1
|
Bartiromo M, Nardolillo M, Ferrara S, Russo G, Miraglia Del Giudice E, Di Sessa A. The challenging role of micro-RNAs in non-alcoholic fatty liver disease in children with obesity: is it time for a new era? Expert Rev Gastroenterol Hepatol 2023; 17:817-824. [PMID: 37497846 DOI: 10.1080/17474124.2023.2242245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 07/04/2023] [Accepted: 07/26/2023] [Indexed: 07/28/2023]
Abstract
INTRODUCTION As the pediatric obesity epidemic, nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in childhood. Pediatric NAFLD pathophysiology is tangled and still unclear, but insulin resistance (IR), genetics, epigenetics, oxidative stress, and inflammation act as key players. Due to the increased cardiometabolic risk of these patients, several biomarkers have been proposed for early NAFLD identification, but their clinical utility is poor. Recently, hepatic dysregulation of microRNAs (miRNAs) has been linked to metabolic dysfunction, which in turn implied in NAFLD development. Evidence on the intriguing role of miRNAs in NAFLD pathogenesis has emerging especially in at-risk children such as those with obesity. However, pediatric evidence supporting their potential use as early noninvasive NAFLD tools is still limited but promising. AREAS COVERED We provided an overview on the emerging role of miRNAs in pediatric NAFLD by addressing some issues regarding their pathophysiological link with the metabolic milieu and their role as reliable NAFLD markers in children with obesity. EXPERT OPINION Strong evidence supports a potential role of miRNAs as early biomarkers of NAFLD in children with obesity. They might represent a valid diagnostic and targeted therapeutic tool due to its close pathogenic link with the metabolic milieu.
Collapse
Affiliation(s)
- Mario Bartiromo
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele Nardolillo
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Serena Ferrara
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppina Russo
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Emanuele Miraglia Del Giudice
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Anna Di Sessa
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
2
|
Association study to evaluate Foxo1 and Foxo3 gene polymorphisms in polycystic ovary syndrome: a preliminary case-control study and in silico analysis. Mol Biol Rep 2023; 50:3569-3580. [PMID: 36790598 DOI: 10.1007/s11033-023-08292-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is known as a multifactorial and multi-gene-mediated endocrine disorder among women of reproductive age. FoxO1 and FoxO3 are members of the forkhead transcriptional factors family that play a pivotal role in the function of ovaries. The current work is aimed at investigating the association between gene variants of FoxO1 and FoxO3 and the risk of PCOS in a sample of the Iranian population. METHODS AND RESULTS We recruited 200 women diagnosed with PCOS and 200 healthy women. Both polymerase PCR-RFLP and ARMS-PCR methods were used for genotyping. Sanger sequencing was recruited to confirm the genotyping results. The T allele of rs17592236 and the C allele of rs12585277 decreased PCOS risk by 29 and 28%, respectively. In contrast, the C allele of rs2253310 and G allele of rs2802292 increased the risk of PCOS by 1.39 and 1.63 folds, correspondingly. Bioinformatics results showed that some genes, including matrix metallopeptidase 9 (MMP-9), phosphoinositide-3-Kinase Regulatory Subunit 224 1 (PIK3R1), peroxisome proliferator-activated receptor Gamma (PPARG), and glycogen synthase 225 kinase-3 beta (GSK-3 beta) have significant interactions with FoxO1, suggesting that FoxO1 might have crucial roles in regulating different signaling pathways in ovarian cells. CONCLUSION We found that FoxO1 rs17592236C > T and rs12585277C > T had a protective role against PCOS, while FoxO3 rs2253310C > G and rs2802292G > T enhanced the risk of this metabolic disorder in our population. Additional studies on larger populations with varying races are needed to confirm these findings.
Collapse
|
3
|
Effect of metformin on the long non-coding RNA expression levels in type 2 diabetes: an in vitro and clinical trial study. Pharmacol Rep 2023; 75:189-198. [PMID: 36334247 DOI: 10.1007/s43440-022-00427-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND It has been suggested that the anti-hyperglycemic effect of metformin could be associated with its impact on long non-coding RNA (lncRNA) expression levels. Accordingly, in the current study, we evaluated the effect of metformin on the expression of H19, MEG3, MALAT1, and GAS5 in in vitro and in vivo situations. METHODS The effect of hyperglycemia and metformin treatment on the lncRNAs expression level was evaluated in HepG2 cells. A total of 179 age- and sex-matched subjects, including 88 newly diagnosed patients with type 2 diabetes (T2D) and 91 healthy volunteers, were included in the case-control phase of the study. Moreover, 40 newly diagnosed patients participated in the study's open-labeled non-controlled clinical trial phase. The expression levels of lncRNA in HepG2 cells and whole blood samples were determined using QRT-PCR. RESULTS In vitro results showed that hyperglycemia induced H19 and MALAT1 and decreased GAS5 expression levels. Moreover, metformin decreased H19 and increased GAS5 expression in high glucose-treated cells. Case-control study findings revealed that the circulating levels of H19, MALAT1, and MEG3 were significantly elevated in T2D patients compared to the control subjects. Finally, results showed that the level of circulating H19 levels decreased while GAS5 increased in T2D patients after taking metformin for 2 months. CONCLUSION The results of the current study provided evidence that metformin could exert its effect in the treatment of T2D by altering the expression levels of H19 and GAS5.
