1
|
Su M, Qiu F, Li Y, Che T, Li N, Zhang S. Mechanisms of the NAD + salvage pathway in enhancing skeletal muscle function. Front Cell Dev Biol 2024; 12:1464815. [PMID: 39372950 PMCID: PMC11450036 DOI: 10.3389/fcell.2024.1464815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is crucial for cellular energy production, serving as a coenzyme in oxidation-reduction reactions. It also supports enzymes involved in processes such as DNA repair, aging, and immune responses. Lower NAD+ levels have been associated with various diseases, highlighting the importance of replenishing NAD+. Nicotinamide phosphoribosyltransferase (NAMPT) plays a critical role in the NAD+ salvage pathway, which helps sustain NAD+ levels, particularly in high-energy tissues like skeletal muscle.This review explores how the NAMPT-driven NAD+ salvage pathway influences skeletal muscle health and functionality in aging, type 2 diabetes mellitus (T2DM), and skeletal muscle injury. The review offers insights into enhancing the salvage pathway through exercise and NAD+ boosters as strategies to improve muscle performance. The findings suggest significant potential for using this pathway in the diagnosis, monitoring, and treatment of skeletal muscle conditions.
Collapse
Affiliation(s)
- Mengzhu Su
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
- School of Physical Education, Qingdao University, Qingdao, China
| | - Fanghui Qiu
- School of Physical Education, Qingdao University, Qingdao, China
| | - Yansong Li
- School of Physical Education, Qingdao University, Qingdao, China
| | - Tongtong Che
- School of Physical Education, Qingdao University, Qingdao, China
| | - Ningning Li
- School of Physical Education, Qingdao University, Qingdao, China
| | - Shuangshuang Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
- School of Physical Education, Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Kathiresan DS, Balasubramani R, Marudhachalam K, Jaiswal P, Ramesh N, Sureshbabu SG, Puthamohan VM, Vijayan M. Role of Mitochondrial Dysfunctions in Neurodegenerative Disorders: Advances in Mitochondrial Biology. Mol Neurobiol 2024:10.1007/s12035-024-04469-x. [PMID: 39269547 DOI: 10.1007/s12035-024-04469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Mitochondria, essential organelles responsible for cellular energy production, emerge as a key factor in the pathogenesis of neurodegenerative disorders. This review explores advancements in mitochondrial biology studies that highlight the pivotal connection between mitochondrial dysfunctions and neurological conditions such as Alzheimer's, Parkinson's, Huntington's, ischemic stroke, and vascular dementia. Mitochondrial DNA mutations, impaired dynamics, and disruptions in the ETC contribute to compromised energy production and heightened oxidative stress. These factors, in turn, lead to neuronal damage and cell death. Recent research has unveiled potential therapeutic strategies targeting mitochondrial dysfunction, including mitochondria targeted therapies and antioxidants. Furthermore, the identification of reliable biomarkers for assessing mitochondrial dysfunction opens new avenues for early diagnosis and monitoring of disease progression. By delving into these advancements, this review underscores the significance of understanding mitochondrial biology in unraveling the mechanisms underlying neurodegenerative disorders. It lays the groundwork for developing targeted treatments to combat these devastating neurological conditions.
Collapse
Affiliation(s)
- Divya Sri Kathiresan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Rubadevi Balasubramani
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Kamalesh Marudhachalam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Piyush Jaiswal
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Nivedha Ramesh
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Suruthi Gunna Sureshbabu
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Vinayaga Moorthi Puthamohan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India.
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
3
|
Damgaard MV, Treebak JT. What is really known about the effects of nicotinamide riboside supplementation in humans. SCIENCE ADVANCES 2023; 9:eadi4862. [PMID: 37478182 PMCID: PMC10361580 DOI: 10.1126/sciadv.adi4862] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/21/2023] [Indexed: 07/23/2023]
Abstract
Nicotinamide riboside is a precursor to the important cofactor nicotinamide adenine dinucleotide and has elicited metabolic benefits in multiple preclinical studies. In 2016, the first clinical trial of nicotinamide riboside was conducted to test the safety and efficacy of human supplementation. Many trials have since been conducted aiming to delineate benefits to metabolic health and severe diseases in humans. This review endeavors to summarize and critically assess the 25 currently published research articles on human nicotinamide riboside supplementation to identify any poorly founded claims and assist the field in elucidating the actual future potential for nicotinamide riboside. Collectively, oral nicotinamide riboside supplementation has displayed few clinically relevant effects, and there is an unfortunate tendency in the literature to exaggerate the importance and robustness of reported effects. Even so, nicotinamide riboside may play a role in the reduction of inflammatory states and has shown some potential in the treatment of diverse severe diseases.
Collapse
Affiliation(s)
- Mads V. Damgaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Jonas T. Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
4
|
Walzik D, Jonas W, Joisten N, Belen S, Wüst RCI, Guillemin G, Zimmer P. Tissue-specific effects of exercise as NAD + -boosting strategy: Current knowledge and future perspectives. Acta Physiol (Oxf) 2023; 237:e13921. [PMID: 36599416 DOI: 10.1111/apha.13921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/21/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+ ) is an evolutionarily highly conserved coenzyme with multi-faceted cell functions, including energy metabolism, molecular signaling processes, epigenetic regulation, and DNA repair. Since the discovery that lower NAD+ levels are a shared characteristic of various diseases and aging per se, several NAD+ -boosting strategies have emerged. Other than pharmacological and nutritional approaches, exercise is thought to restore NAD+ homeostasis through metabolic adaption to chronically recurring states of increased energy demand. In this review we discuss the impact of acute exercise and exercise training on tissue-specific NAD+ metabolism of rodents and humans to highlight the potential value as NAD+ -boosting strategy. By interconnecting results from different investigations, we aim to draw attention to tissue-specific alterations in NAD+ metabolism and the associated implications for whole-body NAD+ homeostasis. Acute exercise led to profound alterations of intracellular NAD+ metabolism in various investigations, with the magnitude and direction of changes being strongly dependent on the applied exercise modality, cell type, and investigated animal model or human population. Exercise training elevated NAD+ levels and NAD+ metabolism enzymes in various tissues. Based on these results, we discuss molecular mechanisms that might connect acute exercise-induced disruptions of NAD+ /NADH homeostasis to chronic exercise adaptions in NAD+ metabolism. Taking this hypothesis-driven approach, we hope to inspire future research on the molecular mechanisms of exercise as NAD+ -modifying lifestyle intervention, thereby elucidating the potential therapeutic value in NAD+ -related pathologies.
