1
|
Rossi A, Asthana A, Riganti C, Sedrakyan S, Byers LN, Robertson J, Senger RS, Montali F, Grange C, Dalmasso A, Porporato PE, Palles C, Thornton ME, Da Sacco S, Perin L, Ahn B, McCully J, Orlando G, Bussolati B. Mitochondria Transplantation Mitigates Damage in an In Vitro Model of Renal Tubular Injury and in an Ex Vivo Model of DCD Renal Transplantation. Ann Surg 2023; 278:e1313-e1326. [PMID: 37450698 PMCID: PMC10631499 DOI: 10.1097/sla.0000000000006005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
OBJECTIVES To test whether mitochondrial transplantation (MITO) mitigates damage in 2 models of acute kidney injury (AKI). BACKGROUND MITO is a process where exogenous isolated mitochondria are taken up by cells. As virtually any morbid clinical condition is characterized by mitochondrial distress, MITO may find a role as a treatment modality in numerous clinical scenarios including AKI. METHODS For the in vitro experiments, human proximal tubular cells were damaged and then treated with mitochondria or placebo. For the ex vivo experiments, we developed a non-survival ex vivo porcine model mimicking the donation after cardiac death renal transplantation scenario. One kidney was treated with mitochondria, although the mate organ received placebo, before being perfused at room temperature for 24 hours. Perfusate samples were collected at different time points and analyzed with Raman spectroscopy. Biopsies taken at baseline and 24 hours were analyzed with standard pathology, immunohistochemistry, and RNA sequencing analysis. RESULTS In vitro, cells treated with MITO showed higher proliferative capacity and adenosine 5'-triphosphate production, preservation of physiological polarization of the organelles and lower toxicity and reactive oxygen species production. Ex vivo, kidneys treated with MITO shed fewer molecular species, indicating stability. In these kidneys, pathology showed less damage whereas RNAseq analysis showed modulation of genes and pathways most consistent with mitochondrial biogenesis and energy metabolism and downregulation of genes involved in neutrophil recruitment, including IL1A, CXCL8, and PIK3R1. CONCLUSIONS MITO mitigates AKI both in vitro and ex vivo.
Collapse
Affiliation(s)
- Andrea Rossi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Amish Asthana
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC
- Department of Surgery, Section of Transplantation, Wake Forest School of Medicine, Winston Salem, NC
| | - Chiara Riganti
- Department of Oncology, University of Torino, University of Turin, Turin, Italy
| | - Sargis Sedrakyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, CA
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Lori Nicole Byers
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC
- Department of Surgery, Section of Transplantation, Wake Forest School of Medicine, Winston Salem, NC
| | - John Robertson
- Department of Biomedical Engineering and Mechanics, College of Engineering, Virginia Tech, Blacksburg, VA
- DialySensors Inc., Blacksburg, VA
| | - Ryan S. Senger
- DialySensors Inc., Blacksburg, VA
- Department of Biological Systems Engineering, College of Life Sciences and Agriculture, Virginia Tech, Blacksburg, VA
- Department of Chemical Engineering, College of Engineering, Virginia Tech, Blacksburg, VA
| | | | - Cristina Grange
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Alessia Dalmasso
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Paolo E. Porporato
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Chris Palles
- J. Crayton Pruitt Family, Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Matthew E. Thornton
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Stefano Da Sacco
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, CA
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, CA
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Bumsoo Ahn
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston Salem, NC
| | - James McCully
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Giuseppe Orlando
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC
- Department of Surgery, Section of Transplantation, Wake Forest School of Medicine, Winston Salem, NC
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|
2
|
What does not kill mesangial cells makes it stronger? The response of the endoplasmic reticulum stress and the O-GlcNAc signaling to ATP depletion. Life Sci 2022; 311:121070. [DOI: 10.1016/j.lfs.2022.121070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/12/2022]
|
3
|
Yabaş E, Şahin-Bölükbaşı S, Şahin-İnan ZD. New water soluble magnesium phthalocyanine as a potential anticancer drug: Cytotoxic and apoptotic effect on different cancer cell lines. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although phthalocyanines are usually used a photosensitizers for photodynamic therapy, these works focus on the directly cytotoxic effect of a new water-soluble magnesium phthalocyanine. The new water-soluble magnesium phthalocyanine 2 was synthesized, characterized and investigated for cytotoxic and apoptotic activities. The cytotoxic activities of the compound 2 were determined by using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assay on human breast cancer cells (MDA-MB-231, MCF-7), human prostate cancer cells (PC-3), and human healthy lung fibroblast cells (WI-38). The cells were plated and treated 1 to 20 [Formula: see text]M of different concentrations of the compound. MTT assay results indicated that the compound 2 has concentration and time-dependent cytotoxic activities against cancer cells. We also observed that the compound displayed lower toxicity against WI-38 healthy cells than cancer cells at 48 and 72 h. The compound showed a significant cytotoxic activity difference between breast cancer cells and WI-38 healthy cells at 48 and 72 h. Selectivity index of the compound 2 against MCF-7 for 72 h was calculated ¿ 15.62. We also studied the apoptotic and necrotic effect of compound 2using TUNEL and PI staining, respectively. It was found that the synthesized compound 2 increased apoptotic and necrotic cells.
Collapse
Affiliation(s)
- Ebru Yabaş
- Advanced Technology Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Serap Şahin-Bölükbaşı
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Zeynep Deniz Şahin-İnan
- Department of Histology & Embryology, Medicine Faculty, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| |
Collapse
|
4
|
Abu-Izneid T, Rauf A, Khalil AA, Olatunde A, Khalid A, Alhumaydhi FA, Aljohani ASM, Sahab Uddin M, Heydari M, Khayrullin M, Shariati MA, Aremu AO, Alafnan A, Rengasamy KRR. Nutritional and health beneficial properties of saffron ( Crocus sativus L): a comprehensive review. Crit Rev Food Sci Nutr 2020; 62:2683-2706. [PMID: 33327732 DOI: 10.1080/10408398.2020.1857682] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Saffron (Crocus sativus L., family Iridaceae) is used traditionally for medicinal purpose in Chinese, Ayurvedic, Persian and Unani medicines. The bioactive constituents such as apocarotenoids, monoterpenoids, flavonoids, phenolic acids and phytosterols are widely investigated in experimental and clinical studies for a wide range of therapeutic effects, especially on the nervous system. Some of the active constituents of saffron have high bioavailability and bioaccessibility and ability to pass the blood-brain barrier. Multiple preclinical and clinical studies have supported neuroprotective, anxiolytic, antidepressant, learning and memory-enhancing effect of saffron and its bioactive constituents (safranal, crocin, and picrocrocin). Thus, this plant and its active compounds could be a beneficial medicinal food ingredient in the formation of drugs targeting nervous system disorders. This review focuses on phytochemistry, bioaccessibility, bioavailability, and bioactivity of phytochemicals in saffron. Furthermore, the therapeutic effect of saffron against different nervous system disorders has also been discussed in detail.
Collapse
Affiliation(s)
- Tareq Abu-Izneid
- Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain Campus, Al Ain, United Arab Emirates
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Anees Ahmed Khalil
- Faculty of Allied Health Sciences, Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Ahmed Olatunde
- Department of Biochemistry, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - Ahood Khalid
- Faculty of Allied Health Sciences, Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Mojtaba Heydari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mars Khayrullin
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation.,Plekhanov Russian University of Economics, Moscow, Russian Federation.,A. M. Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, Russian Federation
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation
| | - Adeyemi Oladapo Aremu
- Faculty of Natural and Agricultural Sciences, Indigenous Knowledge Systems Centre, North-West University, Mahikeng, North West Province, South Africa
| | - Ahmed Alafnan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Kannan R R Rengasamy
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.,Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
5
|
Morello J, Derks RJE, Lopes SS, Steenvoorden E, Monteiro EC, Mayboroda OA, Pereira SA. Zebrafish Larvae Are a Suitable Model to Investigate the Metabolic Phenotype of Drug-Induced Renal Tubular Injury. Front Pharmacol 2018; 9:1193. [PMID: 30459607 PMCID: PMC6232664 DOI: 10.3389/fphar.2018.01193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/28/2018] [Indexed: 12/04/2022] Open
Abstract
Prevention and treatment of drug-induced renal injury (DIRI) rely on the availability of sensitive and specific biomarkers of early kidney injury and predictive animal models of human pathophysiology. This study aimed to evaluate the potential of zebrafish larvae as translational model in metabolic profiling of DIRI. Zebrafish larvae were exposed to the lethal concentration for 10% of the larvae (LC10) or ½ LC10 of gentamicin, paracetamol and tenofovir as tenofovir disoproxil fumarate (TDF) and tenofovir (TFV). Metabolites were extracted from whole larvae and analyzed by liquid chromatography-mass spectrometry. Principal component analysis showed that drug exposition to the LC10 of paracetamol, TFV, and TDF was the main source of the variance of the data. To identify the metabolites responsible for the toxic effects of the drugs, partial least squares discriminant analyses were built between the LC10 and ½ LC10 for each drug. Features with variable importance in projection> 1.0 were selected and Venn diagrams were built to differentiate between the common and drug specific metabolites of DIRI. Creatine, tyrosine, glutamine, guanosine, hypoxanthine were identified as common metabolites, adenosine and tryptophan as paracetamol-specific and xanthine and oxidized glutathione as tenofovir-specific. Those metabolic changes can be associated with alterations in energy metabolism, xenobiotic detoxification and protein catabolism, all described in the human pathophysiology of DIRI. Thus, zebrafish proved to be a suitable model to characterize the metabolic changes associated with DIRI. This information can be useful to early diagnose DIRI and to improve our knowledge on the mechanisms of DIRI.
Collapse
Affiliation(s)
- Judit Morello
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Rico J E Derks
- Center for Proteomics and Metabolomics, Leiden University Medical Centre, Leiden, Netherlands
| | - Susana S Lopes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Evelyne Steenvoorden
- Center for Proteomics and Metabolomics, Leiden University Medical Centre, Leiden, Netherlands
| | - Emilia C Monteiro
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Oleg A Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Centre, Leiden, Netherlands.,Department of Chemistry, Tomsk State University, Tomsk, Russia
| | - Sofia A Pereira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
6
|
Bukhari SI, Manzoor M, Dhar MK. A comprehensive review of the pharmacological potential of Crocus sativus and its bioactive apocarotenoids. Biomed Pharmacother 2018; 98:733-745. [PMID: 29306211 DOI: 10.1016/j.biopha.2017.12.090] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/02/2017] [Accepted: 12/18/2017] [Indexed: 01/28/2023] Open
Abstract
Crocus sativus is an herbaceous plant that belongs to family Iridaceae. It is commonly known as saffron and has been used for medicinal purposes since many centuries in India and other parts of the world. Saffron of commercial importance comprises of dried stigmas of the plant and is rich in flavonoids, vitamins, and carotenoids. Carotenoids represent the main components of saffron and their cleavage results in the formation of apocarotenoids such as crocin, picrocrocin, and safranal. Studies conducted during the past two decades have revealed the immense therapeutic potential of saffron. Most of the therapeutic properties are due to the presence of unique apocarotenoids having strong free radical scavenging activity. The mode of action of these apocarotenoids could be: modulatory effects on detoxifying enzymes involved in combating oxidative stress, decreasing telomerase activity, increased the proapoptotic effect, inhibition of DNA, RNA and protein synthesis, and by a strong binding capacity of crocetin with tRNA. The present review focuses on the therapeutic role of saffron and its bio oxidative cleavage products and also highlights the possible molecular mechanism of action. The findings reported in this review describes the wide range of applications of saffron and attributes its free radical scavenging nature the main property which makes this spice a potent chemotherapeutic agent for the treatment of various diseases.