Collapse
|
4
|
Xu X, Jin B, Cai L, Zhang Z, Ying Y, Luo J. MicroRNA-382-5p Promotes Oral Squamous Cell Carcinoma Development and Progression by Negatively Regulating PTEN Expression. J Oral Maxillofac Surg 2022; 80:2015-2023. [PMID: 36162436 DOI: 10.1016/j.joms.2022.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Oral squamous cell carcinoma (OSCC) local recurrence and distant metastasis remain a poorly understood clinical challenge. The objective of this study was to investigate how dysregulation of miR-382-5p impacts invasion and dissemination of OSCC. METHODS Tissue samples were collected from 20 subjects with OSCC. Expression levels of miR-382-5p were determined by quantitative real-time polymerase chain reaction (qRT-PCR), and correlations with clinical characteristics were investigated. qRT-PCR was used to determine the miR-382-5p and peptidyl-prolyl cis/trans isomerase (PTEN) expression in tumor tissues, adjacent normal tissues, normal human oral keratinocyte line, and OSCC line (SCC-9). Cell proliferation, invasion, and migration of knock-in and knock-down miR-382-5p transfectants were assessed using cell counting kit-8 and Transwell assays. PTEN was confirmed to be a downstream target using a TargetScan prediction, dual-luciferase reporter assays, and western blot analysis. Statistical analysis of experimental data was performed with SPSS 22.0 software. RESULTS We found high expression of miR-382-5p and significant downregulation of PTEN in tumor tissues and SCC-9 cells from OSCC patients (P < .05). miR-382-5p expression was lower in early stage (I + II) than in late stage (III + IV), while PTEN exhibited higher expression in early stage (I + II) instead of in late stage (III + IV) (P < .05). In addition, overexpression of miR-382-5p promoted the proliferation, invasion, and migration of OSCC cells. However, the proliferation, invasion, and migration of OSCC cells were inhibited after suppression of miR-382-5p. Finally, PTEN is downregulated by miR-382-5p. CONCLUSION MiR-382-5p supports proliferation, invasion, and migration of OSCC cells through the PTEN pathway. Further investigation may improve our understanding of OSCC local recurrence and distant metastasis.
Collapse
Affiliation(s)
- Xuhui Xu
- Attending Physician, Department of Stomatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, P.R. China
| | - Bei Jin
- Attending Physician, Department of Stomatology, Taizhou Hospital, Wenzhou Medical University, Taizhou, P.R. China
| | - Lina Cai
- Attending Physician, Department of Stomatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, P.R. China
| | - Zhenxing Zhang
- Resident Physician, Department of Stomatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, P.R. China
| | - Yukang Ying
- Chief Physician, Department of Stomatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, P.R. China
| | - Jun Luo
- Chief Physician, Department of Stomatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, P.R. China.
| |
Collapse
|
5
|
Qian G, Morral N. Role of non-coding RNAs on liver metabolism and NAFLD pathogenesis. Hum Mol Genet 2022; 31:R4-R21. [PMID: 35417923 DOI: 10.1093/hmg/ddac088] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/22/2022] [Accepted: 04/08/2022] [Indexed: 11/14/2022] Open
Abstract
Obesity and type 2 diabetes are major contributors to the growing prevalence of non-alcoholic fatty liver disease (NAFLD), a chronic liver condition characterized by the accumulation of fat in individuals without a significant amount of alcohol intake. The NAFLD spectrum ranges from simple steatosis (early stages, known as NAFL) to non-alcoholic steatohepatitis, which can progress to fibrosis and cirrhosis or hepatocellular carcinoma. Obesity, type 2 diabetes and NAFLD are strongly associated with insulin resistance. In the liver, insulin resistance increases hepatic glucose output, lipogenesis and very-low-density lipoprotein secretion, leading to a combination of hyperglycemia and hypertriglyceridemia. Aberrant gene expression is a hallmark of insulin resistance. Non-coding RNAs (ncRNAs) have emerged as prominent regulators of gene expression that operate at the transcriptional, post-transcriptional and post-translational levels. In the last couple of decades, a wealth of studies have provided evidence that most processes of liver metabolism are orchestrated by ncRNAs. This review focuses on the role of microRNAs, long non-coding RNAs and circular RNAs as coordinators of hepatic function, as well as the current understanding on how their dysregulation contributes to abnormal metabolism and pathophysiology in animal models of insulin resistance and NAFLD. Moreover, ncRNAs are emerging as useful biomarkers that may be able to discriminate between the different stages of NAFLD. The potential of ncRNAs as therapeutic drugs for NAFLD treatment and as biomarkers is discussed.
