1
|
Krzyżewska A, Kurakula K. Sex Dimorphism in Pulmonary Arterial Hypertension Associated With Autoimmune Diseases. Arterioscler Thromb Vasc Biol 2024; 44:2169-2190. [PMID: 39145392 DOI: 10.1161/atvbaha.124.320886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Pulmonary hypertension is a rare, incurable, and progressive disease. Although there is increasing evidence that immune disorders, particularly those associated with connective tissue diseases, are a strong predisposing factor in the development of pulmonary arterial hypertension (PAH), there is currently a lack of knowledge about the detailed molecular mechanisms responsible for this phenomenon. Exploring this topic is crucial because patients with an immune disorder combined with PAH have a worse prognosis and higher mortality compared with patients with other PAH subtypes. Moreover, data recorded worldwide show that the prevalence of PAH in women is 2× to even 4× higher than in men, and the ratio of PAH associated with autoimmune diseases is even higher (9:1). Sexual dimorphism in the pathogenesis of cardiovascular disease was explained for many years by the action of female sex hormones. However, there are increasing reports of interactions between sex hormones and sex chromosomes, and differences in the pathogenesis of cardiovascular disease may be controlled not only by sex hormones but also by sex chromosome pathways that are not dependent on the gonads. This review discusses the role of estrogen and genetic factors including the role of genes located on the X chromosome, as well as the potential protective role of the Y chromosome in sexual dimorphism, which is prominent in the occurrence of PAH associated with autoimmune diseases. Moreover, an overview of animal models that could potentially play a role in further investigating the aforementioned link was also reviewed.
Collapse
Affiliation(s)
- Anna Krzyżewska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Poland (A.K.)
| | - Kondababu Kurakula
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Free University Medical Center, the Netherlands (K.K.)
| |
Collapse
|
2
|
Ramachandra AB, Jiang B, Jennings IR, Manning EP, Humphrey JD. Remodeling of Murine Branch Pulmonary Arteries Under Chronic Hypoxia and Short-Term Normoxic Recovery. J Biomech Eng 2024; 146:084501. [PMID: 38421341 DOI: 10.1115/1.4064967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
Chronic hypoxia plays a central role in diverse pulmonary pathologies, but its effects on longitudinal changes in the biomechanical behavior of proximal pulmonary arteries remain poorly understood. Similarly, effects of normoxic recovery have not been well studied. Here, we report hypoxia-induced changes in composition, vasoactivity, and passive biaxial mechanics in the main branch pulmonary artery of male C57BL/6J mice exposed to 10% FiO2 for 1, 2, or 3 weeks. We observed significant changes in extracellular matrix, and consequently wall mechanics, as early as 1 week of hypoxia. While circumferential stress and stiffness returned toward normal values by 2-3 weeks of hypoxia, area fractions of cytoplasm and thin collagen fibers did not return toward normal until after 1 week of normoxic recovery. By contrast, elastic energy storage and overall distensibility remained reduced after 3 weeks of hypoxia as well as following 1 week of normoxic recovery. While smooth muscle and endothelial cell responses were attenuated under hypoxia, smooth muscle but not endothelial cell responses recovered following 1 week of subsequent normoxia. Collectively, these data suggest that homeostatic processes were unable to preserve or restore overall function, at least over a brief period of normoxic recovery. Longitudinal changes are critical in understanding large pulmonary artery remodeling under hypoxia, and its reversal, and will inform predictive models of vascular adaptation.
Collapse
Affiliation(s)
| | - Bo Jiang
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520
| | - Isabella R Jennings
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520
- Yale University
| | - Edward P Manning
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520;West Haven Connecticut VA and Pulmonary and Critical Care Medicine, VA Connecticut Healthcare System, West Haven, CT 06516
| | - Jay D Humphrey
- Department of Biomedical Engineering and Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06520
| |
Collapse
|
3
|
Wittenstein J, Scharffenberg M, Fröhlich J, Rothmann C, Ran X, Zhang Y, Chai Y, Yang X, Müller S, Koch T, Huhle R, Gama de Abreu M. Effects of Positive End-expiratory Pressure on Pulmonary Perfusion Distribution and Intrapulmonary Shunt during One-lung Ventilation in Pigs: A Randomized Crossover Study. Anesthesiology 2024; 141:44-55. [PMID: 38625679 DOI: 10.1097/aln.0000000000005014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
BACKGROUND During one-lung ventilation (OLV), positive end-expiratory pressure (PEEP) can improve lung aeration but might overdistend lung units and increase intrapulmonary shunt. The authors hypothesized that higher PEEP shifts pulmonary perfusion from the ventilated to the nonventilated lung, resulting in a U-shaped relationship with intrapulmonary shunt during OLV. METHODS In nine anesthetized female pigs, a thoracotomy was performed and intravenous lipopolysaccharide infused to mimic the inflammatory response of thoracic surgery. Animals underwent OLV in supine position with PEEP of 0 cm H2O, 5 cm H2O, titrated to best respiratory system compliance, and 15 cm H2O (PEEP0, PEEP5, PEEPtitr, and PEEP15, respectively, 45 min each, Latin square sequence). Respiratory, hemodynamic, and gas exchange variables were measured. The distributions of perfusion and ventilation were determined by IV fluorescent microspheres and computed tomography, respectively. RESULTS Compared to two-lung ventilation, the driving pressure increased with OLV, irrespective of the PEEP level. During OLV, cardiac output was lower at PEEP15 (5.5 ± 1.5 l/min) than PEEP0 (7.6 ± 3 l/min) and PEEP5 (7.4 ± 2.9 l/min; P = 0.004), while the intrapulmonary shunt was highest at PEEP0 (PEEP0: 48.1% ± 14.4%; PEEP5: 42.4% ± 14.8%; PEEPtitr: 37.8% ± 11.0%; PEEP15: 39.0% ± 10.7%; P = 0.027). The relative perfusion of the ventilated lung did not differ among PEEP levels (PEEP0: 65.0% ± 10.6%; PEEP5: 68.7% ± 8.7%; PEEPtitr: 68.2% ± 10.5%; PEEP15: 58.4% ± 12.8%; P = 0.096), but the centers of relative perfusion and ventilation in the ventilated lung shifted from ventral to dorsal and from cranial to caudal zones with increasing PEEP. CONCLUSIONS In this experimental model of thoracic surgery, higher PEEP during OLV did not shift the perfusion from the ventilated to the nonventilated lung, thus not increasing intrapulmonary shunt. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Jakob Wittenstein
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Martin Scharffenberg
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Jonathan Fröhlich
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Carolin Rothmann
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Xi Ran
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany; Department of Intensive Care, Chongqing General Hospital, University of Chinese Academy of Science, Chongqing, China
| | - Yingying Zhang
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany; Department of Anesthesiology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yusen Chai
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Xiuli Yang
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Sabine Müller
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Thea Koch
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Robert Huhle
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Marcelo Gama de Abreu
- Department of Intensive Care and Resuscitation, Department of Outcomes Research, and Department of Cardiothoracic Anesthesia, Anesthesiology Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
4
|
Raberin A, Burtscher J, Citherlet T, Manferdelli G, Krumm B, Bourdillon N, Antero J, Rasica L, Malatesta D, Brocherie F, Burtscher M, Millet GP. Women at Altitude: Sex-Related Physiological Responses to Exercise in Hypoxia. Sports Med 2024; 54:271-287. [PMID: 37902936 PMCID: PMC10933174 DOI: 10.1007/s40279-023-01954-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 11/01/2023]
Abstract
Sex differences in physiological responses to various stressors, including exercise, have been well documented. However, the specific impact of these differences on exposure to hypoxia, both at rest and during exercise, has remained underexplored. Many studies on the physiological responses to hypoxia have either excluded women or included only a limited number without analyzing sex-related differences. To address this gap, this comprehensive review conducted an extensive literature search to examine changes in physiological functions related to oxygen transport and consumption in hypoxic conditions. The review encompasses various aspects, including ventilatory responses, cardiovascular adjustments, hematological alterations, muscle metabolism shifts, and autonomic function modifications. Furthermore, it delves into the influence of sex hormones, which evolve throughout life, encompassing considerations related to the menstrual cycle and menopause. Among these physiological functions, the ventilatory response to exercise emerges as one of the most sex-sensitive factors that may modify reactions to hypoxia. While no significant sex-based differences were observed in cardiac hemodynamic changes during hypoxia, there is evidence of greater vascular reactivity in women, particularly at rest or when combined with exercise. Consequently, a diffusive mechanism appears to be implicated in sex-related variations in responses to hypoxia. Despite well-established sex disparities in hematological parameters, both acute and chronic hematological responses to hypoxia do not seem to differ significantly between sexes. However, it is important to note that these responses are sensitive to fluctuations in sex hormones, and further investigation is needed to elucidate the impact of the menstrual cycle and menopause on physiological responses to hypoxia.
Collapse
Affiliation(s)
- Antoine Raberin
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Johannes Burtscher
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Tom Citherlet
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Giorgio Manferdelli
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Bastien Krumm
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Bourdillon
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Juliana Antero
- Institut de Recherche Bio-Médicale Et d'Épidémiologie du Sport (EA 7329), French Institute of Sport, Paris, France
| | - Letizia Rasica
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Davide Malatesta
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport, Paris, France
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Grégoire P Millet
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
5
|
Pichler Hefti J, Jean D, Rosier AJ, Derstine M, Hillebrandt D, Horakova L, Keyes LE, Mateikaitė-Pipirienė K, Paal P, Andjelkovic M, Beidlemann BA, Kriemler S. High-Altitude Pulmonary Edema in Women: A Scoping Review-UIAA Medical Commission Recommendations. High Alt Med Biol 2023; 24:268-273. [PMID: 37906126 DOI: 10.1089/ham.2023.0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
Pichler Hefti, Jacqueline, Dominique Jean, Alison Rosier, Mia Derstine, David Hillebrandt, Lenka Horakova, Linda E. Keyes, Kastė Mateikaitė-Pipirienė, Peter Paal, Marija Andjelkovic, Beth Beidlemann, and Susi Kriemler. High-altitude pulmonary edema in women: a scoping review-UIAA Medical Commission Recommendations. High Alt Med Biol. 24:268-273, 2023. Background: High-altitude pulmonary edema (HAPE) can occur >2,500-3,000 m asl and is a life-threatening medical condition. This scoping review aims to summarize the current data on sex differences in HAPE. Methods: The International Climbing and Mountaineering Federation (UIAA) Medical Commission convened an international author team to review women's health issues at high altitude. Pertinent literature from PubMed and Cochrane was identified by keyword search combinations (including HAPE), with additional publications found by hand search. The primary search focus was for original articles that included minimum one woman and at least a rudimentary subgroup analysis. Results: The literature search yielded 7,165 articles, 416 of which were relevant for HAPE, and 7 of which were ultimately included here. Six were case series, consistently reporting a lower HAPE prevalence in women. The one retrospective case-control study reported male HAPE prevalence at 10/100,000 and female at 0.74/100,000. No studies were identified that directly compared sex differences in the prevalence of HAPE. No published data was found for topics other than epidemiology. Conclusions: Few studies and associated methodological limitations allow few conclusions to be drawn. Incidence of HAPE may be lower in women than in men. We speculate that besides physiological aspects, behavioral differences may contribute to this potential sex difference.
Collapse
Affiliation(s)
| | - Dominique Jean
- Paediatrics, Infectious Diseases and Altitude Medicine, Grenoble, France
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
| | - Alison J Rosier
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
| | - Mia Derstine
- Department of Emergency Medicine, University of Colorado, Aurora, Colorado, USA
| | - David Hillebrandt
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- General Medical Practitioner, Holsorthy, Devon, United Kingdom
| | - Lenka Horakova
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University Prague, Kladno, Czech Republic
| | - Linda E Keyes
- Department of Emergency Medicine, University of Colorado, Aurora, Colorado, USA
| | - Kastė Mateikaitė-Pipirienė
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- Diaverum Clinics, Elektrėnai Division, Lithuania
| | - Peter Paal
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- Department of Anaesthesiology and Intensive Care Medicine, St. John of God Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Marija Andjelkovic
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- Department of Pharmacy, Singidunum University, Belgrade, Serbia
| | - Beth A Beidlemann
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Susi Kriemler
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Sex- and Gender-Related Aspects in Pulmonary Hypertension. Heart Fail Clin 2023; 19:11-24. [DOI: 10.1016/j.hfc.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Hu X, Wang Q, Zhao H, Wu W, Zhao Q, Jiang R, Liu J, Wang L, Yuan P. Role of miR-21-5p/FilGAP axis in estradiol alleviating the progression of monocrotaline-induced pulmonary hypertension. Animal Model Exp Med 2022; 5:217-226. [PMID: 35713208 PMCID: PMC9240735 DOI: 10.1002/ame2.12253] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background Aberrant expression of microRNAs (miRNAs) has been associated with the pathogenesis of pulmonary hypertension (PH). It is, however, not clear whether miRNAs are involved in estrogen rescue of PH. Methods Fresh plasma samples were prepared from 12 idiopathic pulmonary arterial hypertension (IPAH) patients and 12 healthy controls undergoing right heart catheterization in Shanghai Pulmonary Hospital. From each sample, 5 μg of total RNA was tagged and hybridized on microRNA microarray chips. Monocrotaline‐induced PH (MCT‐PH) male rats were treated with 17β‐estradiol (E2) or vehicle. Subgroups were cotreated with estrogen receptor (ER) antagonist or with antagonist of miRNA. Results Many circulating miRNAs, including miR‐21‐5p and miR‐574‐5p, were markedly expressed in patients and of interest in predicting mean pulmonary arterial pressure elevation in patients. The expression of miR‐21‐5p in the lungs was significantly upregulated in MCT‐PH rats compared with the controls. However, miR‐574‐5p showed no difference in the lungs of MCT‐PH rats and controls. miR‐21‐5p was selected for further analysis in rats as E2 strongly regulated it. E2 decreased miR‐21‐5p expression in the lungs of MCT‐PH rats by ERβ. E2 reversed miR‐21‐5p target gene FilGAP downregulation in the lungs of MCT‐PH rats. The abnormal expression of RhoA, ROCK2, Rac1 and c‐Jun in the lungs of MCT‐PH rats was inhibited by E2 and miR‐21‐5p antagonist. Conclusions miR‐21‐5p level was remarkably associated with PH severity in patients. Moreover, the miR‐21‐5p/FilGAP signaling pathway modulated the protective effect of E2 on MCT‐PH through ERβ.
