1
|
Gautier-Stein A, Chilloux J, Soty M, Thorens B, Place C, Zitoun C, Duchampt A, Da Costa L, Rajas F, Lamaze C, Mithieux G. A caveolin-1 dependent glucose-6-phosphatase trafficking contributes to hepatic glucose production. Mol Metab 2023; 70:101700. [PMID: 36870604 PMCID: PMC10023957 DOI: 10.1016/j.molmet.2023.101700] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
OBJECTIVE Deregulation of hepatic glucose production is a key driver in the pathogenesis of diabetes, but its short-term regulation is incompletely deciphered. According to textbooks, glucose is produced in the endoplasmic reticulum by glucose-6-phosphatase (G6Pase) and then exported in the blood by the glucose transporter GLUT2. However, in the absence of GLUT2, glucose can be produced by a cholesterol-dependent vesicular pathway, which remains to be deciphered. Interestingly, a similar mechanism relying on vesicle trafficking controls short-term G6Pase activity. We thus investigated whether Caveolin-1 (Cav1), a master regulator of cholesterol trafficking, might be the mechanistic link between glucose production by G6Pase in the ER and glucose export through a vesicular pathway. METHODS Glucose production from fasted mice lacking Cav1, GLUT2 or both proteins was measured in vitro in primary culture of hepatocytes and in vivo by pyruvate tolerance tests. The cellular localization of Cav1 and the catalytic unit of glucose-6-phosphatase (G6PC1) were studied by western blotting from purified membranes, immunofluorescence on primary hepatocytes and fixed liver sections and by in vivo imaging of chimeric constructs overexpressed in cell lines. G6PC1 trafficking to the plasma membrane was inhibited by a broad inhibitor of vesicular pathways or by an anchoring system retaining G6PC1 specifically to the ER membrane. RESULTS Hepatocyte glucose production is reduced at the step catalyzed by G6Pase in the absence of Cav1. In the absence of both GLUT2 and Cav1, gluconeogenesis is nearly abolished, indicating that these pathways can be considered as the two major pathways of de novo glucose production. Mechanistically, Cav1 colocalizes but does not interact with G6PC1 and controls its localization in the Golgi complex and at the plasma membrane. The localization of G6PC1 at the plasma membrane is correlated to glucose production. Accordingly, retaining G6PC1 in the ER reduces glucose production by hepatic cells. CONCLUSIONS Our data evidence a pathway of glucose production that relies on Cav1-dependent trafficking of G6PC1 to the plasma membrane. This reveals a new cellular regulation of G6Pase activity that contributes to hepatic glucose production and glucose homeostasis.
Collapse
Affiliation(s)
- Amandine Gautier-Stein
- Université Claude Bernard Lyon 1, Université de Lyon, INSERM UMR-S1213, F-69374, Lyon, France.
| | - Julien Chilloux
- Université Claude Bernard Lyon 1, Université de Lyon, INSERM UMR-S1213, F-69374, Lyon, France
| | - Maud Soty
- Université Claude Bernard Lyon 1, Université de Lyon, INSERM UMR-S1213, F-69374, Lyon, France
| | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Genopode Building, 1015, Lausanne, Switzerland
| | - Christophe Place
- Laboratoire de Physique (UMR CNRS 5672), ENS de Lyon, Université de Lyon, F-69364, Lyon cedex 07, France
| | - Carine Zitoun
- Université Claude Bernard Lyon 1, Université de Lyon, INSERM UMR-S1213, F-69374, Lyon, France
| | - Adeline Duchampt
- Université Claude Bernard Lyon 1, Université de Lyon, INSERM UMR-S1213, F-69374, Lyon, France
| | - Lorine Da Costa
- Université Claude Bernard Lyon 1, Université de Lyon, INSERM UMR-S1213, F-69374, Lyon, France
| | - Fabienne Rajas
- Université Claude Bernard Lyon 1, Université de Lyon, INSERM UMR-S1213, F-69374, Lyon, France
| | - Christophe Lamaze
- Institut Curie, PSL Research University, INSERM U1143, CNRS UMR 3666, Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, 75005, Paris, France
| | - Gilles Mithieux
- Université Claude Bernard Lyon 1, Université de Lyon, INSERM UMR-S1213, F-69374, Lyon, France
| |
Collapse
|
2
|
Soty M, Chilloux J, Delalande F, Zitoun C, Bertile F, Mithieux G, Gautier-Stein A. Post-Translational Regulation of the Glucose-6-Phosphatase Complex by Cyclic Adenosine Monophosphate Is a Crucial Determinant of Endogenous Glucose Production and Is Controlled by the Glucose-6-Phosphate Transporter. J Proteome Res 2016; 15:1342-9. [PMID: 26958868 DOI: 10.1021/acs.jproteome.6b00110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The excessive endogenous glucose production (EGP) induced by glucagon participates in the development of type 2 diabetes. To further understand this hormonal control, we studied the short-term regulation by cyclic adenosine monophosphate (cAMP) of the glucose-6-phosphatase (G6Pase) enzyme, which catalyzes the last reaction of EGP. In