Collapse
Affiliation(s)
- David Walzik
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Dortmund, Germany
| | - Wiebke Jonas
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Dortmund, Germany
| | - Niklas Joisten
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Dortmund, Germany
| | - Sergen Belen
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Rob C I Wüst
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Gilles Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Philipp Zimmer
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
5
|
Akan OD, Qin D, Guo T, Lin Q, Luo F. Sirtfoods: New Concept Foods, Functions, and Mechanisms. Foods 2022; 11:foods11192955. [PMID: 36230032 PMCID: PMC9563801 DOI: 10.3390/foods11192955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Sirtfood is a new concept food that compounds diets that can target sirtuins (SIRTs). SIRTs are nicotinamide adenine dinucleotide (NAD+)-dependent deacylases and ADP-ribosyltransferases (enzymes). SIRTs are mediators of calorie restriction (CR) and their activation can achieve some effects similar to CR. SIRTs play essential roles in ameliorating obesity and age-related metabolic diseases. Food ingredients such as resveratrol, piceatannol, anthocyanidin, and quinine are potential modulators of SIRTs. SIRT modulators are involved in autophagy, apoptosis, aging, inflammation, and energy homeostasis. Sirtfood proponents believe that natural Sirtfood recipes exert significant health effects.
Collapse
Affiliation(s)
- Otobong Donald Akan
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Microbiology Department, Faculty of Biological Science, Akwa-Ibom State University, Ikot Akpaden, Uyo 1167, Nigeria
| | - Dandan Qin
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Tianyi Guo
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qinlu Lin
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Feijun Luo
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Correspondence: ; Tel.: +86-731-85623240
| |
Collapse
|
6
|
Wagner S, Manickam R, Brotto M, Tipparaju SM. NAD + centric mechanisms and molecular determinants of skeletal muscle disease and aging. Mol Cell Biochem 2022; 477:1829-1848. [PMID: 35334034 PMCID: PMC10065019 DOI: 10.1007/s11010-022-04408-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/03/2022] [Indexed: 12/20/2022]
Abstract
The nicotinamide adenine dinucleotide (NAD+) is an essential redox cofactor, involved in various physiological and molecular processes, including energy metabolism, epigenetics, aging, and metabolic diseases. NAD+ repletion ameliorates muscular dystrophy and improves the mitochondrial and muscle stem cell function and thereby increase lifespan in mice. Accordingly, NAD+ is considered as an anti-oxidant and anti-aging molecule. NAD+ plays a central role in energy metabolism and the energy produced is used for movements, thermoregulation, and defense against foreign bodies. The dietary precursors of NAD+ synthesis is targeted to improve NAD+ biosynthesis; however, studies have revealed conflicting results regarding skeletal muscle-specific effects. Recent advances in the activation of nicotinamide phosphoribosyltransferase in the NAD+ salvage pathway and supplementation of NAD+ precursors have led to beneficial effects in skeletal muscle pathophysiology and function during aging and associated metabolic diseases. NAD+ is also involved in the epigenetic regulation and post-translational modifications of proteins that are involved in various cellular processes to maintain tissue homeostasis. This review provides detailed insights into the roles of NAD+ along with molecular mechanisms during aging and disease conditions, such as the impacts of age-related NAD+ deficiencies on NAD+-dependent enzymes, including poly (ADP-ribose) polymerase (PARPs), CD38, and sirtuins within skeletal muscle, and the most recent studies on the potential of nutritional supplementation and distinct modes of exercise to replenish the NAD+ pool.
Collapse
Affiliation(s)
- Sabrina Wagner
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, MDC 030, Tampa, FL, 33612, USA
| | - Ravikumar Manickam
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, MDC 030, Tampa, FL, 33612, USA
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas-Arlington (UTA), Arlington, TX, USA
| | - Srinivas M Tipparaju
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, MDC 030, Tampa, FL, 33612, USA.
| |
Collapse
|
7
|
Manickam R, Tur J, Badole SL, Chapalamadugu KC, Sinha P, Wang Z, Russ DW, Brotto M, Tipparaju SM. Nampt activator P7C3 ameliorates diabetes and improves skeletal muscle function modulating cell metabolism and lipid mediators. J Cachexia Sarcopenia Muscle 2022; 13:1177-1196. [PMID: 35060352 PMCID: PMC8977983 DOI: 10.1002/jcsm.12887] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/22/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Nicotinamide phosphoribosyltransferase (Nampt), a key enzyme in NAD salvage pathway is decreased in metabolic diseases, and its precise role in skeletal muscle function is not known. We tested the hypothesis, Nampt activation by P7C3 (3,6-dibromo-α-[(phenylamino)methyl]-9H-carbazol-9-ethanol) ameliorates diabetes and muscle function. METHODS We assessed the functional, morphometric, biochemical, and molecular effects of P7C3 treatment in skeletal muscle of type 2 diabetic (db/db) mice. Nampt+/- mice were utilized to test the specificity of P7C3. RESULTS Insulin resistance increased 1.6-fold in diabetic mice compared with wild-type mice and after 4 weeks treatment with P7C3 rescued diabetes (P < 0.05). In the db-P7C3 mice fasting blood glucose levels decreased to 0.96-fold compared with C57Bl/6J wild-type naïve control mice. The insulin and glucose tolerance tests blood glucose levels were decreased to 0.6-fold and 0.54-folds, respectively, at 120 min along with an increase in insulin secretion (1.76-fold) and pancreatic β-cells (3.92-fold) in db-P7C3 mice. The fore-limb and hind-limb grip strengths were increased to 1.13-fold and 1.17-fold, respectively, together with a 14.2-fold increase in voluntary running wheel distance in db-P7C3 mice. P7C3 treatment resulted in a 1.4-fold and 7.1-fold increase in medium-sized and larger-sized myofibres cross-sectional area, with a concomitant 0.5-fold decrease in smaller-sized myofibres of tibialis anterior (TA) muscle. The transmission electron microscopy images also displayed a 1.67-fold increase in myofibre diameter of extensor digitorum longus muscle along with 2.9-fold decrease in mitochondrial area in db-P7C3 mice compared with db-Veh mice. The number of SDH positive myofibres were increased to 1.74-fold in db-P7C3 TA muscles. The gastrocnemius and TA muscles displayed a decrease in slow oxidative myosin heavy chain type1 (MyHC1) myofibres expression (0.46-fold) and immunostaining (6.4-fold), respectively. qPCR analysis displayed a 2.9-fold and 1.3-fold increase in Pdk4 and Cpt1, and 0.55-fold and 0.59-fold decrease in Fgf21 and 16S in db-P7C3 mice. There was also a 3.3-fold and 1.9-fold increase in Fabp1 and CD36 in db-Veh mice. RNA-seq differential gene expression volcano plot displayed 1415 genes to be up-regulated and 1726 genes down-regulated (P < 0.05) in db-P7C3 mice. There was 1.02-fold increase in serum HDL, and 0.9-fold decrease in low-density lipoprotein/very low-density lipoprotein ratio in db-P7C3 mice. Lipid profiling of gastrocnemius muscle displayed a decrease in inflammatory lipid mediators n-6; AA (0.83-fold), and n-3; DHA (0.69-fold) and EPA (0.81-fold), and a 0.66-fold decrease in endocannabinoid 2-AG and 2.0-fold increase in AEA in db-P7C3 mice. CONCLUSIONS Overall, we demonstrate that P7C3 activates Nampt, improves type 2 diabetes and skeletal muscle function in db/db mice.