Collapse
Affiliation(s)
- Xiaoyi Hu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Qian Wang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.,Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, China
| | - Hui Zhao
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.,Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, China
| | - Wenhui Wu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Qinhua Zhao
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Rong Jiang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Jinming Liu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Lan Wang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Ping Yuan
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| |
Collapse
|
8
|
Camacho-Cardenosa A, Camacho-Cardenosa M, Tomas-Carus P, Timón R, Olcina G, Burtscher M. Acute physiological response to a normobaric hypoxic exposure: sex differences. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:1495-1504. [PMID: 35585281 DOI: 10.1007/s00484-022-02298-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Although preliminary studies suggested sex-related differences in physiological responses to altitude/hypoxia, controlled studies from standardised exposures to normobaric hypoxia are largely lacking. Hence, the goals of this study were to provide information on cardiorespiratory responses to a 7-h normobaric hypoxia exposure and to explore potential differences between men and women. In this crossover study, a total of 15 men and 14 women were subjected to a 7-h exposure in normoxia (FiO2: 21%) and normobaric hypoxia (FiO2: 15%). Values of peripheral oxygen saturation, heart rate, systolic and diastolic blood pressure and respiratory gases were recorded every hour (8 time points), and oxygen saturation every 30 min (15 time points). Compared to normoxia, exposure to hypoxia significantly increased minute ventilation from baseline to hour 7 in males (+ 71%) and females (+ 40%), significantly greater in men (p < 0.05). A steeper decrease in peripheral oxygen saturation until 2.5 h in hypoxia was seen in females compared to males (p < 0.05). In conclusion, the ventilatory response to hypoxia was more pronounced in men compared to women. Moreover, during the first hours in hypoxia, peripheral oxygen saturation dropped more markedly in women than in men, likely due an initially lower and/or less efficient ventilatory response to moderate hypoxia. Those findings should be considered when performing interventions for therapy or prevention in normobaric hypoxia. Nevertheless, further large-scaled and well-controlled studies are needed.
Collapse
Affiliation(s)
| | - Marta Camacho-Cardenosa
- Faculty of Sport Sciences, University of Extremadura, Cáceres, Spain.
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menéndez Pidal, Edificio IMIBIC, s/n, 14004, Córdoba, Córdoba, Spain.
| | - Pablo Tomas-Carus
- Departamento de Desporto e Saúde, Escola de Saúde e Desenvolvimento Humano, Universidade de Évora, Évora, Portugal
- Comprehensive Health Research Centre (CHRC), University of Évora, Évora, Portugal
| | - Rafael Timón
- Faculty of Sport Sciences, University of Extremadura, Cáceres, Spain
| | - Guillermo Olcina
- Faculty of Sport Sciences, University of Extremadura, Cáceres, Spain
| | - Martin Burtscher
- Sport Science, Medical Section, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
9
|
Vrigkou E, Vassilatou E, Dima E, Langleben D, Kotanidou A, Tzanela M. The Role of Thyroid Disorders, Obesity, Diabetes Mellitus and Estrogen Exposure as Potential Modifiers for Pulmonary Hypertension. J Clin Med 2022; 11:jcm11040921. [PMID: 35207198 PMCID: PMC8874474 DOI: 10.3390/jcm11040921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/30/2022] [Accepted: 02/06/2022] [Indexed: 02/01/2023] Open
Abstract
Pulmonary hypertension (PH) is a progressive disorder characterized by a chronic in-crease in pulmonary arterial pressure, frequently resulting in right-sided heart failure and potentially death. Co-existing medical conditions are important factors in PH, since they not only result in the genesis of the disorder, but may also contribute to its progression. Various studies have assessed the impact of thyroid disorders and other endocrine conditions (namely estrogen exposure, obesity, and diabetes mellitus) on the progression of PH. The complex interactions that hormones may have with the cardiovascular system and pulmonary vascular bed can create several pathogenetic routes that could explain the effects of endocrine disorders on PH development and evolution. The aim of this review is to summarize current knowledge on the role of concomitant thyroid disorders, obesity, diabetes mellitus, and estrogen exposure as potential modifiers for PH, and especially for pulmonary arterial hypertension, and to discuss possible pathogenetic routes linking them with PH. This information could be valuable for practicing clinicians so as to better evaluate and/or treat concomitant endocrine conditions in the PH population.
Collapse
Affiliation(s)
- Eleni Vrigkou
- 1st Department of Critical Care and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (E.V.); (E.D.); (A.K.)
| | | | - Effrosyni Dima
- 1st Department of Critical Care and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (E.V.); (E.D.); (A.K.)
| | - David Langleben
- Center for Pulmonary Vascular Disease, Azrieli Heart Center, Jewish General Hospital and McGill University, Montreal, QC H3A 0G4, Canada;
| | - Anastasia Kotanidou
- 1st Department of Critical Care and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (E.V.); (E.D.); (A.K.)
| | - Marinella Tzanela
- Department of Endocrinology, Diabetes Center, Evangelismos Hospital, 10676 Athens, Greece
- Correspondence: ; Tel.: +30-694-4284-637
| |
Collapse
|
10
|
Shimoda LA, Suresh K, Undem C, Jiang H, Yun X, Sylvester JT, Swenson ER. Acetazolamide prevents hypoxia-induced reactive oxygen species generation and calcium release in pulmonary arterial smooth muscle. Pulm Circ 2021; 11:20458940211049948. [PMID: 34646499 PMCID: PMC8504243 DOI: 10.1177/20458940211049948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Upon sensing a reduction in local oxygen partial pressure, pulmonary vessels constrict, a phenomenon known as hypoxic pulmonary vasoconstriction. Excessive hypoxic pulmonary vasoconstriction can occur with ascent to high altitude and is a contributing factor to the development of high-altitude pulmonary edema. The carbonic anhydrase inhibitor, acetazolamide, attenuates hypoxic pulmonary vasoconstriction through stimulation of alveolar ventilation via modulation of acid-base homeostasis and by direct effects on pulmonary vascular smooth muscle. In pulmonary arterial smooth muscle cells (PASMCs), acetazolamide prevents hypoxia-induced increases in intracellular calcium concentration ([Ca2+]i), although the exact mechanism by which this occurs is unknown. In this study, we explored the effect of acetazolamide on various calcium-handling pathways in PASMCs. Using fluorescent microscopy, we tested whether acetazolamide directly inhibited store-operated calcium entry or calcium release from the sarcoplasmic reticulum, two well-documented sources of hypoxia-induced increases in [Ca2+]i in PASMCs. Acetazolamide had no effect on calcium entry stimulated by store-depletion, nor on calcium release from the sarcoplasmic reticulum induced by either phenylephrine to activate inositol triphosphate receptors or caffeine to activate ryanodine receptors. In contrast, acetazolamide completely prevented Ca2+-release from the sarcoplasmic reticulum induced by hypoxia (4% O2). Since these results suggest the acetazolamide interferes with a mechanism upstream of the inositol triphosphate and ryanodine receptors, we also determined whether acetazolamide might prevent hypoxia-induced changes in reactive oxygen species production. Using roGFP, a ratiometric reactive oxygen species-sensitive fluorescent probe, we found that hypoxia caused a significant increase in reactive oxygen species in PASMCs that was prevented by 100 μM acetazolamide. Together, these results suggest that acetazolamide prevents hypoxia-induced changes in [Ca2+]i by attenuating reactive oxygen species production and subsequent activation of Ca2+-release from sarcoplasmic reticulum stores.
Collapse
Affiliation(s)
- Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Karthik Suresh
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Clark Undem
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Haiyang Jiang
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Xin Yun
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - J T Sylvester
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Erik R Swenson
- Division of Pulmonary and Critical Care Medicine, VA Puget Sound Health Care System and University of Washington School of Medicine, St. Louis, MO, USA
| |
Collapse
|
11
|
Sun Y, Sangam S, Guo Q, Wang J, Tang H, Black SM, Desai AA. Sex Differences, Estrogen Metabolism and Signaling in the Development of Pulmonary Arterial Hypertension. Front Cardiovasc Med 2021; 8:719058. [PMID: 34568460 PMCID: PMC8460911 DOI: 10.3389/fcvm.2021.719058] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/11/2021] [Indexed: 01/08/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a complex and devastating disease with a poor long-term prognosis. While women are at increased risk for developing PAH, they exhibit superior right heart function and higher survival rates than men. Susceptibility to disease risk in PAH has been attributed, in part, to estrogen signaling. In contrast to potential pathological influences of estrogen in patients, studies of animal models reveal estrogen demonstrates protective effects in PAH. Consistent with this latter observation, an ovariectomy in female rats appears to aggravate the condition. This discrepancy between observations from patients and animal models is often called the "estrogen paradox." Further, the tissue-specific interactions between estrogen, its metabolites and receptors in PAH and right heart function remain complex; nonetheless, these relationships are essential to characterize to better understand PAH pathophysiology and to potentially develop novel therapeutic and curative targets. In this review, we explore estrogen-mediated mechanisms that may further explain this paradox by summarizing published literature related to: (1) the synthesis and catabolism of estrogen; (2) activity and functions of the various estrogen receptors; (3) the multiple modalities of estrogen signaling in cells; and (4) the role of estrogen and its diverse metabolites on the susceptibility to, and progression of, PAH as well as their impact on right heart function.
Collapse
Affiliation(s)
- Yanan Sun
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shreya Sangam
- Department of Medicine, Krannert Institute of Cardiology, Indiana University, Indianapolis, IN, United States
| | - Qiang Guo
- Department of Critical Care Medicine, Suzhou Dushu Lake Hospital, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haiyang Tang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Stephen M. Black
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Miami, FL, United States
- Center for Translational Science and Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Port St. Lucie, FL, United States
| | - Ankit A. Desai
- Department of Medicine, Krannert Institute of Cardiology, Indiana University, Indianapolis, IN, United States
| |
Collapse
|
12
|
Pulmonary Hypertension Complicating Pregnancy. CURRENT PULMONOLOGY REPORTS 2021. [DOI: 10.1007/s13665-021-00275-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Abstract
Purpose of review
This study aims to describe the pathophysiology of pregnancy in pulmonary hypertension (PH) and review recent literature on maternal and fetal outcomes.
Recent findings
There is an increasing number of pregnant women with PH. Maternal mortality in pulmonary arterial hypertension (PAH) ranges from 9 to 25%, most commonly from heart failure and arrythmias. The highest risk of death is peri-partum and post-partum. Fetal/neonatal morbidity and mortality are also substantial. There are high rates of prematurity, intrauterine growth retardation, and preeclampsia. Women should be referred to expert centers for management. Combination PAH therapy with parenteral prostacyclin and a phosphodiesterase type V inhibitor is recommended. Induced vaginal delivery is preferred, except in cases of severe heart failure or obstetric indications for cesarean section.
Summary
Despite advances in management, pregnancy in PAH remains a high-risk condition and should be prevented.
Collapse
|
13
|
Abstract
BACKGROUND Mild-to-moderate hypertension with preserved left ventricular (LV) function may be associated with right ventricular (RV) dysfunction and increased pulmonary vascular resistance (PVR). METHODS The present study explored the adequacy of RV-pulmonary arterial (PA) coupling in 211 never-treated hypertensive patients (mean blood pressure, BP 112 ± 12 mmHg) and 246 controls (BP 93 ± 12 mmHg). They underwent a comprehensive transthoracic Doppler echocardiography, and RV-PA coupling was estimated by the tricuspid annular plane systolic excursion (TAPSE) to systolic pulmonary artery pressure (PASP) ratio (TAPSE/PASP). RESULTS Compared with the controls, hypertensive patients had increased LV wall thickness and decreased trans-mitral E/A with only slight but significant increase in transmitral Doppler E wave to tissue Doppler mitral annulus e' wave ratio (6.3 ± 1.9 vs. 5.8 ± 1. 5, P < 0.05). RV dimensions and indices of either systolic or diastolic function were not different. PASP was increased in the hypertensive patients (25 ± 7 vs. 21 ± 7 mmHg, P < 0.001), as was PVR estimated from the tricuspid regurgitation velocity to right ventricular outflow tract velocity ratio (1.7 ± 0.4 vs. 1.5 ± 0.5 Wood units, P < 0.001). The TAPSE/PASP ratio was decreased (1.08 ± 0.35 vs. 1.43 ± 0.67 mm/mmHg, P < 0.001). This difference was mainly driven by male hypertensive patients. At multivariable analysis, the only independent predictors of decreased TAPSE/PASP were age and blood pressure. CONCLUSION The TAPSE/PASP is markedly decreased in hypertension without heart failure, chiefly in men, with only slight increases in estimates of LV filling pressure or PVR, suggesting RV-PA uncoupling.
