10.1128/aac.00879-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The protozoan parasite Trypanosoma brucei causes human African trypanosomiasis, or sleeping sickness, a neglected tropical disease that requires new, safer, and more effective treatments. Repurposing oral drugs could reduce both the time and cost involved in sleeping sickness drug discovery. Tafenoquine (TFQ) is an oral antimalarial drug belonging to the 8-aminoquinoline family which is currently in clinical phase III. We show here that TFQ efficiently kills different T. brucei spp. in the submicromolar concentration range. Our results suggest that TFQ accumulates into acidic compartments and induces a necrotic process involving cell membrane disintegration and loss of cytoplasmic content, leading to parasite death. Cell lysis is preceded by a wide and multitarget drug action, affecting the lysosome, mitochondria, and acidocalcisomes and inducing a depolarization of the mitochondrial membrane potential, elevation of intracellular Ca(2+), and production of reactive oxygen species. This is the first report of an 8-aminoquinoline demonstrating significant in vitro activity against T. brucei.
Collapse
|
15
|
Piquer J, Qureshi MM, Young PH, Dempsey RJ. Neurosurgery Education and Development program to treat hydrocephalus and to develop neurosurgery in Africa using mobile neuroendoscopic training. J Neurosurg Pediatr 2015; 15:552-9. [PMID: 25745948 DOI: 10.3171/2014.10.peds14318] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT A shortage of neurosurgeons and a lack of knowledge of neuroendoscopic management of hydrocephalus limits modern care in sub-Saharan Africa. Hence, a mobile teaching project for endoscopic third ventriculostomy (ETV) procedures and a subsequent program to develop neurosurgery as a permanent specialty in Kenya and Zanzibar were created and sponsored by the Neurosurgery Education and Development (NED) Foundation and the Foundation for International Education in Neurological Surgery. The objective of this work was to evaluate the results of surgical training and medical care in both projects from 2006 to 2013. METHODS Two portable neuroendoscopy systems were purchased and a total of 38 ETV workshops were organized in 21 hospitals in 7 different countries. Additionally, 49 medical expeditions were dispatched to the Coast General Hospital in Mombasa, Kenya, and to the Mnazi Moja Hospital in Zanzibar. RESULTS From the first project, a total of 376 infants with hydrocephalus received surgery. Six-month follow-up was achieved in 22%. In those who received follow-up, ETV efficacy was 51%. The best success rates were achieved with patients 1 year of age or older with aqueductal stenosis (73%). The main causes of hydrocephalus were infection (56%) and spina bifida (23%). The mobile education program interacted with 72 local surgeons and 122 nurses who were trained in ETV procedures. The second project involved 49 volunteer neurosurgeons who performed a total of 360 nonhydrocephalus neurosurgical operations since 2009. Furthermore, an agreement with the local government was signed to create the Mnazi Mmoja NED Institute in Zanzibar. CONCLUSIONS Mobile endoscopic treatment of hydrocephalus in East Africa results in reasonable success rates and has also led to major developments in medicine, particularly in the development of neurosurgery specialty care sites.
Collapse
Affiliation(s)
- José Piquer
- 1Neurosurgery Education and Development Foundation, Valencia, Spain;,2Neurosurgical Unit, Hospital Universitario de la Ribera, Alzira (Valencia), Spain
| | - Mubashir Mahmood Qureshi
- 3Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Nairobi, Kenya;,4Division of Neurosurgery, Kenyatta National Hospital, Nairobi, Kenya
| | - Paul H Young
- 5Section of Neurosurgery, Department of Surgery, St. Louis University, St. Louis, Missouri; and
| | - Robert J Dempsey
- 6The Foundation for International Education in Neurological Surgery, Madison, Wisconsin
| |
Collapse
|
16
|
Chen L, Elias G, Yostos MP, Stimec B, Fasel J, Murphy K. Pathways of cerebrospinal fluid outflow: a deeper understanding of resorption. Neuroradiology 2014; 57:139-47. [DOI: 10.1007/s00234-014-1461-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 10/30/2014] [Indexed: 11/30/2022]
|
17
|
Wahrheit J, Niklas J, Heinzle E. Metabolic control at the cytosol-mitochondria interface in different growth phases of CHO cells. Metab Eng 2014; 23:9-21. [PMID: 24525334 DOI: 10.1016/j.ymben.2014.02.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 01/19/2014] [Accepted: 02/03/2014] [Indexed: 01/26/2023]
Abstract
Metabolism at the cytosol-mitochondria interface and its regulation is of major importance particularly for efficient production of biopharmaceuticals in Chinese hamster ovary (CHO) cells but also in many diseases. We used a novel systems-oriented approach combining dynamic metabolic flux analysis and determination of compartmental enzyme activities to obtain systems level information with functional, spatial and temporal resolution. Integrating these multiple levels of information, we were able to investigate the interaction of glycolysis and TCA cycle and its metabolic control. We characterized metabolic phases in CHO batch cultivation and assessed metabolic efficiency extending the concept of metabolic ratios. Comparing in situ enzyme activities including their compartmental localization with in vivo metabolic fluxes, we were able to identify limiting steps in glycolysis and TCA cycle. Our data point to a significant contribution of substrate channeling to glycolytic regulation. We show how glycolytic channeling heavily affects the availability of pyruvate for the mitochondria. Finally, we show that the activities of transaminases and anaplerotic enzymes are tailored to permit a balanced supply of pyruvate and oxaloacetate to the TCA cycle in the respective metabolic states. We demonstrate that knowledge about metabolic control can be gained by correlating in vivo metabolic flux dynamics with time and space resolved in situ enzyme activities.
Collapse
Affiliation(s)
- Judith Wahrheit
- Biochemical Engineering Institute, Saarland University, Campus A1.5, D-66123 Saarbrücken, Germany
| | - Jens Niklas
- Biochemical Engineering Institute, Saarland University, Campus A1.5, D-66123 Saarbrücken, Germany
| | - Elmar Heinzle
- Biochemical Engineering Institute, Saarland University, Campus A1.5, D-66123 Saarbrücken, Germany.
| |
Collapse
|
18
|
Liu J, Desai K, Wang R, Wu L. Up-regulation of aldolase A and methylglyoxal production in adipocytes. Br J Pharmacol 2013; 168:1639-46. [PMID: 23126339 DOI: 10.1111/bph.12046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/22/2012] [Accepted: 10/29/2012] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE We previously reported that up-regulation of aldolase B, a key enzyme in fructose metabolism, was mainly responsible for vascular methylglyoxal (MG) overproduction under different pathological conditions. Here we investigated whether aldolase A, an enzyme of the glycolytic pathway, also caused MG overproduction in insulin-sensitive adipocytes. EXPERIMENTAL APPROACH The relative contributions of different metabolic pathways or enzymes to MG generation were evaluated in cultured 3T3-L1 adipocytes. KEY RESULTS Glucose (25 mM) had no effect on aldolase A gene expression, but insulin (100 nM) up-regulated aldolase A mRNA and protein levels in the absence or presence of 25 mM glucose in adipocytes. Treatment with insulin increased levels of basal or glucose (25 mM)-induced MG and glucose 6-phosphate. However, insulin, glucose (25 mM) or their combination had no effect on cellular levels of sorbitol and fructose, but down-regulated gene expression of aldolase B to a similar extent, when compared with the control group. Incubation of 3T3-L1 adipocytes with fructose, acetone, acetol, threonine or glycine (25 mM), with or without insulin did not alter cellular MG levels. The elevated MG levels induced by insulin, glucose (25 mM) or their combination in adipocytes was completely reduced by siRNA knock down of aldolase A or application of 2-deoxy-D-glucose (a non-specific inhibitor of glucose uptake and glycolysis), but not by knock down of aldolase B. CONCLUSION AND IMPLICATIONS Insulin enhanced MG overproduction in insulin-sensitive adipocytes by up-regulating aldolase A, a mechanism that could be involved in the development of insulin resistance and obesity.