Collapse
Affiliation(s)
| | - Mahreen Manzoor
- School of Biotechnology, University of Jammu, Jammu, 180006, India
| | - M K Dhar
- School of Biotechnology, University of Jammu, Jammu, 180006, India
| |
Collapse
|
7
|
Long A, Klimova N, Kristian T. Mitochondrial NUDIX hydrolases: A metabolic link between NAD catabolism, GTP and mitochondrial dynamics. Neurochem Int 2017; 109:193-201. [PMID: 28302504 DOI: 10.1016/j.neuint.2017.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/28/2017] [Accepted: 03/09/2017] [Indexed: 12/19/2022]
Abstract
NAD+ catabolism and mitochondrial dynamics are important parts of normal mitochondrial function and are both reported to be disrupted in aging, neurodegenerative diseases, and acute brain injury. While both processes have been extensively studied there has been little reported on how the mechanisms of these two processes are linked. This review focuses on how downstream NAD+ catabolism via NUDIX hydrolases affects mitochondrial dynamics under pathologic conditions. Additionally, several potential targets in mitochondrial dysfunction and fragmentation are discussed, including the roles of mitochondrial poly(ADP-ribose) polymerase 1(mtPARP1), AMPK, AMP, and intra-mitochondrial GTP metabolism. Mitochondrial and cytosolic NUDIX hydrolases (NUDT9α and NUDT9β) can affect mitochondrial and cellular AMP levels by hydrolyzing ADP- ribose (ADPr) and subsequently altering the levels of GTP and ATP. Poly (ADP-ribose) polymerase 1 (PARP1) is activated after DNA damage, which depletes NAD+ pools and results in the PARylation of nuclear and mitochondrial proteins. In the mitochondria, ADP-ribosyl hydrolase-3 (ARH3) hydrolyzes PAR to ADPr, while NUDT9α metabolizes ADPr to AMP. Elevated AMP levels have been reported to reduce mitochondrial ATP production by inhibiting the adenine nucleotide translocase (ANT), allosterically activating AMPK by altering the cellular AMP: ATP ratio, and by depleting mitochondrial GTP pools by being phosphorylated by adenylate kinase 3 (AK3), which uses GTP as a phosphate donor. Recently, activated AMPK was reported to phosphorylate mitochondria fission factor (MFF), which increases Drp1 localization to the mitochondria and promotes mitochondrial fission. Moreover, the increased AK3 activity could deplete mitochondrial GTP pools and possibly inhibit normal activity of GTP-dependent fusion enzymes, thus altering mitochondrial dynamics.
Collapse
Affiliation(s)
- Aaron Long
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, United States
| | - Nina Klimova
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, United States; Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), United States; Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Tibor Kristian
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, United States; Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), United States.
| |
Collapse
|
8
|
Hato T, Friedman AN, Mang H, Plotkin Z, Dube S, Hutchins GD, Territo PR, McCarthy BP, Riley AA, Pichumani K, Malloy CR, Harris RA, Dagher PC, Sutton TA. Novel application of complementary imaging techniques to examine in vivo glucose metabolism in the kidney. Am J Physiol Renal Physiol 2016; 310:F717-F725. [PMID: 26764206 DOI: 10.1152/ajprenal.00535.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/12/2016] [Indexed: 12/14/2022] Open
Abstract
The metabolic status of the kidney is a determinant of injury susceptibility and a measure of progression for many disease processes; however, noninvasive modalities to assess kidney metabolism are lacking. In this study, we employed positron emission tomography (PET) and intravital multiphoton microscopy (MPM) to assess cortical and proximal tubule glucose tracer uptake, respectively, following experimental perturbations of kidney metabolism. Applying dynamic image acquisition PET with 2-18fluoro-2-deoxyglucose (18F-FDG) and tracer kinetic modeling, we found that an intracellular compartment in the cortex of the kidney could be distinguished from the blood and urine compartments in animals. Given emerging literature that the tumor suppressor protein p53 is an important regulator of cellular metabolism, we demonstrated that PET imaging was able to discern a threefold increase in cortical 18F-FDG uptake following the pharmacological inhibition of p53 in animals. Intravital MPM with the fluorescent glucose analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2-NBDG) provided increased resolution and corroborated these findings at the level of the proximal tubule. Extending our observation of p53 inhibition on proximal tubule glucose tracer uptake, we demonstrated by intravital MPM that pharmacological inhibition of p53 diminishes mitochondrial potential difference. We provide additional evidence that inhibition of p53 alters key metabolic enzymes regulating glycolysis and increases intermediates of glycolysis. In summary, we provide evidence that PET is a valuable tool for examining kidney metabolism in preclinical and clinical studies, intravital MPM is a powerful adjunct to PET in preclinical studies of metabolism, and p53 inhibition alters basal kidney metabolism.
Collapse
Affiliation(s)
- Takashi Hato
- Division of Nephrology, Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Allon N Friedman
- Division of Nephrology, Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Henry Mang
- Division of Nephrology, Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Zoya Plotkin
- Division of Nephrology, Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Shataakshi Dube
- Division of Nephrology, Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Gary D Hutchins
- Department of Radiology and Imaging Sciences and the Indiana Institute for Biomedical Imaging Sciences, Indiana University, Indianapolis, Indiana
| | - Paul R Territo
- Department of Radiology and Imaging Sciences and the Indiana Institute for Biomedical Imaging Sciences, Indiana University, Indianapolis, Indiana
| | - Brian P McCarthy
- Department of Radiology and Imaging Sciences and the Indiana Institute for Biomedical Imaging Sciences, Indiana University, Indianapolis, Indiana
| | - Amanda A Riley
- Department of Radiology and Imaging Sciences and the Indiana Institute for Biomedical Imaging Sciences, Indiana University, Indianapolis, Indiana
| | - Kumar Pichumani
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Craig R Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas.,Departments of Internal Medicine and Radiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas.,Veterans Affairs North Texas Health Care System, Dallas, Texas; and
| | - Robert A Harris
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, Indiana
| | - Pierre C Dagher
- Division of Nephrology, Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Timothy A Sutton
- Division of Nephrology, Department of Medicine, Indiana University, Indianapolis, Indiana;
| |
Collapse
|
9
|
Meshkini A. Fine-tuning of the cellular signaling pathways by intracellular GTP levels. Cell Biochem Biophys 2015; 70:27-32. [PMID: 24643502 DOI: 10.1007/s12013-014-9897-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It has become increasingly evident that among purine nucleotides, guanine based nucleotides specially guanosine-5'-triphosphate (GTP) serve as an important and independent regulatory factors for development and diverse cellular functions such as differentiation, metabolism, proliferation and survival in multiple tissues. In this brief review, it has been provided selective outline related to delicate regulation of signaling pathways by guanosine based nucleotides as intracellular signaling molecules. Although the exact mode of action of theses nucleotides in many biological processes and signaling pathways is still elusive, it has become well clear that intracellular guanosine based nucleotides content rather than adenosine based nucleotides could modulate the intensity and duration of signaling which ultimately impact on cell's fate. It opens an entirely new perspective for developing new and potential therapeutic strategies to combat diseases like cancer, hypoxia, etc.
Collapse
Affiliation(s)
- Azadeh Meshkini
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran,
| |
Collapse
|
10
|
Lindoso RS, Collino F, Bruno S, Araujo DS, Sant'Anna JF, Tetta C, Provero P, Quesenberry PJ, Vieyra A, Einicker-Lamas M, Camussi G. Extracellular vesicles released from mesenchymal stromal cells modulate miRNA in renal tubular cells and inhibit ATP depletion injury. Stem Cells Dev 2014; 23:1809-19. [PMID: 24669934 DOI: 10.1089/scd.2013.0618] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The mechanisms involved in renal repair by mesenchymal stromal cells (MSCs) are not entirely elucidated. The paracrine secretion of bioactive molecules has been implicated in the protective effects. Besides soluble mediators, MSCs have been shown to release extracellular vesicles (EVs), involved in renal repair process for different injury models. EVs have been shown to mediate communication between cells through the transference of several molecules, like protein, bioactive lipids, mRNA, and microRNAs (miRNAs). The miRNAs are noncoding RNAs that posttranscriptionally modulate gene expression and are involved in the regulation of several cellular processes, including those related to repair. The aim of the present study was to investigate the role of MSC-EVs in the modulation of miRNAs inside renal proximal tubular epithelial cells (PTECs) in an in vitro model of ischemia-reperfusion injury induced by ATP depletion. In this model we evaluated whether changes in miRNA expression were dependent on direct miRNA transfer or on transcription induction by MSC-EVs. The obtained results showed an enhanced incorporation of MSC-EVs in injured PTECs with protection from cell death. This biological effect was associated with EV-mediated miRNA transfer and with transcriptional modulation of miRNAs expressed by injured PTECs. Prediction of miRNA targets showed that miRNAs modulated in PTECs are involved in process of renal recovery with downregulation of coding-mRNAs associated with apoptosis, cytoskeleton reorganization, and hypoxia, such as CASP3 and 7, SHC1 and SMAD4. In conclusion, these results indicate that MSC-EVs may transfer and modulate the expression of several miRNAs involved in the repair and recovery process in PTECs.
Collapse
Affiliation(s)
- Rafael S Lindoso
- 1 Department of Medical Sciences, Molecular Biotechnology Center, University of Torino , Turin, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
da Costa MR, Pizzatti L, Lindoso RS, Sant'Anna JF, DuRocher B, Abdelhay E, Vieyra A. Mechanisms of kidney repair by human mesenchymal stromal cells after ischemia: a comprehensive view using label-free MS(E). Proteomics 2014; 14:1480-93. [PMID: 24723500 DOI: 10.1002/pmic.201300084] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 02/24/2014] [Accepted: 03/27/2014] [Indexed: 01/08/2023]
Abstract
Acute kidney injury (AKI) is one of the more frequent and lethal pathological conditions seen in intensive care units. Currently available treatments are not totally effective but stem cell-based therapies are emerging as promising alternatives, especially the use of mesenchymal stromal cells (MSC), although the signaling pathways involved in their beneficial actions are not fully understood. The objective of this study was to identify signaling networks and key proteins involved in the repair of ischemia by MSC. Using an in vitro model of AKI to investigate paracrine interactions and label-free high definition 2D-NanoESI-MS(E) , differentially expressed proteins were identified in a human renal proximal tubule cell lineage (HK-2) exposed to human MSC (hMSC) after an ischemic insult. In silico analysis showed that hMSC stimulated antiapoptotic activity, normal ROS handling, energy production, cytoskeleton organization, protein synthesis, and cell proliferation. The proteomic data were validated by parallel experiments demonstrating reduced apoptosis in HK-2 cells and recovery of intracellular ATP levels. qRT-PCR for proteins implicated in the above processes revealed that hMSC exerted their effects by stimulating translation, not transcription. Western blotting of proteins associated with ROS and energy metabolism confirmed their higher abundance in HK-2 cells exposed to hMSC.
Collapse
Affiliation(s)
- Milene R da Costa
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
12
|
Li L, Lin M, Li L, Wang R, Zhang C, Qi G, Xu M, Rong R, Zhu T. Renal telocytes contribute to the repair of ischemically injured renal tubules. J Cell Mol Med 2014; 18:1144-56. [PMID: 24758589 PMCID: PMC4508154 DOI: 10.1111/jcmm.12274] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/05/2014] [Indexed: 01/09/2023] Open
Abstract
Telocytes (TCs), a distinct type of interstitial cells, have been identified in many organs via electron microscopy. However, their precise function in organ regeneration remains unknown. This study investigated the paracrine effect of renal TCs on renal tubular epithelial cells (TECs) in vitro, the regenerative function of renal TCs in renal tubules after ischaemia–reperfusion injury (IRI) in vivo and the possible mechanisms involved. In a renal IRI model, transplantation of renal TCs was found to decrease serum creatinine and blood urea nitrogen (BUN) levels, while renal fibroblasts exerted no such effect. The results of histological injury assessments and the expression levels of cleaved caspase-3 were consistent with a change in kidney function. Our data suggest that the protective effect of TCs against IRI occurs via inflammation-independent mechanisms in vivo. Furthermore, we found that renal TCs could not directly promote the proliferation and anti-apoptosis properties of TECs in vitro. TCs did not display any advantage in paracrine growth factor secretion in vitro compared with renal fibroblasts. These data indicate that renal TCs protect against renal IRI via an inflammation-independent pathway and that growth factors play a significant role in this mechanism. Renal TCs may protect TECs in certain microenvironments while interacting with other cells.