Collapse
|
14
|
Anjum H, Surani S. Pulmonary Hypertension in Pregnancy: A Review. ACTA ACUST UNITED AC 2021; 57:medicina57030259. [PMID: 33799910 PMCID: PMC8000005 DOI: 10.3390/medicina57030259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/05/2023]
Abstract
Pulmonary hypertension (PH) is a disease, which targets the pulmonary vasculature affecting the heart and the lungs, and is characterized by a vast array of signs and symptoms. These manifestations of PH in pregnancy are highly variable and non-specific hence, it is prudent to have a very keen and high index of suspicion while evaluating these patients. This rare disease can be extremely debilitating and can be associated with a poor overall prognosis. Pregnancy in women with PH puts them at an elevated risk because the physiological changes associated with pregnancy are not well endured leading to even higher morbidity and mortality in these patients. Although there are various modalities for evaluation and workup of PH, right heart catheterization (RHC) remains the gold standard. A mean pulmonary artery pressure (PAP) of more than 20 mm of Hg is considered diagnostic. It is indeed heartening to see that in the past decade many novel therapeutic modalities have emerged and along with a better understanding of the disease process have proved to be promising in terms of reducing the adverse outcomes and preventing death in this population of patients.
Collapse
Affiliation(s)
- Humayun Anjum
- Internal Medicine, University of North Texas, Fort Worth, TX 76107, USA
- Correspondence:
| | - Salim Surani
- Internal Medicine, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
15
|
Hester J, Ventetuolo C, Lahm T. Sex, Gender, and Sex Hormones in Pulmonary Hypertension and Right Ventricular Failure. Compr Physiol 2019; 10:125-170. [PMID: 31853950 DOI: 10.1002/cphy.c190011] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pulmonary hypertension (PH) encompasses a syndrome of diseases that are characterized by elevated pulmonary artery pressure and pulmonary vascular remodeling and that frequently lead to right ventricular (RV) failure and death. Several types of PH exhibit sexually dimorphic features in disease penetrance, presentation, and progression. Most sexually dimorphic features in PH have been described in pulmonary arterial hypertension (PAH), a devastating and progressive pulmonary vasculopathy with a 3-year survival rate <60%. While patient registries show that women are more susceptible to development of PAH, female PAH patients display better RV function and increased survival compared to their male counterparts, a phenomenon referred to as the "estrogen paradox" or "estrogen puzzle" of PAH. Recent advances in the field have demonstrated that multiple sex hormones, receptors, and metabolites play a role in the estrogen puzzle and that the effects of hormone signaling may be time and compartment specific. While the underlying physiological mechanisms are complex, unraveling the estrogen puzzle may reveal novel therapeutic strategies to treat and reverse the effects of PAH/PH. In this article, we (i) review PH classification and pathophysiology; (ii) discuss sex/gender differences observed in patients and animal models; (iii) review sex hormone synthesis and metabolism; (iv) review in detail the scientific literature of sex hormone signaling in PAH/PH, particularly estrogen-, testosterone-, progesterone-, and dehydroepiandrosterone (DHEA)-mediated effects in the pulmonary vasculature and RV; (v) discuss hormone-independent variables contributing to sexually dimorphic disease presentation; and (vi) identify knowledge gaps and pathways forward. © 2020 American Physiological Society. Compr Physiol 10:125-170, 2020.
Collapse
Affiliation(s)
- James Hester
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Corey Ventetuolo
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Department of Health Services, Policy and Practice, Brown University School of Public Health, Providence, Rhode Island, USA
| | - Tim Lahm
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
16
|
Piscoya Roncal CG, Mendes AA, Muniz MT, de Oliveira SA, do Valle Neto LM, de Vasconcellos Piscoya NA, Góes GH, Sobral Filho DC, Gomberg-Maitland M. Schistosomiasis-associated pulmonary arterial hypertension: survival in endemic area in Brazil. IJC HEART & VASCULATURE 2019; 25:100373. [PMID: 31720370 PMCID: PMC6838530 DOI: 10.1016/j.ijcha.2019.100373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND The survival of schistosomiasis-associated pulmonary arterial hypertension (Sch-PAH) patients in endemic areas is unknown, but can be estimated using predictive equations. METHODS We retrospectively analyzed all consecutive patients diagnosed with Sch-PAH referred to the Pronto SocorroCardiologico de Pernambuco between 2004 and 2010 using specific therapy and measured laboratory, diagnostic imaging, and baseline hemodynamic parameters. Observed and predicted survivals according to the National Institutes of Health (NIH) and Pulmonary Hypertension Connection (PHC) registry equations were compared by the Kaplan-Meier method, log-rank test and Cox proportional hazards model. RESULTS Sixty-eight patients (47 [69.1%] women) observed for a mean of 3.1 years (range, 7-72 months), median survival was 74 months, and 42 (61.7%) survived. The sex and age distributions were similar for functional class I/II and III/IV patients. Hemodynamic abnormalities were severe: mean right atrial pressure, 12.6 ± 6.2 mmHg; mean pulmonary artery pressure, 60.3 ± 13.69 mmHg; pulmonary vascular resistance, 14.62 ± 7.04 Wood units; and cardiac index, 2.3 ± 0.8 L/min/m2. The usual idiopathic PAH predictors were not prognostic in Sch-PAH patients. The 1-, 3- and 5-year survival rates were 92.1%, 75.2%, and 50.8%, respectively, and those estimatedby the NIH and PHC registry equations were 68%, 45% and 32% (p = 0.001), and 93%, 79% and 68% (p = 0.340), respectively. CONCLUSIONS Sch-PAH patients in endemic areas have severe hemodynamic profiles and reduced long-term survivaldespite treatment. The PHC registry equation may be a useful tool to estimate survival in Sch-PAH.
Collapse
Affiliation(s)
| | - Adriano A. Mendes
- Pronto-Socorro Cardiologico de Pernambuco (PROCAPE/University of Pernambuco), Brazil
| | - Maria T.C. Muniz
- Biological Sciences Institute - University of Pernambuco, Brazil
| | - Sheilla A. de Oliveira
- Department of Immunology Aggeu Magalhaes Research Center, Federal University of Pernambuco, Brazil
| | | | | | - Gustavo H.B. Góes
- Pronto-Socorro Cardiologico de Pernambuco (PROCAPE/University of Pernambuco), Brazil
| | - Dario C. Sobral Filho
- Pronto-Socorro Cardiologico de Pernambuco (PROCAPE/University of Pernambuco), Brazil
| | | |
Collapse
|
17
|
Frump AL, Selej M, Wood JA, Albrecht M, Yakubov B, Petrache I, Lahm T. Hypoxia Upregulates Estrogen Receptor β in Pulmonary Artery Endothelial Cells in a HIF-1α-Dependent Manner. Am J Respir Cell Mol Biol 2019; 59:114-126. [PMID: 29394091 DOI: 10.1165/rcmb.2017-0167oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
17β-Estradiol (E2) attenuates hypoxia-induced pulmonary hypertension (HPH) through estrogen receptor (ER)-dependent effects, including inhibition of hypoxia-induced endothelial cell proliferation; however, the mechanisms responsible for this remain unknown. We hypothesized that the protective effects of E2 in HPH are mediated through hypoxia-inducible factor 1α (HIF-1α)-dependent increases in ERβ expression. Sprague-Dawley rats and ERα or ERβ knockout mice were exposed to hypobaric hypoxia for 2-3 weeks. The effects of hypoxia were also studied in primary rat or human pulmonary artery endothelial cells (PAECs). Hypoxia increased expression of ERβ, but not ERα, in lungs from HPH rats as well as in rat and human PAECs. ERβ mRNA time dependently increased in PAECs exposed to hypoxia. Normoxic HIF-1α/HIF-2α stabilization increased PAEC ERβ, whereas HIF-1α knockdown decreased ERβ abundance in hypoxic PAECs. In turn, ERβ knockdown in hypoxic PAECs increased HIF-2α expression, suggesting a hypoxia-sensitive feedback mechanism. ERβ knockdown in hypoxic PAECs also decreased expression of the HIF inhibitor prolyl hydroxylase 2 (PHD2), whereas ERβ activation increased PHD2 and decreased both HIF-1α and HIF-2α, suggesting that ERβ regulates the PHD2/HIF-1α/HIF-2α axis during hypoxia. Whereas hypoxic wild-type or ERα knockout mice treated with E2 demonstrated less pulmonary vascular remodeling and decreased HIF-1α after hypoxia compared with untreated hypoxic mice, ERβ knockout mice exhibited increased HIF-2α and an attenuated response to E2 during hypoxia. Taken together, our results demonstrate a novel and potentially therapeutically targetable mechanism whereby hypoxia, via HIF-1α, increases ERβ expression and the E2-ERβ axis targets PHD2, HIF-1α, and HIF-2α to attenuate HPH development.
Collapse
Affiliation(s)
- Andrea L Frump
- 1 Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine
| | - Mona Selej
- 1 Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine
| | - Jordan A Wood
- 1 Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine
| | - Marjorie Albrecht
- 1 Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine
| | - Bakhtiyor Yakubov
- 1 Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine
| | - Irina Petrache
- 1 Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine.,2 Richard L. Roudebush VA Medical Center, and
| | - Tim Lahm
- 1 Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine.,2 Richard L. Roudebush VA Medical Center, and.,3 Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
18
|
Abstract
Prevalence of pulmonary arterial hypertension (PAH) is higher in women, and the mechanism remains unclear. Prognosis is overall better for female compared with male patients with PAH. Pregnancy is associated with significant risk, mortality, and morbidity in patients with PAH; consensus guidelines recommend against pregnancy and counsel about early termination in these patients. Recent advances in treatment showed improvement in prognosis in small case reports of pregnant patients with PAH, particularly with the early use of parental prostacyclin. Education remains fundamental for women with PAH of childbearing age for pregnancy prevention as well as discussion about birth control methods.
Collapse
Affiliation(s)
- Veronica Franco
- Division of Cardiovascular Medicine, Department of Medicine, The Ohio State University, 473 W 12th Avenue, DHLRI Suite 200, Columbus, Ohio 43210, USA.
| | - John J Ryan
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Vallerie V McLaughlin
- Division of Cardiovascular Medicine, Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
19
|
Abstract
Pulmonary arterial hypertension (PAH) is characterized by pathological hemodynamic elevation in pulmonary artery pressure. Development of international registries over the last decade has raised awareness about the disease, leading to the development of new and improved therapies. Paradigm shifts such as these warrant review of existing literature regarding PAH, especially in females, as the disease continues to affect women more than males. The aim of this review is to provide an update on the classification, pathophysiology, diagnosis, and treatment of PAH while focusing specifically on its impact on women.
Collapse
|
20
|
Kawut SM, Archer-Chicko CL, DeMichele A, Fritz JS, Klinger JR, Ky B, Palevsky HI, Palmisciano AJ, Patel M, Pinder D, Propert KJ, Smith KA, Stanczyk F, Tracy R, Vaidya A, Whittenhall ME, Ventetuolo CE. Anastrozole in Pulmonary Arterial Hypertension. A Randomized, Double-Blind, Placebo-controlled Trial. Am J Respir Crit Care Med 2017; 195:360-368. [PMID: 27602993 DOI: 10.1164/rccm.201605-1024oc] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
RATIONALE The aromatase inhibitor anastrozole blocks the conversion of androgens to estrogen and blunts pulmonary hypertension in animals, but its efficacy in treating patients with pulmonary arterial hypertension (PAH) is unknown. OBJECTIVES We aimed to determine the safety and efficacy of anastrozole in PAH. METHODS We performed a randomized, double-blind, placebo-controlled trial of anastrozole in patients with PAH who received background therapy at two centers. MEASUREMENTS AND MAIN RESULTS A total of 18 patients with PAH were randomized to anastrozole 1 mg or matching placebo in a 2:1 ratio. The two co-primary outcomes were percent change from baseline in 17β-estradiol levels (E2) and tricuspid annular plane systolic excursion (TAPSE) at 3 months. Anastrozole significantly reduced E2 levels compared with placebo (percent change: -40%; interquartile range [IQR], -61 to -26% vs. -4%; IQR, -14 to +4%; P = 0.003), but there was no difference in TAPSE. Anastrozole significantly increased the 6-minute-walk distance (median change = +26 m) compared with placebo (median change = -12 m) (median percent change: anastrozole group, 8%; IQR, 2 to 17% vs. placebo -2%; IQR, -7 to +1%; P = 0.042). Anastrozole had no effect on circulating biomarkers, functional class, or health-related quality of life. There was no difference in adverse events. CONCLUSIONS Anastrozole significantly reduced E2 levels in patients with PAH but had no effect on TAPSE. Anastrozole was safe, well tolerated, and improved 6-minute-walk distance in this small "proof-of-principle" study. Larger and longer phase II clinical trials of anastrozole may be warranted in patients with PAH. Clinical trial registered with www.clinicaltrials.gov (NCT 1545336).
