1
|
do Prado FD, Vera M, Hermida M, Bouza C, Pardo BG, Vilas R, Blanco A, Fernández C, Maroso F, Maes GE, Turan C, Volckaert FAM, Taggart JB, Carr A, Ogden R, Nielsen EE, Martínez P. Parallel evolution and adaptation to environmental factors in a marine flatfish: Implications for fisheries and aquaculture management of the turbot ( Scophthalmus maximus). Evol Appl 2018; 11:1322-1341. [PMID: 30151043 PMCID: PMC6099829 DOI: 10.1111/eva.12628] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/23/2018] [Indexed: 12/16/2022] Open
Abstract
Unraveling adaptive genetic variation represents, in addition to the estimate of population demographic parameters, a cornerstone for the management of aquatic natural living resources, which, in turn, represent the raw material for breeding programs. The turbot (Scophthalmus maximus) is a marine flatfish of high commercial value living on the European continental shelf. While wild populations are declining, aquaculture is flourishing in southern Europe. We evaluated the genetic structure of turbot throughout its natural distribution range (672 individuals; 20 populations) by analyzing allele frequency data from 755 single nucleotide polymorphism discovered and genotyped by double-digest RAD sequencing. The species was structured into four main regions: Baltic Sea, Atlantic Ocean, Adriatic Sea, and Black Sea, with subtle differentiation apparent at the distribution margins of the Atlantic region. Genetic diversity and effective population size estimates were highest in the Atlantic populations, the area of greatest occurrence, while turbot from other regions showed lower levels, reflecting geographical isolation and reduced abundance. Divergent selection was detected within and between the Atlantic Ocean and Baltic Sea regions, and also when comparing these two regions with the Black Sea. Evidence of parallel evolution was detected between the two low salinity regions, the Baltic and Black seas. Correlation between genetic and environmental variation indicated that temperature and salinity were probably the main environmental drivers of selection. Mining around the four genomic regions consistently inferred to be under selection identified candidate genes related to osmoregulation, growth, and resistance to diseases. The new insights are useful for the management of turbot fisheries and aquaculture by providing the baseline for evaluating the consequences of turbot releases from restocking and farming.
Collapse
Affiliation(s)
- Fernanda Dotti do Prado
- Department of Zoology, Genetics and Physical AnthropologyUniversity of Santiago de CompostelaLugoSpain
- CAPES FoundationMinistry of Education of BrazilBrasíliaBrazil
| | - Manuel Vera
- Department of Zoology, Genetics and Physical AnthropologyUniversity of Santiago de CompostelaLugoSpain
| | - Miguel Hermida
- Department of Zoology, Genetics and Physical AnthropologyUniversity of Santiago de CompostelaLugoSpain
| | - Carmen Bouza
- Department of Zoology, Genetics and Physical AnthropologyUniversity of Santiago de CompostelaLugoSpain
| | - Belén G. Pardo
- Department of Zoology, Genetics and Physical AnthropologyUniversity of Santiago de CompostelaLugoSpain
| | - Román Vilas
- Department of Zoology, Genetics and Physical AnthropologyUniversity of Santiago de CompostelaLugoSpain
| | - Andrés Blanco
- Department of Zoology, Genetics and Physical AnthropologyUniversity of Santiago de CompostelaLugoSpain
| | - Carlos Fernández
- Department of Zoology, Genetics and Physical AnthropologyUniversity of Santiago de CompostelaLugoSpain
| | - Francesco Maroso
- Department of Zoology, Genetics and Physical AnthropologyUniversity of Santiago de CompostelaLugoSpain
| | - Gregory E. Maes
- Laboratory of Biodiversity and Evolutionary GenomicsUniversity of LeuvenLeuvenBelgium
- Center for Human GeneticsUZ Leuven‐Genomics Core, KU LeuvenLeuvenBelgium
- Comparative Genomics CentreCollege of Science and EngineeringJames Cook UniversityTownsvilleQLDAustralia
| | - Cemal Turan
- Faculty of Marine Science and TechnologyIskenderun Technical UniversityIskenderunTurkey
| | - Filip A. M. Volckaert
- Laboratory of Biodiversity and Evolutionary GenomicsUniversity of LeuvenLeuvenBelgium
- Center for Human GeneticsUZ Leuven‐Genomics Core, KU LeuvenLeuvenBelgium
- Comparative Genomics CentreCollege of Science and EngineeringJames Cook UniversityTownsvilleQLDAustralia
| | | | | | - Rob Ogden
- Trace Wildlife Forensics NetworkRoyal Zoological Society of ScotlandEdinburghUK
| | - Einar Eg Nielsen
- National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | | | - Paulino Martínez
- Department of Zoology, Genetics and Physical AnthropologyUniversity of Santiago de CompostelaLugoSpain
| |
Collapse
|
2
|
Mandal A, Shahidullah M, Delamere NA. TRPV1-dependent ERK1/2 activation in porcine lens epithelium. Exp Eye Res 2018; 172:128-136. [PMID: 29654770 DOI: 10.1016/j.exer.2018.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/21/2018] [Accepted: 04/10/2018] [Indexed: 01/07/2023]
Abstract
Recently we determined that the Transient Receptor Potential Vanilloid 4 ion channel (TRPV4) has a crucial signaling role in a pathway that regulates various aspects of lens epithelium function. Here, we report on a different TRPV channel, TRPV1, in porcine lens. The presence of TRPV1 in the lens was evident from RT-PCR studies and Western blot analysis of MAPK signaling pathway activation caused by the TRPV1 agonist capsaicin. TRPV1 mRNA was detected in the epithelium of porcine as well as human lens. Transient ERK1/2 and p38 MAPK phosphorylation was detected within 1 min in the epithelium isolated from intact porcine lenses exposed to capsaicin (100 nM), a selective TRPV1 agonist, and the response was significantly inhibited by A889245 (1.0 μM), a TRPV1 antagonist. A similar ERK 1/2 and p38 response in the epithelium, also inhibitable by A889245, was evident in lenses treated with hyperosmotic solution (350 vs 300 mOsm). Lenses pre-treated with either the cytosolic Ca2+ chelator BAPTA-AM or the PKC inhibitor sotrastaurin (1.0 μM) had a diminished ERK1/2 activation response to capsaicin and hyperosmotic solution. Taken together the findings support the notion that TRPV1 functions as a plasma membrane ion channel that, when activated, permits the entry of extracellular calcium into the lens epithelium, leading to activation of PKC, ERK1/2 and p38 MAPK. It is significant that the findings confirm earlier proposals that hyperosmotic stress is linked to TRPV1 channel activation in the mouse lens. Further studies are ongoing to determine what functional changes are triggered by the TRPV1-linked signaling pathways and how they might relate to lens volume homeostasis.
Collapse
Affiliation(s)
- Amritlal Mandal
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | - Mohammad Shahidullah
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA; Department of Ophthalmology & Vision Science, University of Arizona, Tucson, AZ 85724, USA.
| | - Nicholas A Delamere
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA; Department of Ophthalmology & Vision Science, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
3
|
Zálešák M, BlaŽíček P, Pancza D, Gablovský I, Štrbák V, Ravingerová T. Hyperosmotic environment blunts effectivity of ischemic preconditioning against ischemia-reperfusion injury and improves ischemic tolerance in non-preconditioned isolated rat hearts. Physiol Res 2017; 65:1045-1051. [PMID: 27959577 DOI: 10.33549/physiolres.933362] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Several studies have shown that diabetes mellitus modulates heart resistance to ischemia and abrogates effectivity of cardioprotective interventions, such as ischemic preconditioning (IP). The aim of this study was to evaluate whether the effect of hyperglycemic conditions on the severity of ischemia-reperfusion (I/R) injury in preconditioned and non-preconditioned hearts (controls, C) is related to changes in osmotic activity of glucose. Experiments were performed in isolated rat hearts perfused according to Langendorff exposed to 30-min coronary occlusion/120-min reperfusion. IP was induced by two cycles of 5-min coronary occlusion/5-min reperfusion, prior to the long-term I/R. Hyperosmotic (HO) state induced by an addition of mannitol (11 mmol/l) to a standard Krebs-Henseleit perfusion medium significantly decreased the size of infarction and also suppressed a release of heart fatty acid binding protein (h-FABP - biomarker of cell injury) from the non-IP hearts nearly to 50 %, in comparison with normoosmotic (NO) mannitol-free perfusion. However, IP in HO conditions significantly increased the size of infarction and tended to elevate the release of h-FABP to the effluent from the heart. The results indicate that HO environment plays a cardioprotective role in the ischemic myocardium. On the other hand, increased osmolarity, similar to that in the hyperglycemic conditions, may play a pivotal role in a failure of IP to induce cardioprotection in the diabetic myocardium.
Collapse
Affiliation(s)
- M Zálešák
- Institute for Heart Research, Slovak Academy of Science, Bratislava, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
4
|
Zhou X, Naguro I, Ichijo H, Watanabe K. Mitogen-activated protein kinases as key players in osmotic stress signaling. Biochim Biophys Acta Gen Subj 2016; 1860:2037-52. [PMID: 27261090 DOI: 10.1016/j.bbagen.2016.05.032] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/21/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND Osmotic stress arises from the difference between intracellular and extracellular osmolality. It induces cell swelling or shrinkage as a consequence of water influx or efflux, which threatens cellular activities. Mitogen-activated protein kinases (MAPKs) play central roles in signaling pathways in osmotic stress responses, including the regulation of intracellular levels of inorganic ions and organic osmolytes. SCOPE OF REVIEW The present review summarizes the cellular osmotic stress response and the function and regulation of the vertebrate MAPK signaling pathways involved. We also describe recent findings regarding apoptosis signal-regulating kinase 3 (ASK3), a MAP3K member, to demonstrate its regulatory effects on signaling molecules beyond MAPKs. MAJOR CONCLUSIONS MAPKs are rapidly activated by osmotic stress and have diverse roles, such as cell volume regulation, gene expression, and cell survival/death. There is significant cell type specificity in the function and regulation of MAPKs. Based on its activity change during osmotic stress and its regulation of the WNK1-SPAK/OSR1 pathway, ASK3 is expected to play important roles in osmosensing mechanisms and cellular functions related to osmoregulation. GENERAL SIGNIFICANCE MAPKs are essential for various cellular responses to osmotic stress; thus, the identification of the upstream regulators of MAPK pathways will provide valuable clues regarding the cellular osmosensing mechanism, which remains elusive in mammals. The elucidation of in vivo MAPK functions is also important because osmotic stress in physiological and pathophysiological conditions often results from changes in the intracellular osmolality. These studies potentially contribute to the establishment of therapeutic strategies against diseases that accompany osmotic perturbation.