Collapse
Affiliation(s)
- Liping Li
- Department of Urology, Fudan University Zhongshan Hospital, Shanghai, China; Shanghai Key Lab of Organ Transplantation, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The vast majority of deoxyribozyme-based sensors are designed using modified RNA-cleaving deoxyribozymes and detect analytes that act as allosteric regulators of their catalytic activity. These sensors are susceptible to background signals due to catalytic activity in the absence of target or contaminant molecules that cleave the RNA substrate, mimicking the deoxyribozyme reaction. In this manuscript, we introduce a novel system that avoids these problems by using the analyte as the substrate for a deoxyribozyme catalyzed self-phosphorylation reaction. This reaction creates a modified deoxyribozyme product that can be circularized and subjected to massive signal amplification by rolling circle amplification, leading to a sensor system with high sensitivity and low background, which can be coupled to numerous reporter systems. As an example of the potential of this system, we used the self-phosphorylating deoxyribozyme Dk2 to detect as little as 25 nM GTP even in the presence of 1 mM ATP, a potential contaminant. To demonstrate the adaptive properties of this system, we appended another DNA sequence to Dk2, which, once amplified by RCA, codes for a fluorescence generating deoxyribozyme. This two-deoxyribozyme system was able to report the presence of GTP from 4 μM to 1 mM, with specificity over other NTP molecules. Using this model system, we were able to show that small molecule modifying deoxyribozymes can be converted to analyte sensors by coupling their catalytic activity to signal amplification and reporting.
Collapse
Affiliation(s)
- Simon A McManus
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4K1 Canada
| | | |
Collapse
|
14
|
Beiral HJV, Rodrigues-Ferreira C, Fernandes AM, Gonsalez SR, Mortari NC, Takiya CM, Sorenson MM, Figueiredo-Freitas C, Galina A, Vieyra A. The impact of stem cells on electron fluxes, proton translocation, and ATP synthesis in kidney mitochondria after ischemia/reperfusion. Cell Transplant 2012; 23:207-20. [PMID: 23211430 DOI: 10.3727/096368912x659862] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Tissue damage by ischemia/reperfusion (I/R) results from a temporary cessation of blood flow followed by the restoration of circulation. The injury depresses mitochondrial respiration, increases the production of reactive oxygen species (ROS), decreases the mitochondrial transmembrane potential, and stimulates invasion by inflammatory cells. The primary objective of this work was to address the potential use of bone marrow stem cells (BMSCs) to preserve and restore mitochondrial function in the kidney after I/R. Mitochondria from renal proximal tubule cells were isolated by differential centrifugation from rat kidneys subjected to I/R (clamping of renal arteries followed by release of circulation after 30 min), without or with subcapsular administration of BMSCs. Respiration starting from mitochondrial complex II was strongly affected following I/R. However, when BMSCs were injected before ischemia or together with reperfusion, normal electron fluxes, electrochemical gradient for protons, and ATP synthesis were almost completely preserved, and mitochondrial ROS formation occurred at a low rate. In homogenates from cultured renal cells transiently treated with antimycin A, the coculture with BMSCs induced a remarkable increase in protein S-nitrosylation that was similar to that found in mitochondria isolated from I/R rats, evidence that BMSCs protected against both superoxide anion and peroxynitrite. Labeled BMSCs migrated to damaged tubules, suggesting that the injury functions as a signal to attract and host the injected BMSCs. Structural correlates of BMSC injection in kidney tissue included stimulus of tubule cell proliferation, inhibition of apoptosis, and decreased inflammatory response. Histopathological analysis demonstrated a score of complete preservation of tubular structures by BMSCs, associated with normal plasma creatinine and urinary osmolality. These key findings shed light on the mechanisms that explain, at the mitochondrial level, how stem cells prevent damage by I/R. The action of BMSCs on mitochondrial functions raises the possibility that autologous BMSCs may help prevent I/R injuries associated with transplantation and acute renal diseases.
Collapse
Affiliation(s)
- Hellen J V Beiral
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wan X, Yang J, Xing L, Fan L, Hu B, Chen X, Cao C. Inhibition of IκB Kinase β attenuates hypoxia-induced inflammatory mediators in rat renal tubular cells. Transplant Proc 2011; 43:1503-10. [PMID: 21693225 DOI: 10.1016/j.transproceed.2011.01.179] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 01/11/2011] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Inflammation is now believed to play a major role in the pathophysiology of ischemic acute kidney injury (AKI), which is thought to be directly regulated by nuclear factor-κB (NF-κB). Our previous study indicated that ischemic preconditioning (IPC) alleviated renal ischemic-reperfusion injury due to inhibition of IκB kinase β (IKK β) activity. Using small interfering RNA (siRNA) to silence the expression of IKKβ, which consists of the IKK complex residing at a key convergence site that leads to NF-κB activation in multiple signaling pathways, we protected organs from ischemic AKI. Herein, we have report a siRNA-based treatment to prevent ischemic AKI. METHODS Ischemic AKI was induced by a hypoxia-mimicking agent cobalt chloride (CoCl(2)). The therapeutic effects of IKKβ-specific siRNA were evaluated on the expression of interleukin (IL)-18, neutrophil gelatinase-associated lipocalin (NGAL), and cell apoptosis. RESULTS Compared with CoCl(2)-induced NRK52E cells, pretransfected IKKβ-specific siRNA reduced the expression of IL-18 and NGAL to 62.5% and 50.4% in messenger RNA (mRNA) and to 57.2% and 62.7% in protein levels, respectively. The necrosis index in the IKKβ-specific siRNA transfected group was decreased compared with a nonspecific siRNA transfected group. CONCLUSIONS These data revealed that hypoxia-induced inflammatory responses were IKKβ/NF-κB-dependent. Knockdown of IKKβ by siRNA suppressed the transcription IKKβ/NF-κB-mediated inflammatory mediators in tumor necrosis factor-α or CoCl(2)-treated tubular epithelial cells, and decreased CoCl(2)-induced cell death, which may be a useful, preventive and therapeutic strategy for ischemic AKI.
Collapse
Affiliation(s)
- X Wan
- Department of Nephrology, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Lindoso RS, Araujo DS, Adão-Novaes J, Mariante RM, Verdoorn KS, Fragel-Madeira L, Caruso-Neves C, Linden R, Vieyra A, Einicker-Lamas M. Paracrine interaction between bone marrow-derived stem cells and renal epithelial cells. Cell Physiol Biochem 2011; 28:267-78. [PMID: 21865734 DOI: 10.1159/000331739] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2011] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND/AIMS Renal tubular cells are the main target of ischemic insult associated with acute renal injury. Low oxygen and nutrient supplies result in ATP depletion, leading to cell death and loss of renal function. A possible mechanism by which bone marrow-derived cells support renal tissue regeneration relies on the capacity of mononuclear cells (BMMC), particularly mesenchymal stem cells (MSC), to secrete paracrine factors that mediate support for kidney regeneration. METHODS BMMC/MSC and renal cells (LLC-PK(1) from pig and IRPTC from rat) were co-cultured under stressful conditions (ATP depletion and/or serum free starvation), physically separated by a microporous membrane (0.4 μm), was used to determine whether bone marrow-derived cells can interact with renal cells in a paracrine manner. RESULTS This interaction resulted in stimulation of renal cell proliferation and the arrest of cell death. MSC elicit effective responses in renal cells in terms of stimulating proliferation and protection. Such effects are observed in renal cells co-cultured with rat BMMC/MSC, an indication that paracrine mechanisms are not entirely species-specific. CONCLUSION The paracrine action of BMMC/MSC was influenced by a renal cell stimulus released during stress, indicating that cross-talk with injured cells is required for renal regeneration supported by bone marrow-derived cells.
Collapse
Affiliation(s)
- Rafael S Lindoso
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Joshi D, Patel H, Baker DM, Shiwen X, Abraham DJ, Tsui JC. Development of an in vitro model of myotube ischemia. J Transl Med 2011; 91:1241-52. [PMID: 21606923 DOI: 10.1038/labinvest.2011.79] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Critical limb ischemia causes severe damage to the skeletal muscle. This study develops a reproducible model of myotube ischemia by simulating, in vitro, the critical parameters that occur in skeletal muscle ischemia. Monolayers of C2C12 myoblasts were differentiated into mature myotubes and exposed to nutrition depletion, hypoxia and hypercapnia for variable time periods. A range of culture media and gas mixture combinations were used to obtain an optimum ischemic environment. Nuclear staining, cleaved caspase-3 and lactate dehydrogenase (LDH) release assay were used to assess apoptosis and myotube survival. HIF-1α concentration of cell lysates, pH of conditioned media as well as partial pressures of oxygen (PO₂) and carbon dioxide (PCO₂) in the media were used to confirm ischemic simulation. Culturing myotubes in depleted media, in a gas mixture containing 20% CO+80% N₂ for 6-12 h increased the PCO₂ and decreased the pH and PO₂ of culture media. This attempts to mimic the in vivo ischemic state of skeletal muscle. These conditions were used to study the potential tissue-protective effects of erythropoietin (EPO) in C2C12 myotubes exposed to ischemia. EPO (60 ng/ml) suppressed LDH release, decreased cleaved caspase-3 and reduced the number of apoptotic nuclei, suggesting significantly decreased ischemia-induced apoptosis in myotubes (P<0.01) and a potential role in tissue protection. Additional therapeutic agents designed for tissue protection can also be evaluated using this model.
Collapse
|
18
|
Kinsey GR, Okusa MD. Pathogenesis of acute kidney injury: foundation for clinical practice. Am J Kidney Dis 2011; 58:291-301. [PMID: 21530035 PMCID: PMC3144267 DOI: 10.1053/j.ajkd.2011.02.385] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 02/01/2011] [Indexed: 01/09/2023]
Abstract
The pathogenesis of acute kidney injury (AKI) is complex, involving such factors as vasoconstriction, leukostasis, vascular congestion, cell death, and abnormal immune modulators and growth factors. Many targeted clinical therapies have failed, are inconclusive, or have yet to be tested. Given the complexity of the pathogenesis of AKI, it may be naive to expect that one therapeutic intervention would have success. Some examples of detrimental processes that can be blocked in preclinical models to improve kidney function and survival are apoptotic cell death in tubular epithelial cells, complement-mediated immune system activation, and impairment of cellular homeostasis and metabolism. Modalities with the potential to decrease morbidity and mortality in patients with AKI include vasodilators, growth factors, anti-inflammatory agents, and cell-based therapies. Pharmacologic agents that target these diverse pathways are being used clinically for other indications. Using combinatorial approaches in future clinical trials may improve our ability to prevent and treat AKI.
Collapse
Affiliation(s)
- Gilbert R Kinsey
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, 22908, USA
| | | |
Collapse
|
19
|
Guanine-induced inhibition of renal Na(+)-ATPase activity: evidence for the involvement of the Gi protein-coupled receptor. Arch Biochem Biophys 2011; 513:126-30. [PMID: 21784058 DOI: 10.1016/j.abb.2011.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/29/2011] [Accepted: 07/07/2011] [Indexed: 01/13/2023]
Abstract
There is some evidence to show a possible role of guanosine in the modulation of cellular function, in particular, in the neuronal system. However, nothing is known about the role of guanine in renal function. The aim of the present work was to investigate the role of guanine on modulation of Na+-ATPase activity in isolated basolateral membrane (BLM) of the renal cortex. Guanine inhibited the enzyme activity in a dose-dependent manner with maximal effect (56%) obtained at 10⁻⁶ M. This effect was reversed by DPCPX (8-cyclopentyl-1,3-dipropylxanthine), an antagonist of A₁ receptors, but it was not changed by 10⁻⁸ M DMPX (3,7-dimethyl-1-propargylxanthine) or 10⁻⁸ M MRS (2,3-diethyl-4,5-dipropyl-6-phenylpyridine-3-thiocarboxylate-5-carboxylate), antagonists of A₂ and A₃ receptors, respectively. Furthermore, it was observed that guanine increased [γ-³⁵S]GTP-specific binding with the maximal effect observed at 10⁻⁶ M and this effect was abolished by 10⁻⁶ M GDPβS. The inhibitory effect of 10⁻⁶ M guanine on Na+-ATPase activity was reversed by 10⁻⁶ M GDPβS, 10⁻⁶ M forskolin, 10⁻⁶ M pertussis toxin and 10⁻⁸ M cholera toxin. These results indicate that guanine binds to a DPCPX-sensitive receptor promoting the activation of Gi protein and leading to a decrease in cAMP level and, consequently, inhibition of BLM Na+-ATPase activity.