Collapse
Affiliation(s)
- Jianghai Liu
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | | |
Collapse
|
19
|
The pressure distribution of cerebrospinal fluid responds to residual compression and decompression in an animal model of acute spinal cord injury. Spine (Phila Pa 1976) 2012; 37:E1422-31. [PMID: 22869059 DOI: 10.1097/brs.0b013e31826ba7cd] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN In vivo large animal (pig) model study of cerebrospinal fluid (CSF) pressures after acute experimental spinal cord injury (SCI). OBJECTIVE To determine how the CSF pressure (CSFP) and CSF pulse pressure amplitude (CSFPPA) cranial and caudal to the injury site change after an acute SCI with subsequent thecal occlusion and decompression. SUMMARY OF BACKGROUND DATA Lowering intrathecal pressure via CSF drainage is currently instituted to prevent ischemia-induced SCI during thoracoabdominal aortic aneurysm surgery and was recently investigated as a potential intervention for acute traumatic SCI. However, in SCI patients, persistent extradural compression commonly occludes the subarachnoid space. This may generate a CSFP differential across the injury site, which cannot be appreciated with lumbar catheter pressure measurements. METHODS Anesthetized pigs were subjected to an acute contusive SCI at T11 and 8 hours of sustained compression (n = 12), or sham surgery (n = 2). CSFP was measured cranial and caudal to the injury site, using miniature pressure transducers, during compression and for 6 hours after decompression. RESULTS The cranial-caudal CSFP differential increased (mean, 0.39 mm Hg/h), predominantly due to increased cranial pressure. On decompression, cranial CSFP decreased (mean, -1.16 mm Hg) and caudal CSFP increased (mean, 0.65 mm Hg). The CSFP differential did not change significantly after decompression. Cranial CSFPPA was greater than caudal CSFPPA, but this differential did not change during compression. On decompression, the caudal CSFPPA increased in some but not all animals. CONCLUSION Although extradural compression exists at the site of injury, lumbar CSFP may not accurately indicate CSFP cranial to the injury. Decompression may provide immediate, though perhaps partial, resolution of the pressure differential. CSFPPA was not a consistent indicator of decompression in this animal model. These findings may have implications for the design of future clinical protocols in which CSFP is monitored after acute SCI.
Collapse
|
20
|
de Mas IM, Selivanov VA, Marin S, Roca J, Orešič M, Agius L, Cascante M. Compartmentation of glycogen metabolism revealed from 13C isotopologue distributions. BMC SYSTEMS BIOLOGY 2011; 5:175. [PMID: 22034837 PMCID: PMC3292525 DOI: 10.1186/1752-0509-5-175] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 10/28/2011] [Indexed: 11/24/2022]
Abstract
Background Stable isotope tracers are used to assess metabolic flux profiles in living cells. The existing methods of measurement average out the isotopic isomer distribution in metabolites throughout the cell, whereas the knowledge of compartmental organization of analyzed pathways is crucial for the evaluation of true fluxes. That is why we accepted a challenge to create a software tool that allows deciphering the compartmentation of metabolites based on the analysis of average isotopic isomer distribution. Results The software Isodyn, which simulates the dynamics of isotopic isomer distribution in central metabolic pathways, was supplemented by algorithms facilitating the transition between various analyzed metabolic schemes, and by the tools for model discrimination. It simulated 13C isotope distributions in glucose, lactate, glutamate and glycogen, measured by mass spectrometry after incubation of hepatocytes in the presence of only labeled glucose or glucose and lactate together (with label either in glucose or lactate). The simulations assumed either a single intracellular hexose phosphate pool, or also channeling of hexose phosphates resulting in a different isotopic composition of glycogen. Model discrimination test was applied to check the consistency of both models with experimental data. Metabolic flux profiles, evaluated with the accepted model that assumes channeling, revealed the range of changes in metabolic fluxes in liver cells. Conclusions The analysis of compartmentation of metabolic networks based on the measured 13C distribution was included in Isodyn as a routine procedure. The advantage of this implementation is that, being a part of evaluation of metabolic fluxes, it does not require additional experiments to study metabolic compartmentation. The analysis of experimental data revealed that the distribution of measured 13C-labeled glucose metabolites is inconsistent with the idea of perfect mixing of hexose phosphates in cytosol. In contrast, the observed distribution indicates the presence of a separate pool of hexose phosphates that is channeled towards glycogen synthesis.
Collapse
Affiliation(s)
- Igor Marin de Mas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
21
|
Sharma V, Freeze HH. Mannose efflux from the cells: a potential source of mannose in blood. J Biol Chem 2011; 286:10193-200. [PMID: 21273394 PMCID: PMC3060472 DOI: 10.1074/jbc.m110.194241] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 01/25/2011] [Indexed: 11/06/2022] Open
Abstract
All mammals have 50-100 μM mannose in their blood. However, the source of the dynamic pool of mannose in blood is unknown. Most of it is thought to be derived from glucose in the cells. We studied mannose uptake and release by various cell types. Interestingly, our results show that mannose taken up by the cells through transporters is handled differently from the mannose released within the cells due to glycan processing of protein-bound oligosaccharides. Although more than 95% of incoming mannose is catabolized, most of the mannose released by intracellular processing is expelled from the cells as free mannose predominantly via a nocodazole-sensitive sugar transporter. Under physiological conditions, incoming mannose is more accessible to hexokinase, whereas mannose released within the cells is protected from HK and therefore has a different fate. Our data also suggest that generation of free mannose due to the processing of glycoconjugates composed of glucose-derived mannose and its efflux from the cells can account for most of the mannose found in blood and its steady state maintenance.
Collapse
Affiliation(s)
- Vandana Sharma
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
22
|
Pollay M. The function and structure of the cerebrospinal fluid outflow system. Cerebrospinal Fluid Res 2010; 7:9. [PMID: 20565964 PMCID: PMC2904716 DOI: 10.1186/1743-8454-7-9] [Citation(s) in RCA: 229] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 06/21/2010] [Indexed: 01/01/2023] Open
Abstract
This review traces the development of our understanding of the anatomy and physiological properties of the two systems responsible for the drainage of cerebrospinal fluid (CSF) into the systemic circulation. The roles of the cranial and spinal arachnoid villi (AV) and the lymphatic outflow systems are evaluated as to the dominance of one over the other in various species and degree of animal maturation. The functional capabilities of the total CSF drainage system are presented, with evidence that the duality of the system is supported by the changes in fluid outflow dynamics in human and sub-human primates in hydrocephalus. The review also reconciles the relative importance and alterations of each of the outflow systems in a variety of clinical pathological conditions.