Collapse
Affiliation(s)
- Xiangyu Zhou
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Isao Naguro
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kengo Watanabe
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Wang H, Ferraris JD, Klein JD, Sands JM, Burg MB, Zhou X. PKC-α contributes to high NaCl-induced activation of NFAT5 (TonEBP/OREBP) through MAPK ERK1/2. Am J Physiol Renal Physiol 2014; 308:F140-8. [PMID: 25391900 DOI: 10.1152/ajprenal.00471.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
High NaCl in the renal medullary interstitial fluid powers the concentration of urine but can damage cells. The transcription factor nuclear factor of activated T cells 5 (NFAT5) activates the expression of osmoprotective genes. We studied whether PKC-α contributes to the activation of NFAT5. PKC-α protein abundance was greater in the renal medulla than in the cortex. Knockout of PKC-α reduced NFAT5 protein abundance and expression of its target genes in the inner medulla. In human embryonic kidney (HEK)-293 cells, high NaCl increased PKC-α activity, and small interfering RNA-mediated knockdown of PKC-α attenuated high NaCl-induced NFAT5 transcriptional activity. Expression of ERK1/2 protein and phosphorylation of ERK1/2 were higher in the renal inner medulla than in the cortex. Knockout of PKC-α decreased ERK1/2 phosphorylation in the inner medulla, as did knockdown of PKC-α in HEK-293 cells. Also, knockdown of ERK2 reduced high NaCl-dependent NFAT5 transcriptional activity in HEK-293 cells. Combined knockdown of PKC-α and ERK2 had no greater effect than knockdown of either alone. Knockdown of either PKC-α or ERK2 reduced the high NaCl-induced increase of NFAT5 transactivating activity. We have previously found that the high NaCl-induced increase of phosphorylation of Ser(591) on Src homology 2 domain-containing phosphatase 1 (SHP-1-S591-P) contributes to the activation of NFAT5 in cell culture, and here we found high levels of SHP-1-S591-P in the inner medulla. PKC-α has been previously shown to increase SHP-1-S591-P, which raised the possibility that PKC-α might be acting through SHP-1. However, we did not find that knockout of PKC-α in the renal medulla or knockdown in HEK-293 cells affected SHP-1-S591-P. We conclude that PKC-α contributes to high NaCl-dependent activation of NFAT5 through ERK1/2 but not through SHP-1-S591.
Collapse
Affiliation(s)
- Hong Wang
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Joan D Ferraris
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland; and
| | - Janet D Klein
- Renal Division, School of Medicine, Emory University, Atlanta, Georgia
| | - Jeff M Sands
- Renal Division, School of Medicine, Emory University, Atlanta, Georgia
| | - Maurice B Burg
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland; and
| | - Xiaoming Zhou
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland;
| |
Collapse
|
6
|
Wang H, Ferraris JD, Klein JD, Sands JM, Burg MB, Zhou X. PKC-α contributes to high NaCl-induced activation of NFAT5 (TonEBP/OREBP) through MAPK ERK1/2. Am J Physiol Renal Physiol 2014. [PMID: 25391900 DOI: 10.1152/ajprenal.00471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
High NaCl in the renal medullary interstitial fluid powers the concentration of urine but can damage cells. The transcription factor nuclear factor of activated T cells 5 (NFAT5) activates the expression of osmoprotective genes. We studied whether PKC-α contributes to the activation of NFAT5. PKC-α protein abundance was greater in the renal medulla than in the cortex. Knockout of PKC-α reduced NFAT5 protein abundance and expression of its target genes in the inner medulla. In human embryonic kidney (HEK)-293 cells, high NaCl increased PKC-α activity, and small interfering RNA-mediated knockdown of PKC-α attenuated high NaCl-induced NFAT5 transcriptional activity. Expression of ERK1/2 protein and phosphorylation of ERK1/2 were higher in the renal inner medulla than in the cortex. Knockout of PKC-α decreased ERK1/2 phosphorylation in the inner medulla, as did knockdown of PKC-α in HEK-293 cells. Also, knockdown of ERK2 reduced high NaCl-dependent NFAT5 transcriptional activity in HEK-293 cells. Combined knockdown of PKC-α and ERK2 had no greater effect than knockdown of either alone. Knockdown of either PKC-α or ERK2 reduced the high NaCl-induced increase of NFAT5 transactivating activity. We have previously found that the high NaCl-induced increase of phosphorylation of Ser(591) on Src homology 2 domain-containing phosphatase 1 (SHP-1-S591-P) contributes to the activation of NFAT5 in cell culture, and here we found high levels of SHP-1-S591-P in the inner medulla. PKC-α has been previously shown to increase SHP-1-S591-P, which raised the possibility that PKC-α might be acting through SHP-1. However, we did not find that knockout of PKC-α in the renal medulla or knockdown in HEK-293 cells affected SHP-1-S591-P. We conclude that PKC-α contributes to high NaCl-dependent activation of NFAT5 through ERK1/2 but not through SHP-1-S591.
Collapse
Affiliation(s)
- Hong Wang
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Joan D Ferraris
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland; and
| | - Janet D Klein
- Renal Division, School of Medicine, Emory University, Atlanta, Georgia
| | - Jeff M Sands
- Renal Division, School of Medicine, Emory University, Atlanta, Georgia
| | - Maurice B Burg
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland; and
| | - Xiaoming Zhou
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland;
| |
Collapse
|
7
|
Sasahara T, Yayama K, Okamoto H. p38 Mitogen-Activated Protein Kinase Mediates Hyperosmolarity-Induced Vasoconstriction through Myosin Light Chain Phosphorylation and Actin Polymerization in Rat Aorta. Biol Pharm Bull 2013; 36:1849-56. [DOI: 10.1248/bpb.b13-00563] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tomoya Sasahara
- Laboratory of Cardiovascular Pharmacology, Department of Biopharmaceutical Sciences, Kobe Gakuin University
| | - Katsutoshi Yayama
- Laboratory of Cardiovascular Pharmacology, Department of Biopharmaceutical Sciences, Kobe Gakuin University
| | - Hiroshi Okamoto
- Laboratory of Cardiovascular Pharmacology, Department of Biopharmaceutical Sciences, Kobe Gakuin University
| |
Collapse
|
8
|
Cao C, Yu X, Liao Z, Zhu N, Huo H, Wang M, Ji G, She H, Luo Z, Yue S. Hypertonic saline reduces lipopolysaccharide-induced mouse brain edema through inhibiting aquaporin 4 expression. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:R186. [PMID: 23036239 PMCID: PMC3682288 DOI: 10.1186/cc11670] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 10/04/2012] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Three percent sodium chloride (NaCl) treatment has been shown to reduce brain edema and inhibited brain aquaporin 4 (AQP4) expression in bacterial meningitis induced by Escherichia coli. Lipopolysaccharide (LPS) is the main pathogenic component of E. coli. We aimed to explore the effect of 3% NaCl in mouse brain edema induced by LPS, as well as to elucidate the potential mechanisms of action. METHODS Three percent NaCl was used to treat cerebral edema induced by LPS in mice in vivo. Brain water content, IL-1β, TNFα, immunoglobulin G (IgG), AQP4 mRNA and protein were measured in brain tissues. IL-1β, 3% NaCl and calphostin C (a specific inhibitor of protein kinase C) were used to treat the primary astrocytes in vitro. AQP4 mRNA and protein were measured in astrocytes. Differences in various groups were determined by one-way analysis of variance. RESULTS Three percent NaCl attenuated the increase of brain water content, IL-1β, TNFα, IgG, AQP4 mRNA and protein in brain tissues induced by LPS. Three percent NaCl inhibited the increase of AQP4 mRNA and protein in astrocytes induced by IL-1β in vitro. Calphostin C blocked the decrease of AQP4 mRNA and protein in astrocytes induced by 3% NaCl in vitro. CONCLUSIONS Osmotherapy with 3% NaCl ameliorated LPS-induced cerebral edema in vivo. In addition to its osmotic force, 3% NaCl exerted anti-edema effects possibly through down-regulating the expression of proinflammatory cytokines (IL-1β and TNFα) and inhibiting the expression of AQP4 induced by proinflammatory cytokines. Three percent NaCl attenuated the expression of AQP4 through activation of protein kinase C in astrocytes.
Collapse
|
9
|
Madonna R, De Caterina R. Cellular and molecular mechanisms of vascular injury in diabetes--part II: cellular mechanisms and therapeutic targets. Vascul Pharmacol 2011; 54:75-9. [PMID: 21453785 DOI: 10.1016/j.vph.2011.03.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 03/19/2011] [Indexed: 11/29/2022]
Abstract
Although the mechanisms by which insulin-resistance and hyperglycemia lead to cardiovascular disease are still incompletely understood, all mechanisms apparently converge on the vessel wall and the endothelium as a common disease target. Endothelial cells play a crucial role in vascular homeostasis, providing a functional barrier and modulating several signals involved in vasomotion, as well as antiplatelet, anti-inflammatory, anti-proliferative, and anti-oxidant properties of the vessel wall. Endothelial cell dysfunction occurs early in diabetes and insulin resistance states. Since atherosclerosis may result from an imbalance between the magnitude of vascular injury and the capacity of repair, a role has been recently postulated for a defective mobilization of vascular progenitors, including endothelial progenitor cells, in the pathogenesis of vascular disease. Here we summarize the evidence for such an occurrence. We also here highlight how new insights into pathways of vascular damage in diabetes may indicate new targets for preventive and treatment strategies.