Collapse
|
20
|
Lv H, Liu L, Palacios G, Chen X. Metabolomic analysis characterizes tissue specific indomethacin-induced metabolic perturbations of rats. Analyst 2011; 136:2260-9. [PMID: 21483902 DOI: 10.1039/c1an15126f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, the promising metabolomic approach integrating with ingenuity pathway analysis (IPA) was applied to characterize the tissue specific metabolic perturbation of rats that was induced by indomethacin. The selective pattern recognition analyses were applied to analyze global metabolic profiling of urine of rats treated by indomethacin at an acute dosage of reference that has been proven to induce tissue disorders in rats, evaluated throughout the time-course of -24-72 h. The results preliminarily revealed that modifications of amino acid metabolism, fatty acid metabolism and energetically associated metabolic pathways accounted for metabolic perturbation of the rats that was induced by indomethacin. Furthermore, IPA was applied to deeply analyze the biomarkers and their relations with the metabolic perturbations evidenced by pattern recognition analyses. Specific biochemical functions affected by indomethacin suggested that there is an important correlation of its effects in kidney and liver metabolism, based on the determined metabolites and their pathway-based analysis. The IPA correlation of the three major biomarkers, identified as creatinine, prostaglandin E2 and guanosine, suggested that the administration of indomethacin induced certain levels of toxicity in the kidneys and liver. The changes in the levels of biomarker metabolites allowed the phenotypical determination of the metabolic perturbations induced by indomethacin in a time-dependent manner.
Collapse
Affiliation(s)
- Haitao Lv
- Department of Medicine, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Price Center Room 368, New York, New York 10461, USA.
| | | | | | | |
Collapse
|
21
|
Intracellular GTP level determines cell's fate toward differentiation and apoptosis. Toxicol Appl Pharmacol 2011; 253:188-96. [PMID: 21396949 DOI: 10.1016/j.taap.2011.02.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 02/09/2011] [Accepted: 02/28/2011] [Indexed: 01/23/2023]
Abstract
Since the adequate supply of guanine nucleotides is vital for cellular activities, limitation of their syntheses would certainly result in modulation of cellular fate toward differentiation and apoptosis. The aim of this study was to set a correlation between the intracellular level of GTP and the induction of relevant signaling pathways involved in the cell's fate toward life or death. In that regard, we measured the GTP level among human leukemia K562 cells exposed to mycophenolic acid (MPA) or 3-hydrogenkwadaphnin (3-HK) as two potent inosine monophosphate dehydrogenase inhibitors. Our results supported the maturation of the cells when the intracellular GTP level was reduced by almost 30-40%. Under these conditions, 3-HK and/or MPA caused up-regulation of PKCα and PI3K/AKT pathways. Furthermore, co-treatment of cells with hypoxanthine plus 3-HK or MPA, which caused a reduction of about 60% in the intracellular GTP levels, led to apoptosis and activation of mitochondrial pathways through inverse regulation of Bcl-2/Bax expression and activation of caspase-3. Moreover, our results demonstrated that attenuation of GTP by almost 60% augmented the intracellular ROS and nuclear localization of p21 and subsequently led to cell death. These results suggest that two different threshold levels of GTP are needed for induction of differentiation and/or ROS-associated apoptosis.
Collapse
|
22
|
Breggia AC, Himmelfarb J. Primary mouse renal tubular epithelial cells have variable injury tolerance to ischemic and chemical mediators of oxidative stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 1:33-8. [PMID: 19794906 PMCID: PMC2715195 DOI: 10.4161/oxim.1.1.6491] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 06/19/2008] [Accepted: 06/23/2008] [Indexed: 11/19/2022]
Abstract
We have developed and evaluated an in vitro culture method for assessing ischemic injury in primary mouse renal tubular epithelial cells (RTEC) in which to explore the pathobiology underlying acute kidney injury. RTEC were predominately of proximal tubule origin which is most susceptible to ischemic injury as compared to other nephron segments. Oxidative stress was induced by chemically depleting ATP using Antimycin A and 2-Deoxy-D-Glucose and by exposing cells to a 1% oxygen environment. Necrotic injury was assessed by measuring LDH released into culture supernatants. Optimal dose and time of exposure to each injury agent was determined for induction of mild, moderate and severe ischemic injury defined as LDH release of </= 20%, 21-49% and >/= 50% above baseline respectively. Antimycin A and 2-Deoxy-D-Glucose produced a progressive increase in LDH release which was time dependent but chemical concentration independent. A 1% oxygen environment also induced cell injury over time but only if glucose was absent from the culture media. Antimycin A was most effective at inducing oxidative stress causing a mean LDH release of 61% at 48 hr compared to 19% and 50% LDH release induced by 2-Deoxy-D-Glucose and by exposure to 1% oxygen respectively at the same 48 hour time point.The cell culture method described provides several advantages including the use of serum free media and the ability to grow primary cells without matrix support. The LDH assay for injury assessment is reproducible, cost effective, objective and minimizes background cell death. A simple method for the culture and injury of primary mouse renal tubular epithelial cells has thereby been established and provides a useful tool for future investigations of ischemic kidney injury.
Collapse
Affiliation(s)
- Anne C Breggia
- Maine Medical Center Research Institute, Clinical and Translational Research, Portland, Maine 04102, USA
| | | |
Collapse
|
23
|
Imamura R, Isaka Y, Sandoval RM, Ori A, Adamsky S, Feinstein E, Molitoris BA, Takahara S. Intravital Two-Photon Microscopy Assessment of Renal Protection Efficacy of siRNA for p53 in Experimental Rat Kidney Transplantation Models. Cell Transplant 2010; 19:1659-70. [DOI: 10.3727/096368910x516619] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Renal ischemia-reperfusion (I/R) injury, which is unavoidable in renal transplantation, frequently influences both short- and long-term allograft survival. Despite decades of laboratory and clinical investigations, and the advent of renal replacement therapy, the overall mortality rate due to acute tubular injury has changed little. I/R-induced DNA damage results in p53 activation in proximal tubule cells (PTC), leading to their apoptosis. Therefore, we examined the therapeutic effect of temporary p53 inhibition in two rat renal transplantation models on structural and functional aspects of injury using intravital two-photon microscopy. Nephrectomized Sprague-Dawley rats received syngeneic left kidney transplantation either after 40 min of intentional warm ischemia or after combined 5-h cold and 30-min warm ischemia of the graft. Intravenously administrated siRNA for p53 (siP53) has previously been shown to be filtered and reabsorbed by proximal tubular epithelial cells following the warm ischemia/reperfusion injury in a renal clamp model. Here, we showed that it was also taken up by PTC following 5 h of cold ischemia. Compared to saline-treated recipients, treatment with siP53 resulted in conservation of renal function and significantly suppressed the I/R-induced increase in serum creatinine in both kidney transplantation models. Intravital two-photon microscopy revealed that siP53 significantly ameliorated structural and functional damage to the kidney assessed by quantification of tubular cast formation and the number of apoptotic and necrotic tubular cells and by evaluation of blood flow rate. In conclusion, systemic administration of siRNA for p53 is a promising new approach to protect kidneys from I/R injury in renal transplantation.
Collapse
Affiliation(s)
- Ryoichi Imamura
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ruben M. Sandoval
- Department of Medicine, Division of Nephrology, Indiana Center for Biological Microscopy, Indiana University, Bloomington, IN, USA
| | - Asaf Ori
- Quark Pharmaceuticals Inc., Fremont, CA, USA
| | | | | | - Bruce A. Molitoris
- Department of Medicine, Division of Nephrology, Indiana Center for Biological Microscopy, Indiana University, Bloomington, IN, USA
| | - Shiro Takahara
- Department of Advanced Technology for Transplantation, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
24
|
Molitoris BA, Dagher PC, Sandoval RM, Campos SB, Ashush H, Fridman E, Brafman A, Faerman A, Atkinson SJ, Thompson JD, Kalinski H, Skaliter R, Erlich S, Feinstein E. siRNA targeted to p53 attenuates ischemic and cisplatin-induced acute kidney injury. J Am Soc Nephrol 2009; 20:1754-64. [PMID: 19470675 PMCID: PMC2723992 DOI: 10.1681/asn.2008111204] [Citation(s) in RCA: 260] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 04/02/2009] [Indexed: 01/11/2023] Open
Abstract
Proximal tubule cells (PTCs), which are the primary site of kidney injury associated with ischemia or nephrotoxicity, are the site of oligonucleotide reabsorption within the kidney. We exploited this property to test the efficacy of siRNA targeted to p53, a pivotal protein in the apoptotic pathway, to prevent kidney injury. Naked synthetic siRNA to p53 injected intravenously 4 h after ischemic injury maximally protected both PTCs and kidney function. PTCs were the primary site for siRNA uptake within the kidney and body. Following glomerular filtration, endocytic uptake of Cy3-siRNA by PTCs was rapid and extensive, and significantly reduced ischemia-induced p53 upregulation. The duration of the siRNA effect in PTCs was 24 to 48 h, determined by levels of p53 mRNA and protein expression. Both Cy3 fluorescence and in situ hybridization of siRNA corroborated a short t(1/2) for siRNA. The extent of renoprotection, decrease in cellular p53 and attenuation of p53-mediated apoptosis by siRNA were dose- and time-dependent. Analysis of renal histology and apoptosis revealed improved injury scores in both cortical and corticomedullary regions. siRNA to p53 was also effective in a model of cisplatin-induced kidney injury. Taken together, these data indicate that rapid delivery of siRNA to proximal tubule cells follows intravenous administration. Targeting siRNA to p53 leads to a dose-dependent attenuation of apoptotic signaling, suggesting potential therapeutic benefit for ischemic and nephrotoxic kidney injury.
Collapse
Affiliation(s)
- Bruce A. Molitoris
- *Department of Medicine, Division of Nephrology, and Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis, Indiana
- Roudebush V.A. Medical Center, Indianapolis, Indiana
| | - Pierre C. Dagher
- *Department of Medicine, Division of Nephrology, and Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ruben M. Sandoval
- *Department of Medicine, Division of Nephrology, and Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis, Indiana
- Roudebush V.A. Medical Center, Indianapolis, Indiana
| | - Silvia B. Campos
- *Department of Medicine, Division of Nephrology, and Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis, Indiana
- Roudebush V.A. Medical Center, Indianapolis, Indiana
| | - Hagit Ashush
- Research Division, Quark Pharmaceuticals Inc (QBI Enterprises Ltd), Weizmann Science Park, Ness Ziona, Israel
| | - Eduard Fridman
- Department of Pathology, Sheba Medical Center, Sackler School of Medicine, Tel Ha-Shomer, Israel
| | - Anat Brafman
- Research Division, Quark Pharmaceuticals Inc (QBI Enterprises Ltd), Weizmann Science Park, Ness Ziona, Israel
| | - Alexander Faerman
- Research Division, Quark Pharmaceuticals Inc (QBI Enterprises Ltd), Weizmann Science Park, Ness Ziona, Israel
| | - Simon J. Atkinson
- *Department of Medicine, Division of Nephrology, and Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Hagar Kalinski
- Research Division, Quark Pharmaceuticals Inc (QBI Enterprises Ltd), Weizmann Science Park, Ness Ziona, Israel
| | - Rami Skaliter
- Research Division, Quark Pharmaceuticals Inc (QBI Enterprises Ltd), Weizmann Science Park, Ness Ziona, Israel
- Development Division, Quark Pharmaceuticals Inc, Boulder, Colorado
| | - Shai Erlich
- Development Division, Quark Pharmaceuticals Inc, Boulder, Colorado
| | - Elena Feinstein
- Research Division, Quark Pharmaceuticals Inc (QBI Enterprises Ltd), Weizmann Science Park, Ness Ziona, Israel
| |
Collapse
|
25
|
Lee SJ, Kwon CH, Kim YK. Alterations in membrane transport function and cell viability induced by ATP depletion in primary cultured rabbit renal proximal tubular cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2009; 13:15-22. [PMID: 19885021 DOI: 10.4196/kjpp.2009.13.1.15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study was undertaken to elucidate the underlying mechanisms of ATP depletion-induced membrane transport dysfunction and cell death in renal proximal tubular cells. ATP depletion was induced by incubating cells with 2.5 mM potassium cyanide (KCN)/0.1 mM iodoacetic acid (IAA), and membrane transport function and cell viability were evaluated by measuring Na(+)-dependent phosphate uptake and trypan blue exclusion, respectively. ATP depletion resulted in a decrease in Na(+)-dependent phosphate uptake and cell viability in a time-dependent manner. ATP depletion inhibited Na(+)-dependent phosphate uptake in cells, when treated with 2 mM ouabain, a Na(+) pump-specific inhibitor, suggesting that ATP depletion impairs membrane transport functional integrity. Alterations in Na(+)-dependent phosphate uptake and cell viability induced by ATP depletion were prevented by the hydrogen peroxide scavenger such as catalase and the hydroxyl radical scavengers (dimethylthiourea and thiourea), and amino acids (glycine and alanine). ATP depletion caused arachidonic acid release and increased mRNA levels of cytosolic phospholipase A(2) (cPLA(2)). The ATP depletion-dependent arachidonic acid release was inhibited by cPLA(2) specific inhibitor AACOCF(3). ATP depletion-induced alterations in Na(+)-dependent phosphate uptake and cell viability were prevented by AACOCF(3). Inhibition of Na(+)-dependent phosphate uptake by ATP depletion was prevented by antipain and leupetin, serine/cysteine protease inhibitors, whereas ATP depletion-induced cell death was not altered by these agents. These results indicate that ATP depletion-induced alterations in membrane transport function and cell viability are due to reactive oxygen species generation and cPLA(2) activation in renal proximal tubular cells. In addition, the present data suggest that serine/cysteine proteases play an important role in membrane transport dysfunction, but not cell death, induced by ATP depletion.