Collapse
Affiliation(s)
- Gene Qian
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Núria Morral
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
6
|
Li M, Chi X, Wang Y, Setrerrahmane S, Xie W, Xu H. Trends in insulin resistance: insights into mechanisms and therapeutic strategy. Signal Transduct Target Ther 2022; 7:216. [PMID: 35794109 PMCID: PMC9259665 DOI: 10.1038/s41392-022-01073-0] [Citation(s) in RCA: 186] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
The centenary of insulin discovery represents an important opportunity to transform diabetes from a fatal diagnosis into a medically manageable chronic condition. Insulin is a key peptide hormone and mediates the systemic glucose metabolism in different tissues. Insulin resistance (IR) is a disordered biological response for insulin stimulation through the disruption of different molecular pathways in target tissues. Acquired conditions and genetic factors have been implicated in IR. Recent genetic and biochemical studies suggest that the dysregulated metabolic mediators released by adipose tissue including adipokines, cytokines, chemokines, excess lipids and toxic lipid metabolites promote IR in other tissues. IR is associated with several groups of abnormal syndromes that include obesity, diabetes, metabolic dysfunction-associated fatty liver disease (MAFLD), cardiovascular disease, polycystic ovary syndrome (PCOS), and other abnormalities. Although no medication is specifically approved to treat IR, we summarized the lifestyle changes and pharmacological medications that have been used as efficient intervention to improve insulin sensitivity. Ultimately, the systematic discussion of complex mechanism will help to identify potential new targets and treat the closely associated metabolic syndrome of IR.
Collapse
Affiliation(s)
- Mengwei Li
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaowei Chi
- Development Center for Medical Science & Technology National Health Commission of the People's Republic of China, 100044, Beijing, China
| | - Ying Wang
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | | | - Wenwei Xie
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Hanmei Xu
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China.
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
7
|
Delgadillo-Velázquez J, Mendivil-Alvarado H, Coronado-Alvarado CD, Astiazaran-Garcia H. Extracellular Vesicles from Adipose Tissue Could Promote Metabolic Adaptation through PI3K/Akt/mTOR. Cells 2022; 11:cells11111831. [PMID: 35681526 PMCID: PMC9180692 DOI: 10.3390/cells11111831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 01/25/2023] Open
Abstract
Extracellular vesicles (EVs) are nanoparticles secreted by cells under physiological and pathological conditions, such as metabolic diseases. In this context, EVs are considered potential key mediators in the physiopathology of obesity. It has been reported that EVs derived from adipose tissue (ADEVs) contribute to the development of a local inflammatory response that leads to adipose tissue dysfunction. In addition, it has been proposed that EVs are associated with the onset and progression of several obesity-related metabolic diseases such as insulin resistance. In particular, characterizing the molecular fingerprint of obesity-related ADEVs can provide a bigger picture that better reflects metabolic adaptation though PI3K/Akt/mTOR. Hence, in this review we describe the possible crosstalk communication of ADEVs with metabolically active organs and the intracellular response in the insulin signaling pathway.
Collapse
Affiliation(s)
- Jaime Delgadillo-Velázquez
- Coordination of Nutrition, Research Center for Food and Development (CIAD), Ave. Gustavo E. Astiazarán #46, Hermosillo 83304, Mexico; (J.D.-V.); (H.M.-A.); (C.D.C.-A.)
| | - Herminia Mendivil-Alvarado
- Coordination of Nutrition, Research Center for Food and Development (CIAD), Ave. Gustavo E. Astiazarán #46, Hermosillo 83304, Mexico; (J.D.-V.); (H.M.-A.); (C.D.C.-A.)
| | - Carlos Daniel Coronado-Alvarado
- Coordination of Nutrition, Research Center for Food and Development (CIAD), Ave. Gustavo E. Astiazarán #46, Hermosillo 83304, Mexico; (J.D.-V.); (H.M.-A.); (C.D.C.-A.)
| | - Humberto Astiazaran-Garcia
- Coordination of Nutrition, Research Center for Food and Development (CIAD), Ave. Gustavo E. Astiazarán #46, Hermosillo 83304, Mexico; (J.D.-V.); (H.M.-A.); (C.D.C.-A.)
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo 83000, Mexico
- Correspondence: ; Tel.: +52-662-1029-701
| |
Collapse
|
8
|
Radojičić O, Dobrijević Z, Robajac D, Gligorijević N, Mandić Marković V, Miković Ž, Nedić O. Gestational Diabetes is Associated with an Increased Expression of miR-27a in Peripheral Blood Mononuclear Cells. Mol Diagn Ther 2022; 26:421-435. [PMID: 35578107 DOI: 10.1007/s40291-022-00591-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Dysregulation of microRNA-based mechanisms is associated with various human pathologies, including gestational diabetes mellitus (GDM), suggesting they may be potential diagnostic and/or prognostic biomarkers of GDM. METHODS The expression of miR-340-5p, miR-27a-3p and miR-222-3p in peripheral blood mononuclear cells (PBMCs) obtained from patients with GDM (n = 42) and healthy controls (n = 34) were evaluated, together with their correlation to the clinical parameters of participants and their newborns. Expression of the selected microRNAs was quantified by quantitative real-time polymerase chain reaction (qPCR), after reverse transcription with microRNA-specific stem-loop primers. RESULTS The expression of miR-27a-3p was significantly higher in patients with GDM than in controls (p = 0.036), whereas no significant difference between groups was found for the other two tested microRNAs. The expression level of miR-27a-3p in GDM patients was found to negatively correlate with the number of erythrocytes, concentration of haemoglobin, haematocrit, and low- and high-density lipoprotein (LDL/HDL) ratio, and positively with the concentration of glycated haemoglobin (HbA1c). In the case of miR-222-3p, a negative correlation between its expression and the concentration of cholesterol, LDL and LDL/HDL ratio was found only in healthy pregnant women. The expression level of miR-340-5p negatively correlated with erythrocyte count, haemoglobin concentration and haematocrit in GDM patients, as well as with the concentration of cholesterol, LDL and LDL/HDL ratio in healthy women. CONCLUSIONS The results obtained illustrate the potential of PBMC-derived microRNA miR-27a-3p to serve as a diagnostic biomarker of GDM. On the other hand, MiR-27a and miR-340 may help in assessing the metabolic status relevant for pregnancy.