Collapse
Affiliation(s)
- Steven M Kawut
- 1 Department of Medicine and.,2 Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | - James R Klinger
- 3 Rhode Island Hospital, Providence, Rhode Island.,4 Department of Medicine, and
| | | | | | | | | | | | - Kathleen J Propert
- 2 Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Frank Stanczyk
- 5 Department of Obstetrics and Gynecology, Keck School of Medicine of the University of Southern California, Los Angeles, California; and
| | - Russell Tracy
- 6 Department of Laboratory Medicine, University of Vermont School of Medicine, Burlington, Vermont
| | | | - Mary E Whittenhall
- 3 Rhode Island Hospital, Providence, Rhode Island.,4 Department of Medicine, and
| | - Corey E Ventetuolo
- 3 Rhode Island Hospital, Providence, Rhode Island.,4 Department of Medicine, and.,7 Department of Health Services, Policy and Practice, Brown University, Providence, Rhode Island
| |
Collapse
|
21
|
Sex-specific cardiopulmonary exercise testing parameters as predictors in patients with idiopathic pulmonary arterial hypertension. Hypertens Res 2017; 40:868-875. [PMID: 28566737 DOI: 10.1038/hr.2017.52] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 01/07/2017] [Accepted: 02/23/2017] [Indexed: 01/11/2023]
Abstract
Cardiopulmonary exercise testing (CPET) has been used for prognosis in idiopathic pulmonary arterial hypertension (IPAH). We explored whether sex differences had an impact on prognostic assessments of CPET in IPAH. Data were retrieved from 21 male and 36 female incident IPAH patients who underwent both right heart catheterization and CPET from 2010 to 2016 at Shanghai Pulmonary Hospital. Cox proportional hazards analysis was used to assess the prognostic value of CPET. The mean duration of follow-up was 22±15 months. Nine men and 15 women had an event. The differences in clinical parameters in the whole population were not the same as the inter-subgroup differences. Event-free women had significantly higher cardiac output, lower pulmonary vascular resistance and percentage of predicted FVC compared with event men (all P<0.05). Event-free men had significantly higher end-tidal partial pressure of CO2 (PETCO2) at anaerobic threshold (AT), peak workload, PETCO2, maximum oxygen consumption (VO2)/minute ventilation (VE), and oxygen uptake efficiency slope and lower end-tidal partial pressure of O2 (PETO2) at AT, peak PETO2, and lowest VE/VCO2 compared with event men. Event-free women had dramatically higher peak VO2, VCO2, VE and O2 pulse than event women (all P<0.05). Peak PETCO2 was the independent predictor of event-free survival in all patients and males, whereas peak O2 pulse was the independent predictor of event-free survival in females. Men with peak PETCO2⩾20.50 mm Hg, women with peak O2 pulse ⩾6.25 ml per beat and all patients with peak PETCO2⩾27.03 mm Hg had significantly better event-free survival. Sex-specific CPET parameters are predictors of poor outcomes. Decreased peak PETCO2 in men and peak O2 pulse in women were associated with lower event-free survival in IPAH.
Collapse
|
22
|
Frump AL, Albrecht ME, McClintick JN, Lahm T. Estrogen receptor-dependent attenuation of hypoxia-induced changes in the lung genome of pulmonary hypertension rats. Pulm Circ 2017; 7:232-243. [PMID: 28680582 PMCID: PMC5448529 DOI: 10.1177/2045893217702055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/27/2016] [Indexed: 12/19/2022] Open
Abstract
17β-estradiol (E2) exerts complex and context-dependent effects in pulmonary hypertension. In hypoxia-induced pulmonary hypertension (HPH), E2 attenuates lung vascular remodeling through estrogen receptor (ER)-dependent effects; however, ER target genes in the hypoxic lung remain unknown. In order to identify the genome regulated by the E2-ER axis in the hypoxic lung, we performed a microarray analysis in lungs from HPH rats treated with E2 (75 mcg/kg/day) ± ER-antagonist ICI182,780 (3 mg/kg/day). Untreated HPH rats and normoxic rats served as controls. Using a false discovery rate of 10%, we identified a significantly differentially regulated genome in E2-treated versus untreated hypoxia rats. Genes most upregulated by E2 encoded matrix metalloproteinase 8, S100 calcium binding protein A8, and IgA Fc receptor; genes most downregulated by E2 encoded olfactory receptor 63, secreted frizzled-related protein 2, and thrombospondin 2. Several genes affected by E2 changed in the opposite direction after ICI182,780 co-treatment, indicating an ER-regulated genome in HPH lungs. The bone morphogenetic protein antagonist Grem1 (gremlin 1) was upregulated by hypoxia, but found to be among the most downregulated genes after E2 treatment. Gremlin 1 protein was reduced in E2-treated versus untreated hypoxic animals, and ER-blockade abolished the inhibitory effect of E2 on Grem1 mRNA and protein. In conclusion, E2 ER-dependently regulates several genes involved in proliferative and inflammatory processes during hypoxia. Gremlin 1 is a novel target of the E2-ER axis in HPH. Understanding the mechanisms of E2 gene regulation in HPH may allow for selectively harnessing beneficial transcriptional activities of E2 for therapeutic purposes.
Collapse
Affiliation(s)
- Andrea L Frump
- Department of Medicine; Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Marjorie E Albrecht
- Department of Medicine; Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jeanette N McClintick
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tim Lahm
- Department of Medicine; Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.,Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN, USA
| |
Collapse
|
23
|
Petersen B, Busch T, Noreikat K, Homeister L, Regenthal R, Kaisers UX. Search for an animal model to investigate selective pulmonary vasodilation. Lab Anim 2016; 51:376-387. [PMID: 27888262 DOI: 10.1177/0023677216675384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pulmonary arterial hypertension is a life-threatening disease with a poor prognosis. Oral treatment with vasodilators is often limited by systemic hypotension. Inhalation of vasodilators offers the opportunity for selective pulmonary vasodilation. Testing selective pulmonary vasodilation by inhaled nitric oxide or alternative substances in animal models requires an increased pulmonary vascular tone. The aim of this study was to identify animal models that are suitable for investigating selective pulmonary vasodilation. To do so, a haemodynamic stable pulmonary hypertension was initiated, with a 30 min duration deemed to be a sufficient time interval before and after a possible intervention. In anaesthetized and mechanically-ventilated Sprague-Dawley rats pulmonary hypertension was induced either by acute hypoxia due to reduction of the inspired oxygen fraction from 0.21 to 0.1 ( n = 6), a fixed infusion rate of the thromboxane analogue U46619 (240 ng/min; n = 6) or a monocrotaline injection (MCT; 60 mg/kg applied 23 days before the investigation; n = 7). The animals were instrumented to measure right ventricular and systemic arterial pressures. Acute hypoxia caused a short, and only transient, increase of pulmonary artery pressure as well as profound systemic hypotension which suggested haemodynamic instability. U46619 infusion induced variable changes in the pulmonary and systemic vascular tone without sufficient stabilization within 30 min. MCT provoked sustained pulmonary hypertension with normal systemic pressure values and inhalation of nitric oxide caused selective pulmonary vasodilation. In conclusion, out of the three examined rat animal models only MCT-induced pulmonary hypertension is a solid and reliable model for investigating selective pulmonary vasodilation.
Collapse
Affiliation(s)
- Bodil Petersen
- 1 Department of Anaesthesia and Intensive Care Medicine, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Thilo Busch
- 1 Department of Anaesthesia and Intensive Care Medicine, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Katharina Noreikat
- 1 Department of Anaesthesia and Intensive Care Medicine, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Lorenz Homeister
- 1 Department of Anaesthesia and Intensive Care Medicine, Medical Faculty, University of Leipzig, Leipzig, Germany.,2 Department of Anaesthesia, Intensive Care and Emergency Medicine, Bergmannstrost Hospital, Halle, Germany
| | - Ralf Regenthal
- 3 Division of Clinical Pharmacology, Rudolf-Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Udo X Kaisers
- 1 Department of Anaesthesia and Intensive Care Medicine, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
24
|
Berendsen RR, Lindeman RC, Boom M, Aarts LPHJ, van Dorp ELA, Teppema LJ. Erythropoietin does not have effects on the ventilatory and pulmonary vascular response to acute hypoxia in men and women. Exp Physiol 2016; 101:1230-1240. [DOI: 10.1113/ep085675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 07/07/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Remco R. Berendsen
- Leiden University Medical Center, Department of Anesthesiology; Leiden The Netherlands
| | | | - Merel Boom
- Leiden University Medical Center, Department of Anesthesiology; Leiden The Netherlands
| | - Leon P. H. J. Aarts
- Leiden University Medical Center, Department of Anesthesiology; Leiden The Netherlands
| | | | - Luc J. Teppema
- Leiden University Medical Center, Department of Anesthesiology; Leiden The Netherlands
| |
Collapse
|
25
|
The Effects of Sex on Cardiopulmonary Responses to Acute Normobaric Hypoxia. High Alt Med Biol 2016; 17:108-15. [DOI: 10.1089/ham.2015.0114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
26
|
Johansen AKZ, Dean A, Morecroft I, Hood K, Nilsen M, Loughlin L, Anagnostopoulou A, Touyz RM, White K, MacLean MR. The serotonin transporter promotes a pathological estrogen metabolic pathway in pulmonary hypertension via cytochrome P450 1B1. Pulm Circ 2016; 6:82-92. [PMID: 27162617 PMCID: PMC4860551 DOI: 10.1086/685023] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a devastating vasculopathy that predominates in women and has been associated with dysregulated estrogen and serotonin signaling. Overexpression of the serotonin transporter (SERT(+)) in mice results in an estrogen-dependent development of pulmonary hypertension (PH). Estrogen metabolism by cytochrome P450 1B1 (CYP1B1) contributes to the pathogenesis of PAH, and serotonin can increase CYP1B1 expression in human pulmonary arterial smooth muscle cells (hPASMCs). We hypothesized that an increase in intracellular serotonin via increased SERT expression may dysregulate estrogen metabolism via CYP1B1 to facilitate PAH. Consistent with this hypothesis, we found elevated lung CYP1B1 protein expression in female SERT(+) mice accompanied by PH, which was attenuated by the CYP1B1 inhibitor 2,3',4,5'-tetramethoxystilbene (TMS). Lungs from female SERT(+) mice demonstrated an increase in oxidative stress that was marked by the expression of 8-hydroxyguanosine; however, this was unaffected by CYP1B1 inhibition. SERT expression was increased in monocrotaline-induced PH in female rats; however, TMS did not reverse PH in monocrotaline-treated rats but prolonged survival. Stimulation of hPASMCs with the CYP1B1 metabolite 16α-hydroxyestrone increased cellular proliferation, which was attenuated by an inhibitor (MPP) of estrogen receptor alpha (ERα) and a specific ERα antibody. Thus, increased intracellular serotonin caused by increased SERT expression may contribute to PAH pathobiology by dysregulation of estrogen metabolic pathways via increased CYP1B1 activity. This promotes PASMC proliferation by the formation of pathogenic metabolites of estrogen that mediate their effects via ERα. Our studies indicate that targeting this pathway in PAH may provide a promising antiproliferative therapeutic strategy.
Collapse
Affiliation(s)
- Anne Katrine Z Johansen
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Afshan Dean
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ian Morecroft
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Katie Hood
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Margaret Nilsen
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Lynn Loughlin
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Aikaterini Anagnostopoulou
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kevin White
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Margaret R MacLean
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
27
|
Fatemian M, Herigstad M, Croft QPP, Formenti F, Cardenas R, Wheeler C, Smith TG, Friedmannova M, Dorrington KL, Robbins PA. Determinants of ventilation and pulmonary artery pressure during early acclimatization to hypoxia in humans. J Physiol 2016; 594:1197-213. [PMID: 25907672 PMCID: PMC4771781 DOI: 10.1113/jp270061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/14/2015] [Indexed: 12/11/2022] Open
Abstract
Pulmonary ventilation and pulmonary arterial pressure both rise progressively during the first few hours of human acclimatization to hypoxia. These responses are highly variable between individuals, but the origin of this variability is unknown. Here, we sought to determine whether the variabilities between different measures of response to sustained hypoxia were related, which would suggest a common source of variability. Eighty volunteers individually underwent an 8-h isocapnic exposure to hypoxia (end-tidal P(O2)=55 Torr) in a purpose-built chamber. Measurements of ventilation and pulmonary artery systolic pressure (PASP) assessed by Doppler echocardiography were made during the exposure. Before and after the exposure, measurements were made of the ventilatory sensitivities to acute isocapnic hypoxia (G(pO2)) and hyperoxic hypercapnia, the latter divided into peripheral (G(pCO2)) and central (G(cCO2)) components. Substantial acclimatization was observed in both ventilation and PASP, the latter being 40% greater in women than men. No correlation was found between the magnitudes of pulmonary ventilatory and pulmonary vascular responses. For G(pO2), G(pCO2) and G(cC O2), but not the sensitivity of PASP to acute hypoxia, the magnitude of the increase during acclimatization was proportional to the pre-acclimatization value. Additionally, the change in G(pO2) during acclimatization to hypoxia correlated well with most other measures of ventilatory acclimatization. Of the initial measurements prior to sustained hypoxia, only G(pCO2) predicted the subsequent rise in ventilation and change in G(pO2) during acclimatization. We conclude that the magnitudes of the ventilatory and pulmonary vascular responses to sustained hypoxia are predominantly determined by different factors and that the initial G(pCO2) is a modest predictor of ventilatory acclimatization.