gluconeogenic cell models, a 1-h treatment by the adenylate cyclase activator forskolin increased G6Pase activity and glucose production independently of any change in enzyme protein amount or G6P content. Using specific inhibitors or protein overexpression, we showed that the stimulation of G6Pase activity involved the protein kinase A (PKA). Results of site-directed mutagenesis, mass spectrometry analyses, and in vitro phosphorylation experiments suggested that the PKA stimulation of G6Pase activity did not depend on a direct phosphorylation of the enzyme. However, the temperature-dependent induction of both G6Pase activity and glucose release suggested a membrane-based mechanism. G6Pase is composed of a G6P transporter (G6PT) and a catalytic unit (G6PC). Surprisingly, we demonstrated that the increase in G6PT activity was required for the stimulation of G6Pase activity by forskolin. Our data demonstrate the existence of a post-translational mechanism that regulates G6Pase activity and reveal the key role of G6PT in the hormonal regulation of G6Pase activity and of EGP.
Collapse
Affiliation(s)
- Maud Soty
- INSERM U1213, 7-11 rue Paradin, F-69008 Lyon, France.,Université de Lyon, 7-11 rue Paradin, F-69008 Lyon, France.,Université Lyon1, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Julien Chilloux
- INSERM U1213, 7-11 rue Paradin, F-69008 Lyon, France.,Université de Lyon, 7-11 rue Paradin, F-69008 Lyon, France.,Université Lyon1, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - François Delalande
- Institut Pluridisciplinaire Hubert Curien, Département Sciences Analytiques, CNRS UMR7178 , 25 rue Becquerel, 67087 Strasbourg Cedex 2, France.,Université de Strasbourg, 4 rue Blaise Pascal, F-67081 Strasbourg Cedex, France
| | - Carine Zitoun
- INSERM U1213, 7-11 rue Paradin, F-69008 Lyon, France.,Université de Lyon, 7-11 rue Paradin, F-69008 Lyon, France.,Université Lyon1, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Fabrice Bertile
- Institut Pluridisciplinaire Hubert Curien, Département Sciences Analytiques, CNRS UMR7178 , 25 rue Becquerel, 67087 Strasbourg Cedex 2, France.,Université de Strasbourg, 4 rue Blaise Pascal, F-67081 Strasbourg Cedex, France
| | - Gilles Mithieux
- INSERM U1213, 7-11 rue Paradin, F-69008 Lyon, France.,Université de Lyon, 7-11 rue Paradin, F-69008 Lyon, France.,Université Lyon1, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Amandine Gautier-Stein
- INSERM U1213, 7-11 rue Paradin, F-69008 Lyon, France.,Université de Lyon, 7-11 rue Paradin, F-69008 Lyon, France.,Université Lyon1, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| |
Collapse
|
3
|
Bennett KA, Hammill M, Currie S. Liver glucose-6-phosphatase proteins in suckling and weaned grey seal pups: structural similarities to other mammals and relationship to nutrition, insulin signalling and metabolite levels. J Comp Physiol B 2013; 183:1075-88. [PMID: 23743798 DOI: 10.1007/s00360-013-0768-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 05/10/2013] [Accepted: 05/21/2013] [Indexed: 01/05/2023]
Abstract
Phocid seals have been proposed as models for diabetes because they exhibit limited insulin response to glucose, high blood glucose and increasing insulin resistance when fasting. Liver glucose-6-phosphatase (G6Pase) catalyses the final step in glucose production and is central to glucose regulation in other animals. G6Pase comprises a translocase (SLC37A4) and a catalytic subunit (G6PC). G6PC and SLC37A4 expression and activity are normally regulated by nutritional state and glucostatic hormones, particularly insulin, and are elevated in diabetes. We tested the hypotheses that (1) grey seal G6PC and SLC37A4 cDNA and predicted protein sequences differ from other species' at functional sites, (2) relative G6Pase protein abundances are lower during feeding than fasting and (3) relative G6Pase protein abundances are related to insulin, insulin receptor phosphorylation and key metabolite levels. We show that G6PC and partial SLC37A4 cDNA sequences encode proteins sharing 82-95 % identity with other mammals. Seal G6PC contained no differences in sites responsible for activity, stability or subcellular location. Several substitutions in seal SLC37A4 were predicted to be tolerated with low probability, which could affect glucose production. Suckling pups had higher relative abundance of both subunits than healthy, postweaned fasting pups. Furthermore, relative G6PC abundance was negatively related to glucose levels. These findings contrast markedly with the response of relative hepatic G6Pase abundance to feeding, fasting, insulin, insulin sensitivity and key metabolites in other animals, and highlight the need to understand the regulation of enzymes involved in glucose control in phocids if these animals are to be informative models of diabetes.