Collapse
Affiliation(s)
- Ognjen Radojičić
- University Clinic for Gynecology and Obstetrics "Narodni Front", Belgrade, Serbia
| | - Zorana Dobrijević
- Department for Metabolism, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, Serbia.
| | - Dragana Robajac
- Department for Metabolism, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, Serbia
| | - Nikola Gligorijević
- Department for Metabolism, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, Serbia
| | - Vesna Mandić Marković
- University Clinic for Gynecology and Obstetrics "Narodni Front", Belgrade, Serbia
- Medical School, University of Belgrade, Belgrade, Serbia
| | - Željko Miković
- University Clinic for Gynecology and Obstetrics "Narodni Front", Belgrade, Serbia
- Medical School, University of Belgrade, Belgrade, Serbia
| | - Olgica Nedić
- Department for Metabolism, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, Serbia
| |
Collapse
|
9
|
Ru L, Wang XM, Niu JQ. The miR-23-27-24 cluster: an emerging target in NAFLD pathogenesis. Acta Pharmacol Sin 2022; 43:1167-1179. [PMID: 34893685 PMCID: PMC9061717 DOI: 10.1038/s41401-021-00819-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
The incidence of non-alcoholic fatty liver disease (NAFLD) is increasing globally, being the most widespread form of chronic liver disease in the west. NAFLD includes a variety of disease states, the mildest being non-alcoholic fatty liver that gradually progresses to non-alcoholic steatohepatitis, fibrosis, cirrhosis, and eventually hepatocellular carcinoma. Small non-coding single-stranded microRNAs (miRNAs) regulate gene expression at the miRNA or translational level. Numerous miRNAs have been shown to promote NAFLD pathogenesis and progression through increasing lipid accumulation, oxidative stress, mitochondrial damage, and inflammation. The miR-23-27-24 clusters, composed of miR-23a-27a-24-2 and miR-23b-27b-24-1, have been implicated in various biological processes as well as many diseases. Herein, we review the current knowledge on miR-27, miR-24, and miR-23 in NAFLD pathogenesis and discuss their potential significance in NAFLD diagnosis and therapy.
Collapse
Affiliation(s)
- Lin Ru
- grid.430605.40000 0004 1758 4110Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021 China
| | - Xiao-mei Wang
- grid.430605.40000 0004 1758 4110Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021 China ,grid.430605.40000 0004 1758 4110Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, 130021 China
| | - Jun-qi Niu
- grid.430605.40000 0004 1758 4110Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021 China ,grid.430605.40000 0004 1758 4110Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, 130021 China
| |
Collapse
|
10
|
Guo G, Kong Y, Su J, Wang G, Zhang M, Wang S, Song Z. Immunomodulatory activity of aqueous extract from Crassostrea sikamea in the splenocytes of Sprague-Dawley rats. Food Sci Nutr 2022; 10:813-821. [PMID: 35282010 PMCID: PMC8907723 DOI: 10.1002/fsn3.2710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/27/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Crassostrea sikamea (C. sikamea) is used as an important edible and medicinal seafood in China. In the present study, an aqueous extract of C. sikamea (AECs) was prepared, and its immunomodulatory effects on rat splenocytes were studied. 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay revealed that AECs was able to promote splenocyte proliferation. Moreover, flow cytometry revealed that AECs treatment markedly altered the populations of splenic lymphocyte subtypes. Data from real-time quantitative PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) showed that AECs promoted the mRNA expression and secretion of TNF-α, IL-2, IL-6, IL-12, and IFN-γ. Mechanistically, p38 MAPK phosphorylation in splenocytes was significantly upregulated under AECs treatment and p38 MAPK inhibitor reversed the promoting effect of AECs on the expression of inflammatory cytokines. Collectively, our novel evidence suggests that AECs exhibits immunomodulatory activity in vitro, supporting the further application of C. sikamea as a potential functional food.