Collapse
Affiliation(s)
- Marzieh Fatemian
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Mari Herigstad
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Quentin P P Croft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Federico Formenti
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Rosa Cardenas
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Carly Wheeler
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Thomas G Smith
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Maria Friedmannova
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Keith L Dorrington
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Peter A Robbins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| |
Collapse
|
28
|
Rusiecki J, Rao Y, Cleveland J, Rhinehart Z, Champion HC, Mathier MA. Sex and menopause differences in response to tadalafil: 6-minute walk distance and time to clinical worsening. Pulm Circ 2015; 5:701-6. [PMID: 26697177 DOI: 10.1086/683829] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a female-predominant disease, but there are little data on treatment response by sex and menopausal status. In this retrospective analysis of the Pulmonary Arterial Hypertension and Response to Tadalafil (PHIRST) randomized clinical trial, we assessed treatment response between the sexes by examining change in 6-minute walk distance (6MWD) and time to clinical worsening (TCW). We examined the effect of menopausal status on the same treatment measures. 6MWD was recorded before and after 16 weeks of treatment with tadalafil or placebo in the PHIRST study cohort of 340 subjects (264 females, 76 males). A univariate analysis was used to assess the effect of sex on change in 6MWD and TCW. Multivariate linear regression and Cox proportional hazards models were built for 6MWD and TCW, respectively. Women were subdivided by age as a surrogate for menopausal status. The linear trend test and the log-rank test were performed on change in 6MWD and TCW by age. For tadalafil-treated patients, a significant difference in change in 6MWD by sex (mean: 48.6 m for males vs. 34.7 m for females; P = 0.01) was found, but it was not significant in multivariate analysis (P = 0.08). There was a trend toward a female age-dependent effect in change in 6MWD; the premenopausal group showed the greatest improvement. A significant sex- or age-dependent effect on TCW was not present. In conclusion, this retrospective analysis of the PHIRST trial suggests that men and premenopausal women may experience greater functional improvement when treated with tadalafil than older women, but there was no consistent sex or menopausal effect on TCW.
Collapse
Affiliation(s)
- Jennifer Rusiecki
- Pulmonary Allergy and Critical Care Medicine, Heart and Vascular Institute, Vascular Medicine Institute, University of Pittsburgh/University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Youlan Rao
- United Therapeutics, Research Triangle Park, North Carolina, USA
| | - Jody Cleveland
- United Therapeutics, Research Triangle Park, North Carolina, USA
| | - Zachary Rhinehart
- Pulmonary Allergy and Critical Care Medicine, Heart and Vascular Institute, Vascular Medicine Institute, University of Pittsburgh/University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Hunter C Champion
- Pulmonary Allergy and Critical Care Medicine, Heart and Vascular Institute, Vascular Medicine Institute, University of Pittsburgh/University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Michael A Mathier
- Pulmonary Allergy and Critical Care Medicine, Heart and Vascular Institute, Vascular Medicine Institute, University of Pittsburgh/University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
29
|
Liu A, Tian L, Golob M, Eickhoff JC, Boston M, Chesler NC. 17β-Estradiol Attenuates Conduit Pulmonary Artery Mechanical Property Changes With Pulmonary Arterial Hypertension. Hypertension 2015; 66:1082-8. [PMID: 26418020 DOI: 10.1161/hypertensionaha.115.05843] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/27/2015] [Indexed: 01/23/2023]
Abstract
Pulmonary arterial hypertension (PAH), a rapidly fatal vascular disease, strikes women more often than men. Paradoxically, female PAH patients have better prognosis and survival rates than males. The female sex hormone 17β-estradiol has been linked to the better outcome of PAH in females; however, the mechanisms by which 17β-estradiol alters PAH progression and outcomes remain unclear. Because proximal pulmonary arterial (PA) stiffness, one hallmark of PAH, is a powerful predictor of mortality and morbidity, we hypothesized that 17β-estradiol attenuates PAH-induced changes in mechanical properties in conduit proximal PAs, which imparts hemodynamic and energetic benefits to right ventricular function. To test this hypothesis, female mice were ovariectomized and treated with 17β-estradiol or placebo. PAH was induced in mice using SU5416 and chronic hypoxia. Extra-lobar left PAs were isolated and mechanically tested ex vivo to study both static and frequency-dependent mechanical behaviors in the presence or absence of smooth muscle cell activation. Our static mechanical test showed significant stiffening of large PAs with PAH (P<0.05). 17β-Estradiol restored PA compliance to control levels. The dynamic mechanical test demonstrated that 17β-estradiol protected the arterial wall from the PAH-induced frequency-dependent decline in dynamic stiffness and loss of viscosity with PAH (P<0.05). As demonstrated by the in vivo measurement of PA hemodynamics via right ventricular catheterization, modulation by 17β-estradiol of mechanical proximal PAs reduced pulsatile loading, which contributed to improved ventricular-vascular coupling. This study provides a mechanical mechanism for delayed disease progression and better outcome in female PAH patients and underscores the therapeutic potential of 17β-estradiol in PAH.
Collapse
Affiliation(s)
- Aiping Liu
- From the Departments of Biomedical Engineering, (A.L., L.T., M.G., M.B., N.C.C.) and Biostatistics and Medical Informatics (J.C.E.), University of Wisconsin-Madison
| | - Lian Tian
- From the Departments of Biomedical Engineering, (A.L., L.T., M.G., M.B., N.C.C.) and Biostatistics and Medical Informatics (J.C.E.), University of Wisconsin-Madison
| | - Mark Golob
- From the Departments of Biomedical Engineering, (A.L., L.T., M.G., M.B., N.C.C.) and Biostatistics and Medical Informatics (J.C.E.), University of Wisconsin-Madison
| | - Jens C Eickhoff
- From the Departments of Biomedical Engineering, (A.L., L.T., M.G., M.B., N.C.C.) and Biostatistics and Medical Informatics (J.C.E.), University of Wisconsin-Madison
| | - Madison Boston
- From the Departments of Biomedical Engineering, (A.L., L.T., M.G., M.B., N.C.C.) and Biostatistics and Medical Informatics (J.C.E.), University of Wisconsin-Madison
| | - Naomi C Chesler
- From the Departments of Biomedical Engineering, (A.L., L.T., M.G., M.B., N.C.C.) and Biostatistics and Medical Informatics (J.C.E.), University of Wisconsin-Madison.
| |
Collapse
|
30
|
Gokyo Khumbu/Ama Dablam Trek 2012: effects of physical training and high-altitude exposure on oxidative metabolism, muscle composition, and metabolic cost of walking in women. Eur J Appl Physiol 2015; 116:129-44. [PMID: 26349745 DOI: 10.1007/s00421-015-3256-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 08/28/2015] [Indexed: 12/13/2022]
Abstract
PURPOSE We investigated the effects of moderate-intensity training at low and high altitude on VO2 and QaO2 kinetics and on myosin heavy-chain expression (MyHC) in seven women (36.3 yy ± 7.1; 65.8 kg ± 11.7; 165 cm ± 8) who participated in two 12- to 14-day trekking expeditions at low (598 m) and high altitude (4132 m) separated by 4 months of recovery. METHODS Breath-by-breath VO2 and beat-by-beat QaO2 at the onset of moderate-intensity cycling exercise and energy cost of walking (Cw) were assessed before and after trekking. MyHC expression of vastus lateralis was evaluated before and after low-altitude and after high-altitude trekking; muscle fiber high-resolution respirography was performed at the beginning of the study and after high-altitude trekking. RESULTS Mean response time of VO2 kinetics was faster (P = 0.002 and P = 0.001) and oxygen deficit was smaller (P = 0.001 and P = 0.0004) after low- and high-altitude trekking, whereas ˙ QaO2 kinetics and Cw did not change. Percentages of slow and fast isoforms of MyHC and mitochondrial mass were not affected by low- and high-altitude training. After training altitude, muscle fiber ADP-stimulated mitochondrial respiration was decreased as compared with the control condition (P = 0.016), whereas leak respiration was increased (P = 0.031), leading to a significant increase in the respiratory control ratio (P = 0.016). CONCLUSIONS Although training did not significantly modify muscle phenotype, it induced beneficial adaptations of the oxygen transport-utilization systems witnessed by faster VO2 kinetics at exercise onset.
Collapse
|
31
|
Hemnes AR, Kiely DG, Cockrill BA, Safdar Z, Wilson VJ, Al Hazmi M, Preston IR, MacLean MR, Lahm T. Statement on pregnancy in pulmonary hypertension from the Pulmonary Vascular Research Institute. Pulm Circ 2015; 5:435-65. [PMID: 26401246 PMCID: PMC4556496 DOI: 10.1086/682230] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 02/25/2015] [Indexed: 01/06/2023] Open
Abstract
Pregnancy outcomes in patients with pulmonary hypertension remain poor despite advanced therapies. Although consensus guidelines recommend against pregnancy in pulmonary hypertension, it may nonetheless occasionally occur. This guideline document sought to discuss the state of knowledge of pregnancy effects on pulmonary vascular disease and to define usual practice in avoidance of pregnancy and pregnancy management. This guideline is based on systematic review of peer-reviewed, published literature identified with MEDLINE. The strength of the literature was graded, and when it was inadequate to support high-level recommendations, consensus-based recommendations were formed according to prespecified criteria. There was no literature that met standards for high-level recommendations for pregnancy management in pulmonary hypertension. We drafted 38 consensus-based recommendations on pregnancy avoidance and management. Further, we identified the current state of knowledge on the effects of sex hormones during pregnancy on the pulmonary vasculature and right heart and suggested areas for future study. There is currently limited evidence-based knowledge about both the basic molecular effects of sex hormones and pregnancy on the pulmonary vasculature and the best practices in contraception and pregnancy management in pulmonary hypertension. We have drafted 38 consensus-based recommendations to guide clinicians in these challenging topics, but further research is needed in this area to define best practices and improve patient outcomes.
Collapse
Affiliation(s)
- Anna R. Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - David G. Kiely
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals National Health Service (NHS) Foundation Trust, Sheffield, United Kingdom
| | - Barbara A. Cockrill
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, and Harvard University Medical School, Boston, Massachusetts, USA
| | - Zeenat Safdar
- Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Victoria J. Wilson
- Department of Obstetrics and Gynaecology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Manal Al Hazmi
- Section of Pulmonary Diseases, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Ioana R. Preston
- Pulmonary, Critical Care and Sleep Division, Tufts Medical Center, Boston, Massachusetts, USA
| | - Mandy R. MacLean
- Institute of Cardiovascular and Medical Sciences, College of Medical and Veterinary Science, University of Glasgow, Glasgow, United Kingdom
| | - Tim Lahm
- Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine, Indiana University School of Medicine and Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
32
|
Swift AJ, Capener D, Hammerton C, Thomas SM, Elliot C, Condliffe R, Wild JM, Kiely DG. Right ventricular sex differences in patients with idiopathic pulmonary arterial hypertension characterised by magnetic resonance imaging: pair-matched case controlled study. PLoS One 2015; 10:e0127415. [PMID: 25996939 PMCID: PMC4440634 DOI: 10.1371/journal.pone.0127415] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/14/2015] [Indexed: 11/25/2022] Open
Abstract
Purpose Sex differences exist in both the prevalence and survival of patients with idiopathic pulmonary arterial hypertension (IPAH). Men are less frequently affected by the condition but have worse outcome as compared to females. We sought to characterise the sex related differences in right ventricular remodelling in age matched male and female patients with IPAH using cardiac magnetic resonance imaging (MRI). Methods A case controlled pair-matched study was conducted with patients matched by age and sex. Steady state free precession (SSFP) MRI of the heart was performed at 1.5T. Cardiac volume, function and mass measurements were corrected for age, sex and BSA according to reference data. Results 40 age and sex matched patients with IPAH were identified. The mean age was 57 (SD 17) in both male and female cohorts. Men had proportionally lower right ventricular (RV) ejection fraction, RV stroke volume and LV stroke volume than females, p=0.028, p=0.007 and p=0.013, respectively. However, there was no significant difference in RV mass or haemodynamic indices of mPAP and PVR between males and females. Conclusion Male patients with IPAH have proportionally worse RV function despite similar afterload. We hypothesise that adaptive remodelling of the RV in response to increased afterload in IPAH is more effective in females.