Collapse
|
23
|
Nagra G, Wagshul ME, Rashid S, Li J, McAllister JP, Johnston M. Elevated CSF outflow resistance associated with impaired lymphatic CSF absorption in a rat model of kaolin-induced communicating hydrocephalus. Cerebrospinal Fluid Res 2010; 7:4. [PMID: 20181144 PMCID: PMC2831828 DOI: 10.1186/1743-8454-7-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 02/10/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND We recently reported a lymphatic cerebrospinal fluid (CSF) absorption deficit in a kaolin model of communicating hydrocephalus in rats with ventricular expansion correlating negatively with the magnitude of the impediment to lymphatic function. However, it is possible that CSF drainage was not significantly altered if absorption at other sites compensated for the lymphatic defect. The purpose of this study was to investigate the impact of the lymphatic absorption deficit on global CSF absorption (CSF outflow resistance). METHODS Kaolin was injected into the basal cisterns of Sprague Dawley rats. The development of hydrocephalus was assessed using magnetic resonance imaging (MRI). In one group of animals at about 3 weeks after injection, the movement of intraventricularly injected iodinated human serum albumin (125I-HSA) into the olfactory turbinates provided an estimate of CSF transport through the cribriform plate into nasal lymphatics (n = 18). Control animals received saline in place of kaolin (n = 10). In a second group at about 3.5 weeks after kaolin injection, intraventricular pressure was measured continuously during infusion of saline into the spinal subarachnoid space at various flow rates (n = 9). CSF outflow resistance was calculated as the slope of the steady-state pressure versus flow rate. Control animals for this group either received no injections (intact: n = 11) or received saline in place of kaolin (n = 8). RESULTS Compared to saline injected controls, lateral ventricular volume in the kaolin group was significantly greater (0.087 +/- 0.013 ml, n = 27 versus 0.015 +/- 0.001 ml, n = 17) and lymphatic function was significantly less (2.14 +/- 0.72% injected/g, n = 18 versus 6.38 +/- 0.60% injected/g, n = 10). Additionally, the CSF outflow resistance was significantly greater in the kaolin group (0.46 +/- 0.04 cm H2O microL(-1) min, n = 9) than in saline injected (0.28 +/- 0.03 cm H2O microL(-1) min, n = 8) or intact animals (0.18 +/- 0.03 cm H2O microL(-1) min, n = 11). There was a significant positive correlation between CSF outflow resistance and ventricular volume. CONCLUSIONS The data suggest that the impediment to lymphatic CSF absorption in a kaolin-induced model of communicating hydrocephalus has a significant impact on global CSF absorption. A lymphatic CSF absorption deficit would appear to play some role (either direct or indirect) in the pathogenesis of ventriculomegaly.
Collapse
Affiliation(s)
- Gurjit Nagra
- Brain Sciences Program, Department of Laboratory Medicine and Pathobiology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Mark E Wagshul
- Department of Radiology, Stony Brook University, Stony Brook, NY, USA
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Shams Rashid
- Department of Radiology, Stony Brook University, Stony Brook, NY, USA
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jie Li
- Department of Neurological Surgery, Wayne State University School of Medicine, University Health Center, St Antoine Detroit, MI, USA
| | - J Pat McAllister
- Department of Neurosurgery, Division of Pediatric Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Miles Johnston
- Brain Sciences Program, Department of Laboratory Medicine and Pathobiology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Colton CA. Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol 2009; 4:399-418. [PMID: 19655259 PMCID: PMC2773116 DOI: 10.1007/s11481-009-9164-4] [Citation(s) in RCA: 678] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 06/30/2009] [Indexed: 01/14/2023]
Abstract
The immune response in the brain has been widely investigated and while many studies have focused on the proinflammatory cytotoxic response, the brain's innate immune system demonstrates significant heterogeneity. Microglia, like other tissue macrophages, participate in repair and resolution processes after infection or injury to restore normal tissue homeostasis. This review examines the mechanisms that lead to reduction of self-toxicity and to repair and restructuring of the damaged extracellular matrix in the brain. Part of the resolution process involves switching macrophage functional activation to include reduction of proinflammatory mediators, increased production and release of anti-inflammatory cytokines, and production of cytoactive factors involved in repair and reconstruction of the damaged brain. Two partially overlapping and complimentary functional macrophage states have been identified and are called alternative activation and acquired deactivation. The immunosuppressive and repair processes of each of these states and how alternative activation and acquired deactivation participate in chronic neuroinflammation in the brain are discussed.
Collapse
Affiliation(s)
- Carol A Colton
- Division of Neurology, Duke University Medical Center, Durham, 27710 NC, USA.
| |
Collapse
|
25
|
Experimental Assessment of Autologous Lymph Node Transplantation as Treatment of Postsurgical Lymphedema. Plast Reconstr Surg 2009; 124:777-786. [DOI: 10.1097/prs.0b013e3181b03787] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
|
27
|
Abstract
The olfactory system (OS) is involved in many infectious and neurodegenerative diseases, both human and animal, and it has recently been investigated in regard to transmissible spongiform encephalopathies. Previous assessments of nasal mucosa infection by prions following intracerebral challenge suggested a potential centrifugal spread along the olfactory nerve fibers of the pathological prion protein (PrP(Sc)). Whether the nasal cavity may be a route for centripetal prion infection to the brain has also been experimentally studied. With the present study, we wanted to determine whether prion deposition in the OS occurs also under field conditions and what type of anatomical localization PrP(Sc) might display there. We report here on detection by different techniques of PrP(Sc) in the nasal mucosa and in the OS-related brain areas of sheep affected by natural scrapie. PrP(Sc) was detected in the perineurium of the olfactory nerve bundles in the medial nasal concha and in nasal-associated lymphoid tissue. Olfactory receptor neurons did not show PrP(Sc) immunostaining. PrP(Sc) deposition was found in the brain areas of olfactory fiber projection, chiefly in the olfactory bulb and the olfactory cortex. The prevalent PrP(Sc) deposition patterns were subependymal, perivascular, and submeningeal. This finding, together with the discovery of an intense PrP(Sc) immunostaining in the meningeal layer of the olfactory nerve perineurium, at the border with the subdural space extension surrounding the nerve rootlets, strongly suggests a probable role of cerebrospinal fluid in conveying prion infectivity to the nasal submucosa.
Collapse
|
28
|
Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol 2009; 117:1-14. [PMID: 19002474 DOI: 10.1007/s00401-008-0457-0] [Citation(s) in RCA: 352] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Revised: 10/28/2008] [Accepted: 10/29/2008] [Indexed: 12/25/2022]
Abstract
There are no conventional lymphatics in the brain but physiological studies have revealed a substantial and immunologically significant lymphatic drainage from brain to cervical lymph nodes. Cerebrospinal fluid drains via the cribriform plate and nasal mucosa to cervical lymph nodes in rats and sheep and to a lesser extent in humans. More significant for a range of human neurological disorders is the lymphatic drainage of interstitial fluid (ISF) and solutes from brain parenchyma along capillary and artery walls. Tracers injected into grey matter, drain out of the brain along basement membranes in the walls of capillaries and cerebral arteries. Lymphatic drainage of antigens from the brain by this route may play a significant role in the immune response in virus infections, experimental autoimmune encephalomyelitis and multiple sclerosis. Neither antigen-presenting cells nor lymphocytes drain to lymph nodes by the perivascular route and this may be a factor in immunological privilege of the brain. Vessel pulsations appear to be the driving force for the lymphatic drainage along artery walls, and as vessels stiffen with age, amyloid peptides deposit in the drainage pathways as cerebral amyloid angiopathy (CAA). Blockage of lymphatic drainage of ISF and solutes from the brain by CAA may result in loss of homeostasis of the neuronal environment that may contribute to neuronal malfunction and dementia. Facilitating perivascular lymphatic drainage of amyloid-beta (Abeta) in the elderly may prevent the accumulation of Abeta in the brain, maintain homeostasis and provide a therapeutic strategy to help avert cognitive decline in Alzheimer's disease.