Collapse
Affiliation(s)
- K A Bennett
- Marine Biology and Ecology Research Centre, School of Marine Science and Engineering, Plymouth University, Portland Square, Drake Circus, Plymouth, Devon, PL4 8AA, UK,
| | | | | |
Collapse
|
4
|
Kim MO, Lee YJ, Park JH, Ryu JM, Yun SP, Han HJ. PKA and cAMP stimulate proliferation of mouse embryonic stem cells by elevating GLUT1 expression mediated by the NF-κB and CREB/CBP signaling pathways. Biochim Biophys Acta Gen Subj 2012; 1820:1636-46. [PMID: 22658979 DOI: 10.1016/j.bbagen.2012.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/01/2012] [Accepted: 05/21/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Regulation of glucose transporter (GLUT) expression and activity plays a vital role in the supply of glucose to embryonic stem (ES) cells. METHODS To observe the effect of 6-phenyl cyclic monophosphate (cAMP) on glucose uptake and cell proliferation, 2-deoxyglucose (2-DG) uptake, immunohistochemistry, Western blotting, and immunoprecipitation were carried out. RESULTS Among GLUT isoforms in mouse ES cells, GLUT1 was predominantly expressed and 6-phenyl cAMP increased GLUT mRNA levels. Among cAMP agonists, 6-phenyl cAMP increased 2-DG uptake more than that of 8-p-chlorophenylthio-2'-O-methyl-cAMP. 6-Phenyl cAMP increased GLUT1 expression and translocation from the cytosol to the plasma membrane. 6-Phenyl cAMP increased 2-DG uptake in a time- and concentration-dependent manner due to an increase in V(max) but not K(m). 6-Phenyl cAMP increased phosphorylation of nuclear factor-κB (NF-κB) and cAMP response element binding (CREB) and expression of the CREB protein (CBP) and transducer of regulated CREB activity 2 (TORC2) in sequence. 6-Phenyl cAMP induced complex formation of NF-κB/CREB/CBP/TORC2, which are involved in the increase of gluconeogenic enzyme expression. 6-Phenyl cAMP also increased cell cycle regulatory protein expression levels, the proportion of S-phase cells, and proto-oncogene expression via protein kinase A (PKA)-dependent NF-κB signaling. Finally, GLUT1 siRNA blocked the 6-phenyl cAMP-induced increase in ES cell proliferation. We conclude that PKA stimulated the complex formation of CREB/CBP/TORC2 via NF-κB, which induced effective coordination of glucose uptake as well as proliferation in ES cells. GENERAL SIGNIFICANCE 6-Phenyl cAMP-induced PKA activation modified the proliferation, which may be beneficial for expanding ES cell use to cell therapy.