Collapse
Affiliation(s)
- Guannan Guo
- National Engineering Laboratory for Druggable Gene and Protein ScreeningSchool of Life SciencesNortheast Normal UniversityChangchunChina
| | - Ying Kong
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine ProductsNortheast Normal UniversityChangchunChina
| | - Jie Su
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine ProductsNortheast Normal UniversityChangchunChina
| | - Geng Wang
- National Engineering Laboratory for Druggable Gene and Protein ScreeningSchool of Life SciencesNortheast Normal UniversityChangchunChina
| | - Muqing Zhang
- School of Molecular & Cellular BiologyUniversity of Illinois Urbana ChampaignUrbanaIllinoisUSA
| | - Shuyue Wang
- National Engineering Laboratory for Druggable Gene and Protein ScreeningSchool of Life SciencesNortheast Normal UniversityChangchunChina
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine ProductsNortheast Normal UniversityChangchunChina
| | - Zhenbo Song
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine ProductsNortheast Normal UniversityChangchunChina
| |
Collapse
|
11
|
MicroRNA-185 modulates CYP7A1 mediated cholesterol-bile acid metabolism through post-transcriptional and post-translational regulation of FoxO1. Atherosclerosis 2022; 348:56-67. [DOI: 10.1016/j.atherosclerosis.2022.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 12/22/2022]
|
12
|
Kong Y, Wang LH, Liu L, Zheng LH, Bao YL, Liu XX, Wang SY, Song ZB. Immunomodulatory effects of flazin from Crassostrea sikamea on splenic lymphocytes of Sprague-Dawley rats. Chin J Nat Med 2021; 19:836-843. [PMID: 34844722 DOI: 10.1016/s1875-5364(21)60119-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Indexed: 12/13/2022]
Abstract
Crassostrea sikamea (C.sikamea) is an important edible and medicinal seafood in China. In the present study, a compound named flazin was separated and identified from the ethyl acetate extract of C.sikamea (EAECs) for the first time. In addition, the 3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetra zolium (MTS) assay revealed that EAECs and flazin inhibited the transformation of splenic lymphocytes in vitro. Moreover, flazin (20 μg·mL-1) altered the populations of splenic lymphocyte subtypes. Real-time quantitative PCR (RT-qPCR) analysis and enzyme-linked immunosorbent assay (ELISA) showed that flazin suppressed the mRNA expression and secretion of TNF-α and IL-2, and reversed Concanavalin A (ConA)-induced mRNA up-regulation and protein secretion of TNF-α and IL-2. Western blot results showed that flazin reversed ConA-induced increases in p-ERK1/2 and p-p38 in splenocytes. In conclusion, flazin exhibits effective immunomodulatory function and may be useful for treating immune-related disorders, which indicates the application potential of C.sikamea as a functional food or immunomodulator.
Collapse
Affiliation(s)
- Ying Kong
- National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Li-Hua Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Lei Liu
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun 130117, China
| | - Li-Hua Zheng
- National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, Changchun 130024, China; NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun 130117, China
| | - Yong-Li Bao
- National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, Changchun 130024, China; NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun 130117, China
| | - Xiu-Xian Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shu-Yue Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, Changchun 130024, China; NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun 130117, China.
| | - Zhen-Bo Song
- National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, Changchun 130024, China; NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
13
|
Schönberg J, Borlak J. Reliable miRNA biomarker quantification in clinical practice - are we there yet? Anal Biochem 2021; 634:114431. [PMID: 34695390 DOI: 10.1016/j.ab.2021.114431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
Blood-borne miRNAs serve as disease diagnostic biomarkers and await clinical validation. Here, we evaluated Cel-miR-39-3p and miRNA16-5p as calibrator for the quantification of 15 miRNAs linked to hepatic impairment. We added defined copy numbers of Cel-miR-39-3p to plasma of healthy controls (N = 5) and patient samples undergoing liver resection (N = 51). The miRNAs were isolated according to SOPs and quantified by RT-qPCR using the 2-(ΔΔ-CT)-method. Although miRNA16-5p and the spike-in control behaved similar in qPCR assays (R2 = 0.8591) the spike-in control suffered from high inter-patient variability (median 7.6-fold) and low recoveries (median 5.6%, 95% CI 1.5-11.8%). Adding Cel-miR-39-3p to blood samples prior to RNA-isolation improved the recoveries (median 105.7%; 95% CI 29.9-219.9%), yet the inter-patient variability remained high (median 7.2-fold). Alike, we observed significant variability in CT-values for miRNA16-5p (range 14.7-fold) thus rendering this internal, blood-borne reference gene unacceptable as comparator. Specifically, 10 out of 15 diagnostic miRNAs failed the criteria R2 ≥ 0.8 even though we added a defined copy number of Cel-miR-39-3p. This suggests interference of the spike-in control with individual miRNAs in the assay. Our study highlights current limitations in the quantification of blood-borne miRNAs that is of particularly importance when used for disease diagnostic and therapeutic interventions.
Collapse
Affiliation(s)
- Juliette Schönberg
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
14
|
Therapeutic approaches targeting molecular signaling pathways common to diabetes, lung diseases and cancer. Adv Drug Deliv Rev 2021; 178:113918. [PMID: 34375681 DOI: 10.1016/j.addr.2021.113918] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/23/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus (DM), is the most common metabolic disease and is characterized by sustained hyperglycemia. Accumulating evidences supports a strong association between DM and numerous lung diseases including chronic obstructive pulmonary disease (COPD), fibrosis, and lung cancer (LC). The global incidence of DM-associated lung disorders is rising and several ongoing studies, including clinical trials, aim to elucidate the molecular mechanisms linking DM with lung disorders, in particular LC. Several potential mechanisms, including hyperglycemia, hyperinsulinemia, glycation, inflammation, and hypoxia, are cited as plausible links between DM and LC. In addition, studies also propose a connection between the use of anti-diabetic medications and reduction in the incidence of LC. However, the exact cause for DM associated lung diseases especially LC is not clear and is an area under intense investigation. Herein, we review the biological links reported between DM and lung disorders with an emphasis on LC. Furthermore, we report common signaling pathways (eg: TGF-β, IL-6, HIF-1, PDGF) and miRNAs that are dysregulated in DM and LC and serve as molecular targets for therapy. Finally, we propose a nanomedicine based approach for delivering therapeutics (eg: IL-24 plasmid DNA, HuR siRNA) to disrupt signaling pathways common to DM and LC and thus potentially treat DM-associated LC. Finally, we conclude that the effective modulation of commonly regulated signaling pathways would help design novel therapeutic protocols for treating DM patients diagnosed with LC.