Collapse
|
29
|
Rammling M, Madan M, Paul L, Behnam B, Pattisapu JV. Evidence for reduced lymphatic CSF absorption in the H-Tx rat hydrocephalus model. Cerebrospinal Fluid Res 2008; 5:15. [PMID: 18925964 PMCID: PMC2572581 DOI: 10.1186/1743-8454-5-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2008] [Accepted: 10/16/2008] [Indexed: 11/26/2022] Open
Abstract
Background There is mounting evidence that spinal fluid absorption takes place not only at the arachnoid villi, but also at several extracranial sites, which might serve as a reserve mechanism for, or be primarily involved in the absorption of CSF in hydrocephalus. Methods We compared the nasal lymphatic pathway in congenital Hydrocephalus-Texas (H-Tx) rats in unaffected and affected hydrocephalic (HC) siblings with that of control Sprague Dawley (SD) rat pups. The animals were examined after immediate post mortem injection of Evan's blue dye into the cisterna magna at 6 and 10 days of age. The specimens were evaluated for amount of dye penetration into the nasal passages. Results We found more dye visualization in the olfactory regions of control SD (14/16 at P6, 14/16 at P10) and unaffected H-Tx (13/17 at P6, 13/16 at P10) compared with HC animals (0/14 at P6, 3/15 at P10). This difference was more pronounced at 10 days of age. The dye was not visualized in the cervical lymph nodes or venous channels in these acute experiments. Conclusion The results of this study suggest that nasal lymphatic cerebrospinal fluid absorption is reduced in the H-Tx rat hydrocephalus model.
Collapse
Affiliation(s)
- Matthias Rammling
- Hydrocephalus Research Laboratory, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA.
| | | | | | | | | |
Collapse
|
30
|
Killer HE, Jaggi GP, Miller NR, Flammer J, Meyer P. Does immunohistochemistry allow easy detection of lymphatics in the optic nerve sheath? J Histochem Cytochem 2008; 56:1087-92. [PMID: 18765840 DOI: 10.1369/jhc.2008.950840] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We evaluated the validity of anti-D2-40 and anti-LYVE-1 (antibodies against lymphatic endothelium) for IHC diagnosis and semiquantification of lymphatic vessels in the dura mater of the intraorbital portion of the human optic nerve (ON). Fourteen specimens were analyzed using light microscopy within 12 hr postmortem. We found in all specimens that both D2-40 and LYVE-1 stained lymphatic vessels as well as venules and arterioles. Our findings show lymphatic vessels in the meninges of the intraorbital portion of the human ON. Anti-D2-40 and anti-LYVE-1 antibodies, however, are not found to be exclusively specific to the endothelial layer of lymphatics because they also stain the endothelial layer of venules and arterioles. For the unequivocal identification of lymphatics, additional morphological criteria are necessary. Nevertheless, D2-40 and LYVE-1 staining allows rapid identification of endothelial layers.
Collapse
|
31
|
Rosenthal G, Morabito D, Cohen M, Roeytenberg A, Derugin N, Panter SS, Knudson MM, Manley G. Use of hemoglobin-based oxygen-carrying solution-201 to improve resuscitation parameters and prevent secondary brain injury in a swine model of traumatic brain injury and hemorrhage: laboratory investigation. J Neurosurg 2008; 108:575-87. [PMID: 18312106 DOI: 10.3171/jns/2008/108/3/0575] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Traumatic brain injury (TBI) often occurs as part of a multisystem trauma that may lead to hemorrhagic shock. Effective resuscitation and restoration of oxygen delivery to the brain is important in patients with TBI because hypotension and hypoxia are associated with poor outcome in head injury. We studied the effects of hemoglobin-based oxygen-carrying (HBOC)-201 solution compared with lactated Ringer (LR) solution in a large animal model of brain injury and hemorrhage, in a blinded prospective randomized study. METHODS Swine underwent brain impact injury and hemorrhage to a mean arterial pressure (MAP) of 40 mm Hg. Twenty swine were randomized to undergo resuscitation with HBOC-201 (6 ml/kg) or LR solution (12 ml/kg) and were observed for an average of 6.5 +/- 0.5 hours following resuscitation. At the end of the observation period, magnetic resonance (MR) imaging was performed. Histological studies of swine brains were performed using Fluoro-Jade B, a marker of early neuronal degeneration. RESULTS Swine resuscitated with HBOC-201 had higher MAP, higher cerebral perfusion pressure (CPP), improved base deficit, and higher brain tissue oxygen tension (PbtO(2)) than animals resuscitated with LR solution. No significant difference in total injury volume on T2-weighted MR imaging was observed between animals resuscitated with HBOC-201 solution (1155 +/- 374 mm(3)) or LR solution (1246 +/- 279 mm(3); p = 0.55). On the side of impact injury, no significant difference in the mean number of Fluoro-Jade B-positive cells/hpf was seen between HBOC-201 solution (61.5 +/- 14.7) and LR solution (48.9 +/- 17.7; p = 0.13). Surprisingly, on the side opposite impact injury, a significant increase in Fluoro-Jade B-positive cells/hpf was seen in animals resuscitated with LR solution (42.8 +/- 28.3) compared with those resuscitated with HBOC-201 solution (5.6 +/- 8.1; p < 0.05), implying greater neuronal injury in LR-treated swine. CONCLUSIONS The improved MAP, CPP, and PbtO(2) observed with HBOC-201 solution in comparison with LR solution indicates that HBOC-201 solution may be a preferable agent for small-volume resuscitation in brain-injured patients with hemorrhage. The use of HBOC-201 solution appears to decrease cellular degeneration in the brain area not directly impacted by the primary injury. Hemoglobin-based oxygen-carrying-201 solution may act by improving cerebral blood flow or increasing the oxygen-carrying capacity of blood, mitigating a second insult to the injured brain.
Collapse
Affiliation(s)
- Guy Rosenthal
- Department of Neurosurgery, University of California, San Francisco, CA 94117, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Nagra G, Johnston MG. Impact of ageing on lymphatic cerebrospinal fluid absorption in the rat. Neuropathol Appl Neurobiol 2007; 33:684-91. [PMID: 17931359 DOI: 10.1111/j.1365-2990.2007.00857.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Several parameters associated with the cerebrospinal fluid (CSF) system show a change in the later stages of life, including elevated CSF outflow resistance. The latter implies a CSF absorption deficit. As a significant portion of CSF absorption occurs into extracranial lymphatic vessels located in the olfactory turbinates, the purpose of this study was to determine whether any age-related impediments to CSF absorption existed at this location. In previous studies, we observed rapid movement of the CSF tracer into the olfactory turbinates in young rats (peaking 30 min after injection), with the concentration of the tracer being much higher in the turbinates than in any other tissue measured. In the study reported here, (125)I-human serum albumin was injected into the lateral ventricles of 3-, 6-, 12- and 19-month-old Fisher 344 rats. The animals were sacrificed at various times after injection of the radioactive tracer, and appropriate tissue samples were extracted. At 30 min post injection, the average tracer values expressed as per cent injected/g tissue were 6.68 +/- 0.42 (n = 9, 3 months), 4.78 +/- 0.67 (n = 9, 6 months), 2.49 +/- 0.31 (n = 9, 12 months) and 2.42 +/- 0.72 (n = 9, 19 months). We conclude that lymphatic CSF transport declines significantly with age. In concert with the known drop in CSF formation, the reduction in lymphatic CSF absorption may contribute to a decrease in CSF turnover in the elderly.