Collapse
|
10
|
Pastukh V, Chen H, Wu S, Jong CJ, Alexeyev M, Schaffer SW. Effect of hypernatremia on injury caused by energy deficiency: role of T-type Ca2+ channel. Am J Physiol Cell Physiol 2010; 299:C289-97. [PMID: 20505041 DOI: 10.1152/ajpcell.00362.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypernatremia exerts multiple cellular effects, many of which could influence the outcome of an ischemic event. To further evaluate these effects of hypernatremia, isolated neonatal cardiomyocytes were chronically incubated with medium containing either normal (142 mM) or elevated sodium (167 mM) and then transferred to medium containing deoxyglucose and the electron transport chain inhibitor amobarbital. Chronic hypernatremia diminished the degree of calcium accumulation and reactive oxygen species generation during the period of metabolic inhibition. The improvement in calcium homeostasis was traced in part to the downregulation of the Ca(V)3.1 T-type calcium channel, as deficiency in the Ca(V)3.1 subtype using short hairpin RNA or treatment with an inhibitor of the Ca(V)3.1 variant of the T-type calcium channel (i.e., diphenylhydantoin) attenuated energy deficiency-mediated calcium accumulation and cell death. Although hyperosmotically stressed cells (exposed to 50 mM mannitol) had no effect on T-type calcium channel activity, they were also resistant to death during metabolic inhibition. Both hyperosmotic stress and hypernatremia activated Akt, suggesting that they initiate the phosphatidylinositol 3-kinase/Akt cytoprotective pathway, which protects the cell against calcium overload and oxidative stress. Thus hypernatremia appears to protect the cell against metabolic inhibition by promoting the downregulation of the T-type calcium channel and stimulating cytoprotective protein kinase pathways.
Collapse
Affiliation(s)
- Viktor Pastukh
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, Alabama, USA
| | | | | | | | | | | |
Collapse
|
11
|
Phospholipase C-gamma1 is involved in signaling the activation by high NaCl of the osmoprotective transcription factor TonEBP/OREBP. Proc Natl Acad Sci U S A 2009; 107:906-11. [PMID: 20080774 DOI: 10.1073/pnas.0913415107] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
High NaCl elevates activity of the osmoprotective transcription factor TonEBP/OREBP by increasing its phosphorylation, transactivating activity, and localization to the nucleus. We investigated the possible role in this activation of phospholipase C-gamma1 (PLC-gamma1), which has a predicted binding site at TonEBP/OREBP-phospho-Y143. We find the following. (i) Activation of TonEBP/OREBP transcriptional activity by high NaCl is reduced in PLC-gamma1 null cells and in HEK293 cells in which PLC-gamma1 is knocked down by a specific siRNA. (ii) High NaCl increases phosphorylation of TonEBP/OREBP at Y143. (iii) Wild-type PLC-gamma1 coimmunoprecipitates with wild-type TonEBP/OREBP but not TonEBP/OREBP-Y143A, and the coimmunoprecipitation is increased by high NaCl. (iv) PLC-gamma1 is part of the protein complex that associates with TonEBP/OREBP at its DNA binding site. (v) Knockdown of PLC-gamma1 or overexpression of a PLC-gamma1-SH3 deletion mutant reduces high NaCl-dependent TonEBP/OREBP transactivating activity. (vi) Nuclear localization of PLC-gamma1 is increased by high NaCl. (vii) High NaCl-induced nuclear localization of TonEBP/OREBP is reduced if cells lack PLC-gamma1, if PLC-gamma1 mutated in its SH2C domain is overexpressed, or if Y143 in TonEBP/OREBP is mutated to alanine. (viii) Expression of recombinant PLC-gamma1 restores nuclear localization of wild-type TonEBP/OREBP in PLC-gamma1 null cells but not of TonEBP/OREBP-Y143A. (ix) The PLC-gamma1 phospholipase inhibitor U72133 inhibits nuclear localization of TonEBP/OREBP but not the increase of its transactivating activity. We conclude that, when NaCl is elevated, TonEBP/OREBP becomes phosphorylated at Y143, resulting in binding of PLC-gamma1 to that site, which contributes to TonEBP/OREBP transcriptional activity, transactivating activity, and nuclear localization.
Collapse
|
12
|
Effect of taurine on protein kinase C isoforms: role in taurine's actions? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 643:3-11. [PMID: 19239131 DOI: 10.1007/978-0-387-75681-3_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Taurine is generally found to be cytoprotective, diminishing damage resulting from ischemia and from initiators of heart failure. Also linked to similar events in the heart is the protein kinase C (PKC) family, which consists of at least 12 different isoforms. Therefore, we proposed that PKC might contribute to the beneficial effects of taurine on cell viability and growth. One of the PKC isoforms that has been advanced as an important mediator of cytoprotection during ischemia is PKCepsilon. In this study, we found that incubation of isolated cardiomyocytes with medium containing 20 mM taurine led to the translocation of PKCepsilon into the membrane, an event commonly associated with the cardioprotective actions of the PKC isozyme. In addition, taurine promoted the upregulation of PKCalpha PKCbeta2 and PKCzeta. Because the effects of taurine and angiotensin II on PKC distribution were largely additive, PKC does not appear to contribute to the antagonism between taurine and angiotensin II. However, the upregulation of PKC by taurine is consistent with a role of taurine in normal cell growth. In the taurine deficient heart, cardiomyocyte size is reduced, an effect that is consistent with the effect of taurine on PKCepsilon. In conclusion, the cytoprotective and pro-growth actions of taurine appears to be mediated in part by the activation of PKCepsilon.
Collapse
|
13
|
Jackson EK, Mi Z. Regulation of renal ectophosphodiesterase by protein kinase C and sodium diet. J Pharmacol Exp Ther 2008; 325:210-6. [PMID: 18223197 DOI: 10.1124/jpet.107.134445] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Kidneys metabolize arterial cAMP to adenosine by the sequential actions of ectophosphodiesterase (cAMP --> AMP) and ecto-5'-nucleotidase (AMP --> adenosine). In this study, we demonstrated that etheno-AMP (fluorescent AMP analog) is nearly completely converted to etheno-adenosine during a single pass through the isolated, perfused rat kidney indicating that ecto-5'-nucleotidase is not rate limiting. Therefore, we examined the regulation of ectophosphodiesterase. In 17 control kidneys pretreated with alpha,beta-methylene-adenosine-5'-diphosphate (inhibitor of ecto-5'-nucleotidase to prevent AMP metabolism; 100 microM), addition of cAMP (10 microM) to the perfusate increased renal venous AMP from 0.6 +/- 0.2 to 3.5 +/- 0.5 nmol/min/g. Pretreatment of kidneys with phorbol 12-myristate 13-acetate (protein kinase C activator; 7.5 nM) increased renal vascular resistance and significantly augmented the cAMP-induced increase in renal venous AMP (from 0.8 +/- 0.2 to 5.2 +/- 0.7 nmol/min/g with cAMP). Pretreatment of kidneys with bisindolymaleimide I (protein kinase C inhibitor; 3 microM) abrogated the effects of phorbol 12-myristate 13-acetate on both renovascular resistance and cAMP conversion to AMP. Compared with kidneys from rats fed a high-sodium diet (3.15%) for 1 week, in kidneys from rats fed a low-sodium diet (0.03%) the conversion of cAMP to AMP was attenuated (high sodium, from 1.0 +/- 0.1 to 4.6 +/- 0.4 nmol/min/g with cAMP; low sodium, from 0.5 +/- 0.04 to 2.6 +/- 0.04 nmol/min/g with cAMP). We conclude that the renal vasculature efficiently converts AMP to adenosine and that metabolism of cAMP to AMP is rate limiting and regulated acutely by protein kinase C and chronically by sodium intake.
Collapse
Affiliation(s)
- Edwin K Jackson
- Center for Clinical Pharmacology, University of Pittsburgh School of Medicine, 100 Technology Drive, Suite 450, Pittsburgh, PA 15219, USA. edj+@pitt.edu
| | | |
Collapse
|
14
|
Carraway RE, Hassan S, Dobner PR. Protein kinase C inhibitors alter neurotensin receptor binding and function in prostate cancer PC3 cells. ACTA ACUST UNITED AC 2008; 147:96-109. [DOI: 10.1016/j.regpep.2008.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 11/30/2007] [Accepted: 01/31/2008] [Indexed: 01/02/2023]
|
15
|
Rasmussen M, Alexander RT, Darborg BV, Møbjerg N, Hoffmann EK, Kapus A, Pedersen SF. Osmotic cell shrinkage activates ezrin/radixin/moesin (ERM) proteins: activation mechanisms and physiological implications. Am J Physiol Cell Physiol 2007; 294:C197-212. [PMID: 17977945 DOI: 10.1152/ajpcell.00268.2007] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyperosmotic shrinkage induces multiple cellular responses, including activation of volume-regulatory ion transport, cytoskeletal reorganization, and cell death. Here we investigated the possible roles of ezrin/radixin/moesin (ERM) proteins in these events. Osmotic shrinkage of Ehrlich Lettre ascites cells elicited the formation of long microvillus-like protrusions, rapid translocation of endogenous ERM proteins and green fluorescent protein-tagged ezrin to the cortical region including these protrusions, and Thr(567/564/558) (ezrin/radixin/moesin) phosphorylation of cortical ERM proteins. Reduced cell volume appeared to be the critical parameter in hypertonicity-induced ERM protein activation, whereas alterations in extracellular ionic strength or intracellular pH were not involved. A shrinkage-induced increase in the level of membrane-associated phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] appeared to play an important role in ERM protein activation, which was prevented after PtdIns(4,5)P(2) depletion by expression of the synaptojanin-2 phosphatase domain. While expression of constitutively active RhoA increased basal ERM phosphorylation, the Rho-Rho kinase pathway did not appear to be involved in shrinkage-induced ERM protein phosphorylation, which was also unaffected by the inhibition or absence of Na(+)/H(+) exchanger isoform (NHE1). Ezrin knockdown by small interfering RNA increased shrinkage-induced NHE1 activity, reduced basal and shrinkage-induced Rho activity, and attenuated the shrinkage-induced formation of microvillus-like protrusions. Hyperosmolarity-induced cell death was unaltered by ezrin knockdown or after phosphatidylinositol 3-kinase (PI3K) inhibition. In conclusion, ERM proteins are activated by osmotic shrinkage in a PtdIns(4,5)P(2)-dependent, NHE1-independent manner. This in turn mitigates the shrinkage-induced activation of NHE1, augments Rho activity, and may also contribute to F-actin rearrangement. In contrast, no evidence was found for the involvement of an NHE1-ezrin-PI3K-PKB pathway in counteracting shrinkage-induced cell death.