Collapse
Affiliation(s)
- Sung Ju Lee
- Department of Physiology, MRC for Ischemic Tissue Regeneration, College of Medicine, Pusan National University, Busan 602-739, Korea
| | | | | |
Collapse
|
26
|
Differential patterns of peroxynitrite mediated apoptosis in proximal tubular epithelial cells following ATP depletion recovery. Apoptosis 2008; 13:621-33. [PMID: 18357533 DOI: 10.1007/s10495-008-0196-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Ischemia-reperfusion injury (IRI) is characterized by ATP depletion in the ischemic phase, followed by a rapid increase in reactive oxygen species, including peroxynitrite in the reperfusion phase. In this study, we examined the role of peroxynitrite on cytotoxicity and apoptosis in an in vitro model of ATP depletion-recovery. Porcine proximal tubular epithelial (LLC-PK(1)) cells were ATP depleted for either 2 h (2/2) or 4 h (4/2) followed by recovery in serum free medium for 2 h. A subset of cells was treated with 100 microM of the peroxynitrite scavenger, iron (III) tetrakis (N-methyl-4'pyridyl) porphyrin pentachloride (FeTMPyP) 30 min prior to and during treatment/recovery. Treatment with FeTMPyP reduced cytotoxicity and superoxide levels at both the 2/2 and 4/2 time points, however FeTMPyP decreased nitric oxide only at the 2/2 time point. FeTMPyP also partially blocked caspase-3 and caspase-8 activation at both 2/2 and 4/2 time points. At the 4/2 time point, FeTMPyP also partially inhibited the ATP depletion mediated increase in tumor necrosis factor alpha (TNF-alpha) and decreased Bax and FasL gene expression. These data show that peroxynitrite induces apoptosis by activation of multiple pathways depending on length and severity of insult following ATP depletion-recovery.
Collapse
|
27
|
Cohen D, Papillon J, Aoudjit L, Li H, Cybulsky AV, Takano T. Role of calcium-independent phospholipase A2 in complement-mediated glomerular epithelial cell injury. Am J Physiol Renal Physiol 2008; 294:F469-79. [DOI: 10.1152/ajprenal.00372.2007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In experimental membranous nephropathy, complement C5b-9-induced glomerular epithelial cell (GEC) injury leads to morphological changes in GEC and proteinuria, in association with phospholipase A2 (PLA2) activation. The present study addresses the role of calcium-independent PLA2 (iPLA2) in GEC injury. iPLA2β short and iPLA2γ were expressed in cultured rat GEC and normal rat glomeruli. To determine whether iPLA2 is involved in complement-mediated arachidonic acid (AA) release, GEC were stably transfected with iPLA2γ or iPLA2β cDNAs (GEC-iPLA2γ; GEC-iPLA2β). Compared with control cells (GEC-Neo), GEC-iPLA2γ and GEC-iPLA2β demonstrated greater expression of iPLA2 proteins and activities. Complement-mediated release of [3H]AA was augmented significantly in GEC-iPLA2γ compared with GEC-Neo, and the augmented [3H]AA release was inhibited by the iPLA2-directed inhibitor bromoenol lactone (BEL). For comparison, overexpression of iPLA2γ also amplified [3H]AA release after incubation of GEC with H2O2, or chemical anoxia followed by reexposure to glucose (in vitro ischemia-reperfusion injury). In parallel with release of [3H]AA, complement-mediated production of prostaglandin E2 was amplified in GEC-iPLA2γ. Complement-mediated cytotoxicity was attenuated significantly in GEC-iPLA2γ compared with GEC-Neo, and the cytoprotective effect of iPLA2γ was reversed by BEL, and in part by indomethacin. Overexpression of iPLA2β did not amplify complement-dependent [3H]AA release, but nonetheless attenuated complement-mediated cytotoxicity. Thus iPLA2γ may be involved in complement-mediated release of AA. Expression of iPLA2γ or iPLA2β induces cytoprotection against complement-dependent GEC injury. Modulation of iPLA2 activity may prove to be a novel approach to reducing GEC injury.
Collapse
|
28
|
Maenpaa CJ, Shames BD, Van Why SK, Johnson CP, Nilakantan V. Oxidant-mediated apoptosis in proximal tubular epithelial cells following ATP depletion and recovery. Free Radic Biol Med 2008; 44:518-26. [PMID: 17997382 DOI: 10.1016/j.freeradbiomed.2007.10.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 10/08/2007] [Accepted: 10/08/2007] [Indexed: 01/07/2023]
Abstract
Oxidant-mediated apoptosis has been implicated in renal injury due to ischemia reperfusion (IR); however, the apoptotic signaling pathways following IR have been incompletely defined. The purpose of this study was to examine the role of oxidants on cell death in a model of in vitro simulated IR injury in renal proximal tubular epithelial cells by analyzing the effects of a cell-permeable superoxide dismutase mimetic, manganese (III) tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride (MnTmPyP). Renal proximal tubular epithelial cells were ATP depleted for 2, 4, or 6 h, followed by 2 h of recovery. We found that MnTmPyP was effective in attenuating cytotoxicity (P<0.001) and decreasing steady-state oxidant levels (P<0.001) and apoptotic cell death (P<0.001) following ATP depletion-recovery. MnTmPyP treatment prevented the early cytosolic release of cytochrome c and increased Bcl-2 protein levels following short durations of ATP depletion-recovery. After longer periods of ATP depletion-recovery, we observed a significant increase in TNF-alpha protein levels (P<0.001) and caspase-8 activation (P<0.001), both of which were decreased (P<0.001) by treatment with MnTmPyP. Our results suggest that oxidant mediated apoptosis via the mitochondrial pathway during the early phase of ATP depletion and by activation of the receptor-mediated apoptotic pathway following longer durations of injury.
Collapse
Affiliation(s)
- Cheryl J Maenpaa
- Division of Transplant Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
29
|
De Keukeleire B, Micoud J, Biard J, Benharouga M. Endoplasmic reticulum-associated degradation of mutant CFTR requires a guanine nucleotide-sensitive step. Int J Biochem Cell Biol 2008; 40:1729-42. [PMID: 18280771 DOI: 10.1016/j.biocel.2007.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 12/07/2007] [Accepted: 12/24/2007] [Indexed: 11/30/2022]
Abstract
Proteasome degradation of endoplasmic reticulum (ER)-misfolded proteins requires retrograde transport from ER to the cytosol. To date, it is not clear whether this event constitutes the exclusive ER degradation process for non-native membrane proteins. Here we describe the role of GTP in the degradation of DeltaF508-CFTR and the alpha subunit of the T-cell receptor (TCRalpha), representative misfolded ER membrane proteins. Selective intracellular GTP depletion extended the DeltaF508-CFTR half-life sixfold, whereas ATP depletion accelerated its turnover and inhibited only 80% of the proteasome activity that was not affected by GTP depletion. AlF(4)(-), a well-known inhibitor of heterotrimeric G proteins, but not of AlF(3), delayed the mutant CFTR turnover in vivo, in semi-intact cells and in ER-enriched microsomes, without affecting ER to Golgi cargo transport. DeltaF508-CFTR degradation was also inhibited by alkaline stripping of ER-associated membrane proteins. We propose that at the ER, GTP may participate in the disposal of misfolded membrane proteins through activation of heterotrimeric G proteins.
Collapse
|
30
|
Russ AL, Haberstroh KM, Rundell AE. Experimental strategies to improve in vitro models of renal ischemia. Exp Mol Pathol 2007; 83:143-59. [PMID: 17490640 DOI: 10.1016/j.yexmp.2007.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 03/15/2007] [Accepted: 03/15/2007] [Indexed: 12/11/2022]
Abstract
Ischemia has elicited a great deal of interest among the scientific community due to its role in life-threatening pathologies such as cancer, stroke, acute renal failure, and myocardial infarction. Oxygen deprivation (hypoxia) associated with ischemia has recently become a subject of intense scrutiny. New investigators may find it challenging to induce hypoxic injury in vitro. Researchers may not always be aware of the experimental barriers that contribute to this phenomenon. Furthermore, ischemia is associated with other major insults, such as excess carbon dioxide (hypercapnia), nutrient deprivation, and accumulation of cellular wastes. Ideally, these conditions should also be incorporated into in vitro models. Therefore, the motivation behind this review is to: i. delineate major in vivo ischemic insults; ii. identify and explain critical in vitro parameters that need to be considered when simulating ischemic pathologies; iii. provide recommendations to improve experiments; and as a result, iv. enhance the validity of in vitro results for understanding clinical ischemic pathologies. Undoubtedly, it is not possible to completely replicate the in vivo environment in an ex vivo model system. In fact, the primary goal of many in vitro studies is to elucidate the role of specific stimuli during in vivo pathological events. This review will present methodologies that may be implemented to improve the applicability of in vitro models for understanding the complex pathological mechanisms of ischemia. Finally, although these topics will be discussed within the context of renal ischemia, many are pertinent for cellular models of other organ systems and pathologies.
Collapse
Affiliation(s)
- Alissa L Russ
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Intramural Dr. West Lafayette, IN 47907-1791, USA
| | | | | |
Collapse
|
31
|
Poncet D, Pauleau AL, Szabadkai G, Vozza A, Scholz SR, Le Bras M, Brière JJ, Jalil A, Le Moigne R, Brenner C, Hahn G, Wittig I, Schägger H, Lemaire C, Bianchi K, Souquère S, Pierron G, Rustin P, Goldmacher VS, Rizzuto R, Palmieri F, Kroemer G. Cytopathic effects of the cytomegalovirus-encoded apoptosis inhibitory protein vMIA. ACTA ACUST UNITED AC 2006; 174:985-96. [PMID: 16982800 PMCID: PMC2064390 DOI: 10.1083/jcb.200604069] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Replication of human cytomegalovirus (CMV) requires the expression of the viral mitochondria–localized inhibitor of apoptosis (vMIA). vMIA inhibits apoptosis by recruiting Bax to mitochondria, resulting in its neutralization. We show that vMIA decreases cell size, reduces actin polymerization, and induces cell rounding. As compared with vMIA-expressing CMV, vMIA-deficient CMV, which replicates in fibroblasts expressing the adenoviral apoptosis suppressor E1B19K, induces less cytopathic effects. These vMIA effects can be separated from its cell death–inhibitory function because vMIA modulates cellular morphology in Bax-deficient cells. Expression of vMIA coincided with a reduction in the cellular adenosine triphosphate (ATP) level. vMIA selectively inhibited one component of the ATP synthasome, namely, the mitochondrial phosphate carrier. Exposure of cells to inhibitors of oxidative phosphorylation produced similar effects, such as an ATP level reduced by 30%, smaller cell size, and deficient actin polymerization. Similarly, knockdown of the phosphate carrier reduced cell size. Our data suggest that the cytopathic effect of CMV can be explained by vMIA effects on mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Delphine Poncet
- Centre National de la Recherche Scientifique, FRE2939, Institut Gustave Roussy, F-94805 Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sáenz-Morales D, Escribese MM, Stamatakis K, García-Martos M, Alegre L, Conde E, Pérez-Sala D, Mampaso F, García-Bermejo ML. Requirements for proximal tubule epithelial cell detachment in response to ischemia: role of oxidative stress. Exp Cell Res 2006; 312:3711-27. [PMID: 17026998 DOI: 10.1016/j.yexcr.2006.05.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 05/18/2006] [Accepted: 05/28/2006] [Indexed: 11/24/2022]
Abstract
Sublethal renal ischemia induces tubular epithelium damage and kidney dysfunction. Using NRK-52E rat proximal tubular epithelial cells, we have established an in vitro model, which includes oxygen and nutrients deprivation, to study the proximal epithelial cell response to ischemia. By means of this system, we demonstrate that confluent NRK-52E cells lose monolayer integrity and detach from collagen IV due to: (i) actin cytoskeleton reorganization; (ii) Rac1 and RhoA activity alterations; (iii) Adherens junctions (AJ) and Tight junctions (TJ) disruption, involving redistribution but not degradation of E-cadherin, beta-catenin and ZO-1; (iv) focal adhesion complexes (FAC) disassembly, entangled by mislocalization of paxillin and FAK dephosphorylation. Reactive oxygen species (ROS) are generated during the deprivation phase and rapidly balanced at recovery involving MnSOD induction, among others. The use of antioxidants (NAC) prevented FAC disassembly by blocking paxillin redistribution and FAK dephosphorylation, without abrogating AJ or TJ disruption. In spite of this, NAC did not show any protective effect on cell detachment. H(2)O(2), as a pro-oxidant treatment, supported the contribution of ROS in tubular epithelial cell-matrix but not cell-cell adhesion alterations. In conclusion, ROS-mediated FAC disassembly was not sufficient for the proximal epithelial cell shedding in response to sublethal ischemia, which also requires intercellular adhesion disruption.