Collapse
Affiliation(s)
- Andrew J. Swift
- Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom
- INSIGNEO, Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| | - Dave Capener
- Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom
| | - Charlotte Hammerton
- Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom
| | - Steven M. Thomas
- Radiology Department, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Charlie Elliot
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Robin Condliffe
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Jim M. Wild
- Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom
- INSIGNEO, Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - David G. Kiely
- INSIGNEO, Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| |
Collapse
|
33
|
Mazzuca MQ, Mata KM, Li W, Rangan SS, Khalil RA. Estrogen receptor subtypes mediate distinct microvascular dilation and reduction in [Ca2+]I in mesenteric microvessels of female rat. J Pharmacol Exp Ther 2014; 352:291-304. [PMID: 25472954 DOI: 10.1124/jpet.114.219865] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Estrogen interacts with estrogen receptors (ERs) to induce vasodilation, but the ER subtype and post-ER relaxation pathways are unclear. We tested if ER subtypes mediate distinct vasodilator and intracellular free Ca(2+) concentration ([Ca(2+)]i) responses via specific relaxation pathways in the endothelium and vascular smooth muscle (VSM). Pressurized mesenteric microvessels from female Sprague-Dawley rats were loaded with fura-2, and the changes in diameter and [Ca(2+)]i in response to 17β-estradiol (E2) (all ERs), PPT (4,4',4''-[4-propyl-(1H)-pyrazole-1,3,5-triyl]-tris-phenol) (ERα), diarylpropionitrile (DPN) (ERβ), and G1 [(±)-1-[(3aR*,4S*,9bS*)-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro:3H-cyclopenta(c)quinolin-8-yl]-ethanon] (GPR30) were measured. In microvessels preconstricted with phenylephrine, ER agonists caused relaxation and decrease in [Ca(2+)]i that were with E2 = PPT > DPN > G1, suggesting that E2-induced vasodilation involves ERα > ERβ > GPR30. Acetylcholine caused vasodilation and decreased [Ca(2+)]i, which were abolished by endothelium removal or treatment with the nitric oxide synthase blocker Nω-nitro-l-arginine methyl ester (L-NAME) and the K(+) channel blockers tetraethylammonium (nonspecific) or apamin (small conductance Ca(2+)-activated K(+) channel) plus TRAM-34 (1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole) (intermediate conductance Ca(2+)-activated K(+) channel), suggesting endothelium-derived hyperpolarizing factor-dependent activation of KCa channels. E2-, PPT-, DPN-, and G1-induced vasodilation and decreased [Ca(2+)]i were not blocked by L-NAME, TEA, apamin plus TRAM-34, iberiotoxin (large conductance Ca(2+)- and voltage-activated K(+) channel), 4-aminopyridine (voltage-dependent K(+) channel), glibenclamide (ATP-sensitive K(+) channel), or endothelium removal, suggesting an endothelium- and K(+) channel-independent mechanism. In endothelium-denuded vessels preconstricted with phenylephrine, high KCl, or the Ca(2+) channel activator Bay K 8644 (1,4-dihydro-2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)phenyl]-3-pyridinecarboxylic acid methyl ester), ER agonist-induced relaxation and decreased [Ca(2+)]i were with E2 = PPT > DPN > G1 and not inhibited by the guanylate cyclase inhibitor ODQ [1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one], and showed a similar relationship between decreased [Ca(2+)]i and vasorelaxation, supporting direct effects on Ca(2+) entry in VSM. Immunohistochemistry revealed ERα, ERβ, and GPR30 mainly in the vessel media and VSM. Thus, in mesenteric microvessels, ER subtypes mediate distinct vasodilation and decreased [Ca(2+)]i (ERα > ERβ > GPR30) through endothelium- and K(+) channel-independent inhibition of Ca(2+) entry mechanisms of VSM contraction.
Collapse
Affiliation(s)
- Marc Q Mazzuca
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Karina M Mata
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Wei Li
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sridhar S Rangan
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Raouf A Khalil
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
34
|
Liu A, Schreier D, Tian L, Eickhoff JC, Wang Z, Hacker TA, Chesler NC. Direct and indirect protection of right ventricular function by estrogen in an experimental model of pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol 2014; 307:H273-83. [PMID: 24906919 DOI: 10.1152/ajpheart.00758.2013] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pulmonary arterial hypertension (PAH) results in right ventricular (RV) dysfunction and failure. Paradoxically, women are more frequently diagnosed with PAH but have better RV systolic function and survival rates than men. The mechanisms by which sex differences alter PAH outcomes remain unknown. Here, we sought to study the role of estrogen in RV functional remodeling in response to PAH. The SU5416-hypoxia (SuHx) mouse model of PAH was used. To study the role of estrogen, female mice were ovariectomized and then treated with estrogen or placebo. SuHx significantly increased RV afterload and resulted in RV hypertrophy. Estrogen treatment attenuated the increase in RV afterload compared with the untreated group (effective arterial elastance: 2.3 ± 0.1 mmHg/μl vs. 3.2 ± 0.3 mmHg/μl), and this was linked to preserved pulmonary arterial compliance (compliance: 0.013 ± 0.001 mm(2)/mmHg vs. 0.010 ± 0.001 mm(2)/mmHg; P < 0.05) and decreased distal muscularization. Despite lower RV afterload in the estrogen-treated SuHx group, RV contractility increased to a similar level as the placebo-treated SuHx group, suggesting an inotropic effect of estrogen on RV myocardium. Consequently, when compared with the placebo-treated SuHx group, estrogen improved RV ejection fraction and cardiac output (ejection fraction: 57 ± 2% vs. 44 ± 2% and cardiac output: 9.7 ± 0.4 ml/min vs. 7.6 ± 0.6 ml/min; P < 0.05). Our study demonstrates for the first time that estrogen protects RV function in the SuHx model of PAH in mice directly by stimulating RV contractility and indirectly by protecting against pulmonary vascular remodeling. These results underscore the therapeutic potential of estrogen in PAH.
Collapse
Affiliation(s)
- Aiping Liu
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - David Schreier
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lian Tian
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jens C Eickhoff
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Zhijie Wang
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Timothy A Hacker
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Naomi C Chesler
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin; Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
35
|
Lahm T, Tuder RM, Petrache I. Progress in solving the sex hormone paradox in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2014; 307:L7-26. [PMID: 24816487 DOI: 10.1152/ajplung.00337.2013] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a devastating and progressive disease with marked morbidity and mortality. Even though being female represents one of the most powerful risk factors for PAH, multiple questions about the underlying mechanisms remain, and two "estrogen paradoxes" in PAH exist. First, it is puzzling why estrogens have been found to be protective in various animal models of PAH, whereas PAH registries uniformly demonstrate a female susceptibility to the disease. Second, despite the pronounced tendency for the disease to develop in women, female PAH patients exhibit better survival than men. Recent mechanistic studies in classical and in novel animal models of PAH, as well as recent studies in PAH patients, have significantly advanced the field. In particular, it is now accepted that estrogen metabolism and receptor signaling, as well as estrogen interactions with key pathways in PAH development, appear to be potent disease modifiers. A better understanding of these interactions may lead to novel PAH therapies. It is the purpose of this review to 1) review sex hormone synthesis, metabolism, and receptor physiology; 2) assess the context in which sex hormones affect PAH pathogenesis; 3) provide a potential explanation for the observed estrogen paradoxes and gender differences in PAH; and 4) identify knowledge gaps and future research opportunities. Because the majority of published studies investigated 17β-estradiol and/or its metabolites, this review will primarily focus on pulmonary vascular and right ventricular effects of estrogens. Data for other sex hormones will be discussed very briefly.
Collapse
Affiliation(s)
- Tim Lahm
- Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine, and Richard L. Roudebush VA Medical Center; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Rubin M Tuder
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, School of Medicine, Denver, Colorado
| | - Irina Petrache
- Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine, and Richard L. Roudebush VA Medical Center; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; and
| |
Collapse
|
36
|
Jenab Y, Ghaffari-Marandi N, Safir A, Ejmalian G, Zoroufian A, Jalali A, Sahebjam M. Sex-related changes in tissue Doppler imaging parameters among patients with acute pulmonary thromboembolism. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2013; 32:1997-2005. [PMID: 24154904 DOI: 10.7863/ultra.32.11.1997] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
OBJECTIVES There are few studies evaluating serial changes in tissue Doppler imaging parameters in acute pulmonary thromboembolism. We aimed to compare these changes in male and female patients separately. METHODS Between September 2010 and September 2011, 41 of 64 hemodynamically stable acute patients with pulmonary thromboembolism were included in the study. Twenty-two healthy individuals served as a control group. RESULTS Compared to the control group, the acute pulmonary thromboembolism group had a lower tricuspid annular plane systolic excursion, basal peak systolic velocity of the tricuspid valvular annulus, right ventricular (RV) peak systolic strain, and RV peak systolic strain rate and a higher RV diameter, peak systolic pulmonary artery pressure, and RV myocardial performance index (P < .05). Values for these parameters were not different between men and women in the patient group. In men, compared to admission, predischarge echocardiography showed significant improvement in the tricuspid annular plane systolic excursion (mean ± SD, 16.08 ± 4.33 versus 19.29 ± 3.74 mm; P = .002), basal tricuspid annular peak systolic velocity (10.11 ± 3.66 versus 11.66 ± 3.38 cm/s; P = .007), and peak systolic strain (-13.00% ± 14.99% versus -23.20% ± 10.23%; P = .001), whereas in women, predischarge and 3-month follow-up echocardiography showed marked improvement in the tricuspid annular plane systolic excursion (17.50 ± 4.88 versus 19.79 ± 5.58 mm; P = .021) and peak systolic strain (-15.70% ± 13.52% versus -21.01% ± 10.57%, respectively; P= .045). Female patients did not show improvement in these parameters during hospitalization. CONCLUSIONS Patterns of changes in the RV function over time during a 3-month follow-up might differ between male and female patients with acute pulmonary thromboembolism, and the recovery process could be slower in women. Moreover, the midventricular peak systolic strain might be useful for serial evaluation of the recovery process.
Collapse
Affiliation(s)
- Yaser Jenab
- Tehran Heart Center, Department of Echocardiography, Tehran University of Medical Sciences, North Kargar Street, Tehran 14117 13138, Iran.,
| | | | | | | | | | | | | |
Collapse
|
37
|
Casey DP, Shepherd JRA, Joyner MJ. Sex and vasodilator responses to hypoxia at rest and during exercise. J Appl Physiol (1985) 2013; 116:927-36. [PMID: 23823148 DOI: 10.1152/japplphysiol.00409.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In humans, β-adrenergic receptor activation causes a substantial portion of hypoxic vasodilation in skeletal muscle at rest and during forearm exercise. Recent evidence suggests that β-adrenergic receptors are either more sensitive or upregulated in young women vs. men. Therefore, we examined whether sex influences hypoxic vasodilation in 31 young subjects (15 women/16 men; 26 ± 1 yr). We also examined whether potential sex-related differences existed in a group of older adults (6 women/5 men; 61 ± 2 yr). All subjects performed forearm exercise at 10 and 20% of maximum under normoxic and hypoxic [80% arterial O2 saturation (So2)] conditions. Forearm vascular conductance (FVC; ml · min(-1) · 100 mmHg(-1)) was calculated from blood flow (ml/min) and blood pressure (mmHg). At rest, young women demonstrated a greater vasodilator response to hypoxia compared with men (39 ± 12 vs. 13 ± 6%, P < 0.05). The absolute compensatory vasodilator response (hypoxic FVC-normoxic FVC) during exercise was similar between sexes, but the relative change was greater in young women at 10% (28 ± 5 vs. 17 ± 3%, P < 0.05) and 20% exercise (29 ± 4% vs. 15 ± 3%, P < 0.01). Additionally, the absolute changes in vasodilation after normalizing the response to forearm volume or workload were greater in young women during exercise (P < 0.05). Interestingly, the compensatory vasodilator responses between older women and men were similar at 10 and 20% exercise, regardless of whether the response is expressed as absolute, relative, or absolute change normalized for forearm volume or workload (P = 0.054-0.97). Our data suggest that the compensatory vasodilator response to hypoxic exercise is greater in young women compared with men. However, sex-specific differences appear to be lost with aging.
Collapse
Affiliation(s)
- Darren P Casey
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | | | | |
Collapse
|
38
|
Armstrong AC, Bandeira ÂMP, Correia LCL, Melo HCO, Silveira CAM, Albuquerque E, Moraes JC, Silva AML, Lima JAC, Sobral DC. Pulmonary artery pressure, gender, menopause, and pregnancy in schistosomiasis-associated pulmonary hypertension. Arq Bras Cardiol 2013; 101:154-9. [PMID: 23821406 PMCID: PMC3998155 DOI: 10.5935/abc.20130130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 03/06/2013] [Indexed: 01/23/2023] Open
Abstract
Background Schistosomiasis-associated pulmonary arterial hypertension (SPAH) is a major
concern worldwide. However, the role of gender specific contributing factors in
SPAH is unknown. Objective We investigated how systolic pulmonary artery pressure (SPAP) values and the
presence of severe SPAP relate to gender, menopausal status, and pregnancy history
in SPAH patients. Methods Seventy-nine patients diagnosed with SPAH from 2000 to 2009 were assessed and 66
were enrolled in the study. Information about age, menopausal status, pregnancy,
echocardiography-derived SPAP, and invasive mean pulmonary artery pressure (mPAP)
was collected from medical records. The relation between values of SPAP and mPAP
and their agreement for severe disease were assessed. Regression models assessed
the association of gender, menopausal status, and pregnancy history with SPAP
values and the presence of severe SPAP. Results Moderate correlation and good agreement for severe disease were found between mPAP
and SPAP. Mean SPAP values were similar for men and women. A trend toward higher
values of SPAP was found for non-menopausal women compared to men. Higher SPAP
values were found for menopausal compared to non-menopausal women; the values were
non-significant after adjustment for age. Pregnancy history had no association
with SPAP. Menopause and positive pregnancy had no association with severe SPAP.
Conclusion In SPAH patients, neither gender, nor menopausal status, nor pregnancy history
showed independent correlation with SPAP values assessed by echocardiography.