Collapse
Affiliation(s)
- Maria Rasmussen
- Department of Molecular Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Cells in the renal inner medulla are normally exposed to extraordinarily high levels of NaCl and urea. The osmotic stress causes numerous perturbations because of the hypertonic effect of high NaCl and the direct denaturation of cellular macromolecules by high urea. High NaCl and urea elevate reactive oxygen species, cause cytoskeletal rearrangement, inhibit DNA replication and transcription, inhibit translation, depolarize mitochondria, and damage DNA and proteins. Nevertheless, cells can accommodate by changes that include accumulation of organic osmolytes and increased expression of heat shock proteins. Failure to accommodate results in cell death by apoptosis. Although the adapted cells survive and function, many of the original perturbations persist, and even contribute to signaling the adaptive responses. This review addresses both the perturbing effects of high NaCl and urea and the adaptive responses. We speculate on the sensors of osmolality and document the multiple pathways that signal activation of the transcription factor TonEBP/OREBP, which directs many aspects of adaptation. The facts that numerous cellular functions are altered by hyperosmolality and remain so, even after adaptation, indicate that both the effects of hyperosmolality and adaptation to it involve profound alterations of the state of the cells.
Collapse
|
17
|
Burkhart BA, Kennett SB, Archer TK. Osmotic stress-dependent repression is mediated by histone H3 phosphorylation and chromatin structure. J Biol Chem 2006; 282:4400-4407. [PMID: 17158874 DOI: 10.1074/jbc.m609041200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone H3 phosphorylation has been linked to various environmental stress responses and specific chromatin structure. The role of H3 phosphorylation in the osmotic stress response was investigated on the mouse mammary tumor virus (MMTV) promoter in different chromatin configurations. Hormone-dependent transcription from the MMTV promoter is repressed by osmotic stress when the promoter is integrated and has a normal chromatin structure. However, when the MMTV promoter is transiently transfected, the chromatin structure is less organized, and hormone induction is not affected by osmotic stress. On the integrated MMTV promoter, phosphorylation of histone H3 serine 10 and 28 increases in response to osmotic stress, but the transient promoter shows no change. Hormone-dependent glucocorticoid receptor binding is reduced on the repressed promoter, and elevated H3 phosphorylation is temporally correlated with maximal MMTV repression Additionally, the protein kinase C inhibitor rottlerin, but not other kinase inhibitors, blocks both histone H3 phosphorylation and osmotic repression of MMTV transcription. Glucocorticoid receptor binding is inversely correlated with H3 phosphorylation, suggesting that displacement of the glucocorticoid receptor from the promoter is due to H3 phosphorylation and is the mechanism for the osmotic repression of hormone-dependent transcription.
Collapse
Affiliation(s)
- Barbara A Burkhart
- Laboratory of Molecular Carcinogenesis, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Sarah B Kennett
- Laboratory of Molecular Carcinogenesis, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Trevor K Archer
- Laboratory of Molecular Carcinogenesis, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709.
| |
Collapse
|
18
|
Satriano J, Wead L, Cardus A, Deng A, Boss GR, Thomson SC, Blantz RC. Regulation of ecto-5'-nucleotidase by NaCl and nitric oxide: potential roles in tubuloglomerular feedback and adaptation. Am J Physiol Renal Physiol 2006; 291:F1078-82. [PMID: 16705150 DOI: 10.1152/ajprenal.00043.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The tubuloglomerular feedback (TGF) system serves to establish an appropriate balance between tubular reabsorption and glomerular filtration rate (GFR). High salt at the macula densa activates TGF to decrease GFR. Effector molecules for the TGF signal include ATP and adenosine. Over time, the GFR will adapt by increasing even if a high salt concentration persists. A potential modulator of this TGF adaptation is nitric oxide synthase-1-derived nitric oxide (NO). In isolated glomerular preparations, we developed a system for evaluating the effects of changing dietary salt on ecto-5'-nucleotidase (ecto-5'-NT) activity, the final enzyme in the conversion of ATP to adenosine. We found observable ecto-5'-NT activity in isolated glomeruli and that this activity can be regulated by dietary salt, with high salt increasing activity. Conversely, NO decreases ecto-5'-NT activity in glomerular preparations. Moreover, NO inhibition of ecto-5'-NT activity is suppressed in the presence of dithiothreitol, suggesting nitrosylation as a reversible, oxidative stress-sensitive mechanism. The salt-induced activation of ecto-5'-NT correlates with high salt resetting of TGF. NO inhibition of enzymatic activity could be part of the adaptive phase.
Collapse
Affiliation(s)
- Joseph Satriano
- Div. of Nephrology-Hypertension, UC San Diego and VASDHS, 3350 La Jolla Village Dr. (9111-H San Diego, CA 92161, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Kim TJ, Mitsutake S, Igarashi Y. The interaction between the pleckstrin homology domain of ceramide kinase and phosphatidylinositol 4,5-bisphosphate regulates the plasma membrane targeting and ceramide 1-phosphate levels. Biochem Biophys Res Commun 2006; 342:611-7. [PMID: 16488390 DOI: 10.1016/j.bbrc.2006.01.170] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Accepted: 01/31/2006] [Indexed: 10/25/2022]
Abstract
Ceramide kinase (CERK) converts ceramide to ceramide-1-phosphate (C1P), which has recently emerged as a new bioactive molecule capable of regulating diverse cellular functions. The N-terminus of the CERK protein encompasses a sequence motif known as a pleckstrin homology (PH) domain. Although the PH domain was previously demonstrated to be an important domain for the subcellular localization of CERK, the precise properties of this domain remained unclear. In this study, we reveal that the PH domain of CERK exhibits high affinity for phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)), among other lipids. Furthermore, in COS7 cells, GFP-fused CERK translocated rapidly from the cytoplasm to the plasma membrane in response to hyper-osmotic stress, which is known to increase the intracellular PI(4,5)P(2) levels, whereas a PH domain deletion mutant did not. Additionally, in [(32)P]orthophosphate-labeled COS7 cells, the translocation of CERK to the plasma membrane induced a 2.8-fold increase in C1P levels. The study presented here provides insight into the crucial role of the CERK-PH domain in plasma membrane targeting, through its binding to PI(4,5)P(2), and subsequent induction of C1P production in the vicinity of the membrane.
Collapse
Affiliation(s)
- Tack-Joong Kim
- Department of Biomembrane and Biofunctional Chemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12-Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | | | | |
Collapse
|
20
|
Marshall WS, Ossum CG, Hoffmann EK. Hypotonic shock mediation by p38 MAPK, JNK, PKC, FAK, OSR1 and SPAK in osmosensing chloride secreting cells of killifish opercular epithelium. ACTA ACUST UNITED AC 2005; 208:1063-77. [PMID: 15767308 DOI: 10.1242/jeb.01491] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hypotonic shock rapidly inhibits Cl(-) secretion by chloride cells, an effect that is osmotic and not produced by NaCl-depleted isosmotic solutions, yet the mechanism for the inhibition and its recovery are not known. We exposed isolated opercular epithelia, mounted in Ussing chambers, to hypotonic shock in the presence of a variety of chemicals: a general protein kinase C (PKC) inhibitor chelerythrine, Gö6976 that selectively blocks PKC alpha and beta subtypes, H-89 that blocks PKA, SB203580 that blocks p38 mitogen-activated protein kinase (MAPK), as well as serine/threonine protein phosphatase (PP1 and 2A) inhibitor okadaic acid, and finally tamoxifen, a blocker of volume-activated anion channels (VSOAC). Chelerythrine has no effect on hypotonic inhibition but blocked the recovery, indicating PKC involvement in stimulation. Gö6976 had little effect, suggesting that PKC alpha and PKC beta subtypes are not involved. H-89 did not block hypotonic inhibition but decreased the recovery, indicating PKA may be involved in the recovery and overshoot (after restoration of isotonic conditions). SB203580 significantly enhanced the decrease in current by hypotonic shock, suggesting an inhibitory role of p38 MAPK in the hypotonic inhibition. Okadaic acid increased the steady state current, slowed the hypotonic inhibition but made the decrease in current larger; also the recovery and overshoot were completely blocked. Hypotonic stress rapidly and transiently increased phosphorylated p38 MAPK (pp38) MAPK (measured by western analysis) by eightfold at 5 min, then more slowly again to sevenfold at 60 min. Hypertonic shock slowly increased p38 by sevenfold at 60 min. Phosphorylated JNK kinase was increased by 40-50% by both hypotonic and hypertonic shock and was still elevated at 30 min in hypertonic medium. By immunoblot analysis it was found that the stress protein kinase (SPAK) and oxidation stress response kinase 1 (OSR1) were present in salt and freshwater acclimated fish with higher expression in freshwater. By immunocytochemistry, SPAK, OSR1 and phosphorylated focal adhesion kinase (pFAK) were colocalized with NKCC at the basolateral membrane. The protein tyrosine kinase inhibitor genistein (100 micromol l(-1)) inhibited Cl(-) secretion that was high, increased Cl(-) secretion that was low and reduced immunocytochemical staining for phosphorylated FAK. We present a model for rapid control of CFTR and NKCC in chloride cells that includes: (1) activation of NKCC and CFTR via cAMP/PKA, (2) activation of NKCC by PKC, myosin light chain kinase (MLCK), p38, OSR1 and SPAK, (3) deactivation of NKCC by hypotonic cell swelling, Ca(2+) and an as yet unidentified protein phosphatase and (4) involvement of protein tyrosine kinase (PTK) acting on FAK to set levels of NKCC activity.