Collapse
Affiliation(s)
- Ravikumar Manickam
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Jared Tur
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Sachin L Badole
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Kalyan C Chapalamadugu
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Puja Sinha
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Zhiying Wang
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas-Arlington (UTA), Arlington, TX, USA
| | - David W Russ
- School of Physical Therapy and Rehabilitation Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas-Arlington (UTA), Arlington, TX, USA
| | - Srinivas M Tipparaju
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| |
Collapse
|
8
|
Damgaard MV, Nielsen TS, Basse AL, Chubanava S, Trost K, Moritz T, Dellinger RW, Larsen S, Treebak JT. Intravenous nicotinamide riboside elevates mouse skeletal muscle NAD+ without impacting respiratory capacity or insulin sensitivity. iScience 2022; 25:103863. [PMID: 35198907 PMCID: PMC8844641 DOI: 10.1016/j.isci.2022.103863] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 01/28/2022] [Indexed: 11/30/2022] Open
Abstract
In clinical trials, oral supplementation with nicotinamide riboside (NR) fails to increase muscle mitochondrial respiratory capacity and insulin sensitivity but also does not increase muscle NAD+ levels. This study tests the feasibility of chronically elevating skeletal muscle NAD+ in mice and investigates the putative effects on mitochondrial respiratory capacity, insulin sensitivity, and gene expression. Accordingly, to improve bioavailability to skeletal muscle, we developed an experimental model for administering NR repeatedly through a jugular vein catheter. Mice on a Western diet were treated with various combinations of NR, pterostilbene (PT), and voluntary wheel running, but the metabolic effects of NR and PT treatment were modest. We conclude that the chronic elevation of skeletal muscle NAD+ by the intravenous injection of NR is possible but does not affect muscle respiratory capacity or insulin sensitivity in either sedentary or physically active mice. Our data have implications for NAD+ precursor supplementation regimens. A model was developed for daily intravenous NR injections Intravenous NR stably elevates NAD+ of skeletal muscle and adipose, but not liver Voluntary running and intravenous NR synergize to boost mouse skeletal muscle NAD+ NR did not impact skeletal muscle insulin sensitivity or respiratory capacity
Collapse
Affiliation(s)
- Mads V. Damgaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Thomas S. Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Astrid L. Basse
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Sabina Chubanava
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Kajetan Trost
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Thomas Moritz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | | | - Steen Larsen
- Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Jonas T. Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
- Corresponding author
| |
Collapse
|
9
|
Lundt S, Ding S. NAD + Metabolism and Diseases with Motor Dysfunction. Genes (Basel) 2021; 12:1776. [PMID: 34828382 PMCID: PMC8625820 DOI: 10.3390/genes12111776] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases result in the progressive deterioration of the nervous system, with motor and cognitive impairments being the two most observable problems. Motor dysfunction could be caused by motor neuron diseases (MNDs) characterized by the loss of motor neurons, such as amyotrophic lateral sclerosis and Charcot-Marie-Tooth disease, or other neurodegenerative diseases with the destruction of brain areas that affect movement, such as Parkinson's disease and Huntington's disease. Nicotinamide adenine dinucleotide (NAD+) is one of the most abundant metabolites in the human body and is involved with numerous cellular processes, including energy metabolism, circadian clock, and DNA repair. NAD+ can be reversibly oxidized-reduced or directly consumed by NAD+-dependent proteins. NAD+ is synthesized in cells via three different paths: the de novo, Preiss-Handler, or NAD+ salvage pathways, with the salvage pathway being the primary producer of NAD+ in mammalian cells. NAD+ metabolism is being investigated for a role in the development of neurodegenerative diseases. In this review, we discuss cellular NAD+ homeostasis, looking at NAD+ biosynthesis and consumption, with a focus on the NAD+ salvage pathway. Then, we examine the research, including human clinical trials, focused on the involvement of NAD+ in MNDs and other neurodegenerative diseases with motor dysfunction.
Collapse
Affiliation(s)
- Samuel Lundt
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA;
- Interdisciplinary Neuroscience Program, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Shinghua Ding
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA;
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri-Columbia, Columbia, MO 65211, USA
| |
Collapse
|
10
|
Wang H, Zhu S, Wu X, Liu Y, Ge J, Wang Q, Gu L. NAMPT reduction-induced NAD + insufficiency contributes to the compromised oocyte quality from obese mice. Aging Cell 2021; 20:e13496. [PMID: 34662475 PMCID: PMC8590097 DOI: 10.1111/acel.13496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/14/2021] [Accepted: 09/12/2021] [Indexed: 12/27/2022] Open
Abstract
Maternal obesity is associated with multiple adverse reproductive outcomes, whereas the underlying molecular mechanisms are still not fully understood. Here, we found the reduced nicotinamide phosphoribosyl transferase (NAMPT) expression and lowered nicotinamide adenine dinucleotide (NAD+) content in oocytes from obese mice. Next, by performing morpholino knockdown assay and pharmacological inhibition, we revealed that NAMPT deficiency not only severely disrupts maturational progression and meiotic apparatus, but also induces the metabolic dysfunction in oocytes. Furthermore, overexpression analysis demonstrated that NAMPT insufficiency induced NAD+ loss contributes to the compromised developmental potential of oocytes and early embryos from obese mice. Importantly, in vitro supplement and in vivo administration of nicotinic acid (NA) was able to ameliorate the obesity‐associated meiotic defects and oxidative stress in oocytes. Our results indicate a role of NAMPT in modulating oocyte meiosis and metabolism, and uncover the beneficial effects of NA treatment on oocyte quality from obese mice.
Collapse
Affiliation(s)
- Hengjie Wang
- College of Animal Science & Technology Nanjing Agricultural University Nanjing China
| | - Shuai Zhu
- State Key Laboratory of Reproductive Medicine Suzhou Municipal Hospital Nanjing Medical University Nanjing China
| | - Xinghan Wu
- Department of Medical Genetics Maternal and Child Health Hospital of Hunan Province Changsha China
| | - Yuan Liu
- College of Animal Science & Technology Nanjing Agricultural University Nanjing China
| | - Juan Ge
- State Key Laboratory of Reproductive Medicine Suzhou Municipal Hospital Nanjing Medical University Nanjing China
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine Suzhou Municipal Hospital Nanjing Medical University Nanjing China
| | - Ling Gu
- College of Animal Science & Technology Nanjing Agricultural University Nanjing China
| |
Collapse
|
11
|
Li C, Wu LE. Risks and rewards of targeting NAD + homeostasis in the brain. Mech Ageing Dev 2021; 198:111545. [PMID: 34302821 DOI: 10.1016/j.mad.2021.111545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 01/29/2023]
Abstract
Strategies to correct declining nicotinamide adenine dinucleotide (NAD+) levels in neurological disease and biological ageing are promising therapeutic candidates. These strategies include supplementing with NAD+ precursors, small molecule activation of NAD+ biosynthetic enzymes, and treatment with small molecule inhibitors of NAD+ consuming enzymes such as CD38, SARM1 or members of the PARP family. While these strategies have shown efficacy in animal models of neurological disease, each of these has the mechanistic potential for adverse events that could preclude their preclinical use. Here, we discuss the implications of these strategies for treating neurological diseases, including potential off-target effects that may be unique to the brain.