Collapse
Affiliation(s)
- Mi Ok Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | |
Collapse
|
5
|
Polakof S, Skiba-Cassy S, Choubert G, Panserat S. Insulin-induced hypoglycaemia is co-ordinately regulated by liver and muscle during acute and chronic insulin stimulation in rainbow trout (Oncorhynchus mykiss). J Exp Biol 2010; 213:1443-52. [PMID: 20400628 DOI: 10.1242/jeb.037689] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The relative glucose intolerance of carnivorous fish species is often proposed to be a result of poor peripheral insulin action or possibly insulin resistance. In the present study, data from aortic cannulated rainbow trout receiving bovine insulin (75 mIU kg−1) injections show for the first time their ability to clear glucose in a very efficient manner. In another set of experiments, mRNA transcripts and protein phosphorylation status of proteins controlling glycaemia and glucose-related metabolism were studied during both acute and chronic treatment with bovine insulin. Our results show that fasted rainbow trout are well adapted at the molecular level to respond to increases in circulating insulin levels, and that this hormone is able to potentially improve glucose distribution and uptake by peripheral tissues. After acute insulin administration we found that to counter-regulate the insulin-induced hypoglycaemia, trout metabolism is strongly modified. This short-term, efficient response to hypoglycaemia includes a rapid, coordinated response involving the reorganization of muscle and liver metabolism. During chronic insulin treatment some of the functions traditionally attributed to insulin actions in mammals were observed, including increased mRNA levels of glucose transporters and glycogen storage (primarily in the muscle) as well as decreased mRNA levels of enzymes involved in de novo glucose production (in the liver). Finally, we show that the rainbow trout demonstrates most of the classic metabolic adjustments employed by mammals to efficiently utilize glucose in the appropriate insulin context.
Collapse
Affiliation(s)
- Sergio Polakof
- INRA, UMR1067 Nutrition Aquaculture et Génomique, F-64310 Saint-Pée-sur-Nivelle, France
- IFREMER, UMR1067 Nutrition Aquaculture et Génomique, F-29280 Plouzané, France
- Université Bordeaux 1, UMR 1067 Nutrition Aquaculture et Génomique, F-33405 Talence, France
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, E-36310 Vigo, Spain
| | - Sandrine Skiba-Cassy
- INRA, UMR1067 Nutrition Aquaculture et Génomique, F-64310 Saint-Pée-sur-Nivelle, France
- IFREMER, UMR1067 Nutrition Aquaculture et Génomique, F-29280 Plouzané, France
- Université Bordeaux 1, UMR 1067 Nutrition Aquaculture et Génomique, F-33405 Talence, France
| | - Georges Choubert
- INRA, UMR1067 Nutrition Aquaculture et Génomique, F-64310 Saint-Pée-sur-Nivelle, France
- IFREMER, UMR1067 Nutrition Aquaculture et Génomique, F-29280 Plouzané, France
- Université Bordeaux 1, UMR 1067 Nutrition Aquaculture et Génomique, F-33405 Talence, France
| | - Stéphane Panserat
- INRA, UMR1067 Nutrition Aquaculture et Génomique, F-64310 Saint-Pée-sur-Nivelle, France
- IFREMER, UMR1067 Nutrition Aquaculture et Génomique, F-29280 Plouzané, France
- Université Bordeaux 1, UMR 1067 Nutrition Aquaculture et Génomique, F-33405 Talence, France
| |
Collapse
|
6
|
Limesand SW, Rozance PJ, Smith D, Hay WW. Increased insulin sensitivity and maintenance of glucose utilization rates in fetal sheep with placental insufficiency and intrauterine growth restriction. Am J Physiol Endocrinol Metab 2007; 293:E1716-25. [PMID: 17895285 DOI: 10.1152/ajpendo.00459.2007] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this study we determined body weight-specific fetal (umbilical) glucose uptake (UGU), utilization (GUR), and production rates (GPR) and insulin action in intrauterine growth-restricted (IUGR) fetal sheep. During basal conditions, UGU from the placenta was 33% lower in IUGR fetuses, but GUR was not different between IUGR and control fetuses. The difference between glucose utilization and UGU rates in the IUGR fetuses demonstrated the presence and rate of fetal GPR (41% of GUR). The mRNA concentrations of the gluconeogenic enzymes glucose-6-phophatase and PEPCK were higher in the livers of IUGR fetuses, perhaps in response to CREB activation, as phosphorylated CREB/total CREB was increased 4.2-fold. A hyperglycemic clamp resulted in similar rates of glucose uptake and utilization in IUGR and control fetuses. The nearly identical GURs in IUGR and control fetuses at both basal and high glucose concentrations occurred at mean plasma insulin concentrations in the IUGR fetuses that were approximately 70% lower than controls, indicating increased insulin sensitivity. Furthermore, under basal conditions, hepatic glycogen content was similar, skeletal muscle glycogen was increased 2.2-fold, the fraction of fetal GUR that was oxidized was 32% lower, and GLUT1 and GLUT4 concentrations in liver and skeletal muscle were the same in IUGR fetuses compared with controls. These results indicate that insulin-responsive fetal tissues (liver and skeletal muscle) adapt to the hypoglycemic-hypoinsulinemic IUGR environment with mechanisms that promote glucose utilization, particularly for glucose storage, including increased insulin action, glucose production, shunting of glucose utilization to glycogen production, and maintenance of glucose transporter concentrations.