Collapse
Affiliation(s)
- W S Marshall
- Department of Biology, St Francis Xavier University, PO Box 5000 Antigonish, Nova Scotia, Canada B2G 2W5.
| | | | | |
Collapse
|
21
|
Asehnoune K, Strassheim D, Mitra S, Yeol Kim J, Abraham E. Involvement of PKCα/β in TLR4 and TLR2 dependent activation of NF-κB. Cell Signal 2005; 17:385-94. [PMID: 15567069 DOI: 10.1016/j.cellsig.2004.08.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Revised: 08/18/2004] [Accepted: 08/19/2004] [Indexed: 01/23/2023]
Abstract
Protein kinase C (PKC)alpha/beta dependent signaling events downstream of TLR4 or TLR2 were investigated in neutrophils stimulated with LPS or PGN. Pretreatment of neutrophils with the structurally distinct PKCalpha/beta inhibitors Go6976 or GF109203X decreased nuclear translocation of NF-kappaB and production of the proinflammatory cytokine TNF-alpha. Inhibition of PKCalpha/beta also prevented LPS or PGN induced phosphorylation of IKKalpha/beta, phosphorylation and degradation of IkappaB-alpha, as well as phosphorylation of the p65 subunit of NF-kappaB. Activation of p38, JNK, and ERK 1/2 in response to TLR2 engagement was diminished in neutrophils in which PKCalpha/beta was inhibited. However, no alteration in the activation of these kinases was found in TLR4 stimulated neutrophils when PKCalpha/beta was blocked. Such results indicate that distinct intracellular signalling pathways leading to MAPK activation are induced by TLR4 and TLR2 stimulation. PKCalpha/beta can regulate NF-kappaB dependent transcription in neutrophils both by enhancing nuclear translocation of NF-kappaB and also by stimulating phosphorylation of the p65 subunit.
Collapse
Affiliation(s)
- Karim Asehnoune
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Health Sciences Center, Box C272, 4200 East 9th Ave, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
22
|
Fernández-Tome M, Favale N, Kraemer L, Gabriela Márquez M, Speziale E, Sterin-Speziale N. p44/42ERK1/2 MAPK and PLD activation by PGD2 preserves papillary phosphatidylcholine homeostasis. Biochem Biophys Res Commun 2004; 320:1055-62. [PMID: 15249196 DOI: 10.1016/j.bbrc.2004.05.224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Indexed: 10/26/2022]
Abstract
Previous works from our laboratory demonstrated that PGD(2) modulates phosphatidylcholine (PC) biosynthesis in renal papillary tissue. In the present work, we have evaluated the mechanism by which PGD(2) exerts this action. PGD(2) caused two stimulatory waves in PC synthesis which were reproduced by its full-agonist BW245C. At 1min stimulation, PGD(2) increased PC synthesis by 131%; this increase was blocked by neomycin and ethanol, cheleritrine and U0126, PLD, PKC, and MEK1/2 inhibitors, respectively. A second PC synthesis increase (100%) was observed after 15min, which was blocked by PLD inhibitors. PGD(2) also increased phospho-ERK1/2 MAPK in a biphasic-fashion, which was abolished by PLC and PKC inhibitors but not by ethanol, which overincreased phospho-ERK1/2, suggesting that PGD(2)-induced ERK1/2 activation requires previous PLC-PKC activation while PLD down-regulates it. Our results indicate that PGD(2) stimulatory effect involves both PLD and ERK1/2-MAPK activation, and both pathways operate independently of PC synthesis homeostasis.
Collapse
Affiliation(s)
- María Fernández-Tome
- Faculty of Pharmacy and Biochemistry, Department of Biological Sciences, University of Buenos Aires, IQUIFIB-CONICET Ciudad de Buenos Aires (1113), Argentina
| | | | | | | | | | | |
Collapse
|
23
|
Wehner F, Olsen H, Tinel H, Kinne-Saffran E, Kinne RKH. Cell volume regulation: osmolytes, osmolyte transport, and signal transduction. Rev Physiol Biochem Pharmacol 2004; 148:1-80. [PMID: 12687402 DOI: 10.1007/s10254-003-0009-x] [Citation(s) in RCA: 242] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In recent years, it has become evident that the volume of a given cell is an important factor not only in defining its intracellular osmolality and its shape, but also in defining other cellular functions, such as transepithelial transport, cell migration, cell growth, cell death, and the regulation of intracellular metabolism. In addition, besides inorganic osmolytes, the existence of organic osmolytes in cells has been discovered. Osmolyte transport systems-channels and carriers alike-have been identified and characterized at a molecular level and also, to a certain extent, the intracellular signals regulating osmolyte movements across the plasma membrane. The current review reflects these developments and focuses on the contributions of inorganic and organic osmolytes and their transport systems in regulatory volume increase (RVI) and regulatory volume decrease (RVD) in a variety of cells. Furthermore, the current knowledge on signal transduction in volume regulation is compiled, revealing an astonishing diversity in transport systems, as well as of regulatory signals. The information available indicates the existence of intricate spatial and temporal networks that control cell volume and that we are just beginning to be able to investigate and to understand.
Collapse
Affiliation(s)
- F Wehner
- Max-Planck-Institut für molekulare Physiologie, Otto-Hahn-Str. 11, 44227, Dortmund, Germany.
| | | | | | | | | |
Collapse
|
24
|
Joseph EK, Levine JD. Sexual dimorphism in the contribution of protein kinase C isoforms to nociception in the streptozotocin diabetic rat. Neuroscience 2003; 120:907-13. [PMID: 12927197 DOI: 10.1016/s0306-4522(03)00400-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The contribution of second messenger signaling, glucose level and sex hormones to sexual dimorphism in the streptozotocin model of diabetic painful peripheral neuropathy was evaluated. Streptozotocin induced elevation of blood glucose and mechanical hyperalgesia (measured by the Randall-Selitto paw-withdrawal test) were both greater in female rats. Ovariectomy abolished and estrogen implants reconstituted this sexual dimorphism; gonadectomy in males had no effect. An inhibitor of protein kinase Cepsilon attenuated hyperalgesia in males and ovariectomized females, but not in normal females or in ovariectomized females with estrogen implants, whereas inhibitors of protein kinase Cdelta attenuated hyperalgesia in females but not in males. Inhibitors of protein kinase A, protein kinase C (non-selective), protein kinase G and nitric oxide synthase attenuated hyperalgesia equally in both sexes. Higher blood glucose levels in diabetic females were also sex hormone dependent, and magnitude of hyperalgesia correlated with blood glucose level in diabetic male and female rats. These results demonstrate sexual dimorphism in diabetic hyperalgesia, mediated by sex hormone dependent differences in protein kinase Cepsilon and protein kinase Cdelta signaling and blood glucose levels and suggest that sex may be an important factor to be considered in the treatment of symptomatic diabetic neuropathy.
Collapse
Affiliation(s)
- E K Joseph
- Department of Medicine, Division of Neuroscience and Biomedical Sciences Program and UCSF-NIH Pain Center, Box 0440/Room C522, 521 Parnassus Avenue, University of California, San Francisco, CA 94143-0440, USA.
| | | |
Collapse
|
25
|
Mendoza IE, Schmachtenberg O, Tonk E, Fuentealba J, Díaz-Raya P, Lagos VL, García AG, Cárdenas AM. Depolarization-induced ERK phosphorylation depends on the cytosolic Ca2+ level rather than on the Ca2+ channel subtype of chromaffin cells. J Neurochem 2003; 86:1477-86. [PMID: 12950456 DOI: 10.1046/j.1471-4159.2003.01965.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The contribution of Ca2+ entry through different voltage-activated Ca2+ channel (VACC) subtypes to the phosphorylation of extracellular signal regulated kinase (ERK) was examined in bovine adrenal-medullary chromaffin cells. High K+ depolarization (40 mM, 3 min) induced ERK phosphorylation, an effect that was inhibited by specific mitogen-activated protein kinase kinase inhibitors. By using selective inhibitors, we observed that depolarization-induced ERK phosphorylation completely depended on protein kinase C-alpha (PKC-alpha), but not on Ca2+/calmodulin-dependent protein kinase nor cyclic AMP-dependent protein kinase. Blockade of L-type Ca2+ channels by 3 microm furnidipine, or blockade of N channels by 1 micromomega-conotoxin GVIA reduced ERK phosphorylation by 70%, while the inhibition of P/Q channels by 1 micromomega-agatoxin IVA only caused a 40% reduction. The simultaneous blockade of L and N, or P/Q and N channels completely abolished this response, yet 23% ERK phosphorylation remained when L and P/Q channels were simultaneously blocked. Confocal imaging of cytosolic Ca2+ elevations elicited by 40 mm K+, showed that Ca2+ levels increased throughout the entire cytosol, both in the presence and the absence of Ca2+ channel blockers. Fifty-eight percent of the fluorescence rise depended on Ca2+ entering through N channels. Thus, ERK phosphorylation seems to depend on a critical level of Ca2+ in the cytosol rather than on activation of a given Ca2+ channel subtype.