Collapse
Affiliation(s)
- David Sáenz-Morales
- Department of Pathology, Hospital Univ. Ramón y Cajal, Crta. de Colmenar, Km 9,1, 28034, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Gopalakrishnan S, Hallett MA, Atkinson SJ, Marrs JA. aPKC-PAR complex dysfunction and tight junction disassembly in renal epithelial cells during ATP depletion. Am J Physiol Cell Physiol 2006; 292:C1094-102. [PMID: 16928777 DOI: 10.1152/ajpcell.00099.2006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Renal ischemia and in vitro ATP depletion result in disruption of the epithelial tight junction barrier, which is accompanied by breakdown of plasma membrane polarity. Tight junction formation is regulated by evolutionarily conserved complexes, including that of atypical protein kinase C (aPKC), Par3, and Par6. The aPKC signaling complex is activated by Rac and regulated by protein phosphorylation and associations with other tight junction regulatory proteins, for example, mLgl. In this study, we examined the role of aPKC signaling complex during ATP depletion and recovery in Madin-Darby canine kidney cells. ATP depletion reduced Rac GTPase activity and induced Par3, aPKCzeta, and mLgl-1 redistribution from sites of cell-cell contact, which was restored following recovery from ATP depletion. Zonula occludens (ZO)-1 and Par3 phosphorylation was reduced and association of aPKCzeta with its substrates Par3 and mLgl-1 was stabilized in ATP-depleted Madin-Darby canine kidney cells. ATP depletion also induced a stable association of Par3 with Tiam-1, a Rac GTPase exchange factor, which explains how aPKCzeta and Rac activities were suppressed. Experimental inhibition of aPKCzeta during recovery from ATP depletion interfered with reassembly of ZO-1 and Par3 at cell junctions. These data indicate that aPKC signaling is impaired during ATP depletion, participates in tight junction disassembly during cell injury and is important for tight junction reassembly during recovery.
Collapse
Affiliation(s)
- Shobha Gopalakrishnan
- Dept. of Medicine, Div. of Nephrology, Indiana University Medical Center, Indianapolis, IN 46202-5116, USA
| | | | | | | |
Collapse
|
34
|
Chandra D, Bratton SB, Person MD, Tian Y, Martin AG, Ayres M, Fearnhead HO, Gandhi V, Tang DG. Intracellular nucleotides act as critical prosurvival factors by binding to cytochrome C and inhibiting apoptosome. Cell 2006; 125:1333-46. [PMID: 16814719 DOI: 10.1016/j.cell.2006.05.026] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Revised: 01/06/2006] [Accepted: 05/03/2006] [Indexed: 10/24/2022]
Abstract
Cytochrome c (CC)-initiated Apaf-1 apoptosome formation represents a key initiating event in apoptosis. This process can be reconstituted in vitro with the addition of CC and ATP or dATP to cell lysates. How physiological levels of nucleotides, normally at high mM concentrations, affect apoptosome activation remains unclear. Here we show that physiological levels of nucleotides inhibit the CC-initiated apoptosome formation and caspase-9 activation by directly binding to CC on several key lysine residues and thus preventing CC interaction with Apaf-1. We show that in various apoptotic systems caspase activation is preceded or accompanied by decreases in overall intracellular NTP pools. Microinjection of nucleotides inhibits whereas experimentally reducing NTP pools enhances both CC and apoptotic stimuli-induced cell death. Our results thus suggest that the intracellular nucleotides represent critical prosurvival factors by functioning as natural inhibitors of apoptosome formation and a barrier that cells must overcome the nucleotide barrier to undergo apoptosis cell death.
Collapse
Affiliation(s)
- Dhyan Chandra
- Department of Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park-Research Division, Smithville, TX 78957, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Jeyaraj SC, Dakhlallah D, Hill SR, Lee BS. Expression and distribution of HuR during ATP depletion and recovery in proximal tubule cells. Am J Physiol Renal Physiol 2006; 291:F1255-63. [PMID: 16788138 PMCID: PMC1941714 DOI: 10.1152/ajprenal.00440.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human antigen R (HuR) is a nucleocytoplasmic shuttling protein that binds to and stabilizes mRNAs containing adenine- and uridine-rich elements. Under normal growth conditions, the bulk of HuR is maintained in the nucleus, but under conditions of cell stress, HuR may become more prevalent in the cytosol, where it can stabilize mRNA and regulate gene expression. We have studied the behavior of HuR in LLC-PK1 proximal tubule cells subjected to ATP depletion and recovery. ATP depletion resulted in detectable net movement of HuR out of the nucleus, followed by net movement of HuR back into the nucleus on reversion to normal growth medium. In addition, HuR protein levels increased during energy depletion. This increase was inhibited by cycloheximide and was independent of HuR mRNA levels, since no change was noted in the quantity of HuR transcript. In contrast, recovery in normal growth medium resulted in increased HuR mRNA, while protein levels decreased to baseline. This suggested a mechanism by which previously injured cells maintained normal levels of HuR but were primed to rapidly translate increased amounts of protein on subsequent insults. Indeed, a second round of ATP depletion resulted in heightened HuR protein translation at a rate more rapid than during the first insult. Additionally, the second insult produced increased HuR levels in the cytoplasm while still maintaining high amounts in the nucleus, indicating that nuclear export may not be required on subsequent insults. These results suggest a role for HuR in protecting kidney epithelia from injury during ischemic stress.
Collapse
Affiliation(s)
- Selvi C Jeyaraj
- Department of Physiology and Cell Biology, The Ohio State University, 1645 Neil Ave., Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
36
|
Emadali A, Muscatelli-Groux B, Delom F, Jenna S, Boismenu D, Sacks DB, Metrakos PP, Chevet E. Proteomic analysis of ischemia-reperfusion injury upon human liver transplantation reveals the protective role of IQGAP1. Mol Cell Proteomics 2006; 5:1300-13. [PMID: 16622255 DOI: 10.1074/mcp.m500393-mcp200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) represents a major determinant of liver transplantation. IRI-induced graft dysfunction is related to biliary damage, partly due to a loss of bile canaliculi (BC) integrity associated with a dramatic remodeling of actin cytoskeleton. However, the molecular mechanisms associated with these events remain poorly characterized. Using liver biopsies collected during the early phases of organ procurement (ischemia) and transplantation (reperfusion), we characterized the global patterns of expression and phosphorylation of cytoskeleton-related proteins during hepatic IRI. This targeted functional proteomic approach, which combined protein expression pattern profiling and phosphoprotein enrichment followed by mass spectrometry analysis, allowed us to identify IQGAP1, a Cdc42/Rac1 effector, as a potential regulator of actin cytoskeleton remodeling and maintenance of BC integrity. Cell fractionation and immunohistochemistry revealed that IQGAP1 expression and localization were affected upon IRI and related to actin reorganization. Furthermore using an IRI model in human hepatoma cells, we demonstrated that IQGAP1 silencing decreased the basal level of actin polymerization at BC periphery, reflecting a defect in BC structure coincident with reduced cellular resistance to IRI. In summary, this study uncovered new mechanistic insights into the global regulation of IRI-induced cytoskeleton remodeling and led to the identification of IQGAP1 as a regulator of BC structure. IQGAP1 therefore represents a potential target for the design of new organ preservation strategies to improve transplantation outcome.
Collapse
Affiliation(s)
- Anouk Emadali
- Organelle Signalling Laboratory, Hepato-Biliary and Transplant Research Group, Department of Surgery, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Hallows KR, Fitch AC, Richardson CA, Reynolds PR, Clancy JP, Dagher PC, Witters LA, Kolls JK, Pilewski JM. Up-regulation of AMP-activated kinase by dysfunctional cystic fibrosis transmembrane conductance regulator in cystic fibrosis airway epithelial cells mitigates excessive inflammation. J Biol Chem 2005; 281:4231-41. [PMID: 16361706 DOI: 10.1074/jbc.m511029200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AMP-activated kinase (AMPK) is a ubiquitous metabolic sensor that inhibits the cystic fibrosis (CF) transmembrane conductance regulator (CFTR). To determine whether CFTR reciprocally regulates AMPK function in airway epithelia and whether such regulation is involved in lung inflammation, AMPK localization, expression, and activity and cellular metabolic profiles were compared as a function of CFTR status in CF and non-CF primary human bronchial epithelial (HBE) cells. As compared with non-CF HBE cells, CF cells had greater and more diffuse AMPK staining and had greater AMPK activity than their morphologically matched non-CF counterparts. The cellular [AMP]/[ATP] ratio was higher in undifferentiated than in differentiated non-CF cells, which correlated with AMPK activity under these conditions. However, this nucleotide ratio did not predict AMPK activity in differentiating CF cells. Inhibiting channel activity in non-CF cells did not affect AMPK activity or metabolic status, but expressing functional CFTR in CF cells reduced AMPK activity without affecting cellular [AMP]/[ATP]. Therefore, lack of functional CFTR expression and not loss of channel activity in CF cells appears to up-regulate AMPK activity in CF HBE cells, presumably through non-metabolic effects on upstream regulatory pathways. Compared with wild-type CFTR-expressing immortalized CF bronchial epithelial (CFBE) cells, DeltaF508-CFTR-expressing CFBE cells had greater AMPK activity and greater secretion of tumor necrosis factor-alpha and the interleukins IL-6 and IL-8. Further pharmacologic AMPK activation inhibited inflammatory mediator secretion in both wild type- and DeltaF508-expressing cells, suggesting that AMPK activation in CF airway cells is an adaptive response that reduces inflammation. We propose that therapies to activate AMPK in the CF airway may be beneficial in reducing excessive airway inflammation, a major cause of CF morbidity.
Collapse
Affiliation(s)
- Kenneth R Hallows
- Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Sharples EJ, Thiemermann C, Yaqoob MM. Mechanisms of Disease: cell death in acute renal failure and emerging evidence for a protective role of erythropoietin. ACTA ACUST UNITED AC 2005; 1:87-97. [PMID: 16932374 DOI: 10.1038/ncpneph0042] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Accepted: 09/02/2005] [Indexed: 12/29/2022]
Abstract
Acute renal failure--characterized by a sudden loss of the ability of the kidneys to excrete nitrogenous waste, and to maintain electrolyte homeostasis and fluid balance--is a frequently encountered clinical problem, particularly in the intensive care unit. Unfortunately, advances in supportive interventions have done little to reduce the high mortality associated with this condition. Might erythropoietin (EPO) have utility as a therapeutic agent in acute renal failure? This hormone mediates anti-apoptotic effects in the bone marrow, facilitating maturation and differentiation of erythroid progenitors. New evidence indicates that EPO also exerts anti-apoptotic effects in the brain, heart and vasculature, which can limit the degree of organ damage. Here, we review the emerging biological role of EPO in the kidney and the pathophysiology of ischemia-reperfusion injury in an attempt to understand the therapeutic potential of EPO in acute renal failure.