Collapse
Affiliation(s)
- Catherine Li
- School of Medical Sciences, UNSW Sydney, NSW, 2052, Australia
| | - Lindsay E Wu
- School of Medical Sciences, UNSW Sydney, NSW, 2052, Australia.
| |
Collapse
|
12
|
de Guia RM, Hassing AS, Ma T, Plucinska K, Holst B, Gerhart-Hines Z, Emanuelli B, Treebak JT. Ablation of Nampt in AgRP neurons leads to neurodegeneration and impairs fasting- and ghrelin-mediated food intake. FASEB J 2021; 35:e21450. [PMID: 33788980 DOI: 10.1096/fj.202002740r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
Agouti-related protein (AgRP) neurons in the arcuate nucleus of the hypothalamus regulates food intake and whole-body metabolism. NAD+ regulates multiple cellular processes controlling energy metabolism. Yet, its role in hypothalamic AgRP neurons to control food intake is poorly understood. Here, we aimed to assess whether genetic deletion of nicotinamide phosphoribosyltransferase (Nampt), a rate-limiting enzyme in NAD+ production, affects AgRP neuronal function to impact whole-body metabolism and food intake. Metabolic parameters during fed and fasted states, and upon systemic ghrelin and leptin administration were studied in AgRP-specific Nampt knockout (ARNKO) mice. We monitored neuropeptide expression levels and density of AgRP neurons in ARNKO mice from embryonic to adult age. NPY cells were used to determine effects of NAMPT inhibition on neuronal viability, energy status, and oxidative stress in vitro. In these cells, NAD+ depletion reduced ATP levels, increased oxidative stress, and promoted cell death. Agrp expression in the hypothalamus of ARNKO mice gradually decreased after weaning due to progressive AgRP neuron degeneration. Adult ARNKO mice had normal glucose and insulin tolerance, but exhibited an elevated respiratory exchange ratio (RER) when fasted. Remarkably, fasting-induced food intake was unaffected in ARNKO mice when evaluated in metabolic cages, but fasting- and ghrelin-induced feeding and body weight gain decreased in ARNKO mice when evaluated outside metabolic cages. Collectively, deletion of Nampt in AgRP neurons causes progressive neurodegeneration and impairs fasting and ghrelin responses in a context-dependent manner. Our data highlight an essential role of Nampt in AgRP neuron function and viability.
Collapse
Affiliation(s)
- Roldan Medina de Guia
- Integrative Metabolism and Environmental Influences, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna S Hassing
- Integrative Metabolism and Environmental Influences, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tao Ma
- Integrative Metabolism and Environmental Influences, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kaja Plucinska
- Integrative Metabolism and Environmental Influences, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zach Gerhart-Hines
- Integrative Metabolism and Environmental Influences, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brice Emanuelli
- Integrative Metabolism and Environmental Influences, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas T Treebak
- Integrative Metabolism and Environmental Influences, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Basse AL, Agerholm M, Farup J, Dalbram E, Nielsen J, Ørtenblad N, Altıntaş A, Ehrlich AM, Krag T, Bruzzone S, Dall M, de Guia RM, Jensen JB, Møller AB, Karlsen A, Kjær M, Barrès R, Vissing J, Larsen S, Jessen N, Treebak JT. Nampt controls skeletal muscle development by maintaining Ca 2+ homeostasis and mitochondrial integrity. Mol Metab 2021; 53:101271. [PMID: 34119711 PMCID: PMC8259345 DOI: 10.1016/j.molmet.2021.101271] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Objective NAD+ is a co-factor and substrate for enzymes maintaining energy homeostasis. Nicotinamide phosphoribosyltransferase (NAMPT) controls NAD+ synthesis, and in skeletal muscle, NAD+ is essential for muscle integrity. However, the underlying molecular mechanisms by which NAD+ synthesis affects muscle health remain poorly understood. Thus, the objective of the current study was to delineate the role of NAMPT-mediated NAD+ biosynthesis in skeletal muscle development and function. Methods To determine the role of Nampt in muscle development and function, we generated skeletal muscle-specific Nampt KO (SMNKO) mice. We performed a comprehensive phenotypic characterization of the SMNKO mice, including metabolic measurements, histological examinations, and RNA sequencing analyses of skeletal muscle from SMNKO mice and WT littermates. Results SMNKO mice were smaller, with phenotypic changes in skeletal muscle, including reduced fiber area and increased number of centralized nuclei. The majority of SMNKO mice died prematurely. Transcriptomic analysis identified that the gene encoding the mitochondrial permeability transition pore (mPTP) regulator Cyclophilin D (Ppif) was upregulated in skeletal muscle of SMNKO mice from 2 weeks of age, with associated increased sensitivity of mitochondria to the Ca2+-stimulated mPTP opening. Treatment of SMNKO mice with the Cyclophilin D inhibitor, Cyclosporine A, increased membrane integrity, decreased the number of centralized nuclei, and increased survival. Conclusions Our study demonstrates that NAMPT is crucial for maintaining cellular Ca2+ homeostasis and skeletal muscle development, which is vital for juvenile survival. NAD+ salvage capacity is important for skeletal muscle development and survival. Skeletal muscle-specific Nampt knockout mice exhibit a dystrophy-like phenotype. Nampt deletion alters Ca2+ homeostasis and impairs mitochondrial function. Low NAD+ levels signals mitochondrial permeability transition pore opening. Cyclosporin A treatment improves sarcolemma integrity and increases survival rate.