Collapse
|
15
|
Du J, Wang X, Tan G, Wei W, Zhou F, Liang Z, Li H, Yu H. Predisposition to Graves' disease and Graves' ophthalmopathy by genetic variants of IL2RA. J Mol Med (Berl) 2021; 99:1487-1495. [PMID: 34287665 DOI: 10.1007/s00109-021-02111-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/03/2021] [Accepted: 07/02/2021] [Indexed: 12/28/2022]
Abstract
Previous studies have identified that Th17/Treg cells were involved in the occurrence and development of Graves' disease (GD). This study aimed at clarifying the association between GD susceptibility and nine single nucleotide polymorphisms (SNPs) of Th17/Treg cell-related genes, including IL2RA, miR27a, miR182, and FoxO1. A two-stage association study was performed in 650 GD patients and 1300 healthy controls. PCR-RFLP assays, real-time PCR, and ELISA were performed. In the first stage, association analysis has identified that IL2RA/rs3118470 TT genotype (Pc = 0.027, OR = 1.688) and IL2RA/rs2104286 AA genotype (Pc = 0.027, OR = 1.658) has significantly increased frequencies in patients with GD than control subjects. In the second stage, the result of rs2104286 was consistent with the first-stage results (AA genotype: Pc = 0.006, OR = 1.618). The combined data showed that IL2RA/rs2104286 AA genotype had increased frequencies in patients with GD (Pc = 8.772 × 10-6, OR = 1.636). Stratification analysis also revealed that rs2104286 AA genotype was significantly associated with Graves' ophthalmopathy (GO) susceptibility (Pc = 9.150 × 10-4, OR = 1.851). Functional studies showed that carriers of the rs2104286 AA genotype had lower IL2RA mRNA expression than AG genotype carriers (P = 0.021). Cytokine analyses revealed that the rs2104286 AA genotype individuals had lower IL-10 levels (P = 0.015) and increased IL-17 levels than AG genotype carriers (P = 1.467 × 10-4). In conclusion, our findings suggested that IL2RA/rs2104286 was associated with GD and GO susceptibility in Southwest Chinese Han population, which may be involved in the occurrence of GD and GO by affecting the mRNA expression of IL2RA gene and the cytokine production. KEY MESSAGES: We identified that IL2RA/rs2104286 locus contributed to the predisposition of Graves' disease (GD) and Graves' ophthalmopathy (GO). Functional analyses suggested that IL2RA/rs2104286 may participate in the occurrence of GD and GO by affecting the mRNA expression of IL2RA and cytokine (IL-10 and IL-17) secretion. We found that IL2RA (rs3118470, rs7093069), miR27a/rs895819, miR182/rs76481776, and FoxO1 (rs2297626, rs17592236, rs9549241, rs12585277) loci polymorphisms were not associated with GD susceptibility.
Collapse
Affiliation(s)
- Juan Du
- School of Basic Medical Science, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Xin Wang
- School of Basic Medical Science, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Guiqin Tan
- School of Basic Medical Science, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Wenwen Wei
- School of Basic Medical Science, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Fangyu Zhou
- School of Basic Medical Science, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Zhongzhi Liang
- School of Basic Medical Science, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Hua Li
- Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Hongsong Yu
- School of Basic Medical Science, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
16
|
Li X, Wan T, Li Y. Role of FoxO1 in regulating autophagy in type 2 diabetes mellitus (Review). Exp Ther Med 2021; 22:707. [PMID: 34007316 PMCID: PMC8120662 DOI: 10.3892/etm.2021.10139] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a major chronic disease that is characterized by pancreatic β-cell dysfunction and insulin resistance. Autophagy is a highly conserved intracellular recycling pathway and is involved in regulating intracellular homeostasis. Transcription factor Forkhead box O1 (FoxO1) also regulates fundamental cellular processes, including cell differentiation, metabolism and apoptosis, and proliferation to cellular stress. Increasing evidence suggest that autophagy and FoxO1 are involved in the pathogenesis of T2DM, including β-cell viability, apoptosis, insulin secretion and peripheral insulin resistance. Recent studies have demonstrated that FoxO1 improves insulin resistance by regulating target tissue autophagy. The present review summarizes current literature on the role of autophagy and FoxO1 in T2DM. The participation of FoxO1 in the development and occurrence of T2DM via autophagy is also discussed.