Collapse
Affiliation(s)
- Isabel E Mendoza
- Centro de Neurociencia de Valparaíso, Universidad de Valparaíso, Chile
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Runyan CE, Schnaper HW, Poncelet AC. Smad3 and PKCdelta mediate TGF-beta1-induced collagen I expression in human mesangial cells. Am J Physiol Renal Physiol 2003; 285:F413-22. [PMID: 12759229 DOI: 10.1152/ajprenal.00082.2003] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transforming growth factor (TGF)-beta has been associated with fibrogenesis in clinical studies and animal models. We previously showed that Smad3 promotes COL1A2 gene activation by TGF-beta1 in human mesangial cells. In addition to the Smad pathway, it has been suggested that TGF-beta1 could also activate more classical growth factor signaling. Here, we report that protein kinase C (PKC)delta plays a role in TGF-beta1-stimulated collagen I production. In an in vitro kinase assay, TGF-beta1 treatment specifically increased mesangial cell PKCdelta activity in a time-dependent manner. Translocation to the membrane was detected by immunocytochemistry and immunoblot, suggesting activation of PKCdelta by TGF-beta1. Inhibition of PKCdelta by rottlerin decreased basal and TGF-beta1-stimulated collagen I production, mRNA expression, and COL1A2 promoter activity, whereas blockade of conventional PKCs by Gö 6976 had little or no effect. In a Gal4-LUC assay system, inhibition of PKCdelta abolished TGF-beta1-induced transcriptional activity of Gal4-Smad3 and Gal4-Smad4(266-552). Overexpression of Smad3 or Smad3D, in which the three COOH-terminal serine phosphoacceptor residues have been mutated, increased activity of the SBE-LUC construct, containing four DNA binding sites for Smad3 and Smad4. This induction was blocked by PKCdelta inhibition, suggesting that rottlerin decreased Smad3 transcriptional activity independently of COOH-terminal serine phosphorylation. Blockade of PKCdelta abolished ligand-independent and ligand-dependent stimulation of COL1A2 promoter activity by Smad3. These data indicate that PKCdelta is activated by TGF-beta1 in human mesangial cells. TGF-beta1-stimulated PKCdelta activity positively regulates Smad transcriptional activity and is required for COL1A2 gene transcription. Thus cross talk among multiple signaling pathways likely contributes to the pathogenesis of glomerular matrix accumulation.
Collapse
|
27
|
Torbett NE, Casamassima A, Parker PJ. Hyperosmotic-induced protein kinase N 1 activation in a vesicular compartment is dependent upon Rac1 and 3-phosphoinositide-dependent kinase 1. J Biol Chem 2003; 278:32344-51. [PMID: 12783890 DOI: 10.1074/jbc.m303532200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase N 1 (PKN1), which in part resembles yeast protein kinase C, has been shown to be under the control of Rho GTPases and 3-phosphoinositide-dependent kinase 1 (PDK1). We show here that green fluorescent protein-tagged PKN1 has the ability to translocate in a reversible manner to a vesicular compartment following hyperosmotic stress. PKN1 kinase activity is not necessary for this translocation, and in fact the PKN inhibitor HA1077 is also shown to induce PKN1 vesicle accumulation. PKN1 translocation is dependent on Rac1 activation, although the GTPase binding HR1abc domain is not sufficient for this recruitment. The PKN1 kinase domain, however, localizes constitutively to this compartment, and we demonstrate that this behavior is selective for PKNs. Associated with vesicle recruitment, PKN1 is shown to undergo activation loop phosphorylation and activation. It is established that this activation pathway involves PDK1, which is shown to be recruited to this PKN1-positive compartment upon hyperosmotic stress. Taken together, our findings present a pathway for the selective hyperosmotic-induced Rac1-dependent PKN1 translocation and PDK1-dependent activation.
Collapse
Affiliation(s)
- Neil E Torbett
- Protein Phosphorylation Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | | | |
Collapse
|
28
|
Bildin VN, Wang Z, Iserovich P, Reinach PS. Hypertonicity-induced p38MAPK activation elicits recovery of corneal epithelial cell volume and layer integrity. J Membr Biol 2003; 193:1-13. [PMID: 12879161 DOI: 10.1007/s00232-002-2002-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2002] [Indexed: 11/26/2022]
Abstract
In hypertonicity-stressed (i.e., 600 mOsm) SV40-immortalized rabbit and human corneal epithelial cell layers (RCEC and HCEC, respectively), we characterized the relationship between time-dependent changes in translayer resistance, relative cell volume and modulation of MAPK superfamily activities. Sulforhodamine B permeability initially increased by 1.4- and 2-fold in RCEC and HCEC, respectively. Subsequently, recovery to its isotonic level only occurred in RCEC. Light scattering revealed that in RCEC 1) regulatory volume increase (RVI) extent was 20% greater; 2) RVI half-time was 2.5-fold shorter. However, inhibition of Na-K-2Cl cotransporter and Na/K-ATPase activity suppressed the RVI response more in HCEC. MAPK activity changes were as follows: 1) p38 was wave-like and faster as well as larger in RCEC than in HCEC (90- and 18-fold, respectively); 2) increases in SAPK/JNK activity were negligible in comparison to those of p38; 3) Erk1/2 activity declined to 30-40% of their basal values. SB203580, a specific p38 inhibitor, dose dependently suppressed the RVI responses in both cell lines. However, neither U0126, which inhibits MEK, the kinase upstream of Erk, nor SP600125, inhibitor of SAPK/JNK, had any effect on this response. Taken together, sufficient activation of the p38 limb of the MAPK superfamily during a hypertonic challenge is essential for maintaining epithelial cell volume and translayer resistance. On the other hand, Erk1/2 activity restoration seems to be dependent on cell volume recovery.
Collapse
Affiliation(s)
- V N Bildin
- Department of Biological Sciences, College of Optometry, State University of New York, 33 West 42nd St., New York, NY 10036, USA.
| | | | | | | |
Collapse
|
29
|
Upham BL, Rummel AM, Carbone JM, Trosko JE, Ouyang Y, Crawford RB, Kaminski NE. Cannabinoids inhibit gap junctional intercellular communication and activate ERK in a rat liver epithelial cell line. Int J Cancer 2003; 104:12-8. [PMID: 12532414 DOI: 10.1002/ijc.10899] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Many tumor promoters suppress the immune system; however, the direct effect of immunosuppressants on the tumorigenic pathways of nonimmune cells in solid tissue has not been well documented. Cannabinoids were chosen to explore this question further. Cannabinoids are immune modulators that affect specific intracellular signaling pathways in leukocytes. Since these compounds are nongenotoxic, any tumorigenic effect that might be associated with these compounds would need to occur through an epigenetic mechanism. Therefore, we determined the effect of Delta(9)-THC and CBN, 2 plant-derived cannabinoids, on 2 key epigenetic markers of tumor promotion: inhibition of GJIC, which is essential in removing a cell from growth suppression, and activation of the ERK-MAPK pathway, which is crucial in activating the appropriate genes for mitogenesis. Both Delta(9)-THC and CBN reversibly inhibited GJIC at noncytotoxic doses (15 microM) in a normal diploid WB rat liver epithelial oval cell line within 20 min and activated ERK1 and ERK2 within 5 min. Inhibition of MEK with PD98059 prevented the inhibition of GJIC by either cannabinoid, suggesting that inhibition of GJIC was MEK-dependent. Based on RT-PCR analysis and employment of an antagonist of CB1 and CB2, the effects on GJIC and MAPK were independent of both cannabinoid receptors. Cannabinoids affected crucial epigenetic pathways associated with cell proliferation in a rodent liver epithelial cell model system.
Collapse
Affiliation(s)
- Brad L Upham
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824-1302,USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Lang KS, Weigert C, Braedel S, Fillon S, Palmada M, Schleicher E, Rammensee HG, Lang F. Inhibition of interferon-gamma expression by osmotic shrinkage of peripheral blood lymphocytes. Am J Physiol Cell Physiol 2003; 284:C200-8. [PMID: 12475762 DOI: 10.1152/ajpcell.00259.2002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A hypertonic environment, as it prevails in renal medulla or in hyperosmolar states such as hyperglycemia of diabetes mellitus, has been shown to impair the immune response, thus facilitating the development of infection. The present experiments were performed to test whether hypertonicity influences activation of T lymphocytes. To this end, peripheral blood lymphocytes (PBL) of cytomegalovirus (CMV)-positive donors were stimulated by human leukocyte antigen (HLA)-A2-restricted CMV epitope NLVPMVATV to produce interferon (IFN)-gamma at varying extracellular osmolarity. As a result, increasing extracellular osmolarity during exposure to the CMV antigen indeed decreased IFN-gamma formation. Addition of NaCl was more effective than urea. A 50% inhibition was observed at 350 mosM by addition of NaCl. The combined application of the Ca(2+) ionophore ionomycin (1 microg/ml) and the phorbol ester phorbol 12-myristate 13-acetate (PMA; 5 microg/ml) stimulated IFN-gamma production, an effect again reversed by hyperosmolarity. Moreover, hyperosmolarity abrogated the stimulating effect of ionomycin (1 microg/ml) and PMA (5 microg/ml) on the transcription factors activator protein (AP)-1, nuclear factor of activated T cells (NFAT), and NF-kappaB but not Sp1. In conclusion, osmotic cell shrinkage blunts the stimulatory action of antigen exposure on IFN-gamma production, an effect explained at least partially by suppression of transcription factor activation.
Collapse
Affiliation(s)
- K S Lang
- Department of Immunology, University of Tübingen, Gmelinstrasse 5, D-72076 Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Steinbrecher KA, Rudolph JA, Luo G, Cohen MB. Coordinate upregulation of guanylin and uroguanylin expression by hypertonicity in HT29-18-N2 cells. Am J Physiol Cell Physiol 2002; 283:C1729-37. [PMID: 12388101 DOI: 10.1152/ajpcell.00010.2002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Guanylin and uroguanylin are particulate guanylate cyclase-activating peptides that are secreted from the epithelia of the intestine, kidney, pancreas, and salivary gland. These peptides elicit chloride and bicarbonate secretion via the cystic fibrosis transmembrane conductance regulator. To test the hypothesis that hypertonicity mediates an increase in guanylin and uroguanylin mRNA, we subjected HT29-18-N2 to osmotic stress. Guanylin and uroguanylin RNA were increased substantially in the presence of hypertonicity but only with solutes that were relatively impermeable to the cell membrane. This hypertonicity-mediated increase was transcriptional and did not require protein synthesis. Herbimycin A and mitogen-activated protein kinase inhibitors SB-203580 and PD-98059 had no effect on basal or induced levels of guanylin or uroguanylin. Both staurosporine and prolonged exposure to phorbol ester reduced basal levels and completely blocked hypertonicity-related increases in guanylin or uroguanylin RNA. These data suggest that serine/theonine protein kinases, possibly protein kinase C (PKC), mediate the hypertonicity-associated increase in guanylin and uroguanylin RNA. We conclude that guanylin and uroguanylin are released in response to hypertonic stress and that regulation of these genes may be mediated by PKC isoforms.
