1
|
Hill TG, Hill DJ. The Importance of Intra-Islet Communication in the Function and Plasticity of the Islets of Langerhans during Health and Diabetes. Int J Mol Sci 2024; 25:4070. [PMID: 38612880 PMCID: PMC11012451 DOI: 10.3390/ijms25074070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Islets of Langerhans are anatomically dispersed within the pancreas and exhibit regulatory coordination between islets in response to nutritional and inflammatory stimuli. However, within individual islets, there is also multi-faceted coordination of function between individual beta-cells, and between beta-cells and other endocrine and vascular cell types. This is mediated partly through circulatory feedback of the major secreted hormones, insulin and glucagon, but also by autocrine and paracrine actions within the islet by a range of other secreted products, including somatostatin, urocortin 3, serotonin, glucagon-like peptide-1, acetylcholine, and ghrelin. Their availability can be modulated within the islet by pericyte-mediated regulation of microvascular blood flow. Within the islet, both endocrine progenitor cells and the ability of endocrine cells to trans-differentiate between phenotypes can alter endocrine cell mass to adapt to changed metabolic circumstances, regulated by the within-islet trophic environment. Optimal islet function is precariously balanced due to the high metabolic rate required by beta-cells to synthesize and secrete insulin, and they are susceptible to oxidative and endoplasmic reticular stress in the face of high metabolic demand. Resulting changes in paracrine dynamics within the islets can contribute to the emergence of Types 1, 2 and gestational diabetes.
Collapse
Affiliation(s)
- Thomas G. Hill
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - David J. Hill
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON N6A 4V2, Canada;
- Departments of Medicine, Physiology and Pharmacology, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
2
|
Gupta D, Burstein AW, Schwalbe DC, Shankar K, Varshney S, Singh O, Paul S, Ogden SB, Osborne-Lawrence S, Metzger NP, Richard CP, Campbell JN, Zigman JM. Ghrelin deletion and conditional ghrelin cell ablation increase pancreatic islet size in mice. J Clin Invest 2023; 133:e169349. [PMID: 38099492 PMCID: PMC10721155 DOI: 10.1172/jci169349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/05/2023] [Indexed: 12/18/2023] Open
Abstract
Ghrelin exerts key effects on islet hormone secretion to regulate blood glucose levels. Here, we sought to determine whether ghrelin's effects on islets extend to the alteration of islet size and β cell mass. We demonstrate that reducing ghrelin - by ghrelin gene knockout (GKO), conditional ghrelin cell ablation, or high-fat diet (HFD) feeding - was associated with increased mean islet size (up to 62%), percentage of large islets (up to 854%), and β cell cross-sectional area (up to 51%). In GKO mice, these effects were more apparent in 10- to 12-week-old mice than in 4-week-old mice. Higher β cell numbers from decreased β cell apoptosis drove the increase in β cell cross-sectional area. Conditional ghrelin cell ablation in adult mice increased the β cell number per islet by 40% within 4 weeks. A negative correlation between islet size and plasma ghrelin in HFD-fed plus chow-fed WT mice, together with even larger islet sizes in HFD-fed GKO mice than in HFD-fed WT mice, suggests that reduced ghrelin was not solely responsible for diet-induced obesity-associated islet enlargement. Single-cell transcriptomics revealed changes in gene expression in several GKO islet cell types, including upregulation of Manf, Dnajc3, and Gnas expression in β cells, which supports decreased β cell apoptosis and/or increased β cell proliferation. These effects of ghrelin reduction on islet morphology might prove useful when designing new therapies for diabetes.