Collapse
Affiliation(s)
- G Nagra
- Neuroscience Program, Department of Laboratory Medicine and Pathobiology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
33
|
Koh L, Nagra G, Johnston M. Properties of the lymphatic cerebrospinal fluid transport system in the rat: impact of elevated intracranial pressure. J Vasc Res 2007; 44:423-32. [PMID: 17587862 DOI: 10.1159/000104255] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 04/16/2007] [Indexed: 11/19/2022] Open
Abstract
Previous studies suggested that a major portion of cerebrospinal fluid (CSF) is absorbed by extracranial lymphatics located in the olfactory turbinates. The objective of this study was to determine the impact of elevated intracranial pressure (ICP) on downstream cervical lymphatic pressures in the rat. Pressures were measured in the deep cervical lymph nodes using a servo-null micropressure system. A catheter was placed in a lateral ventricle and fluid was infused from a reservoir at defined ICPs. When Ringer's solution was infused, elevations of ICP from 10 to 50 cm H2O resulted on average in a reduction of diastolic cervical node pressures. In contrast, when a diluted plasma solution (80% plasma in Ringer's) was infused, downstream diastolic lymphatic pressures increased as ICP was elevated to 50 cm H2O. These data are consistent with the view that much of the CSF-derived water that convects into the lymphatics is absorbed into the ethmoidal or nodal blood vessels. This study supports the concept of fluid continuity between the subarachnoid space and extracranial lymphatics and suggests that this loss of CSF-derived water may act as a safety mechanism to reduce the volume load to the downstream lymphatic vessels.
Collapse
Affiliation(s)
- Lena Koh
- Neuroscience Program, Department of Laboratory Medicine and Pathobiology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ont., Canada
| | | | | |
Collapse
|
34
|
Johnston M, Armstrong D, Koh L. Possible role of the cavernous sinus veins in cerebrospinal fluid absorption. Cerebrospinal Fluid Res 2007; 4:3. [PMID: 17437642 PMCID: PMC1858703 DOI: 10.1186/1743-8454-4-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 04/16/2007] [Indexed: 11/21/2022] Open
Abstract
The purpose of this investigation was to enhance our understanding of cerebrospinal fluid (CSF) absorption pathways. To achieve this, Microfil (a coloured silastic material) was infused into the subarachnoid space (cisterna magna) of sheep post mortem, and the relevant tissues examined macroscopically and microscopically. The Microfil was taken up by an extensive network of extracranial lymphatic vessels in the olfactory turbinates. In addition however, Microfil also passed consistently through the dura at the base of the brain. Microfil was noted in the spaces surrounding the venous network that comprises the cavernous sinus, in the adventitia of the internal carotid arteries and adjacent to the pituitary gland. Additionally, Microfil was observed within the endoneurial spaces of the trigeminal nerve and in lymphatic vessels emerging from the epineurium of the nerve. These results suggest several unconventional pathways by which CSF may be removed from the subarachnoid space. The movement of CSF to locations external to the cranium via these routes may lead to its absorption into veins and lymphatics outside of the skull. The physiological importance of these pathways requires further investigation.
Collapse
Affiliation(s)
- Miles Johnston
- Neuroscience Program, Department of Laboratory Medicine and Pathobiology, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - Dianna Armstrong
- Neuroscience Program, Department of Laboratory Medicine and Pathobiology, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - Lena Koh
- Neuroscience Program, Department of Laboratory Medicine and Pathobiology, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| |
Collapse
|
35
|
Koh L, Zakharov A, Nagra G, Armstrong D, Friendship R, Johnston M. Development of cerebrospinal fluid absorption sites in the pig and rat: connections between the subarachnoid space and lymphatic vessels in the olfactory turbinates. ACTA ACUST UNITED AC 2006; 211:335-44. [PMID: 16528517 DOI: 10.1007/s00429-006-0085-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2006] [Indexed: 10/24/2022]
Abstract
The textbook view that cerebrospinal fluid (CSF) absorption occurs mainly through the arachnoid granulations and villi is being challenged by quantitative and qualitative studies that support a major role for the lymphatic circulation in CSF transport. There are many potential sites at which lymphatics may gain access to CSF but the primary pathway involves the movement of CSF through the cribriform plate foramina in association with the olfactory nerves. Lymphatics encircle the nerve trunks on the extracranial surface of the cribriform plate and absorb CSF. However, the time during development in which the CSF compartment and extracranial lymphatic vessels connect anatomically is unclear. In this report, CSF-lymphatic connections were investigated using the silastic material Microfil and a soluble Evan's blue-protein complex in two species; one in which significant CSF synthesis by the choroid plexus begins before birth (pigs) and one in which CSF secretion is markedly up regulated within the first weeks after birth (rats). We examined a total of 46 pig fetuses at embryonic (E) day E80-81, E92, E101, E110 (birth at 114 days). In rats, we investigated a total of 115 animals at E21 (birth at 21 days), postnatal (P) day P1-P9, P12, P13, P15, P22, and adults. In pigs, CSF-lymphatic connections were observed in the prenatal period as early as E92. Before this time (E80-81 fetuses) CSF-lymphatic connections did not appear to exist. In rats, these associations were not obvious until about a week after birth. These data suggest that the ability of extracranial lymphatic vessels to absorb CSF develops around the time that significant volumes of CSF are being produced by the choroid plexus and further support an important role for lymphatic vessels in CSF transport.
Collapse
Affiliation(s)
- Lena Koh
- Neuroscience Research, Department of Laboratory Medicine and Pathobiology, Sunnybrook and Women's College Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Research Building, S-111, Toronto, ON, Canada, M4N 3M5
| | | | | | | | | | | |
Collapse
|
36
|
Johnston M, Zakharov A, Koh L, Armstrong D. Subarachnoid injection of Microfil reveals connections between cerebrospinal fluid and nasal lymphatics in the non-human primate. Neuropathol Appl Neurobiol 2006; 31:632-40. [PMID: 16281912 DOI: 10.1111/j.1365-2990.2005.00679.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Based on quantitative and qualitative studies in a variety of mammalian species, it would appear that a significant portion of cerebrospinal fluid (CSF) drainage is associated with transport along cranial and spinal nerves with absorption taking place into lymphatic vessels external to the central nervous system. CSF appears to convect primarily through the cribriform plate into lymphatics associated with the submucosa of the olfactory and respiratory epithelium. However, the significance of this pathway for CSF absorption in primates has never been established unequivocally. In past studies, we infused Microfil into the subarachnoid compartment of numerous species to visualize CSF transport pathways. The success of this method encouraged us to use a similar approach in the non-human primate. Yellow Microfil was injected post mortem into the cisterna magna of 6 years old Barbados green monkeys (Cercopithecus aethiops sabeus, n = 6). Macroscopic and microscopic examination revealed that Microfil was (1) distributed throughout the subarachnoid compartment, (2) located in the perineurial spaces associated with the fila olfactoria, (3) present within the olfactory submucosa, and (4) situated within an extensive network of lymphatic vessels in the nasal submucosa, nasal septum and turbinate tissues. We conclude that the Microfil distribution patterns in the monkey were very similar to those observed in many other species suggesting that significant nasal lymphatic uptake of CSF occurs in the non-human primate.