Collapse
Affiliation(s)
- Kris A Steinbrecher
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital Research Foundation, Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio 45229, USA
| | | | | | | |
Collapse
|
32
|
Miyata Y, Asano Y, Muto S. Hyperosmotic urea activates basolateral NHE in proximal tubule from P-gp null and wild-type mice. Am J Physiol Renal Physiol 2002; 283:F771-83. [PMID: 12217869 DOI: 10.1152/ajprenal.00025.2002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using the pH-sensitive fluorescent dye BCECF, we compared the effects of hyperosmotic urea on basolateral Na(+)/H(+) exchange (NHE) with those of hyperosmotic mannitol in isolated nonperfused proximal tubule S2 segments from mice lacking both the mdr1a and mdr1b genes (KO) and wild-type (WT) mice. All the experiments were performed in CO(2)/HCO-free HEPES solutions. Osmolality of the peritubular solution was raised from 300 to 500 mosmol/kgH(2)O by adding mannitol or urea. NHE activity was assessed by the Na(+)-dependent acid extrusion rate (J(H)) after an acid load with NH(4)Cl prepulse. In WT mice, hyperosmotic mannitol had no effect on J(H) at over the entire range of intracellular pH (pH(i)) studied (6.20-6.90), whereas in KO mice it increased J(H) at a pH(i) range of 6.20-6.45. In contrast, in both WT and KO mice, hyperosmotic urea increased J(H) at a pH(i) range of 6.20-6.90. In KO mice, J(H) in a hyperosmotic urea solution were similar to those in a hyperosmotic mannitol solution at a pH(i) range of 6.20-6.40 but were greater than in a hyperosmotic mannitol solution at a pH(i) range of 6.45-6.90. In WT mice, hyperosmotic urea caused an increase in V(max) without changing K(m) for peritubular Na(+). Staurosporine (the PKC inhibitor) inhibited hyperosmotic mannitol-induced NHE activation in KO mice, whereas it had no effect on hyperosmotic urea-induced NHE activation in WT or KO mice. Genistein (the tyrosine kinase inhibitor) inhibited hyperosmotic urea-induced NHE activation in WT and KO mice, whereas it caused no effect on hyperosmotic mannitol-induced NHE activation in KO mice. We conclude that hyperosmotic urea activates basolateral NHE via tyrosine kinase in tubules from both WT and KO mice, whereas hyperosmotic mannitol activates it via PKC only in tubules from KO mice.
Collapse
Affiliation(s)
- Yukio Miyata
- Department of Nephrology, Jichi Medical School, Tochigi 329-0498, Japan
| | | | | |
Collapse
|
33
|
Li T, Dai W, Lu L. Ultraviolet-induced junD activation and apoptosis in myeloblastic leukemia ML-1 cells. J Biol Chem 2002; 277:32668-76. [PMID: 12082101 DOI: 10.1074/jbc.m203519200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The exposure of mammalian cells to UV irradiation induces the expression of immediate early genes such as c-jun and c-fos and activates the transcription factors AP-1 and NF-kappaB. JunD is one of the three members of the Jun family and shares some functional characteristics with c-Jun. In the present study, we found that the exposure of myeloblastic leukemia ML-1 cells to UV light (UVC) caused a significant increase in junD mRNA expression within 5 min that persisted for a period of 3 h. The activation of protein kinase C (PKC) with 12-O-tetradecaoylphorbol-13-acetate (TPA) also induced increases in junD expression similar to those of UV irradiation. In addition, UV irradiation- and TPA-induced increases in junD expression were completely abolished by GF-109203X, a PKC-specific inhibitor. UV irradiation activated intracellular signaling pathways including extracellular regulated kinase-2 (Erk-2), c-Jun N-terminal kinases-1 (JNK-1), and p38. However, TPA-induced activation of PKC affected only Erk-2 activity, and GF-109203X (a PKC inhibitor) markedly suppressed UV-induced Erk-2 activation. To further investigate the effect of UV-induced Erk-2 activation on the expression of junD mRNA, cDNA encoding mitogen-activated protein kinase kinase (MEK1) was overexpressed in ML-1 cells. The overexpression of MEK1 enhanced substantially junD expression in response to UV or TPA. In contrast, the suppression of Erk activation with PD98059, a specific inhibitor of MEK1, inhibited UV- and TPA-induced junD mRNA expression, UV-induced increases in caspase-3 activities, and cell death. In addition, the overexpression of junD enhanced the UV irradiation-induced increases in caspase-3 activity and cell death. We conclude that UV irradiation-induced increases in junD expression in ML-1 cells are mediated through activation of the PKC-coupled Erk-2 signaling pathway and play an important role in ML-1 cell apoptosis.
Collapse
Affiliation(s)
- Tie Li
- Division of Molecular Medicine, Harbor-UCLA Medical Center, School of Medicine, University of California Los Angeles, Torrance, California 90502, USA
| | | | | |
Collapse
|
34
|
Zhao H, Tian W, Cohen DM. Rottlerin inhibits tonicity-dependent expression and action of TonEBP in a PKCdelta-independent fashion. Am J Physiol Renal Physiol 2002; 282:F710-7. [PMID: 11880333 DOI: 10.1152/ajprenal.00303.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Novel protein kinase C (PKC) isoforms PKCdelta and PKCepsilon have recently been implicated in signaling by hypertonic stress. We investigated the role of the putative PKCdelta inhibitor rottlerin on tonicity-dependent gene regulation. In the renal medullary mIMCD3 cell line, rottlerin blocked tonicity-dependent transcription of a tonicity enhancer (TonE)-driven luciferase reporter gene, as well as tonicity-dependent transcription of the physiological tonicity effector gene aldose reductase, but not urea-dependent transcription. Consistent with these data, rottlerin inhibited tonicity-dependent expression of TonE binding protein (TonEBP) at the mRNA and protein levels. Another inhibitor of both novel and conventional PKC isoforms, GF-109203X, suppressed TonEBP-dependent transcription but failed to influence tonicity-inducible TonEBP expression. Global PKC downregulation with protracted phorbol ester treatment, however, failed to influence tonicity-dependent signaling, arguing against a PKCdelta-dependent mechanism of rottlerin action in this model. In addition, hypertonic stress failed to induce phosphorylation of PKCdelta. Furthermore, in a PC-12 cell model with a comparable degree of tonicity-dependent transcription, constitutive overexpression of dominant negative-acting PKCdelta or PKCepsilon effectively decreased tonicity signaling to extracellular signal-regulated kinase activation, as expected, but failed to influence TonE-dependent transcription. TonE-dependent transcription, however, remained rottlerin sensitive in this PC-12 cell model. In the aggregate, these data indicate that rottlerin dramatically inhibits tonicity-dependent TonEBP expression and TonE-dependent transcription but, despite its reputed mode of action, does so through a PKCdelta-independent pathway.
Collapse
Affiliation(s)
- Hongyu Zhao
- Division of Nephrology and Department of Cell and Developmental Biology, Oregon Health and Science University and the Portland Veterans Affairs Medical Center, Portland, Oregon 97201, USA
| | | | | |
Collapse
|
35
|
Miyata Y, Asano Y, Muto S. Hyperosmotic mannitol activates basolateral NHE in proximal tubule from P-glycoprotein null mice. Am J Physiol Renal Physiol 2002; 282:F718-29. [PMID: 11880334 DOI: 10.1152/ajprenal.00183.2001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using the pH-sensitive fluorescent dye 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein acetoxymethyl ester, we examined the effects of hyperosmotic mannitol on basolateral Na(+)/H(+) exchange (NHE) activity in isolated nonperfused proximal tubule S2 segments from mice lacking both the mdr1a and mdr1b genes (KO) and wild-type mice (WT). All experiments were performed in CO(2)/HCO-free HEPES solutions. Osmolality of the peritubular solution was raised from 300 to 500 mosmol/kgH(2)O by the addition of mannitol. NHE activity was assessed by Na(+)-dependent acid extrusion rates (J(H)) after an acid load with NH(4)Cl prepulse. Under isosmotic conditions, J(H) values at a wide intracellular pH (pH(i)) range of 6.20-6.90 were not different between the two groups. In WT mice, hyperosmotic mannitol had no effect on J(H) at the wide pH(i) range. In contrast, in KO mice, hyperosmotic mannitol increased J(H) at a pH(i) range of 6.20-6.45 and shifted the J(H)-pH(i) relationship by 0.15 pH units in the alkaline direction. In KO mice, hyperosmotic mannitol caused an increase in maximal velocity without changing the Michaelis-Menten constant for peritubular Na(+). Exposure of cells from WT mice to the hyperosmotic mannitol solution including the P-gp inhibitor cyclosporin A increased J(H) (at pH(i) 6.30) to an extent similar to that in cells from KO mice exposed to hyperosmotic mannitol alone. In KO mice, staurosporine and calphostin C inhibited the hyperosmotic mannitol-induced increase in J(H). The stimulatory effect of hyperosmotic mannitol on J(H) was mimicked by addition to the isosmotic control solution, including phorbol 12-myristate 13-acetate (PMA; the PKC activator). In WT mice, hyperosmotic mannitol with PMA increased J(H). We conclude that, in the absence of P-gp activity, hyperosmotic mannitol activates basolateral NHE via protein kinase C, whereas in the presence of P-gp activity, it does not.