Collapse
Affiliation(s)
- Deepali Gupta
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Avi W. Burstein
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Dana C. Schwalbe
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Kripa Shankar
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Salil Varshney
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Omprakash Singh
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Subhojit Paul
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Sean B. Ogden
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Sherri Osborne-Lawrence
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Nathan P. Metzger
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Corine P. Richard
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - John N. Campbell
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Jeffrey M. Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine and
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
3
|
Zang P, Yang C, Lei H, Guo Q, Wang W, Shao J. Ghrelin regulates the proliferation and apoptosis of high glucose-induced islet cells through the PI3K-Akt signaling pathway. Cell Biol Int 2023; 47:768-775. [PMID: 36718083 DOI: 10.1002/cbin.11981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 02/01/2023]
Abstract
Ghrelin may have therapeutic value in mitigating insulin resistance and type 2 diabetes, based on which we further explore the action mechanism of ghrelin on islet cells in this research. In the course of experiments, MIN6 cells were induced by glucose and then treated with acylated or unacylated ghrelin. The effects of ghrelin on the viability, proliferation, apoptosis, and insulin release of high glucose-induced islet cells were detected by Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine, flow cytometry, and enzyme-linked immunosorbent assays, respectively. Meanwhile, cells were treated with LY294002 to explore whether and how the inhibited phosphoinositide 3-kinase-protein kinase B (PI3K-AKT) signaling pathway participated in the internal mechanism of ghrelin-regulating islet cells. Western blotting was performed to quantify the expression levels of Bcl-2, Bax, Cleaved caspase-3, PI3K, and AKT. As a result, ghrelin alleviated high glucose-induced suppression of viability and proliferation and promotion on apoptosis of MIN6 cells. Ghrelin also attenuated the inhibitory effects of high glucose on expression levels of PI3K-Akt signaling axis-related proteins and insulin release in MIN6 cells. Besides, ghrelin weakened the impacts of high glucose on boosting MIN6 cell apoptosis and hindering proliferation through the PI3K-Akt signaling axis. Collectively, ghrelin regulates the proliferation and apoptosis of high glucose-induced islet cells through the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Pu Zang
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Cuihua Yang
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Haiyan Lei
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Qingyu Guo
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Wei Wang
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jiaqing Shao
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Gupta D, Dowsett GKC, Mani BK, Shankar K, Osborne-Lawrence S, Metzger NP, Lam BYH, Yeo GSH, Zigman JM. High Coexpression of the Ghrelin and LEAP2 Receptor GHSR With Pancreatic Polypeptide in Mouse and Human Islets. Endocrinology 2021; 162:6325122. [PMID: 34289060 PMCID: PMC8379901 DOI: 10.1210/endocr/bqab148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Indexed: 02/07/2023]
Abstract
Islets represent an important site of direct action of the hormone ghrelin, with expression of the ghrelin receptor (growth hormone secretagogue receptor; GHSR) having been localized variably to alpha cells, beta cells, and/or somatostatin (SST)-secreting delta cells. To our knowledge, GHSR expression by pancreatic polypeptide (PP)-expressing gamma cells has not been specifically investigated. Here, histochemical analyses of Ghsr-IRES-Cre × Cre-dependent ROSA26-yellow fluorescent protein (YFP) reporter mice showed 85% of GHSR-expressing islet cells coexpress PP, 50% coexpress SST, and 47% coexpress PP + SST. Analysis of single-cell transcriptomic data from mouse pancreas revealed 95% of Ghsr-expressing cells coexpress Ppy, 100% coexpress Sst, and 95% coexpress Ppy + Sst. This expression was restricted to gamma-cell and delta-cell clusters. Analysis of several single-cell human pancreatic transcriptome data sets revealed 59% of GHSR-expressing cells coexpress PPY, 95% coexpress SST, and 57% coexpress PPY + SST. This expression was prominent in delta-cell and beta-cell clusters, also occurring in other clusters including gamma cells and alpha cells. GHSR expression levels were upregulated by type 2 diabetes mellitus in beta cells. In mice, plasma PP positively correlated with fat mass and with plasma levels of the endogenous GHSR antagonist/inverse agonist LEAP2. Plasma PP also elevated on LEAP2 and synthetic GHSR antagonist administration. These data suggest that in addition to delta cells, beta cells, and alpha cells, PP-expressing pancreatic cells likely represent important direct targets for LEAP2 and/or ghrelin both in mice and humans.