Collapse
Affiliation(s)
- Astrid L Basse
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marianne Agerholm
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jean Farup
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Emilie Dalbram
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Ali Altıntaş
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amy M Ehrlich
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Krag
- Copenhagen Neuromuscular Center, Rigshospitalet, Copenhagen, Denmark
| | - Santina Bruzzone
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Morten Dall
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Roldan M de Guia
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas B Jensen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Andreas B Møller
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Anders Karlsen
- Institute of Sports Medicine, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kjær
- Institute of Sports Medicine, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - John Vissing
- Copenhagen Neuromuscular Center, Rigshospitalet, Copenhagen, Denmark
| | - Steen Larsen
- Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Niels Jessen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
14
|
Navas LE, Carnero A. NAD + metabolism, stemness, the immune response, and cancer. Signal Transduct Target Ther 2021; 6:2. [PMID: 33384409 PMCID: PMC7775471 DOI: 10.1038/s41392-020-00354-w] [Citation(s) in RCA: 195] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/11/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
NAD+ was discovered during yeast fermentation, and since its discovery, its important roles in redox metabolism, aging, and longevity, the immune system and DNA repair have been highlighted. A deregulation of the NAD+ levels has been associated with metabolic diseases and aging-related diseases, including neurodegeneration, defective immune responses, and cancer. NAD+ acts as a cofactor through its interplay with NADH, playing an essential role in many enzymatic reactions of energy metabolism, such as glycolysis, oxidative phosphorylation, fatty acid oxidation, and the TCA cycle. NAD+ also plays a role in deacetylation by sirtuins and ADP ribosylation during DNA damage/repair by PARP proteins. Finally, different NAD hydrolase proteins also consume NAD+ while converting it into ADP-ribose or its cyclic counterpart. Some of these proteins, such as CD38, seem to be extensively involved in the immune response. Since NAD cannot be taken directly from food, NAD metabolism is essential, and NAMPT is the key enzyme recovering NAD from nicotinamide and generating most of the NAD cellular pools. Because of the complex network of pathways in which NAD+ is essential, the important role of NAD+ and its key generating enzyme, NAMPT, in cancer is understandable. In the present work, we review the role of NAD+ and NAMPT in the ways that they may influence cancer metabolism, the immune system, stemness, aging, and cancer. Finally, we review some ongoing research on therapeutic approaches.
Collapse
Affiliation(s)
- Lola E Navas
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain.,CIBER de Cancer, Sevilla, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain. .,CIBER de Cancer, Sevilla, Spain.
| |
Collapse
|
15
|
Lundt S, Ding S. Non-cell autonomous effect of neuronal nicotinamide phosphoribosyl transferase on the function of neuromuscular junctions. Neural Regen Res 2021; 16:302-303. [PMID: 32859785 PMCID: PMC7896222 DOI: 10.4103/1673-5374.290893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Samuel Lundt
- Dalton Cardiovascular Research Center, Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA
| | - Shinghua Ding
- Dalton Cardiovascular Research Center, Interdisciplinary Neuroscience Program; Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO, USA
| |
Collapse
|
16
|
Saiyang X, Deng W, Qizhu T. Sirtuin 6: A potential therapeutic target for cardiovascular diseases. Pharmacol Res 2020; 163:105214. [PMID: 33007414 DOI: 10.1016/j.phrs.2020.105214] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/01/2020] [Accepted: 09/17/2020] [Indexed: 01/17/2023]
Abstract
Cardiovascular diseases (CVDs) are serious diseases endangering human health due to high morbidity and mortality worldwide, and numerous signal molecules are involved in this pathological process. As a member of the Sirtuin family NAD +-dependent deacetylases, indeed, Sirtuin 6 (SIRT6) plays an important role in regulating biological homeostasis, longevity, and various diseases. More importantly, SIRT6 performs as an indispensable role in glucose and lipid metabolism, inflammation and genomic stability for the occurrence and development of various CVDs. Recent advances: among sirtuins, SIRT6 was frequently unveiled thanks for its protective roles against heart failure, cardiovascular remodeling and atherosclerosis, and identified as an essential intervention target of CVDs, bringing SIRT6 into the focus of clinical interest. Herein, we provide an overview of the current molecular mechanism through which SIRT6 regulates CVDs, and we highlight a potential therapeutic target for CVDs.
Collapse
Affiliation(s)
- Xie Saiyang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China.
| | - Tang Qizhu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China.
| |
Collapse
|
17
|
Luongo TS, Eller JM, Lu MJ, Niere M, Raith F, Perry C, Bornstein MR, Oliphint P, Wang L, McReynolds MR, Migaud ME, Rabinowitz JD, Johnson FB, Johnsson K, Ziegler M, Cambronne XA, Baur JA. SLC25A51 is a mammalian mitochondrial NAD + transporter. Nature 2020; 588:174-179. [PMID: 32906142 PMCID: PMC7718333 DOI: 10.1038/s41586-020-2741-7] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 09/01/2020] [Indexed: 12/11/2022]
Abstract
Mitochondria require nicotinamide adenine dinucleotide (NAD+) in order to carry out the fundamental processes that fuel respiration and mediate cellular energy transduction. Mitochondrial NAD+ transporters have been identified in yeast and plants 1,2 but their very existence is controversial in mammals 3–5. Here we demonstrate that mammalian mitochondria are capable of taking up intact NAD+ and identify SLC25A51 (an essential 6,7 mitochondrial protein of previously unknown function, also known as MCART1) as a mammalian mitochondrial NAD+ transporter. Loss of SLC25A51 decreases mitochondrial but not whole-cell NAD+ content, impairs mitochondrial respiration, and blocks the uptake of NAD+ into isolated mitochondria. Conversely, overexpression of SLC25A51 or a nearly identical paralog, SLC25A52, increases mitochondrial NAD+ levels and restores NAD+ uptake into yeast mitochondria lacking endogenous NAD+ transporters. Together, these findings identify SLC25A51 as the first transporter capable of importing NAD+ into mammalian mitochondria.
Collapse
Affiliation(s)
- Timothy S Luongo
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jared M Eller
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Mu-Jie Lu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Marc Niere
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Fabio Raith
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany.,Faculty of Chemistry and Earth Sciences, University of Heidelberg, Heidelberg, Germany
| | - Caroline Perry
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marc R Bornstein
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul Oliphint
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Lin Wang
- Lewis-Sigler Institute for Integrative Genomics, Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Melanie R McReynolds
- Lewis-Sigler Institute for Integrative Genomics, Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Marie E Migaud
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - F Brad Johnson
- Department of Pathology and Laboratory Medicine, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany.,Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Mathias Ziegler
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Xiaolu A Cambronne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
18
|
de Guia RM, Agerholm M, Nielsen TS, Consitt LA, Søgaard D, Helge JW, Larsen S, Brandauer J, Houmard JA, Treebak JT. Aerobic and resistance exercise training reverses age-dependent decline in NAD + salvage capacity in human skeletal muscle. Physiol Rep 2020; 7:e14139. [PMID: 31207144 PMCID: PMC6577427 DOI: 10.14814/phy2.14139] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 12/18/2022] Open
Abstract
Aging decreases skeletal muscle mass and strength, but aerobic and resistance exercise training maintains skeletal muscle function. NAD+ is a coenzyme for ATP production and a required substrate for enzymes regulating cellular homeostasis. In skeletal muscle, NAD+ is mainly generated by the NAD+ salvage pathway in which nicotinamide phosphoribosyltransferase (NAMPT) is rate‐limiting. NAMPT decreases with age in human skeletal muscle, and aerobic exercise training increases NAMPT levels in young men. However, whether distinct modes of exercise training increase NAMPT levels in both young and old people is unknown. We assessed the effects of 12 weeks of aerobic and resistance exercise training on skeletal muscle abundance of NAMPT, nicotinamide riboside kinase 2 (NRK2), and nicotinamide mononucleotide adenylyltransferase (NMNAT) 1 and 3 in young (≤35 years) and older (≥55 years) individuals. NAMPT in skeletal muscle correlated negatively with age (r2 = 0.297, P < 0.001, n = 57), and VO2peak was the best predictor of NAMPT levels. Moreover, aerobic exercise training increased NAMPT abundance 12% and 28% in young and older individuals, respectively, whereas resistance exercise training increased NAMPT abundance 25% and 30% in young and in older individuals, respectively. None of the other proteins changed with exercise training. In a separate cohort of young and old people, levels of NAMPT, NRK1, and NMNAT1/2 in abdominal subcutaneous adipose tissue were not affected by either age or 6 weeks of high‐intensity interval training. Collectively, exercise training reverses the age‐dependent decline in skeletal muscle NAMPT abundance, and our findings highlight the value of exercise training in ameliorating age‐associated deterioration of skeletal muscle function.