Collapse
Affiliation(s)
- Yukio Miyata
- Department of Nephrology, Jichi Medical School, Tochigi 329-0498, Japan
| | | | | |
Collapse
|
36
|
Miyata Y, Okada K, Ishibashi S, Asano Y, Muto S. P-gp-induced modulation of regulatory volume increase occurs via PKC in mouse proximal tubule. Am J Physiol Renal Physiol 2002; 282:F65-76. [PMID: 11739114 DOI: 10.1152/ajprenal.0036.2001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study examined the role of protein kinase C (PKC) in the P-glycoprotein (P-gp)-induced modulation of regulatory volume increase (RVI) in the isolated nonperfused proximal tubule S2 segments from mice lacking both mdr1a and mdr1b genes (KO) and wild-type (WT) mice. The hyperosmotic solution (500 mosmol/kgH(2)O) involving 200 mM mannitol activated PKC and elicited RVI in the tubules from KO mice but not from WT mice. The addition of the hyperosmotic solution including the PKC activator phorbol 12-myristate 13-acetate (PMA) to the tubules of the WT mice activated PKC and elicited RVI. The hyperosmotic solution in the presence of the P-gp inhibitors (verapamil or cyclosporin A) elicited RVI in the tubules from the WT mice but not from the KO mice. The PMA- and the P-gp inhibitors-induced RVI was abolished by cotreatment with the PKC inhibitors (staurosporine or calphostin C). In the tubules of the KO mice, the PKC inhibitors abolished RVI, but PMA did not. In the tubules of the WT mice, the microtubule disruptor (colchicine), the microfilament disruptor (cytochalasin B), the phosphatidylinositol 3-kinase (PI 3-kinase) blocker (wortmannin), but not another PI 3-kinase blocker (LY-294002), inhibited the PMA-induced RVI. In the tubules of the KO mice, colchicine, cytochalsin B, and wortmannin abolished RVI, but LY-294002 did not. We conclude that 1) in the mouse proximal tubule, P-gp-induced modulation of RVI occurs via PKC; and 2) the microtubule, microfilament, and wortmannin-sensitive, LY-294002-insensitive PI 3-kinase contribute to the PKC-induced RVI.
Collapse
Affiliation(s)
- Yukio Miyata
- Department of Nephrology, Jichi Medical School, Tochigi, 329-0498 Japan
| | | | | | | | | |
Collapse
|
37
|
Pedersen SF, Hoffmann EK, Mills JW. The cytoskeleton and cell volume regulation. Comp Biochem Physiol A Mol Integr Physiol 2001; 130:385-99. [PMID: 11913452 DOI: 10.1016/s1095-6433(01)00429-9] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although the precise mechanisms have yet to be elucidated, early events in osmotic signal transduction may involve the clustering of cell surface receptors, initiating downstream signaling events such as assembly of focal adhesion complexes, and activation of, e.g. Rho family GTPases, phospholipases, lipid kinases, and tyrosine- and serine/threonine protein kinases. In the present paper, we briefly review recent evidence regarding the possible relation between such signaling events, the F-actin cytoskeleton, and volume-regulatory membrane transporters, focusing primarily on our own work in Ehrlich ascites tumer cells (EATC). In EATC, cell shrinkage is associated with an increase, and cell swelling with a decrease in F-actin content, respectively. The role of the F-actin cytoskeleton in cell volume regulation in various cell types has largely been investigated using cytochalasins to disrupt F-actin and highly varying effects have been reported. Findings in EATC show that the effect of cytochalasin treatment cannot always be assumed to be F-actin depolymerization, and that, moreover, there is no well-defined correlation between effects of cytochalasins on F-actin content and their effects on F-actin organization and cell morphology. At a concentration verified to depolymerize F-actin, cytochalasin B (CB), but not cytochalasin D (CD), inhibited the regulatory volume decrease (RVD) and regulatory volume increase (RVI) processes in EATC. This suggests that the effect of CB is related to an effect other than F-actin depolymerization, possibly its F-actin severing activity.
Collapse
Affiliation(s)
- S F Pedersen
- Biochemistry Department, August Krogh Institute, Copenhagen, Denmark.
| | | | | |
Collapse
|
38
|
Leitges M, Elis W, Gimborn K, Huber M. Rottlerin-independent attenuation of pervanadate-induced tyrosine phosphorylation events by protein kinase C-delta in hemopoietic cells. J Transl Med 2001; 81:1087-95. [PMID: 11502860 DOI: 10.1038/labinvest.3780321] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The understanding and control of many pathophysiological conditions is based on knowledge of subtly regulated intracellular signaling networks. We have found that in pervanadate (PV)-treated J558L myeloma cells, amongst other signaling proteins, protein kinase C (PKC)-delta and src homology 2-containing inositol phosphatase (SHIP) are tyrosine phosphorylated on expression of the B cell receptor, suggesting a role for these proteins in the preformed B cell receptor transducer complex. Rottlerin, a widely used PKC-delta-specific inhibitor, efficiently blocks these PV-induced tyrosine phosphorylation events. Furthermore, PV treatment of bone marrow-derived mast cells (BMMC) also results in tyrosine phosphorylation of PKC-delta, SHIP, and additional proteins. Rottlerin also inhibits these responses, indicating that PKC-delta might play an important enhancing role in the propagation of phosphotyrosine signals in B cells and mast cells and hence in the regulation of function of both cell types. Therefore, BMMC from PKC-delta -/- mice were generated by in vitro differentiation and assayed for tyrosine phosphorylation events in response to PV. Intriguingly, and opposite to the Rottlerin data, PKC-delta -/- BMMC show a stronger response to PV than wild-type cells, suggesting an attenuating role for PKC-delta. This response can be inhibited equally well by Rottlerin, indicating clearly that Rottlerin is not specific for PKC-delta in vivo. A comparison between Rottlerin and the panspecific PKC inhibitor bisindolylmaleimide suggests that Rottlerin also targets kinases beyond the PKC family. Moreover, Ser473 phosphorylation of protein kinase B (PKB) after PV treatment is blocked by Rottlerin as efficiently as by the phosphatidylinositol 3-kinase inhibitor LY294002. In this report, we provide evidence that PKC-delta constitutes a crucial attenuating factor in B cell and mast cell signal transduction and suggest that PKC-delta is important for the regulation of physiological B and mast cell functions as well as for their pathophysiology. Furthermore, dominant PKC-delta-independent effects of Rottlerin are presented, indicating restrictions of this inhibitor for use in signal transduction research.
Collapse
Affiliation(s)
- M Leitges
- Max Planck Institute for Experimental Endocrinology, Hannover, Germany
| | | | | | | |
Collapse
|
39
|
Yang XY, Zhao H, Zhang Z, Rodland KD, Roullet JB, Cohen DM. Urea signaling to ERK phosphorylation in renal medullary cells requires extracellular calcium but not calcium entry. Am J Physiol Renal Physiol 2001; 280:F162-71. [PMID: 11133526 DOI: 10.1152/ajprenal.2001.280.1.f162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renal cell line mIMCD3 exhibits markedly upregulated phosphorylation of the extracellular signal-regulated kinase (ERK) 1 and 2 in response to urea treatment (200 mM for 5 min). Previous data have suggested the involvement of a classical protein kinase C (cPKC)-dependent pathway in downstream events related to urea signaling. We now show that urea-inducible ERK activation requires extracellular calcium; unexpectedly, it occurs independently of activation of cPKC isoforms. Pharmacological inhibitors of known intracellular calcium release pathways and extracellular calcium entry pathways fail to inhibit ERK activation by urea. Fura 2 ratiometry was used to assess the effect of urea treatment on intracellular calcium mobilization. In single-cell analyses using subconfluent monolayers and in population-wide analyses using both confluent monolayers and cells in suspension, urea failed to increase intracellular calcium concentration. Taken together, these data indicate that urea-inducible ERK activation requires calcium action but not calcium entry. Although direct evidence is lacking, one possible explanation could include involvement of a calcium-dependent extracellular moiety of a cell surface-associated protein.
Collapse
Affiliation(s)
- X Y Yang
- Divisions of Nephrology, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | | | | | | | |
Collapse
|
40
|
Ng DC, Bogoyevitch MA. The mechanism of heat shock activation of ERK mitogen-activated protein kinases in the interleukin 3-dependent ProB cell line BaF3. J Biol Chem 2000; 275:40856-66. [PMID: 11005808 DOI: 10.1074/jbc.m004639200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We have investigated heat shock stimulation of MAPK cascades in an interleukin 3-dependent cell line, BaF3. Following exposure to 42 degrees C, the stress-activated JNK MAPKs were phosphorylated and activated, but p38 MAPKs remained unaffected. Surprisingly, heat shock also activated ERK MAPKs in a potent (>60-fold), delayed (>30 min), and sustained (>/=120 min) manner. These characteristics suggested a novel mechanism of ERK MAPK activation and became the focus of this study. A MEK-specific inhibitor, PD98059, inhibited heat shock ERK MAPK activation by >75%. Surprisingly, a role for Ras in the heat shock response was eliminated by the failure of a dominant-negative Ras(Asn-17) mutant to inhibit ERK MAPK activation and the failure to observe increases in Ras.GTP. Heat shock also failed to stimulate activation of A-, B-, and c-Raf. Instead, a serine/threonine phosphatase inhibitor, okadaic acid, activated ERK MAPK in a similar manner to heat shock. Furthermore, pretreatment with suramin, generally recognized as a broad range inhibitor of growth factor receptors, inhibited both okadaic acid-stimulated and heat shock-stimulated ERK MAPK activity by >40%. Inhibiting ERK MAPK activation during heat shock with PD98059 enhanced losses in cell viability. These results demonstrate Ras- and Raf-independent ERK MAPK activation maintains cell viability following heat shock.
Collapse
Affiliation(s)
- D C Ng
- Department of Biochemistry, University of Western Australia, Nedlands 6907, Australia
| | | |
Collapse
|