Collapse
Affiliation(s)
- M Johnston
- Neuroscience Program, Department of Laboratory Medicine and Pathobiology, Sunnybrook and Women's College Health Sciences Centre, University of Toronto, ON, Canada.
| | | | | | | |
Collapse
|
37
|
Raikar LS, Vallejo J, Lloyd PG, Hardin CD. Overexpression of caveolin-1 results in increased plasma membrane targeting of glycolytic enzymes: The structural basis for a membrane associated metabolic compartment. J Cell Biochem 2006; 98:861-71. [PMID: 16453288 DOI: 10.1002/jcb.20732] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Although membrane-associated glycolysis has been observed in a variety of cell types, the mechanism of localization of glycolytic enzymes to the plasma membrane is not known. We hypothesized that caveolin-1 (CAV-1) serves as a scaffolding protein for glycolytic enzymes and may play a role in the organization of cell metabolism. To test this hypothesis, we over-expressed CAV-1 in cultured A7r5 (rat aorta vascular smooth muscle; VSM) cells. Confocal immunofluorescence microscopy was used to study the distribution of phosphofructokinase (PFK) and CAV-1 in the transfected cells. Areas of interest (AOI) were analyzed in a central Z-plane across the cell transversing the perinuclear region. To quantify any shift in PFK localization resulting from CAV-1 over-expression, we calculated a periphery to center (PC) index by taking the average of the two outer AOIs from each membrane region and dividing by the central one or two AOIs. We found the PC index to be 1.92 +/- 0.57 (mean +/- SEM, N = 8) for transfected cells and 0.59 +/- 0.05 (mean +/- SEM, N = 11) for control cells. Colocalization analysis demonstrated that the percentage of PFK associated with CAV-1 increased in transfected cells compared to control cells. The localization of aldolase (ALD) was also shifted towards the plasma membrane (and colocalized with PFK) in CAV-1 over-expressing cells. These results demonstrate that CAV-1 creates binding sites for PFK and ALD that may be of higher affinity than those binding sites localized in the cytoplasm. We conclude that CAV-1 functions as a scaffolding protein for PFK, ALD and perhaps other glycolytic enzymes, either through direct interaction or accessory proteins, thus contributing to compartmented metabolism in vascular smooth muscle.
Collapse
Affiliation(s)
- Leena S Raikar
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri 65212, USA
| | | | | | | |
Collapse
|
38
|
Werle M, Kreuzer J, Höfele J, Elsässer A, Ackermann C, Katus HA, Vogt AM. Metabolic control analysis of the Warburg-effect in proliferating vascular smooth muscle cells. J Biomed Sci 2005; 12:827-34. [PMID: 16205843 DOI: 10.1007/s11373-005-9010-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2005] [Accepted: 07/18/2005] [Indexed: 12/27/2022] Open
Abstract
The accumulation and proliferation of vascular smooth muscle cells (VSMC) within the vessel wall is an important pathogenic feature in the development of atherosclerosis. Glucose metabolism has been implicated to play an important role in this cellular mechanism. To further elucidate the role of glucose metabolism in atherogenesis, glycolysis and its regulation have been investigated in proliferating VSMC. Platelet derived growth factor (PDGF BB)-induced proliferation of VSMCs significantly stimulated glucose flux through glycolysis. Further evaluating the enzymatic regulation of this pathway, the analysis of flux:metabolite co-responses revealed that anaerobic glycolytic flux is controlled at different sites of gycolysis in proliferating VSMCs, being consistent with the concept of multisite modulation. These findings indicate that regulation of glycolytic flux in proliferating VSMCs differs from traditional concepts of metabolic control of the Embden-Meyerhof pathway.
Collapse
Affiliation(s)
- Martina Werle
- Innere Medizin III, Universität Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Koh L, Zakharov A, Johnston M. Integration of the subarachnoid space and lymphatics: is it time to embrace a new concept of cerebrospinal fluid absorption? Cerebrospinal Fluid Res 2005; 2:6. [PMID: 16174293 PMCID: PMC1266390 DOI: 10.1186/1743-8454-2-6] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 09/20/2005] [Indexed: 01/19/2023] Open
Abstract
In most tissues and organs, the lymphatic circulation is responsible for the removal of interstitial protein and fluid but the parenchyma of the brain and spinal cord is devoid of lymphatic vessels. On the other hand, the literature is filled with qualitative and quantitative evidence supporting a lymphatic function in cerebrospinal fluid (CSF) absorption. The experimental data seems to warrant a re-examination of CSF dynamics and consideration of a new conceptual foundation on which to base our understanding of disorders of the CSF system. The objective of this paper is to review the key studies pertaining to the role of the lymphatic system in CSF absorption.
Collapse
Affiliation(s)
- Lena Koh
- Neuroscience Program, Department of Laboratory Medicine and Pathobiology, Sunnybrook and Women's College Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - Andrei Zakharov
- Neuroscience Program, Department of Laboratory Medicine and Pathobiology, Sunnybrook and Women's College Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - Miles Johnston
- Neuroscience Program, Department of Laboratory Medicine and Pathobiology, Sunnybrook and Women's College Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| |
Collapse
|
40
|
Vallejo J, Hardin CD. Caveolin-1 functions as a scaffolding protein for phosphofructokinase in the metabolic organization of vascular smooth muscle. Biochemistry 2005; 43:16224-32. [PMID: 15610016 DOI: 10.1021/bi0490035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using confocal microscopy, we have demonstrated a similar distribution of phosphofructokinase (PFK) with caveolin-1 (CAV-1) mainly at the periphery (membrane) in freshly isolated vascular smooth muscle (VSM) cells and in cultured A7r5 VSM cells. Co-immunoprecipitation analysis validated the interaction between the proteins. To further test the hypothesis that PFK and CAV-1 are colocalized, we used small interfering RNA (siRNA) to downregulate CAV-1 expression and disrupt the protein-protein interactions between PFK and CAV-1. Transfection of cultured A7r5 cells with CAV-1 siRNA resulted in a decreased level of immunoreactive CAV-1 and a consequent shift in the distribution of PFK with less localization of PFK to the periphery of the cells and increased immunoreactivity at the perinuclear region as compared to control. Analysis of the average PFK intensity across cultured A7r5 cells demonstrated a higher central:peripheral intensity ratio (CPI ratio) in siRNA-treated cells than in the control. These results validate the possible role of CAV-1 as a scaffolding protein for PFK as evidenced by the significant redistribution of PFK after CAV-1 downregulation. We therefore conclude that CAV-1 may function as a scaffolding protein for PFK and that this contributes to the compartmentation of glycolysis from other metabolic pathways in VSM.
Collapse
Affiliation(s)
- Johana Vallejo
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri 65212, USA
| | | |
Collapse
|
41
|
Zakharov A, Papaiconomou C, Johnston M. Lymphatic Vessels Gain Access to Cerebrospinal Fluid Through Unique Association with Olfactory Nerves. Lymphat Res Biol 2004; 2:139-46. [PMID: 15609813 DOI: 10.1089/lrb.2004.2.139] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Physiological studies suggest that a major portion of cerebrospinal fluid (CSF) drainage is associated with transport along cranial and spinal nerves with absorption taking place into lymphatic vessels external to the central nervous system. Especially important is CSF transport through the cribriform plate in association with the olfactory nerves. This study examined the anatomical connections that link the CSF and extracranial lymphatics at the base of the brain. METHODS AND RESULTS The contrast agent, Yellow Microfil, was infused into the cranial sub-arachnoid compartment of 2- to 7-day-old lambs postmortem. In some animals, blue Microfil was perfused into the carotid arteries. Yellow Microfil was observed in extensive lymphatic networks in the submucosa associated with the olfactory and respiratory epithelium. Since little of the contrast agent was present within the interstitium of the olfactory submucosa, there appeared to be direct continuity between the subarachnoid space, the perineurial spaces of the olfactory nerve fibers that penetrated the cribriform plate, and the lumens of the lymphatic vessels within the olfactory submucosa. Lymphatics encircled the olfactory nerves at the level of the emerging nerve rootlets (in many cases providing the outer limit of the perineurial space) and then dispersed freely in the submucosa at greater distance from the crib-riform plate. These vessels converged into larger collecting ducts that emptied into various lymph nodes in the head and neck. CONCLUSIONS Lymphatic vessels gain access to the brain extracellular fluid (CSF) in an unusual anatomical association with the olfactory nerves external to the cranial vault. This study highlights the important role played by lymphatic vessels in CSF absorption.