Collapse
Affiliation(s)
- Roldan M de Guia
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marianne Agerholm
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas S Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leslie A Consitt
- Department of Biomedical Sciences, Ohio Musculoskeletal and Neurological Institute, Diabetes Institute, Ohio University, Athens, Ohio
| | - Ditte Søgaard
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørn W Helge
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Josef Brandauer
- Department of Health Sciences, Gettysburg College, Gettysburg, Pennsylvania
| | - Joseph A Houmard
- Department of Kinesiology, Human Performance Laboratory, East Carolina University, Greenville, North Carolina.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Rajasekaran NS, Shelar SB, Jones DP, Hoidal JR. Reductive stress impairs myogenic differentiation. Redox Biol 2020; 34:101492. [PMID: 32361680 PMCID: PMC7199008 DOI: 10.1016/j.redox.2020.101492] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/17/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
Myo-satellite cells regenerate and differentiate into skeletal muscle (SM) after acute or chronic injury. Changes in the redox milieu towards the oxidative arm at the wound site are known to compromise SM regeneration. Recently, we reported that abrogation of Nrf2/antioxidant signaling promotes oxidative stress and impairs SM regeneration in C57/Bl6 mice. Here, we investigated whether the activation of intracellular Nrf2 signaling favors antioxidant transcription and promotes myoblast differentiation. Satellite cell-like C2C12 myoblasts were treated with sulforaphane (SF; 1.0 & 5.0 μM) to activate Nrf2/antioxidant signaling during proliferation and differentiation (i.e. formation of myotubes/myofibers). SF-mediated Nrf2 activation resulted in increased expression of Nrf2-antioxidants (e.g. GCLC and G6PD) and augmented the production of reduced glutathione (GSH) leading to a reductive redox state. Surprisingly, this resulted in significant inhibition of myoblast differentiation, as observed from morphological changes and reduced expression of MyoD, Pax7, and Myh2, due to reductive stress (RS). Furthermore, supplementation of N-acetyl-cysteine (NAC) or GSH-ester or genetic knock-down of Keap1 (using siRNA) also resulted in RS-driven inhibition of differentiation. Interestingly, withdrawing Nrf2 activation rescued differentiation potential and formation of myotubes/myofibers from C2C12 myoblasts. Thus, abrogation of physiological ROS signaling through over-activation of Nrf2 (i.e. RS) and developing RS hampers differentiation of muscle satellite cells. Sulforaphane activates Nrf2 and establishes reductive stress (RS) in C2C12 myoblasts. RS abolishes basal ROS and significantly impede the differentiation of myoblasts. Augmentation of glutathione using pharmacological agents (NAC and GSH-ester) promotes RS and impairs differentiation. Precluding RS restores the myoblast differentiation process.
Collapse
Affiliation(s)
- Namakkal S Rajasekaran
- Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology, Birmingham, AL, USA; Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Sandeep Balu Shelar
- Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology, Birmingham, AL, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - John R Hoidal
- Division of Pulmonary, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
20
|
Doig CL, Zielinska AE, Fletcher RS, Oakey LA, Elhassan YS, Garten A, Cartwright D, Heising S, Alsheri A, Watson DG, Prehn C, Adamski J, Tennant DA, Lavery GG. Induction of the nicotinamide riboside kinase NAD + salvage pathway in a model of sarcoplasmic reticulum dysfunction. Skelet Muscle 2020; 10:5. [PMID: 32075690 PMCID: PMC7031948 DOI: 10.1186/s13395-019-0216-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/15/2019] [Indexed: 01/22/2023] Open
Abstract
Background Hexose-6-Phosphate Dehydrogenase (H6PD) is a generator of NADPH in the Endoplasmic/Sarcoplasmic Reticulum (ER/SR). Interaction of H6PD with 11β-hydroxysteroid dehydrogenase type 1 provides NADPH to support oxo-reduction of inactive to active glucocorticoids, but the wider understanding of H6PD in ER/SR NAD(P)(H) homeostasis is incomplete. Lack of H6PD results in a deteriorating skeletal myopathy, altered glucose homeostasis, ER stress and activation of the unfolded protein response. Here we further assess muscle responses to H6PD deficiency to delineate pathways that may underpin myopathy and link SR redox status to muscle wide metabolic adaptation. Methods We analysed skeletal muscle from H6PD knockout (H6PDKO), H6PD and NRK2 double knockout (DKO) and wild-type (WT) mice. H6PDKO mice were supplemented with the NAD+ precursor nicotinamide riboside. Skeletal muscle samples were subjected to biochemical analysis including NAD(H) measurement, LC-MS based metabolomics, Western blotting, and high resolution mitochondrial respirometry. Genetic and supplement models were assessed for degree of myopathy compared to H6PDKO. Results H6PDKO skeletal muscle showed adaptations in the routes regulating nicotinamide and NAD+ biosynthesis, with significant activation of the Nicotinamide Riboside Kinase 2 (NRK2) pathway. Associated with changes in NAD+ biosynthesis, H6PDKO muscle had impaired mitochondrial respiratory capacity with altered mitochondrial acylcarnitine and acetyl-CoA metabolism. Boosting NAD+ levels through the NRK2 pathway using the precursor nicotinamide riboside elevated NAD+/NADH but had no effect to mitigate ER stress and dysfunctional mitochondrial respiratory capacity or acetyl-CoA metabolism. Similarly, H6PDKO/NRK2 double KO mice did not display an exaggerated timing or severity of myopathy or overt change in mitochondrial metabolism despite depression of NAD+ availability. Conclusions These findings suggest a complex metabolic response to changes in muscle SR NADP(H) redox status that result in impaired mitochondrial energy metabolism and activation of cellular NAD+ salvage pathways. It is possible that SR can sense and signal perturbation in NAD(P)(H) that cannot be rectified in the absence of H6PD. Whether NRK2 pathway activation is a direct response to changes in SR NAD(P)(H) availability or adaptation to deficits in metabolic energy availability remains to be resolved.