Collapse
Affiliation(s)
- Sean W Limesand
- Department of Pediatrics, University of Colorado Health Sciences Center, Aurora, Colorado, USA.
| | | | | | | |
Collapse
|
7
|
Anderwald C, Brunmair B, Stadlbauer K, Krebs M, Fürnsinn C, Roden M. Effects of free fatty acids on carbohydrate metabolism and insulin signalling in perfused rat liver. Eur J Clin Invest 2007; 37:774-82. [PMID: 17888088 DOI: 10.1111/j.1365-2362.2007.01858.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Elevated circulating free fatty acids (FFAs) induce insulin resistance and play a crucial role in the development of type 2 diabetes, in which fasting hepatic glucose production (HGP) is increased. However, direct effects of FFAs on fasting HGP are still unclear because indirect endocrine and metabolic effects contribute to FFA action. Thus, we aimed to investigate acute direct effects of specific FFAs on fasting HGP, lactate uptake, and insulin signalling. MATERIALS AND METHODS Isolated livers obtained from 20 h fasted rats were perfused with albumin-bound palmitate or oleate (200 micromol L(-1) each) or vehicle (control) for 180 min (n = 5-7/group). RESULTS Compared to control, hepatic lactate uptake was increased by palmitate and oleate (~+40%; P < 0.05), while HGP from lactate (~3 mmol L(-1)) and liver glycogen content were similar. Tyrosine phosphorylation (pY) of insulin-receptor-substrate-(IRS)-2 and p70S6-kinase phosphorylation were not affected by FFAs. Palmitate decreased insulin-receptor-beta pY, IRS-1 pY and phosphoinositol-3-kinase expression by 46 +/- 16%, 46 +/- 11% and 20 +/- 9%, respectively (P < 0.03), while oleate reduced Akt phosphorylation by 85 +/- 7% (P < 0.006). CONCLUSIONS Isolated liver perfusion with saturated or unsaturated FFAs reduced insulin signalling protein phosphorylation at different sites and increased lactate uptake without affecting HGP or glycogen content. These results suggest that at fasting, both saturated and unsaturated FFAs increase hepatic glucose precursor uptake and may, independently of insulin's presence, accelerate protein dephosphorylation of the insulin signalling cascade at different sites.
Collapse
Affiliation(s)
- C Anderwald
- Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
8
|
Mithieux G, Gautier-Stein A, Rajas F, Zitoun C. Contribution of intestine and kidney to glucose fluxes in different nutritional states in rat. Comp Biochem Physiol B Biochem Mol Biol 2006; 143:195-200. [PMID: 16412674 DOI: 10.1016/j.cbpb.2005.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 11/08/2005] [Accepted: 11/10/2005] [Indexed: 12/17/2022]
Abstract
The liver is considered the main contributor of endogenous glucose production (EGP) in the postabsorptive (PA) state in mammals. However, it has been shown that the kidney, in PA and fasting states, and the intestine, in insulinopenia states, could make significant contributions to EGP. Using glucose tracer dilution combined to a vessel ligaturing approach, we studied the respective role of these organs in glucose turnover under various nutritional conditions in the rat (Rattus norvegicus). Both organs constitute key sites of glucose disposal in all situations in the non-moving rat. The kidney makes a small (12%) contribution to EGP in the PA state (9.6+/-1.3 micromol/kg min, means+/-SEM, n=5), which is dramatically increased (p<0.01) in 24 h-fasting (18.8+/-1.0 micromol/kg min) or streptozotocin diabetes (48+/-3 micromol/kg min). The small intestine contributes to EGP via two ways: a direct glucose contribution that may only take place in fasting and diabetes; an indirect contribution via the supply of alanine and lactate to liver gluconeogenesis that may account for up to 5 micromol/kg min in both PA and fasted states in the rat. These data emphasize the coordinate interactions among the three gluconeogenic organs in glucose homeostasis when nutritional conditions are changing.