Collapse
Affiliation(s)
- Xiudan Li
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Tingting Wan
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yanbo Li
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
17
|
MicroRNA-mediated regulation of glucose and lipid metabolism. Nat Rev Mol Cell Biol 2021; 22:425-438. [PMID: 33772227 PMCID: PMC8853826 DOI: 10.1038/s41580-021-00354-w] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2021] [Indexed: 02/01/2023]
Abstract
In animals, systemic control of metabolism is conducted by metabolic tissues and relies on the regulated circulation of a plethora of molecules, such as hormones and lipoprotein complexes. MicroRNAs (miRNAs) are a family of post-transcriptional gene repressors that are present throughout the animal kingdom and have been widely associated with the regulation of gene expression in various contexts, including virtually all aspects of systemic control of metabolism. Here we focus on glucose and lipid metabolism and review current knowledge of the role of miRNAs in their systemic regulation. We survey miRNA-mediated regulation of healthy metabolism as well as the contribution of miRNAs to metabolic dysfunction in disease, particularly diabetes, obesity and liver disease. Although most miRNAs act on the tissue they are produced in, it is now well established that miRNAs can also circulate in bodily fluids, including their intercellular transport by extracellular vesicles, and we discuss the role of such extracellular miRNAs in systemic metabolic control and as potential biomarkers of metabolic status and metabolic disease.
Collapse
|
18
|
Spallone V, Ciccacci C, Latini A, Borgiani P. What Is in the Field for Genetics and Epigenetics of Diabetic Neuropathy: The Role of MicroRNAs. J Diabetes Res 2021; 2021:5593608. [PMID: 34660810 PMCID: PMC8514969 DOI: 10.1155/2021/5593608] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 09/07/2021] [Indexed: 12/25/2022] Open
Abstract
Despite the high prevalence of diabetic neuropathy, its early start, and its impact on quality of life and mortality, unresolved clinical issues persist in the field regarding its screening implementation, the understanding of its mechanisms, and the search for valid biomarkers, as well as disease-modifying treatment. Genetics may address these needs by providing genetic biomarkers of susceptibility, giving insights into pathogenesis, and shedding light on how to select possible responders to treatment. After a brief summary of recent studies on the genetics of diabetic neuropathy, the current review focused mainly on microRNAs (miRNAs), including the authors' results in this field. It summarized the findings of animal and human studies that associate miRNAs with diabetic neuropathy and explored the possible pathogenetic meanings of these associations, in particular regarding miR-128a, miR-155a, and miR-499a, as well as their application for diabetic neuropathy screening. Moreover, from a genetic perspective, it examined new findings of polymorphisms of miRNA genes in diabetic neuropathy. It considered in more depth the pathogenetic implications for diabetic neuropathy of the polymorphism of MIR499A and the related changes in the downstream action of miR-499a, showing how epigenetic and genetic studies may provide insight into pathogenetic mechanisms like mitochondrial dysfunction. Finally, the concept and the data of genotype-phenotype association for polymorphism of miRNA genes were described. In conclusion, although at a very preliminary stage, the findings linking the genetics and epigenetics of miRNAs might contribute to the identification of exploratory risk biomarkers, a comprehensive definition of susceptibility to specific pathogenetic mechanisms, and the development of mechanism-based treatment of diabetic neuropathy, thus addressing the goals of genetic studies.
Collapse
Affiliation(s)
- V. Spallone
- Department of Systems Medicine, Endocrinology Section, University of Rome Tor Vergata, Rome, Italy
| | - C. Ciccacci
- UniCamillus, Saint Camillus International University of Health Sciences, Rome, Italy
| | - A. Latini
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, Rome, Italy
| | - P. Borgiani
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
19
|
Mandala A, Janssen RC, Palle S, Short KR, Friedman JE. Pediatric Non-Alcoholic Fatty Liver Disease: Nutritional Origins and Potential Molecular Mechanisms. Nutrients 2020; 12:E3166. [PMID: 33081177 PMCID: PMC7602751 DOI: 10.3390/nu12103166] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the number one chronic liver disease worldwide and is estimated to affect nearly 40% of obese youth and up to 10% of the general pediatric population without any obvious signs or symptoms. Although the early stages of NAFLD are reversible with diet and lifestyle modifications, detecting such stages is hindered by a lack of non-invasive methods of risk assessment and diagnosis. This absence of non-invasive means of diagnosis is directly related to the scarcity of long-term prospective studies of pediatric NAFLD in children and adolescents. In the majority of pediatric NAFLD cases, the mechanisms driving the origin and rapid progression of NAFLD remain unknown. The progression from NAFLD to non-alcoholic steatohepatitis (NASH) in youth is associated with unique histological features and possible immune processes and metabolic pathways that may reflect different mechanisms compared with adults. Recent data suggest that circulating microRNAs (miRNAs) are important new biomarkers underlying pathways of liver injury. Several factors may contribute to pediatric NAFLD development, including high-sugar diets, in utero exposures via epigenetic alterations, changes in the neonatal microbiome, and altered immune system development and mitochondrial function. This review focuses on the unique aspects of pediatric NAFLD and how nutritional exposures impact the immune system, mitochondria, and liver/gastrointestinal metabolic health. These factors highlight the need for answers to how NAFLD develops in children and for early stage-specific interventions.
Collapse
Affiliation(s)
- Ashok Mandala
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.M.); (R.C.J.); (K.R.S.)
| | - Rachel C. Janssen
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.M.); (R.C.J.); (K.R.S.)
| | - Sirish Palle
- Department of Pediatrics, Section of Gastroenterology, Hepatology & Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Kevin R. Short
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.M.); (R.C.J.); (K.R.S.)