Collapse
Affiliation(s)
- Deepali Gupta
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9077, USA
| | - Georgina K C Dowsett
- Medical Research Council (MRC) Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Bharath K Mani
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9077, USA
| | - Kripa Shankar
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9077, USA
| | - Sherri Osborne-Lawrence
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9077, USA
| | - Nathan P Metzger
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9077, USA
| | - Brian Y H Lam
- Medical Research Council (MRC) Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Giles S H Yeo
- Medical Research Council (MRC) Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
- Correspondence: Giles S. H. Yeo, PhD, Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome–MRC Institute of Metabolic Science, Box 289, Addenbrooke’s Hospital, Hills Rd, Cambridge, CB2 0QQ, UK.
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9077, USA
- Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9077, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9077, USA
- Correspondence: Jeffrey M. Zigman, MD, PhD, Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, MC9077, Dallas, TX 75390-9077, USA.
| |
Collapse
|
5
|
Drott CJ, Norman D, Espes D. CART decreases islet blood flow, but has no effect on total pancreatic blood flow and glucose tolerance in anesthetized rats. Peptides 2021; 135:170431. [PMID: 33098940 DOI: 10.1016/j.peptides.2020.170431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 01/08/2023]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) is a neurotransmitter and hormone, involved in the regulation of e.g. food intake, body weight, reward and addiction, and stress response. CART has also been found to affect insulin secretion and beta cell morphology, both in vivo and in vitro. Furthermore, CART affects regulation of the cardiovascular system and helps to modulate vascular tone. The present study evaluated the local effect of CART on the pancreatic and islet circulation and function. CART (25 μg/h) or saline, combinations of CART and endothelin-A receptor antagonist (BQ123; 100 μg/kg), and glucose (2 g/kg) were intravenously infused in Sprague Dawley rats followed by blood flow measurements using a microsphere technique. Separately, CART-infused animals underwent an intravenous glucose tolerance test (ivGTT). The direct effect of CART on insulin release was investigated using isolated islets from Sprague Dawley rats. CART reduced islet blood flow, without reduction in total pancreatic blood flow. The normal glucose-induced islet blood flow increase was diminished by CART, albeit still present. Simultaneously, CART had no effect on systemic-, intestinal- or renal blood flow. The endothelin-A receptor antagonist BQ123 together with CART had no pancreatic vascular effects. We found that CART has pronounced vascular constrictive actions restricted to the pancreatic islet circulation but had no effect on insulin release neither in vivo nor in vitro. The mechanisms behind the vascular effects are still unknown, but may reflect a direct action on pancreatic blood vessels.
Collapse
Affiliation(s)
- Carl Johan Drott
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| | - Daniel Norman
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Daniel Espes
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden; Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Hartig SM, Cox AR. Paracrine signaling in islet function and survival. J Mol Med (Berl) 2020; 98:451-467. [PMID: 32067063 DOI: 10.1007/s00109-020-01887-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
The pancreatic islet is a dense cellular network comprised of several cell types with endocrine function vital in the control of glucose homeostasis, metabolism, and feeding behavior. Within the islet, endocrine hormones also form an intricate paracrine network with supportive cells (endothelial, neuronal, immune) and secondary signaling molecules regulating cellular function and survival. Modulation of these signals has potential consequences for diabetes development, progression, and therapeutic intervention. Beta cell loss, reduced endogenous insulin secretion, and dysregulated glucagon secretion are hallmark features of both type 1 and 2 diabetes that not only impact systemic regulation of glucose, but also contribute to the function and survival of cells within the islet. Advancing research and technology have revealed new islet biology (cellular identity and transcriptomes) and identified previously unrecognized paracrine signals and mechanisms (somatostatin and ghrelin paracrine actions), while shifting prior views of intraislet communication. This review will summarize the paracrine signals regulating islet endocrine function and survival, the disruption and dysfunction that occur in diabetes, and potential therapeutic targets to preserve beta cell mass and function.
Collapse
Affiliation(s)
- Sean M Hartig
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Aaron R Cox
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|