Collapse
Affiliation(s)
- Edward J Sharples
- Centre for Experimental Medicine, Nephrology and Critical Care, The William Harvey Research Institute, St Bartholomew's and The Royal London School of Medicine and Dentistry, Queen Mary-University of London, London EC1M 6BQ, UK.
| | | | | |
Collapse
|
39
|
Caron A, Desrosiers RR, Béliveau R. Ischemia injury alters endothelial cell properties of kidney cortex: stimulation of MMP-9. Exp Cell Res 2005; 310:105-16. [PMID: 16112109 DOI: 10.1016/j.yexcr.2005.07.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 06/15/2005] [Accepted: 07/09/2005] [Indexed: 11/16/2022]
Abstract
Although ischemia is the leading cause of acute renal failure in human, there is little information on the remodeling the kidney endothelium matrix during ischemic injury. In this study, we investigated the activity and expression of MMP-2 and MMP-9, in an isolated endothelial fraction following an acute in vivo reversible ischemia induced in rats by vascular clamping. Ischemia increased serum creatinine levels 1.4-fold, hallmark of acute renal failure. Isolation of the endothelial cell fraction was performed by affinity chromatography using an anti-PECAM-1 antibody. The isolated fraction was assessed by Western blotting analysis of endothelial cell markers. The positively selected fractions were enriched in the endothelial markers eNOS and PECAM-1 by 128-fold and 44-fold, respectively. Gelatin zymography showed that ischemia strongly stimulated proteolytic activity of proMMP-2 (1.8-fold), proMMP-9 (3-fold) and MMP-9 (4-fold) in the endothelial fractions. Western blot analysis indicated that TIMP-2 protein level increased by 3.2-fold in the endothelial fractions during ischemia. Surprisingly, TIMP-1 was absent from the endothelial preparations but was easily detected in the non-endothelial cells. Levels of the endocytic receptor LRP were increased by 2-fold during ischemia in the endothelial fractions. Occludin, a known in vivo MMP-9 substrate, was partly degraded in the endothelial fractions during ischemia, suggesting that the MMP-9 which was upregulated during ischemia was functional. These data suggest that ischemia in kidney could lead to the degradation of the vascular basement membrane and to increased permeability. This suggests new therapeutic approaches for ischemic pathologies by targeting MMP-9 and its regulators.
Collapse
Affiliation(s)
- Annick Caron
- Laboratoire de médecine moléculaire, Centre de cancérologie Charles Bruneau, Hôpital Ste-Justine, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3P8
| | | | | |
Collapse
|
40
|
Legewie S, Blüthgen N, Schäfer R, Herzel H. Ultrasensitization: switch-like regulation of cellular signaling by transcriptional induction. PLoS Comput Biol 2005; 1:e54. [PMID: 16261195 PMCID: PMC1274294 DOI: 10.1371/journal.pcbi.0010054] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 09/26/2005] [Indexed: 11/29/2022] Open
Abstract
Cellular signaling networks are subject to transcriptional and proteolytic regulation under both physiological and pathological conditions. For example, the expression of proteins subject to covalent modification by phosphorylation is known to be altered upon cellular differentiation or during carcinogenesis. However, it is unclear how moderate alterations in protein expression can bring about large changes in signal transmission as, for example, observed in the case of haploinsufficiency, where halving the expression of signaling proteins abrogates cellular function. By modeling a fundamental motif of signal transduction, the phosphorylation–dephosphorylation cycle, we show that minor alterations in the concentration of the protein subject to phosphorylation (or the phosphatase) can affect signal transmission in a highly ultrasensitive fashion. This “ultrasensitization” is strongly favored by substrate sequestration on the catalyzing enzymes, and can be observed with experimentally measured enzymatic rate constants. Furthermore, we show that coordinated transcription of multiple proteins (i.e., synexpression) within a protein kinase cascade results in even more pronounced all-or-none behavior with respect to signal transmission. Finally, we demonstrate that ultrasensitization can account for specificity and modularity in the regulation of cellular signal transduction. Ultrasensitization can result in all-or-none cell-fate decisions and in highly specific cellular regulation. Additionally, switch-like phenomena such as ultrasensitization are known to contribute to bistability, oscillations, noise reduction, and cellular heterogeneity. Hormones and other external stimuli induce cellular transitions such as cell division or differentiation by regulating gene expression. Hormone-induced cellular transitions are known to occur in a switch-like fashion: while weak background stimuli are rejected, cellular transitions proceed fully as soon as a threshold hormone concentration is exceeded. Earlier studies have described several mechanisms whereby such a switch-like behavior can be realized in intracellular communication via signal transduction networks, which convert hormonal signals into alterations in gene expression. The authors demonstrate how switch-like behavior can be further enhanced downstream of hormone-induced gene expression. They show that even minor (hormone-induced) alterations in gene expression can dramatically affect the activity of intracellular signal transduction networks, and thereby modify cellular behavior. This phenomenon has been termed “ultrasensitization.” Ultrasensitization can explain the pronounced dosage sensitivity observed for many disease-associated signal transduction proteins: for example, the mutation of one of two alleles (gene copies), resulting in a 2-fold reduction of gene expression, can already initiate disease progression. Although such sensitivity towards mutations is potentially harmful, the fact that cells nevertheless exhibit ultrasensitization suggests that somehow cells benefit from ultrasensitization. The authors illustrate how ultrasensitization improves the specificity and efficiency of cell-to-cell communication and contributes to cellular memory.
Collapse
Affiliation(s)
- Stefan Legewie
- Institute for Theoretical Biology, Humboldt University, Berlin, Germany.
| | | | | | | |
Collapse
|
41
|
Greijer AE, van der Groep P, Kemming D, Shvarts A, Semenza GL, Meijer GA, van de Wiel MA, Belien JAM, van Diest PJ, van der Wall E. Up-regulation of gene expression by hypoxia is mediated predominantly by hypoxia-inducible factor 1 (HIF-1). J Pathol 2005; 206:291-304. [PMID: 15906272 DOI: 10.1002/path.1778] [Citation(s) in RCA: 326] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The hypoxia-inducible factor 1 (HIF-1) plays a critical role in cellular responses to hypoxia. The aim of the present study was to evaluate which genes are induced by hypoxia, and whether this induction is mediated by HIF-1, by expression microarray analysis of wt and HIF-1alpha null mouse fibroblasts. Forty-five genes were up-regulated by hypoxia and 40 (89%) of these were regulated by HIF-1. Of the 114 genes down-regulated by hypoxia, 19 (17%) were HIF-1-dependent. All glycolytic enzymes were strongly up-regulated by hypoxia in a HIF-1-dependent manner. Genes already known to be related to hypoxia, such as glucose transporter 1, BNIP3, and hypoxia-induced gene 1, were induced. In addition, multiple new HIF-1-regulated genes were identified, including genes involved in metabolism (adenylate kinase 4, galactokinase), apoptosis (galectin-3 and gelsolin), and invasion (RhoA). Genes down-regulated by hypoxia were involved in cytoskeleton maintenance (Rho kinase), mRNA processing (heterogeneous nuclear ribonucleoprotein H1 and splicing factor), and DNA repair (REV3). Furthermore, seven cDNAs from genes with unknown function or expressed sequence tags (ESTs) were up-regulated and 27 such cDNAs were down-regulated. In conclusion, hypoxia causes down- rather than up-regulation of gene expression and HIF-1 seems to play a major role in the regulation of hypoxia-induced genes.
Collapse
Affiliation(s)
- A E Greijer
- Department of Pathology, VUMC, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Barsotti C, Ipata PL. Metabolic regulation of ATP breakdown and of adenosine production in rat brain extracts. Int J Biochem Cell Biol 2005; 36:2214-25. [PMID: 15313467 DOI: 10.1016/j.biocel.2004.04.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Revised: 04/28/2004] [Accepted: 04/28/2004] [Indexed: 02/07/2023]
Abstract
ATP concentration is dramatically affected in ischemic injury. From previous studies on ATP mediated purine and pyrimidine salvage in CNS, we observed that when "post-mitochondrial" extracts of rat brain were incubated with ATP at 3.6 mM, a normoxic concentration, formation of IMP always preceded that of adenosine, a well known neuroactive nucleoside and a homeostatic cellular modulator. This observation prompted us to undertake a study aimed at assessing the precise pathways and kinetics of ATP breakdown, a process considered to be the major source of adenosine in rat brain. The results obtained using post-mitochondrial extracts strongly suggest that the breakdown of intracellular ATP at normoxic concentration follows almost exclusively the pathway ATP<=>ADP<=>AMP --> IMP --> inosine<=>hypoxanthine, with little, if any, intracellular adenosine production. At low ischemic concentration, intracellular ATP breakdown follows the pathway ATP<=>ADP<=>AMP --> adenosine --> inosine<=>hypoxanthine with little IMP formation. At the same time, extracellular ATP, whose concentration is known to be enhanced during ischemia, is actively broken down to adenosine through the pathway ATP --> ADP --> AMP --> adenosine, catalysed by the well characterized ecto-enzyme cascade system. Moreover, we show that during intracellular GTP catabolism, xanthosine, in addition to guanosine, is generated through the so called "ribose 1-phosphate recycling for nucleoside interconversion". These results considerably extend our knowledge on the long debated question of the extra or intracellular origin of adenosine in CNS, suggesting that at least in normoxic conditions, intracellular adenosine is of extracellular origin.
Collapse
Affiliation(s)
- Catia Barsotti
- Department of Physiology and Biochemistry, University of Pisa, Via San Zeno 51, 56127 Pisa, Italy.
| | | |
Collapse
|
43
|
Abstract
Apoptosis is increasingly recognized as a major mode of cell demise after ischemic injury to the kidney. The mediators of apoptotic cell death are many and include changes in intracellular pH, calcium, free radicals, ceramide, and adenosine triphosphate (ATP) depletion. Recently, we identified guanosine triphosphate (GTP) depletion as an independent trigger for apoptotic death after chemical anoxia in vitro. We further demonstrated that GTP salvage with guanosine inhibits tubular cell apoptosis after ischemic injury in vivo. This inhibition of apoptosis was accompanied by a significant protective effect on renal function. We also showed that p53 is the mediator of apoptosis in the setting of GTP depletion and ischemic injury. Indeed, salvage of GTP with guanosine prevented the ischemia-induced increase in p53 protein. Further, pifithrin-alpha, a potent and specific inhibitor of p53, inhibited apoptosis and protected renal function with a profile similar to that seen with guanosine. Finally, the protective effects of pifithrin-alpha involved both down-regulation of the transcriptional activation of Bax and a direct inhibition of p53 translocation to mitochondria. We propose that GTP depletion and activation of p53 are major inducers of apoptotic cell death after ischemic renal injury. In this setting, guanosine and pifithrin-alpha are potent inhibitors of apoptosis and are thus potentially useful in preventing and ameliorating functional injury to the ischemic kidney.
Collapse
Affiliation(s)
- Pierre C Dagher
- Indiana Center for Biological Microscopy, Department of Medicine, Division of Nephrology, Indiana University, Indianapolis, Indiana, USA.
| |
Collapse
|
44
|
Caron A, Desrosiers RR, Béliveau R. Kidney ischemia–reperfusion regulates expression and distribution of tubulin subunits, β-actin and rho GTPases in proximal tubules. Arch Biochem Biophys 2004; 431:31-46. [PMID: 15464724 DOI: 10.1016/j.abb.2004.07.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 07/12/2004] [Indexed: 10/26/2022]
Abstract
Ischemic injury is characterized by a loss of cell polarity and a release of proximal tubule epithelial cells resulting from cytoskeletal reorganization. This study used a reversible unilateral renal ischemia-reperfusion model to investigate the expression and distribution of cytoskeletal components and Rho GTPases at protein and mRNA levels in proximal tubule fractions. Ischemia strongly increased beta-actin and alpha-tubulin expressions that were predominantly found in nuclear fractions. Rho GTPases and caveolin-1 expression were upregulated by ischemia and were enriched mainly in Triton-soluble membranes. Rac1 expression was stimulated in the soluble fractions during reperfusion. Rho GTPases mRNA levels were similarly regulated by ischemia-reperfusion suggesting that changes in their expressions could occur at gene or mRNA levels. ERM protein expression and distribution were unaffected by ischemia-reperfusion. Together, these data show that renal ischemia-reperfusion induced expression and redistribution of actin and microtubule cytoskeleton components in addition to Rho GTPases in proximal tubules, suggesting that they participate in an adaptive response to cellular lesions.