Collapse
Affiliation(s)
- Andrei Zakharov
- Neuroscience Research, Department of Laboratory Medicine and Pathobiology, Sunnybrook and Women's College Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
42
|
Vallejo J, Hardin CD. Metabolic organization in vascular smooth muscle: distribution and localization of caveolin-1 and phosphofructokinase. Am J Physiol Cell Physiol 2004; 286:C43-54. [PMID: 12944325 DOI: 10.1152/ajpcell.00483.2002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have shown that a compartmentation of glycolysis and gluconeogenesis exists in vascular smooth muscle (VSM) and that an intact plasma membrane is essential for compartmentation. Previously, we observed that disruption of the caveolae inhibited glycolysis but stimulated gluconeogenesis, suggesting a link between caveolae and glycolysis. We hypothesized that glycolytic enzymes specifically localize to caveolae. We used confocal microscopy to determine the localization of caveolin-1 (CAV-1) and phosphofructokinase (PFK) in freshly isolated VSM cells and cultured A7r5 cells. Freshly isolated cells exhibited a peripheral (membrane) localization of CAV-1 with 85.3% overlap with PFK. However, only 59.9% of PFK was localized with CAV-1, indicating a wider distribution of PFK than CAV-1. A7r5 cells exhibited compartmentation of glycolysis and gluconeogenesis and displayed two apparent phenotypes distinguishable by shape (spindle and ovoid shaped). In both phenotypes, CAV-1 fluorescence overlapped with PFK fluorescence (83.1 and 81.5%, respectively). However, the overlap of PFK with CAV-1 was lower in the ovoid-shaped (35.9%) than the spindle-shaped cells (53.7%). There was also a progressive shift in pattern of colocalization from primarily the membrane in spindle-shaped cells (both freshly isolated and cultured cells) to primarily the cytoplasm in ovoid-shaped cells. Overall, cellular colocalization of PFK with CAV-1 was significant in all cell types (0.68 > or = R2 < or = 0.77). Coimmunoprecipitation of PFK with CAV-1 further validated the possible interaction between the proteins. We conclude that a similar distribution of one pool of PFK with CAV-1 contributes to the compartmentation of glycolysis from gluconeogenesis.
Collapse
Affiliation(s)
- Johana Vallejo
- Department of Medical Pharmacology and Physiology, MA 415 Medical Sciences Bldg., University of Missouri, Columbia, MO 65212, USA
| | | |
Collapse
|
43
|
Abstract
Despite the fact that the central nervous system parenchyma does not contain lymphatics, extracranial lymphatic vessels play a very important role in volumetric cerebrospinal fluid (CSF) transport. The most important extracranial location at which lymphatics gain access to CSF is in the nasal submucosa after CSF convects through the cribriform plate. At relatively low intracranial pressures (ICPs), the majority of cranial CSF absorption occurs through this pathway. Global CSF transport parameters in the late gestation fetus and adult sheep are very similar, even though significant numbers of arachnoid projections seem to exist only in the adult. Therefore, extracranial lymphatic vessels play an important role in CSF transport before birth and may represent the primary mechanism for CSF absorption in the neonate. Based on these considerations, hydrocephalus may involve reduced CSF transport to, or into extracranial lymphatic absorption sites.
Collapse
Affiliation(s)
- Miles Johnston
- Neuroscience Research, Department of Laboratory Medicine and Pathobiology, Sunnybrook and Women's College Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
44
|
Hall JL, Gibbons GH, Chatham JC. IGF-I promotes a shift in metabolic flux in vascular smooth muscle cells. Am J Physiol Endocrinol Metab 2002; 283:E465-71. [PMID: 12169439 DOI: 10.1152/ajpendo.00072.2002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
13C-nuclear magnetic resonance (NMR) spectroscopy was used to test our hypothesis that insulin-like growth factor I (IGF-I) stimulates glucose flux into both nonoxidative and oxidative pathways in vascular smooth muscle cells (VSMC). Rat VSMC were exposed to uniformly labeled [13C]glucose ([U-13C]glucose; 5.5 mM) and [3-13C]pyruvate (1 mM) in the presence and absence of IGF-I (100 ng/ml). IGF-I increased glucose flux through glycolysis and the tricarboxylic acid (TCA) cycle as well as total anaplerotic flux into the TCA cycle. Previous work in our laboratory identified an increase in GLUT1 content and glucose metabolism in neointimal VSMC that was sufficient to promote proliferation and inhibit apoptosis. To test whether IGF-I could potentiate the GLUT1-induced increased flux in the neointima, we utilized VSMC harboring constitutive overexpression of GLUT1. Indeed, IGF-I markedly potentiated the GLUT1-induced increase in glucose flux through glycolysis and the TCA cycle. Taken together, these findings demonstrate that upregulation of glucose transport through either IGF-I or increased GLUT1 content stimulates glucose flux through both nonoxidative and oxidative pathways in VSMC.
Collapse
Affiliation(s)
- Jennifer L Hall
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia 30310, USA.
| | | | | |
Collapse
|
45
|
Harling-Berg CJ, Hallett JJ, Park JT, Knopf PM. Hierarchy of immune responses to antigen in the normal brain. Curr Top Microbiol Immunol 2002; 265:1-22. [PMID: 12014185 DOI: 10.1007/978-3-662-09525-6_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- C J Harling-Berg
- Department of Pediatrics, School of Medicine, Brown University, Providence, RI 02912, USA
| | | | | | | |
Collapse
|
46
|
Silver I, Kim C, Mollanji R, Johnston M. Cerebrospinal fluid outflow resistance in sheep: impact of blocking cerebrospinal fluid transport through the cribriform plate. Neuropathol Appl Neurobiol 2002; 28:67-74. [PMID: 11849565 DOI: 10.1046/j.1365-2990.2002.00373.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent studies in sheep suggest that a significant proportion of global cerebrospinal fluid (CSF) drainage (50% or greater) occurs through the cribriform plate into nasal mucosal lymphatics. If this is true, obstructing CSF clearance through the cribriform plate should have an impact on the ability of the intracranial pressure regulating systems to compensate for volume infusions. To test this concept, bolus infusions of artificial CSF were administered into one lateral ventricle in sheep and the intracranial pressure monitored from the contralateral side. Peak intracranial pressures (ICP) were measured and CSF outflow resistances were calculated from the pressure patterns observed in response to bolus infusions administered before and after the cribriform plate was sealed in the same animal. To obstruct the cribriform plate, a portion of nasal bone was removed to expose the nasal mucosa. The olfactory mucosa, a portion of the nasal mucosa and all soft tissue on the extracranial surface of the cribriform plate were scraped away with a curette and the bone surface sealed with bone wax. Obstruction of CSF transport through the cribriform plate increased the peak ICP after infusion (P = 0.016) and augmented the time required for ICP to return to baseline. CSF outflow resistance was elevated approximately 2.7 times (P = 0.006). When the cribriform plate was left intact (sham surgery), no significant changes in peak ICP or CSF outflow resistance were observed. We conclude that the cribriform plate represents an important site for CSF clearance. Obstruction of this pathway reduces volumetric CSF transport significantly.