Collapse
Affiliation(s)
- Craig L Doig
- Institute of Metabolism and Systems Research, University of Birmingham, 2nd Floor IBR Tower, Edgbaston, Birmingham, B15 2TT, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Agnieszka E Zielinska
- Institute of Metabolism and Systems Research, University of Birmingham, 2nd Floor IBR Tower, Edgbaston, Birmingham, B15 2TT, UK
| | - Rachel S Fletcher
- Institute of Metabolism and Systems Research, University of Birmingham, 2nd Floor IBR Tower, Edgbaston, Birmingham, B15 2TT, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Lucy A Oakey
- Institute of Metabolism and Systems Research, University of Birmingham, 2nd Floor IBR Tower, Edgbaston, Birmingham, B15 2TT, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Yasir S Elhassan
- Institute of Metabolism and Systems Research, University of Birmingham, 2nd Floor IBR Tower, Edgbaston, Birmingham, B15 2TT, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Antje Garten
- Institute of Metabolism and Systems Research, University of Birmingham, 2nd Floor IBR Tower, Edgbaston, Birmingham, B15 2TT, UK
| | - David Cartwright
- Institute of Metabolism and Systems Research, University of Birmingham, 2nd Floor IBR Tower, Edgbaston, Birmingham, B15 2TT, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Silke Heising
- Institute of Metabolism and Systems Research, University of Birmingham, 2nd Floor IBR Tower, Edgbaston, Birmingham, B15 2TT, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Ahmed Alsheri
- Strathclyde Institute of Pharmacy and Medical Sciences, Hamnett Wing John Arbuthnott Building, Glasgow, G4 0RE, UK
| | - David G Watson
- Strathclyde Institute of Pharmacy and Medical Sciences, Hamnett Wing John Arbuthnott Building, Glasgow, G4 0RE, UK
| | - Cornelia Prehn
- Research Unit of Molecular Endocrinology and Metabolism, Helmholtz Zentrum Munchen GmbH, Ingolstadter Landstrasse 1, D-85764, Neuherberg, Germany.,Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising, Germany.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Jerzy Adamski
- Research Unit of Molecular Endocrinology and Metabolism, Helmholtz Zentrum Munchen GmbH, Ingolstadter Landstrasse 1, D-85764, Neuherberg, Germany.,Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising, Germany.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research, University of Birmingham, 2nd Floor IBR Tower, Edgbaston, Birmingham, B15 2TT, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Gareth G Lavery
- Institute of Metabolism and Systems Research, University of Birmingham, 2nd Floor IBR Tower, Edgbaston, Birmingham, B15 2TT, UK. .,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK. .,MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK.
| |
Collapse
|
21
|
The effect of NAMPT deletion in projection neurons on the function and structure of neuromuscular junction (NMJ) in mice. Sci Rep 2020; 10:99. [PMID: 31919382 PMCID: PMC6952356 DOI: 10.1038/s41598-019-57085-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) plays a critical role in energy metabolism and bioenergetic homeostasis. Most NAD+ in mammalian cells is synthesized via the NAD+ salvage pathway, where nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme, converting nicotinamide into nicotinamide mononucleotide (NMN). Using a Thy1-Nampt−/− projection neuron conditional knockout (cKO) mouse, we studied the impact of NAMPT on synaptic vesicle cycling in the neuromuscular junction (NMJ), end-plate structure of NMJs and muscle contractility of semitendinosus muscles. Loss of NAMPT impaired synaptic vesicle endocytosis/exocytosis in the NMJs. The cKO mice also had motor endplates with significantly reduced area and thickness. When the cKO mice were treated with NMN, vesicle endocytosis/exocytosis was improved and endplate morphology was restored. Electrical stimulation induced muscle contraction was significantly impacted in the cKO mice in a frequency dependent manner. The cKO mice were unresponsive to high frequency stimulation (100 Hz), while the NMN-treated cKO mice responded similarly to the control mice. Transmission electron microscopy (TEM) revealed sarcomere misalignment and changes to mitochondrial morphology in the cKO mice, with NMN treatment restoring sarcomere alignment but not mitochondrial morphology. This study demonstrates that neuronal NAMPT is important for pre-/post-synaptic NMJ function, and maintaining skeletal muscular function and structure.
Collapse
|
22
|
Dollerup OL, Chubanava S, Agerholm M, Søndergård SD, Altıntaş A, Møller AB, Høyer KF, Ringgaard S, Stødkilde-Jørgensen H, Lavery GG, Barrès R, Larsen S, Prats C, Jessen N, Treebak JT. Nicotinamide riboside does not alter mitochondrial respiration, content or morphology in skeletal muscle from obese and insulin-resistant men. J Physiol 2019; 598:731-754. [PMID: 31710095 DOI: 10.1113/jp278752] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/01/2019] [Indexed: 01/02/2023] Open
Abstract
KEY POINTS This is the first long-term human clinical trial to report on effects of nicotinamide riboside (NR) on skeletal muscle mitochondrial function, content and morphology. NR supplementation decreases nicotinamide phosphoribosyltransferase (NAMPT) protein abundance in skeletal muscle. NR supplementation does not affect NAD metabolite concentrations in skeletal muscle. Respiration, distribution and quantity of muscle mitochondria are unaffected by NR. NAMPT in skeletal muscle correlates positively with oxidative phosphorylation Complex I, sirtuin 3 and succinate dehydrogenase. ABSTRACT Preclinical evidence suggests that the nicotinamide adenine dinucleotide (NAD+ ) precursor nicotinamide riboside (NR) boosts NAD+ levels and improves diseases associated with mitochondrial dysfunction. We aimed to determine if dietary NR supplementation in middle-aged, obese, insulin-resistant men affects mitochondrial respiration, content and morphology in skeletal muscle. In a randomized, placebo-controlled clinical trial, 40 participants received 1000 mg NR or placebo twice daily for 12 weeks. Skeletal muscle biopsies were collected before and after the intervention. Mitochondrial respiratory capacity was determined by high-resolution respirometry on single muscle fibres. Protein abundance and mRNA expression were measured by Western blot and quantitative PCR analyses, respectively, and in a subset of the participants (placebo n = 8; NR n = 8) we quantified mitochondrial fractional area and mitochondrial morphology by laser scanning confocal microscopy. Protein levels of nicotinamide phosphoribosyltransferase (NAMPT), an essential NAD+ biosynthetic enzyme in skeletal muscle, decreased by 14% with NR. However, steady-state NAD+ levels as well as gene expression and protein abundance of other NAD+ biosynthetic enzymes remained unchanged. Neither respiratory capacity of skeletal muscle mitochondria nor abundance of mitochondrial associated proteins were affected by NR. Moreover, no changes in mitochondrial fractional area or network morphology were observed. Our data do not support the hypothesis that dietary NR supplementation has significant impact on skeletal muscle mitochondria in obese and insulin-resistant men. Future studies on the effects of NR on human skeletal muscle may include both sexes and potentially provide comparisons between young and older people.