Collapse
Affiliation(s)
- Annick Caron
- Laboratoire de médecine moléculaire, Centre de cancérologie Charles Bruneau, Hôpital Ste-Justine, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal, Que., Canada, H3C 3P8
| | | | | |
Collapse
|
45
|
Turcotte S, Desrosiers RR, Beliveau R. Hypoxia upregulates von Hippel-Lindau tumor-suppressor protein through RhoA-dependent activity in renal cell carcinoma. Am J Physiol Renal Physiol 2004; 286:F338-48. [PMID: 14583436 DOI: 10.1152/ajprenal.00254.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A key task for the multifunctional von Hippel-Lindau protein (pVHL) is regulation of the activity of hypoxia-inducible factor-1α (HIF-1α) by targeting it to the proteasome for degradation under normoxia. pVHL binding to HIF-1α is lost under low O2 tension, leading to transcription of several genes involved in the hypoxia response. However, regulation of pVHL by hypoxia remains to be investigated. We evaluated the effects of hypoxia on pVHL expression in carcinoma and endothelial cells. We showed that hypoxia stimulates pVHL levels (2.5-fold) in renal Caki-1 cells expressing wild-type VHL (VHL+/+). This upregulation was independent of VHL status, because hypoxia also increased pVHL expression in renal 786-O cells carrying mutated VHL (VHL-/-). Hypoxia did not affect pVHL expression in endothelial cells. Hypoxia-induced pVHL in Caki-1 cells was RhoA dependent, because inhibition by exotoxin C3 prevented pVHL stimulation. Furthermore, inhibition of Rho kinase by Y-27632 blocked pVHL induction by hypoxia. During normoxia, pVHL expression was also induced in cells transfected with dominant-active RhoA. Furthermore, disruption of actin organization by chemical agents or by hypoxia stimulated pVHL expression in kidney cells. On the other hand, inhibition of MAP kinases p38 and JNK, but not MAP kinase kinase (MEK1/2), reduced pVHL upregulation by 30 and 72%, respectively, during hypoxia, supporting a significant role for these signaling pathways. Expression and phosphorylation of c-Jun were stimulated in cells transfected with dominant-active RhoA. Together, these findings demonstrate that hypoxia induces pVHL expression in renal cancer cells, and this induction is mediated by RhoA-dependent pathways.
Collapse
Affiliation(s)
- Sandra Turcotte
- Laboratoire de Médecine Moléculaire, Hôspital Sainte-Justine, Université du Québec à Montréal, Montreal, Quebec, Canada H3C 3P8
| | | | | |
Collapse
|
46
|
Atkinson SJ, Hosford MA, Molitoris BA. Mechanism of actin polymerization in cellular ATP depletion. J Biol Chem 2003; 279:5194-9. [PMID: 14623892 DOI: 10.1074/jbc.m306973200] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cellular ATP depletion in diverse cell types results in the net conversion of monomeric G-actin to polymeric F-actin and is an important aspect of cellular injury in tissue ischemia. We propose that this conversion results from altering the ratio of ATP-G-actin and ADP-G-actin, causing a net decrease in the concentration of thymosinactin complexes as a consequence of the differential affinity of thymosin beta4 for ATP- and ADP-G-actin. To test this hypothesis we examined the effect of ATP depletion induced by antimycin A and substrate depletion on actin polymerization, the nucleotide state of the monomer pool, and the association of actin monomers with thymosin and profilin in the kidney epithelial cell line LLC-PK1. ATP depletion for 30 min increased F-actin content to 145% of the levels under physiological conditions, accompanied by a corresponding decrease in G-actin content. Cytochalasin D treatment did not reduce F-actin formation during ATP depletion, indicating that it was predominantly not because of barbed end monomer addition. ATP-G-actin levels decreased rapidly during depletion, but there was no change in the concentration of ADP-G-actin monomers. The decrease in ATP-G-actin levels could be accounted for by dissociation of the thymosin-G-actin binary complex, resulting in a rise in the concentration of free thymosin beta4 from 4 to 11 microm. Increased detection of profilin-actin complexes during depletion indicated that profilin may participate in catalyzing nucleotide exchange during depletion. This mechanism provides a biochemical basis for the accumulation of F-actin aggregates in ischemic cells.
Collapse
Affiliation(s)
- Simon J Atkinson
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | |
Collapse
|
47
|
Plaisance I, Duthe F, Sarrouilhe D, Hervé JC. The metabolic inhibitor antimycin A can disrupt cell-to-cell communication by an ATP- and Ca(2+)-independent mechanism. Pflugers Arch 2003; 447:181-94. [PMID: 14504927 DOI: 10.1007/s00424-003-1158-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2003] [Revised: 06/27/2003] [Accepted: 07/24/2003] [Indexed: 12/20/2022]
Abstract
In cardiac myocytes of new-born rats, the degree of intercellular communication through gap junctional channels closely depends on the metabolic state of the cells. In contrast, in stably transfected HeLa cells expressing rat cardiac connexin43 (Cx43, the main channel-forming protein present in ventricular myocytes), a major part of junctional communication persisted in ATP-depleted conditions, in the presence of a metabolic inhibitor (KCN) or of a broad spectrum inhibitor of protein kinases (H7). However, another metabolic inhibitor, antimycin A, which like cyanide inhibits electron transfer in the respiratory chain, totally interrupted cell-to-cell communication between Cx43-HeLa cells, even in whole-cell conditions, when ATP (5 mM) was present. Antimycin A caused a modest increase in cytosolic calcium concentration; however, junctional uncoupling still occurred when this rise was prevented. Conditions of ischemic insult (e.g. ischemia or chemical hypoxia) frequently cause the activation of protein kinases, particularly of Src and MAP kinases, and such activations are known to markedly disrupt gap junctional communication. Antimycin-induced junctional uncoupling occurred even in the presence of inhibitors of these kinases. Antimycin A appears able to cause junctional uncoupling either through the ATP depletion it induces as a metabolic poison or via a direct action on gap junction constituents.
Collapse
Affiliation(s)
- Isabelle Plaisance
- Communications Jonctionnelles, UMR CNRS 6558, Faculté de Sciences Fondamentales et Appliquées, Université de Poitiers, 40 avenue du R. Pineau, 86022 Poitiers, France
| | | | | | | |
Collapse
|
48
|
Hallett MA, Dagher PC, Atkinson SJ. Rho GTPases show differential sensitivity to nucleotide triphosphate depletion in a model of ischemic cell injury. Am J Physiol Cell Physiol 2003; 285:C129-38. [PMID: 12620811 DOI: 10.1152/ajpcell.00007.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rho GTPases are critical for actin cytoskeletal regulation, and alterations in their activity may contribute to altered cytoskeletal organization that characterizes many pathological conditions, including ischemia. G protein activity is a function of the ratio of GTP-bound (active) to GDP-bound (inactive) protein, but the effect of altered energy metabolism on Rho protein activity has not been determined. We used antimycin A and substrate depletion to induce depletion of intracellular ATP and GTP in the kidney proximal tubule cell line LLC-PK10 and measured the activity of RhoA, Rac1, and Cdc42 with GTPase effector binding domains fused to glutathione S-transferase. RhoA activity decreased in parallel with the concentration of ATP and GTP during depletion, so that by 60 min there was no detectable RhoA-GTP, and recovered rapidly when cells were returned to normal culture conditions. Dissociation of the membrane-actin linker ezrin, a target of RhoA signaling, from the cytoskeletal fraction paralleled the decrease in RhoA activity and was augmented by treatment with the Rho kinase inhibitor Y27632. The activity of Cdc42 did not decrease significantly during depletion or recovery. Rac1 activity decreased moderately to a minimum at 30 min of depletion but then increased from 30 to 90 min of depletion, even as ATP and GTP levels continued to fall. Our data are consistent with a principal role for RhoA in cytoskeletal reorganization during ischemia and demonstrate that the activity of Rho GTPases can be maintained even at low GTP concentrations.
Collapse
Affiliation(s)
- Mark A Hallett
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
49
|
Turcotte S, Desrosiers RR, Béliveau R. HIF-1alpha mRNA and protein upregulation involves Rho GTPase expression during hypoxia in renal cell carcinoma. J Cell Sci 2003; 116:2247-60. [PMID: 12697836 DOI: 10.1242/jcs.00427] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The small G proteins of the Rho family are involved in reorganization of the actin cytoskeleton, cell migration and in the regulation of gene transcription. Hypoxia-induced ATP depletion results in the disruption of actin organization which could affect Rho functions. In solid tumors, regions with low oxygen tension stimulate angiogenesis in order to increase oxygen and nutrient supply. This process is mediated by stabilization of the transcriptional factor hypoxia inducible factor 1 (HIF-1), which increases vascular endothelial growth factor (VEGF) production. In this study, we investigated the activities of Rho proteins, which are key regulators of cytoskeleton organization during hypoxia in renal cell carcinoma. Caki-1 cells were exposed to hypoxia (1% O2) and exhibited increased Cdc42, Rac1 and RhoA protein expression. Immunoprecipitation of metabolically labelled RhoA showed that overexpression was at least due to neo-synthesis. The Rho GTPases overexpressed during hypoxia were mainly located at membranes and pull-down assays demonstrated that they were active since they bound GTP. RT-PCR analysis indicated that the increase in RhoA protein expression was also reflected at the mRNA level. Overexpression and activation of Rho proteins were downstream of, and dependent on, the production of reactive oxygen species (ROS) since, in the presence of an inhibitor, both the rise of ROS and upregulation of Rho proteins were abolished. Importantly, preincubation of cells with the toxin C3, which inhibits RhoA, reduced HIF-1alpha protein accumulation by 84% during hypoxia. Together, these results support a model where ROS upregulate Rho protein expression and where active RhoA is required for HIF-1alpha accumulation during hypoxia.
Collapse
Affiliation(s)
- Sandra Turcotte
- Laboratoire de médecine moléculaire, Hôpital Sainte-Justine, Université du Québec à Montréal, CP 8888, Succursale centre-ville, Montréal, Québec, Canada H3C 3P8
| | | | | |
Collapse
|
50
|
Heiniger CD, Kostadinova RM, Rochat MK, Serra A, Ferrari P, Dick B, Frey BM, Frey FJ. Hypoxia causes down-regulation of 11 beta-hydroxysteroid dehydrogenase type 2 by induction of Egr-1. FASEB J 2003; 17:917-9. [PMID: 12626438 DOI: 10.1096/fj.02-0582fje] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hypoxia causes several renal tubular dysfunctions, including abnormal handling of potassium and sodium and increased blood pressure. Therefore, we investigated the impact of hypoxia on 11beta-hydroxysteroid dehydrogenase (11beta-HSD2) enzyme, a crucial prereceptor gatekeeper for renal glucocorticosteroid-mediated mineralocorticoid action. The effect of hypoxia was assessed in vitro by incubating LLC-PK1 cells with antimycin A, an inhibitor of mitochondrial oxidative phosphorylation. Antimycin A induced a dose- and time-dependent reduction of 11beta-HSD2 activity. The early growth response gene, Egr-1, a gene known to be stimulated by hypoxia was investigated because of a potential Egr-1 binding site in the promoter region of 11beta-HSD2. Antimycin A induced Egr-1 protein and Egr-1-regulated luciferase gene expression. This induction was prevented with the MAPKK inhibitor PD 98059. Overexpression of Egr-1 reduced endogenous 11beta-HSD2 activity in LLC-PK1 cells, indicating that MAPK ERK is involved in the regulation of 11beta-HSD2 in vitro. In vivo experiments in rats revealed that Egr-1 protein increases, whereas 11beta-HSD2 mRNA decreases, in kidney tissue after unilateral renal ischemia and in humans the renal activity of 11beta-HSD2 as assessed by the urinary ratio of (tetrahydrocortisol+5alpha-tetrahydrocortisol)/tetrahydrocortisone declined when volunteers were exposed to hypoxemia at high altitude up to 7000 m. Thus, hypoxia decreases 11beta-HSD2 transcription and activity by inducing Egr-1 in vivo and in vitro. This mechanism might account for enhanced renal sodium retention and hypertension associated with hypoxic conditions.
Collapse
Affiliation(s)
- Christian D Heiniger
- Division of Nephrology and Hypertension, University of Berne, 3010 Berne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|