Collapse
|
9
|
Jang W, Gomer RH. Exposure of cells to a cell number-counting factor decreases the activity of glucose-6-phosphatase to decrease intracellular glucose levels in Dictyostelium discoideum. EUKARYOTIC CELL 2005; 4:72-81. [PMID: 15643062 PMCID: PMC544156 DOI: 10.1128/ec.4.1.72-81.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The development of Dictyostelium discoideum is a model for tissue size regulation, as these cells form groups of approximately 2 x 10(4) cells. The group size is regulated in part by a negative feedback pathway mediated by a secreted multipolypeptide complex called counting factor (CF). CF signal transduction involves decreasing intracellular CF glucose levels. A component of CF, countin, has the bioactivity of the entire CF complex, and an 8-min exposure of cells to recombinant countin decreases intracellular glucose levels. To understand how CF regulates intracellular glucose, we examined the effect of CF on enzymes involved in glucose metabolism. Exposure of cells to CF has little effect on amylase or glycogen phosphorylase, enzymes involved in glucose production from glycogen. Glucokinase activity (the first specific step of glycolysis) is inhibited by high levels of CF but is not affected by an 8-min exposure to countin. The second enzyme specific for glycolysis, phosphofructokinase, is not regulated by CF. There are two corresponding enzymes in the gluconeogenesis pathway, fructose-1,6-bisphosphatase and glucose-6-phosphatase. The first is not regulated by CF or countin, whereas glucose-6-phosphatase is regulated by both CF and an 8-min exposure to countin. The countin-induced changes in the Km and Vmax of glucose-6-phosphatase cause a decrease in glucose production that can account for the countin-induced decrease in intracellular glucose levels. It thus appears that part of the CF signal transduction pathway involves inhibiting the activity of glucose-6-phosphatase, decreasing intracellular glucose levels and affecting the levels of other metabolites, to regulate group size.
Collapse
Affiliation(s)
- Wonhee Jang
- Howard Hughes Medical Institute, Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005-1892, USA
| | | |
Collapse
|
10
|
Haaparanta M, Paul R, Grönroos T, Bergman J, Kämäräinen EL, Solin O. Microdialysis and 2-[18F]fluoro-2-deoxy-D-glucose (FDG): a study on insulin action on FDG transport, uptake and metabolism in rat muscle, liver and adipose tissue. Life Sci 2003; 73:1437-51. [PMID: 12850504 DOI: 10.1016/s0024-3205(03)00470-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A combination of microdialysis (MD) and 2-[18F ]fluoro-2-deoxy-D-glucose (FDG) was used to assess FDG uptake, phosphorylation and the glucose metabolic index (Rg') in certain tissues of fed and fasting anesthetized Sprague-Dawley rats which received an i.v. bolus injection of insulin or saline during the course of the study. The relative recovery for FDG for the MD probes was also measured as a function of flow rate and temperature. The elimination half-life (T(1/2 FDG)) of FDG from the plasma and the extracellular fluid of muscle and liver was studied with MD. The phosphorylation of FDG in muscle, liver, subcutaneous fat and mesenteric fat from homogenates of these tissues was analyzed by a radioHPLC-method and the Rg' was calculated. The results show that the nutritional status does not affect the T(1/2 FDG), the total uptake of FDG 6-phosphate or the Rg' values in the studied tissues at ambient glucose. Insulin stimulation decreased T(1/2 FDG), and increased the total FDG 6-P accumulation and Rg' in the muscle of fed and fasted rats. In adipose tissues the insulin stimulation enhanced the phosphorylation but in muscle the proportion of FDG 6-P remained unchanged. Rg' in adipose tissue was higher after insulin administration in fed rats than without insulin but with fasted rats there were no differences in Rg' values with or without insulin, although the proportion of FDG 6-P did increase. The Rg' values for the livers were unaffected by any of the manipulations, but fasted rats accumulated proportionately more FDG 6-P after insulin administration than did fed rats. These results indicate that the combination of MD and FDG is a valuable and reliable tool when studying glucose metabolism in physiological and pathological models in vivo.
Collapse
Affiliation(s)
- Merja Haaparanta
- Turku PET Centre, Medicity Research Laboratory/PET, Tykistokatu 6 A, FIN 20520 Turku, Finland.
| | | | | | | | | | | |
Collapse
|