- Department of Pediatrics, Section of Diabetes and Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.M.); (R.C.J.); (K.R.S.)
- Department of Pediatrics, Section of Diabetes and Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
20
|
Kostyniuk DJ, Mennigen JA. Meta-analysis of differentially-regulated hepatic microRNAs identifies candidate post-transcriptional regulation networks of intermediary metabolism in rainbow trout. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100750. [PMID: 33038710 DOI: 10.1016/j.cbd.2020.100750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/14/2020] [Accepted: 09/25/2020] [Indexed: 12/01/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs which act as post-transcriptional regulators by decreasing targeted mRNA translation and stability. Principally targeting small 3' UTR elements of protein-coding mRNAs through complementary base-pairing, miRNAs are promiscuous regulators of the transcriptome. While potent roles for hepatic miRNAs in the regulation of energy metabolism have emerged in rodent models, comparative roles in other vertebrates remain largely unexplored. Indeed, while several miRNAs are deeply conserved among vertebrates, the acquisition of lineage- and species-specific miRNAs, as well as the rewiring between miRNA-mRNA target relationships beg the question of regulatory and functional conservation and innovation of miRNAs and their targets involved in energy metabolism. Here we provide a meta-analysis of differentially expressed hepatic miRNAs in rainbow trout, a scientifically and economically important teleost species with a 'glucose-intolerant' phenotype. Following exposure to nutritional and social context-dependent metabolic challenges, we analyzed differential miRNA expression from small-RNA-sequencing datasets generated with a consistent bioinformatics pipeline in conjunction with an in silico target prediction of metabolic transcripts and pathways. We provide evidence for evolutionary conserved (let-7, miRNA-27 family) and rewired (miRNA-30 family, miRNA-152, miRNA-722) miRNA-metabolic target gene networks in the context of the salmonid genome. These findings represent important first steps in our understanding of the comparative regulation and function of hepatic miRNAs in rainbow trout energy metabolism. We propose that the identified miRNA families should be prioritized for future comparative functional investigation in the context of hepatic energy- and glucose metabolism in rainbow trout.
Collapse
Affiliation(s)
- Daniel J Kostyniuk
- Department of Biology, University of Ottawa, 20 Marie Curie, K1N6N5, ON, Canada
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, 20 Marie Curie, K1N6N5, ON, Canada.
| |
Collapse
|
21
|
Kim Y, Kim OK. Potential Roles of Adipocyte Extracellular Vesicle-Derived miRNAs in Obesity-Mediated Insulin Resistance. Adv Nutr 2020; 12:566-574. [PMID: 32879940 PMCID: PMC8009749 DOI: 10.1093/advances/nmaa105] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/13/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Recently, extracellular microRNAs (miRNAs) from adipose tissue have been shown to be involved in the development of insulin resistance. Here, we summarize several mechanisms explaining the pathogenesis of obesity-induced insulin resistance and associated changes in the expression of obesity-associated extracellular miRNAs. We discuss how miRNAs, particularly miR-27a, miR-34a, miR-141-3p, miR-155, miR210, and miR-222, in extracellular vesicles secreted from the adipose tissue can affect the insulin signaling pathway in metabolic tissue. Understanding the role of these miRNAs will further support the development of therapeutics for obesity and metabolic disorders such as type 2 diabetes.
Collapse
Affiliation(s)
- Yujeong Kim
- Division of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea
| | | |
Collapse
|
22
|
Zhang P, Song X, Dong Q, Zhou L, Wang L. miR-27-3p inhibition restore fibroblasts viability in diabetic wound by targeting NOVA1. Aging (Albany NY) 2020; 12:12841-12849. [PMID: 32589614 PMCID: PMC7377889 DOI: 10.18632/aging.103266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022]
Abstract
Diabetic wounds increase morbidity and decrease quality of life in patients with type 2 diabetes. Serum miR-27-3p levels are reportedly elevated in type 2 diabetic patients. In the present study, we explored the role of miR-27-3p during wound healing. We found that miR-27-3p is overexpressed in cutaneous fibroblasts of diabetic patients and mice. miR-27-3p knockdown enhanced the proliferation and migration of fibroblasts, while suppressing the incidence of fibroblast apoptosis. Overexpressing miR-27-3p in fibroblasts had the opposite effects. We also identified neuro-oncological ventral antigen 1 (NOVA1) as a target of miR-27-3p in fibroblasts. Knocking down NOVA1 using targeted siRNA mimicked the effects of miR-27-3p overexpression in fibroblasts. Administration of miR-27-3p to the area around wounds inflicted in mice delayed healing of those wounds. This suggests that miR-27-3p suppresses fibroblast function by targeting NOVA1, which results in the slowing of wound healing. These findings may offer a new approach to the treatment of diabetic wound healing.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Orthopedics, Suzhou Science and Technology Town Hospital, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou 215000, China
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Xiaomei Song
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Qirong Dong
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Long Zhou
- Department of Orthopedics, Suzhou Science and Technology Town Hospital, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou 215000, China
| | - Lei Wang
- Department of Orthopedics, Suzhou Science and Technology Town Hospital, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou 215000, China
| |
Collapse
|