Collapse
Affiliation(s)
- I Silver
- Trauma Research Program, Department of Laboratory Medicine and Pathobiology, Sunnybrook and Women's College Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
47
|
Abstract
The role of glycogen as an oxidative substrate for vascular smooth muscle (VSM) remains controversial. To elucidate the importance of glycogen as an oxidative substrate and the influence of glycogen flux on VSM substrate selection, we systematically altered glycogen levels and measured metabolism of glucose, acetate, and glycogen. Hog carotid arteries with glycogen contents ranging from 1 to 11 micromol/g were isometrically contracted in physiological salt solution containing 5 mM [1-(13)C]glucose and 1 mM [1, 2-(13)C]acetate at 37 degrees C for 6 h. [1-(13)C]glucose, [1, 2-(13)C]acetate, and glycogen oxidation were simultaneously measured with the use of a (13)C-labeled isotopomer analysis of glutamate. Although oxidation of glycogen increased with the glycogen content of the tissue, glycogen oxidation contributed only approximately 10% of the substrate oxidized by VSM. Whereas [1-(13)C]glucose flux, [3-(13)C]lactate production from [1-(13)C]glucose, and [1, 2-(13)C]acetate oxidation were not regulated by glycogen content, [1-(13)C]glucose oxidation was significantly affected by the glycogen content of VSM. However, [1-(13)C]glucose remained the primary ( approximately 40-50%) contributor to substrate oxidation. Therefore, we conclude that glucose is the predominate substrate oxidized by VSM, and glycogen oxidation contributes minimally to substrate oxidation.
Collapse
Affiliation(s)
- T J Allen
- Department of Physiology, University of Missouri, Columbia 65212, USA
| | | |
Collapse
|
48
|
Lloyd PG, Hardin CD. Sorting of metabolic pathway flux by the plasma membrane in cerebrovascular smooth muscle cells. Am J Physiol Cell Physiol 2000; 278:C803-11. [PMID: 10751328 DOI: 10.1152/ajpcell.2000.278.4.c803] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We used beta-escin-permeabilized pig cerebral microvessels (PCMV) to study the organization of carbohydrate metabolism in the cytoplasm of vascular smooth muscle (VSM) cells. We have previously demonstrated (Lloyd PG and Hardin CD. Am J Physiol Cell Physiol 277: C1250-C1262, 1999) that intact PCMV metabolize the glycolytic intermediate [1-(13)C]fructose 1,6-bisphosphate (FBP) to [1-(13)C]glucose with negligible production of [3-(13)C]lactate, while simultaneously metabolizing [2-(13)C]glucose to [2-(13)C]lactate. Thus gluconeogenic and glycolytic intermediates do not mix freely in intact VSM cells (compartmentation). Permeabilized PCMV retained the ability to metabolize [2-(13)C]glucose to [2-(13)C]lactate and to metabolize [1-(13)C]FBP to [1-(13)C]glucose. The continued existence of glycolytic and gluconeogenic activity in permeabilized cells suggests that the intermediates of these pathways are channeled (directly transferred) between enzymes. Both glycolytic and gluconeogenic flux in permeabilized PCMV were sensitive to the presence of exogenous ATP and NAD. It was most interesting that a major product of [1-(13)C]FBP metabolism in permeabilized PCMV was [3-(13)C]lactate, in direct contrast to our previous findings in intact PCMV. Thus disruption of the plasma membrane altered the distribution of substrates between the glycolytic and gluconeogenic pathways. These data suggest that organization of the plasma membrane into distinct microdomains plays an important role in sorting intermediates between the glycolytic and gluconeogenic pathways in intact cells.
Collapse
Affiliation(s)
- P G Lloyd
- Department of Physiology, University of Missouri-Columbia, Columbia, Missouri 65212, USA
| | | |
Collapse
|
49
|
Lloyd PG, Hardin CD. Role of microtubules in the regulation of metabolism in isolated cerebral microvessels. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:C1250-62. [PMID: 10600777 DOI: 10.1152/ajpcell.1999.277.6.c1250] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We used (13)C-labeled substrates and nuclear magnetic resonance spectroscopy to examine carbohydrate metabolism in vascular smooth muscle of freshly isolated pig cerebral microvessels (PCMV). PCMV utilized [2-(13)C]glucose mainly for glycolysis, producing [2-(13)C]lactate. Simultaneously, PCMV utilized the glycolytic intermediate [1-(13)C]fructose 1,6-bisphosphate (FBP) mainly for gluconeogenesis, producing [1-(13)C]glucose with only minor [3-(13)C]lactate production. The dissimilarity in metabolism of [2-(13)C]FBP derived from [2-(13)C]glucose breakdown and metabolism of exogenous [1-(13)C]FBP demonstrates that carbohydrate metabolism is compartmented in PCMV. Because glycolytic enzymes interact with microtubules, we disrupted microtubules with vinblastine. Vinblastine treatment significantly decreased [2-(13)C]lactate peak intensity (87.8 +/- 3.7% of control). The microtubule-stabilizing agent taxol also reduced [2-(13)C]lactate peak intensity (90.0 +/- 2. 4% of control). Treatment with both agents further decreased [2-(13)C]lactate production (73.3 +/- 4.0% of control). Neither vinblastine, taxol, or the combined drugs affected [1-(13)C]glucose peak intensity (gluconeogenesis) or disrupted the compartmentation of carbohydrate metabolism. The similar effects of taxol and vinblastine, drugs that have opposite effects on microtubule assembly, suggest that they produce their effects on glycolytic rate by competing with glycolytic enzymes for binding, not by affecting the overall assembly state of the microtubule network. Glycolysis, but not gluconeogenesis, may be regulated in part by glycolytic enzyme-microtubule interactions.
Collapse
Affiliation(s)
- P G Lloyd
- Department of Physiology, University of Missouri-Columbia, Columbia, Missouri 65212, USA
| | | |
Collapse
|
50
|
Abstract
Substrate channeling is the process in which the intermediate produced by one enzyme is transferred to the next enzyme without complete mixing with the bulk phase. This process is equivalent to a microcompartmentation of the intermediate, although classic diffusion occurs simultaneously to varying extents in many of these cases. This microcompartmentation and other factors of channeling provide many potential biological advantages. Extensive examples of channeling can be found in the cited reviews. The choice of methods to detect and characterize substrate channeling depends extensively on the type of enzyme associations involved, the constants of the system, and, to some extent, the mechanism of channeling. Thus it is important to distinguish stable, dynamic, and catalytically induced enzyme associations as well as recognize different mechanisms of substrate channeling. We discuss the principles, experimental details, and limitations and precautions of five rather general methods. These use measurements of transient times, isotope dilution or enhancement, competing reaction effects, enzyme buffering kinetics, and transient-state kinetics. These encompass methods applicable to studies in vitro, in situ, and in vivo. None of these methods is applicable to all systems. They are also susceptible to artifacts without proper attention to precautions. Transient-state kinetic methods clearly excel in elucidating molecular mechanisms of channeling. However, they are often not the best method for initial detection and characterization of the process and they are not applicable to many complex systems. Several other methods that have been successful in indicating substrate channeling are briefly described.
Collapse
Affiliation(s)
- H O Spivey
- Department of Biochemistry and Molecular Biology, 246 NRC, Oklahoma State University, Stillwater, Oklahoma 74078-3035, USA.
| | | |
Collapse
|