Collapse
Affiliation(s)
- Anderson C. Armstrong
- Escola de Medicina Johns Hopkins - Divisão de Cardiologia, Baltimore,
MD
- Universidade de Pernambuco – Faculdade de Ciências Médicas, Recife,
PE - Brazil
- Universidade Federal do Vale do São Francisco - Colegiado de
Medicina, Petrolina, PE - Brazil
- Mailing Address: Anderson C. Armstrong, 600 North Wolfe Street / Blalock
524. Baltimore, MD 21287-0409, USA. E-mail:
| | | | | | - Humberto C. O. Melo
- Universidade de Pernambuco – Faculdade de Ciências Médicas, Recife,
PE - Brazil
| | | | - Eugênio Albuquerque
- Universidade de Pernambuco – Faculdade de Ciências Médicas, Recife,
PE - Brazil
| | - Jeová C. Moraes
- Universidade Federal do Vale do São Francisco - Colegiado de
Medicina, Petrolina, PE - Brazil
| | - Antônio M. L. Silva
- Universidade Federal do Vale do São Francisco - Colegiado de
Medicina, Petrolina, PE - Brazil
| | - João A. C. Lima
- Escola de Medicina Johns Hopkins - Divisão de Cardiologia, Baltimore,
MD
| | - Dário C. Sobral
- Universidade de Pernambuco – Faculdade de Ciências Médicas, Recife,
PE - Brazil
| |
Collapse
|
39
|
Xu D, Niu W, Luo Y, Zhang B, Liu M, Dong H, Liu Y, Li Z. Endogenous estrogen attenuates hypoxia-induced pulmonary hypertension by inhibiting pulmonary arterial vasoconstriction and pulmonary arterial smooth muscle cells proliferation. Int J Med Sci 2013; 10:771-81. [PMID: 23630443 PMCID: PMC3638302 DOI: 10.7150/ijms.5906] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/15/2013] [Indexed: 12/02/2022] Open
Abstract
Exogenous estrogen was shown to exert various beneficial effects on multiple diseases including hypoxia-induced pulmonary hypertension (HPH). However, the effect of endogenous estrogen on HPH was seldom investigated. In the present study, we explored the protective effects and mechanisms of endogenous estrogen on hypoxia-induced pulmonary hypertension. Male, female, pregnant and ovariectomized rats were housed in a hypoxic condition for 21 days, and then hemodynamic together with morphologic indexes of pulmonary circulation were measured. The right ventricular systolic pressure, mean pulmonary artery pressure, right ventricular hypertrophy index, and arterial remodeling index were significantly elevated after chronic hypoxia exposure. Experimental data showed less severity in female, especially in pregnant rats. In vitro, artery rings of different sex or estrus cycle rats were obtained, and then artery rings experiments were performed to investigate pulmonary vasoconstriction by recording the maximum phase II vasoconstriction. Data showed that the vasoconstriction was milder in proestrus female than diestrus female or male groups, which could be leveled by treating U0126 (a MAPK pathway inhibitor). Pulmonary arterial smooth muscle cells isolated from different sex or estrus cycle rats were cultured in the condition of 2% oxygen for 24 hours, and cell proliferation was evaluated by the [3H]-thymidine incorporation assay. Cells from proestrus rats exhibited lower proliferation than the other groups, which could be countered by both U0126 and raloxifene (a selective estrogen receptor modulator). Serum estradiol levels were detected, and rats with higher levels showed less severity of pulmonary hypertension. Conclusively, endogenous estrogen may alleviate hypoxia-induced pulmonary hypertension by attenuating vasoconstriction through non-genomic mechanisms and inhibiting smooth muscle cells proliferation through both genomic and non-genomic mechanisms.
Collapse
Affiliation(s)
- Dunquan Xu
- Department of Pathology & Pathophysiology, Xijing Hospital, Fourth Military Medical University, NO.169 of Changle Western Street, Xi'an 710032, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Umar S, Rabinovitch M, Eghbali M. Estrogen paradox in pulmonary hypertension: current controversies and future perspectives. Am J Respir Crit Care Med 2012; 186:125-31. [PMID: 22561960 DOI: 10.1164/rccm.201201-0058pp] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Although the incidence of pulmonary hypertension is higher in female patients, numerous experimental studies have demonstrated better outcome in female animals, exacerbation of the disease after ovariectomy, and a strong protective effect of estrogen: a phenomenon known as the "estrogen paradox" of pulmonary hypertension. On the other hand, some clinical studies have indirectly linked estrogen to increased risk of portopulmonary hypertension, whereas others implicate increased estrogen metabolism and high levels of certain estrogen metabolites in promoting pulmonary vascular remodeling in familial pulmonary arterial hypertension. In this review we investigate the estrogen paradox through highlighting the differential receptor-mediated effects of estrogen. Although estrogen and estrogen receptor-based therapies have shown promise in rescuing preexisting pulmonary hypertension in animals, their role is yet to be defined in humans.
Collapse
Affiliation(s)
- Soban Umar
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at University of California, Los Angeles, USA
| | | | | |
Collapse
|
41
|
Lahm T, Albrecht M, Fisher AJ, Selej M, Patel NG, Brown JA, Justice MJ, Brown MB, Van Demark M, Trulock KM, Dieudonne D, Reddy JG, Presson RG, Petrache I. 17β-Estradiol attenuates hypoxic pulmonary hypertension via estrogen receptor-mediated effects. Am J Respir Crit Care Med 2012; 185:965-80. [PMID: 22383500 DOI: 10.1164/rccm.201107-1293oc] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
RATIONALE 17β-Estradiol (E2) attenuates hypoxic pulmonary vasoconstriction and hypoxic pulmonary hypertension (HPH) through an unknown mechanism that may involve estrogen receptors (ER) or E2 conversion to catecholestradiols and methoxyestradiols with previously unrecognized effects on cardiopulmonary vascular remodeling. OBJECTIVES To determine the mechanism by which E2 exerts protective effects in HPH. METHODS Male rats were exposed to hypobaric hypoxia while treated with E2 (75 μg/kg/d) or vehicle. Subgroups were cotreated with pharmacologic ER-antagonist or with inhibitors of E2-metabolite conversion. Complementary studies were performed in rats cotreated with selective ERα- or ERβ-antagonist. Hemodynamic and pulmonary artery (PA) and right ventricular (RV) remodeling parameters, including cell proliferation, cell cycle, and autophagy, were measured in vivo and in cultured primary rat PA endothelial cells. MEASUREMENTS AND MAIN RESULTS E2 significantly attenuated HPH endpoints. Hypoxia increased ERβ but not ERα lung vascular expression. Co-treatment with nonselective ER inhibitor or ERα-specific antagonist rendered hypoxic animals resistant to the beneficial effects of E2 on cardiopulmonary hemodynamics, whereas ERα- and ERβ-specific antagonists opposed the remodeling effects of E2. In contrast, inhibition of E2-metabolite conversion did not abolish E2 protection. E2-treated hypoxic animals exhibited reduced ERK1/2 activation and increased expression of cell-cycle inhibitor p27(Kip1) in lungs and RV, with up-regulation of lung autophagy. E2-induced signaling was recapitulated in hypoxic but not normoxic endothelial cells, and was associated with decreased vascular endothelial growth factor secretion and cell proliferation. CONCLUSIONS E2 attenuates hemodynamic and remodeling parameters in HPH in an ER-dependent manner, through direct antiproliferative mechanisms on vascular cells, which may provide novel nonhormonal therapeutic targets for HPH.
Collapse
Affiliation(s)
- Tim Lahm
- Division of Pulmonary, Allergy, Critical Care and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
It has been known for more than 60 years, and suspected for over 100, that alveolar hypoxia causes pulmonary vasoconstriction by means of mechanisms local to the lung. For the last 20 years, it has been clear that the essential sensor, transduction, and effector mechanisms responsible for hypoxic pulmonary vasoconstriction (HPV) reside in the pulmonary arterial smooth muscle cell. The main focus of this review is the cellular and molecular work performed to clarify these intrinsic mechanisms and to determine how they are facilitated and inhibited by the extrinsic influences of other cells. Because the interaction of intrinsic and extrinsic mechanisms is likely to shape expression of HPV in vivo, we relate results obtained in cells to HPV in more intact preparations, such as intact and isolated lungs and isolated pulmonary vessels. Finally, we evaluate evidence regarding the contribution of HPV to the physiological and pathophysiological processes involved in the transition from fetal to neonatal life, pulmonary gas exchange, high-altitude pulmonary edema, and pulmonary hypertension. Although understanding of HPV has advanced significantly, major areas of ignorance and uncertainty await resolution.
Collapse
Affiliation(s)
- J T Sylvester
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, The Johns Hopkins University School ofMedicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
43
|
Ventetuolo CE, Ouyang P, Bluemke DA, Tandri H, Barr RG, Bagiella E, Cappola AR, Bristow MR, Johnson C, Kronmal RA, Kizer JR, Lima JAC, Kawut SM. Sex hormones are associated with right ventricular structure and function: The MESA-right ventricle study. Am J Respir Crit Care Med 2011; 183:659-67. [PMID: 20889903 PMCID: PMC3081282 DOI: 10.1164/rccm.201007-1027oc] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Accepted: 09/30/2010] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Sex hormones have effects on the left ventricle, but hormonal influences on the right ventricle (RV) are unknown. OBJECTIVES We hypothesized that sex hormones would be associated with RV morphology in a large cohort free of cardiovascular disease. METHODS Sex hormones were measured by immunoassay and RV ejection fraction (RVEF), stroke volume (RVSV), mass, end-diastolic volume, and end-systolic volume (RVESV) were measured by cardiac magnetic resonance imaging in 1,957 men and 1,738 postmenopausal women. The relationship between each hormone and RV parameter was assessed by multivariate linear regression. MEASUREMENTS AND MAIN RESULTS Higher estradiol levels were associated with higher RVEF (β per 1 ln[nmol/L], 0.88; 95% confidence interval [CI], 0.32 to 1.43; P = 0.002) and lower RVESV (β per 1 ln[nmol/L], -0.87; 95% CI, -1.67 to -0.08; P = 0.03) in women using hormone therapy. In men, higher bioavailable testosterone levels were associated with higher RVSV (β per 1 ln[nmol/L], 1.97; 95% CI, 0.20 to 3.73; P = 0.03) and greater RV mass and volumes (P ≤ 0.01). Higher dehydroepiandrosterone levels were associated with higher RVSV (β per 1 ln[nmol/L], 1.37; 95% CI, 0.15 to 2.59; P = 0.03) and greater RV mass (β per 1 ln[nmol/L], 0.25; 95% CI, 0.00 to 0.49; P = 0.05) and volumes (P ≤ 0.001) in women. CONCLUSIONS Higher estradiol levels were associated with better RV systolic function in women using hormone therapy. Higher levels of androgens were associated with greater RV mass and volumes in both sexes.
Collapse
Affiliation(s)
- Corey E. Ventetuolo
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Radiology and Imaging Sciences, National Institute for Biomedical Imaging and Bioengineering, National Institutes of Health Clinical Center, Bethesda, Maryland; Department of Epidemiology and Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York; Department of Medicine, Penn Cardiovascular Institute, and Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Department of Medicine, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado; Department of Biostatistics, University of Washington, Seattle, Washington; and Department of Medicine and Department of Public Health, Weill-Cornell Medical College, New York, New York
| | - Pamela Ouyang
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Radiology and Imaging Sciences, National Institute for Biomedical Imaging and Bioengineering, National Institutes of Health Clinical Center, Bethesda, Maryland; Department of Epidemiology and Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York; Department of Medicine, Penn Cardiovascular Institute, and Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Department of Medicine, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado; Department of Biostatistics, University of Washington, Seattle, Washington; and Department of Medicine and Department of Public Health, Weill-Cornell Medical College, New York, New York
| | - David A. Bluemke
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Radiology and Imaging Sciences, National Institute for Biomedical Imaging and Bioengineering, National Institutes of Health Clinical Center, Bethesda, Maryland; Department of Epidemiology and Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York; Department of Medicine, Penn Cardiovascular Institute, and Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Department of Medicine, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado; Department of Biostatistics, University of Washington, Seattle, Washington; and Department of Medicine and Department of Public Health, Weill-Cornell Medical College, New York, New York
| | - Harikrishna Tandri
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Radiology and Imaging Sciences, National Institute for Biomedical Imaging and Bioengineering, National Institutes of Health Clinical Center, Bethesda, Maryland; Department of Epidemiology and Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York; Department of Medicine, Penn Cardiovascular Institute, and Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Department of Medicine, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado; Department of Biostatistics, University of Washington, Seattle, Washington; and Department of Medicine and Department of Public Health, Weill-Cornell Medical College, New York, New York
| | - R. Graham Barr
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Radiology and Imaging Sciences, National Institute for Biomedical Imaging and Bioengineering, National Institutes of Health Clinical Center, Bethesda, Maryland; Department of Epidemiology and Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York; Department of Medicine, Penn Cardiovascular Institute, and Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Department of Medicine, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado; Department of Biostatistics, University of Washington, Seattle, Washington; and Department of Medicine and Department of Public Health, Weill-Cornell Medical College, New York, New York
| | - Emilia Bagiella
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Radiology and Imaging Sciences, National Institute for Biomedical Imaging and Bioengineering, National Institutes of Health Clinical Center, Bethesda, Maryland; Department of Epidemiology and Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York; Department of Medicine, Penn Cardiovascular Institute, and Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Department of Medicine, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado; Department of Biostatistics, University of Washington, Seattle, Washington; and Department of Medicine and Department of Public Health, Weill-Cornell Medical College, New York, New York
| | - Anne R. Cappola
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Radiology and Imaging Sciences, National Institute for Biomedical Imaging and Bioengineering, National Institutes of Health Clinical Center, Bethesda, Maryland; Department of Epidemiology and Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York; Department of Medicine, Penn Cardiovascular Institute, and Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Department of Medicine, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado; Department of Biostatistics, University of Washington, Seattle, Washington; and Department of Medicine and Department of Public Health, Weill-Cornell Medical College, New York, New York
| | - Michael R. Bristow
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Radiology and Imaging Sciences, National Institute for Biomedical Imaging and Bioengineering, National Institutes of Health Clinical Center, Bethesda, Maryland; Department of Epidemiology and Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York; Department of Medicine, Penn Cardiovascular Institute, and Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Department of Medicine, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado; Department of Biostatistics, University of Washington, Seattle, Washington; and Department of Medicine and Department of Public Health, Weill-Cornell Medical College, New York, New York
| | - Craig Johnson
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Radiology and Imaging Sciences, National Institute for Biomedical Imaging and Bioengineering, National Institutes of Health Clinical Center, Bethesda, Maryland; Department of Epidemiology and Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York; Department of Medicine, Penn Cardiovascular Institute, and Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Department of Medicine, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado; Department of Biostatistics, University of Washington, Seattle, Washington; and Department of Medicine and Department of Public Health, Weill-Cornell Medical College, New York, New York
| | - Richard A. Kronmal
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Radiology and Imaging Sciences, National Institute for Biomedical Imaging and Bioengineering, National Institutes of Health Clinical Center, Bethesda, Maryland; Department of Epidemiology and Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York; Department of Medicine, Penn Cardiovascular Institute, and Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Department of Medicine, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado; Department of Biostatistics, University of Washington, Seattle, Washington; and Department of Medicine and Department of Public Health, Weill-Cornell Medical College, New York, New York
| | - Jorge R. Kizer
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Radiology and Imaging Sciences, National Institute for Biomedical Imaging and Bioengineering, National Institutes of Health Clinical Center, Bethesda, Maryland; Department of Epidemiology and Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York; Department of Medicine, Penn Cardiovascular Institute, and Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Department of Medicine, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado; Department of Biostatistics, University of Washington, Seattle, Washington; and Department of Medicine and Department of Public Health, Weill-Cornell Medical College, New York, New York
| | - Joao A. C. Lima
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Radiology and Imaging Sciences, National Institute for Biomedical Imaging and Bioengineering, National Institutes of Health Clinical Center, Bethesda, Maryland; Department of Epidemiology and Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York; Department of Medicine, Penn Cardiovascular Institute, and Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Department of Medicine, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado; Department of Biostatistics, University of Washington, Seattle, Washington; and Department of Medicine and Department of Public Health, Weill-Cornell Medical College, New York, New York
| | - Steven M. Kawut
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Radiology and Imaging Sciences, National Institute for Biomedical Imaging and Bioengineering, National Institutes of Health Clinical Center, Bethesda, Maryland; Department of Epidemiology and Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York; Department of Medicine, Penn Cardiovascular Institute, and Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Department of Medicine, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado; Department of Biostatistics, University of Washington, Seattle, Washington; and Department of Medicine and Department of Public Health, Weill-Cornell Medical College, New York, New York
| |
Collapse
|
44
|
Zhang R, Dai LZ, Xie WP, Yu ZX, Wu BX, Pan L, Yuan P, Jiang X, He J, Humbert M, Jing ZC. Survival of Chinese patients with pulmonary arterial hypertension in the modern treatment era. Chest 2011; 140:301-309. [PMID: 21330386 DOI: 10.1378/chest.10-2327] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND In a previous study of Chinese patients with idiopathic pulmonary arterial hypertension (IPAH) in the nontargeted therapy era (defined as the time before 2006 when new pulmonary arterial hypertension-specific drugs were not available in China), we reported 1- and 3-year survival estimates of only 68% and 39%, respectively. However, it is not yet known whether the survival of patients with pulmonary arterial hypertension is improved in the modern treatment era (defined in China as after 2006). METHODS A retrospective cohort study was undertaken in 276 consecutive patients with newly diagnosed incident IPAH and connective tissue disease-related pulmonary arterial hypertension (CTDPAH) who were referred between 2007 and 2009. Baseline characteristics and survival rates in the two groups were compared. RESULTS The 1- and 3-year survival estimates were 92.1% and 75.1%, respectively, in patients with IPAH, and 85.4% and 53.6%, respectively, in patients with CTDPAH. Patients with CTDPAH had a significantly lower mean pulmonary artery pressure, more pericardial effusion, and more severe impairment of the diffusion capacity of the lung for carbon monoxide than patients with IPAH. A diagnosis of CTDPAH, World Health Organization functional class III or IV, single-breath diffusion capacity of the lung for carbon monoxide < 80% predicted, and the presence of pericardial effusion were independent predictors of mortality. The 1- and 3-year survival rates of male patients were 93.5% and 77.5%, respectively, in those with IPAH, and 71.1% and 47.4%, respectively, in those with CTDPAH. CONCLUSIONS The survival rates of patients with pulmonary arterial hypertension have improved in China in the modern treatment era, despite the high costs of treatment and financial constraints. However, the survival rates of patients with CTDPAH are inferior to those of patients with IPAH. Our study also indicates poorer survival rates in male patients with CTDPAH.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li-Zhi Dai
- Department of Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei-Ping Xie
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zai-Xin Yu
- Department of Cardiology, Xiangya Hospital of Central-South University, Changsha, China
| | - Bing-Xiang Wu
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Pan
- Department of Respiratory Medicine, Beijing Shijitan Hospital, Beijing, China
| | - Ping Yuan
- Department of Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Jiang
- Department of Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing He
- Department of Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Marc Humbert
- INSERM U999 Service de Pneumologie et Réanimation Respiratoire, Hôpital Antoine Béclère, Assistance Publique Hôpitaux de Paris, Université Paris-Sud 11, Clamart, France
| | - Zhi-Cheng Jing
- Department of Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
45
|
Xu DQ, Luo Y, Liu Y, Wang J, Zhang B, Xu M, Wang YX, Dong HY, Dong MQ, Zhao PT, Niu W, Liu ML, Gao YQ, Li ZC. Beta-estradiol attenuates hypoxic pulmonary hypertension by stabilizing the expression of p27kip1 in rats. Respir Res 2010; 11:182. [PMID: 21182801 PMCID: PMC3022723 DOI: 10.1186/1465-9921-11-182] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 12/24/2010] [Indexed: 12/29/2022] Open
Abstract
Background Pulmonary vascular structure remodeling (PVSR) is a hallmark of pulmonary hypertension. P27kip1, one of critical cyclin-dependent kinase inhibitors, has been shown to mediate anti-proliferation effects on various vascular cells. Beta-estradiol (β-E2) has numerous biological protective effects including attenuation of hypoxic pulmonary hypertension (HPH). In the present study, we employed β-E2 to investigate the roles of p27kip1 and its closely-related kinase (Skp-2) in the progression of PVSR and HPH. Methods Sprague-Dawley rats treated with or without β-E2 were challenged by intermittent chronic hypoxia exposure for 4 weeks to establish hypoxic pulmonary hypertension models, which resemble moderate severity of hypoxia-induced PH in humans. Subsequently, hemodynamic and pulmonary pathomorphology data were gathered. Additionally, pulmonary artery smooth muscle cells (PASMCs) were cultured to determine the anti-proliferation effect of β-E2 under hypoxia exposure. Western blotting or reverse transcriptional polymerase chain reaction (RT-PCR) were adopted to test p27kip1, Skp-2 and Akt-P changes in rat lung tissue and cultured PASMCs. Results Chronic hypoxia significantly increased right ventricular systolic pressures (RVSP), weight of right ventricle/left ventricle plus septum (RV/LV+S) ratio, medial width of pulmonary arterioles, accompanied with decreased expression of p27kip1 in rats. Whereas, β-E2 treatment repressed the elevation of RVSP, RV/LV+S, attenuated the PVSR of pulmonary arterioles induced by chronic hypoxia, and stabilized the expression of p27kip1. Study also showed that β-E2 application suppressed the proliferation of PASMCs and elevated the expression of p27kip1 under hypoxia exposure. In addition, experiments both in vivo and in vitro consistently indicated an escalation of Skp-2 and phosphorylated Akt under hypoxia condition. Besides, all these changes were alleviated in the presence of β-E2. Conclusions Our results suggest that β-E2 can effectively attenuate PVSR and HPH. The underlying mechanism may partially be through the increased p27kip1 by inhibiting Skp-2 through Akt signal pathway. Therefore, targeting up-regulation of p27kip1 or down-regulation of Skp-2 might provide new strategies for treatment of HPH.
Collapse
Affiliation(s)
- Dun-Quan Xu
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Female predominance in pulmonary arterial hypertension (PAH) has been known for several decades and recent interest in the effects of sex hormones on the development of disease has substantially increased our understanding of this epidemiologic observation. Basic science data suggest a beneficial effect of estrogens in the pulmonary vasculature both acutely and chronically, which seems to contradict the known predilection in women. Recent human and rodent data have suggested that altered levels of estrogen, differential signaling and altered metabolism of estrogens in PAH may underlie the gender difference in this disease. Studies of the effects of sex hormones on the right ventricle in animal and human disease will further aid in understanding gender differences in PAH. This article focuses on the effects of sex hormones on the pulmonary vasculature and right ventricle on both a basic science and translational level.
Collapse
Affiliation(s)
- Meredith E Pugh
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, T1218 MCN, 1161 21st Avenue South, Nashville, TN 37232, USA.
| | | |
Collapse
|
47
|
Pugh ME, Hemnes AR. Metabolic and hormonal derangements in pulmonary hypertension: from mouse to man. INTERNATIONAL JOURNAL OF CLINICAL PRACTICE. SUPPLEMENT 2010; 64:5-13. [PMID: 20939841 PMCID: PMC2965027 DOI: 10.1111/j.1742-1241.2010.02523.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a complex disease with significant morbidity and mortality. Recent animal and human studies have highlighted abnormalities in regulation and metabolism of insulin, sex hormones, adipokines and lipids that may play a role in disease development. Mouse studies suggest features of the metabolic syndrome (MS) including insulin resistance, deficiencies in peroxisome proliferator-activated receptor γ and apolipoprotein E, and low adiponectin are linked to development of PAH. In humans, insulin resistance, the MS and low levels of high-density lipoprotein have been associated with PAH. In addition, abnormal metabolism of oestrogens has been demonstrated in human and animal models of PAH, suggesting an important relationship of sex hormones and pulmonary vascular disease. Improved understanding of how metabolic and hormonal derangements relate to development and progression of pulmonary hypertension may lead to better disease therapies and understanding of potential risk factors. This review will focus on the animal and human data regarding metabolic and sex hormone derangements in PAH.
Collapse
Affiliation(s)
- M E Pugh
- Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | |
Collapse
|
48
|
Abstract
Differences in cardiovascular disease outcomes between men and women have long been recognized and attributed, in part, to gender and sex steroids. Gender dimorphisms also exist with respect to the roles of progenitor and stem cells in post-ischemic myocardial and endothelial repair and regeneration. Understanding how these cells are influenced by donor gender and the recipient hormonal milieu may enable researchers to further account for the gender-related disparities in clinical outcomes as well as utilize the beneficial effects of these hormones to optimize transplanted cell function and survival. This review discusses (1) the cardiovascular effects of sex steroids (specifically estradiol and testosterone); (2) the therapeutic potentials of endothelial progenitor cells, mesenchymal stem cells, and embryonic stem cells; and (3) the direct effect of sex steroids on these cell types.
Collapse
|
49
|
Pugh ME, Hemnes AR. Development of pulmonary arterial hypertension in women: interplay of sex hormones and pulmonary vascular disease. ACTA ACUST UNITED AC 2010; 6:285-96. [PMID: 20187732 DOI: 10.2217/whe.09.88] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease of the pulmonary vasculature, ultimately resulting in right heart failure and death. This disease is strongly predominant in females, although little is known regarding how sex influences disease development. Recent developments highlighting the importance of estrogen metabolites in both animal models and human disease have substantially increased our understanding of PAH in women. This review will focus on general knowledge of PAH, translational and basic science data regarding sex hormones in the pulmonary vasculature and on clinical issues that are particular to women with PAH. Future directions for study include the influence of sex hormones on right ventricular responses, improving the understanding of the influence of estrogen exposure in human disease and the study of dehydroepiandrosterone in basic science and human disease.
Collapse
Affiliation(s)
- Meredith E Pugh
- Division of Allergy, Pulmonary & Critical Care Medicine, T1218 Medical Center North, Nashville, TN 37232, USA.
| | | |
Collapse
|
50
|
Sheng L, Zhou W, Hislop AA, Ibe BO, Longo LD, Raj JU. Role of epidermal growth factor receptor in ovine fetal pulmonary vascular remodeling following exposure to high altitude long-term hypoxia. High Alt Med Biol 2010; 10:365-72. [PMID: 20043379 DOI: 10.1089/ham.2008.1034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
High altitude long-term hypoxia (LTH) in the fetus may result in pulmonary vascular smooth muscle cell (PVSMC) proliferation and pulmonary vascular remodeling. Our objective was to determine if epidermal growth factor receptor (EGFR) is involved in hypoxia induced PVSMC proliferation or in pulmonary vascular remodeling in ovine fetuses exposed to high altitude LTH. Fetuses of pregnant ewes that were held at 3820-m altitude from *30 to 140 days (LTH) gestation and sea level control pregnant ewes were delivered near term. Morphometric analyses and immunohistochemistry were done on fetal lung sections. Pulmonary arteries of LTH fetuses exhibited medial wall thickening and distal muscularization. Western blot analyses done on protein isolated from pulmonary arteries demonstrated an upregulation of EGFR. This upregulation was attributed in part to PVSMC in the medial wall by immunohistochemistry.Proliferation of fetal ovine PVSMC after 24 h of hypoxia (2% O2) was attenuated by inhibition of EGFR with 250 nmol tyrphostin 4-(3-chloroanilino)-6,7-dimethoxyquinazoline (AG1478), a specific EGFR protein tyrosine kinase inhibitor, when measured by [3H]-thymidine incorporation. Our data indicate that EGFR plays a role in fetal ovine pulmonary vascular remodeling following long-term fetal hypoxia and that inhibition of EGFR signaling may ameliorate hypoxia-induced pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Lavonne Sheng
- Division of Neonatology, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Los Angeles, California, USA
| | | | | | | | | | | |
Collapse
|