Collapse
Affiliation(s)
- Ole L Dollerup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Denmark.,Research Laboratory for Biochemical Pathology, Department of Clinical Medicine, Aarhus University, Denmark.,Department of Clinical Pharmacology, Aarhus University Hospital, Denmark
| | - Sabina Chubanava
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Marianne Agerholm
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Stine D Søndergård
- Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Ali Altıntaş
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Andreas B Møller
- Research Laboratory for Biochemical Pathology, Department of Clinical Medicine, Aarhus University, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Denmark
| | - Kasper F Høyer
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Research Laboratory for Biochemical Pathology, Department of Clinical Medicine, Aarhus University, Denmark.,The MR Research Centre, Aarhus University Hospital, Denmark
| | | | | | - Gareth G Lavery
- Clinical and Experimental Medicine, University of Birmingham, UK
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Steen Larsen
- Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Denmark.,Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Clara Prats
- Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Niels Jessen
- Research Laboratory for Biochemical Pathology, Department of Clinical Medicine, Aarhus University, Denmark.,Department of Clinical Pharmacology, Aarhus University Hospital, Denmark.,Department of Biomedicine, Aarhus University, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
23
|
Ranjit S, Malacrida L, Stakic M, Gratton E. Determination of the metabolic index using the fluorescence lifetime of free and bound nicotinamide adenine dinucleotide using the phasor approach. JOURNAL OF BIOPHOTONICS 2019; 12:e201900156. [PMID: 31194290 PMCID: PMC6842045 DOI: 10.1002/jbio.201900156] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/09/2019] [Accepted: 06/12/2019] [Indexed: 05/05/2023]
Abstract
The fluorescence lifetime of nicotinamide adenine dinucleotide (NADH) is commonly used in conjunction with the phasor approach as a molecular biomarker to provide information on cellular metabolism of autofluorescence imaging of cells and tissue. However, in the phasor approach, the bound and free lifetime defining the phasor metabolic trajectory is a subject of debate. The fluorescence lifetime of NADH increases when bound to an enzyme, in contrast to the short multiexponential lifetime displayed by NADH in solution. The extent of fluorescence lifetime increase depends on the enzyme to which NADH is bound. With proper preparation of lactate dehydrogenase (LDH) using oxalic acid (OA) as an allosteric factor, bound NADH to LDH has a lifetime of 3.4 ns and is positioned on the universal semicircle of the phasor plot, inferring a monoexponential lifetime for this species. Surprisingly, measurements in the cellular environments with different metabolic states show a linear trajectory between free NADH at about 0.37 ns and bound NADH at 3.4 ns. These observations support that in a cellular environment, a 3.4 ns value could be used for bound NADH lifetime. The phasor analysis of many cell types shows a linear combination of fractional contributions of free and bound species NADH.
Collapse
Affiliation(s)
- Suman Ranjit
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, California
| | - Leonel Malacrida
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, California
- Departamento de Fisiopatología, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Milka Stakic
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, California
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, California
| |
Collapse
|
24
|
Sambeat A, Ratajczak J, Joffraud M, Sanchez-Garcia JL, Giner MP, Valsesia A, Giroud-Gerbetant J, Valera-Alberni M, Cercillieux A, Boutant M, Kulkarni SS, Moco S, Canto C. Endogenous nicotinamide riboside metabolism protects against diet-induced liver damage. Nat Commun 2019; 10:4291. [PMID: 31541116 PMCID: PMC6754455 DOI: 10.1038/s41467-019-12262-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
Supplementation with the NAD+ precursor nicotinamide riboside (NR) ameliorates and prevents a broad array of metabolic and aging disorders in mice. However, little is known about the physiological role of endogenous NR metabolism. We have previously shown that NR kinase 1 (NRK1) is rate-limiting and essential for NR-induced NAD+ synthesis in hepatic cells. To understand the relevance of hepatic NR metabolism, we generated whole body and liver-specific NRK1 knockout mice. Here, we show that NRK1 deficiency leads to decreased gluconeogenic potential and impaired mitochondrial function. Upon high-fat feeding, NRK1 deficient mice develop glucose intolerance, insulin resistance and hepatosteatosis. Furthermore, they are more susceptible to diet-induced liver DNA damage, due to compromised PARP1 activity. Our results demonstrate that endogenous NR metabolism is critical to sustain hepatic NAD+ levels and hinder diet-induced metabolic damage, highlighting the relevance of NRK1 as a therapeutic target for metabolic disorders. Nicotinamide adenine dinucleotide (NAD+) sustains cellular energy metabolism, functions as a substrate of Sirt and PARP enzymes, and its supplementation is explored therapeutically in aging and other contexts. Here the authors provide insight into the role of endogenous NAD+ metabolism by studying nicotinamide riboside kinase 1 (NRK1) deficient mice.
Collapse
Affiliation(s)
- Audrey Sambeat
- Nestlé Research, EPFL Innovation Park, 1015, Lausanne, Switzerland
| | - Joanna Ratajczak
- Nestlé Research, EPFL Innovation Park, 1015, Lausanne, Switzerland.,School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Magali Joffraud
- Nestlé Research, EPFL Innovation Park, 1015, Lausanne, Switzerland
| | | | - Maria P Giner
- Nestlé Research, EPFL Innovation Park, 1015, Lausanne, Switzerland
| | - Armand Valsesia
- Nestlé Research, EPFL Innovation Park, 1015, Lausanne, Switzerland
| | | | - Miriam Valera-Alberni
- Nestlé Research, EPFL Innovation Park, 1015, Lausanne, Switzerland.,School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Angelique Cercillieux
- Nestlé Research, EPFL Innovation Park, 1015, Lausanne, Switzerland.,School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Marie Boutant
- Nestlé Research, EPFL Innovation Park, 1015, Lausanne, Switzerland
| | | | - Sofia Moco
- Nestlé Research, EPFL Innovation Park, 1015, Lausanne, Switzerland
| | - Carles Canto
- Nestlé Research, EPFL Innovation Park, 1015, Lausanne, Switzerland. .,School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| |
Collapse
|
25
|
Dall M, Trammell SAJ, Asping M, Hassing AS, Agerholm M, Vienberg SG, Gillum MP, Larsen S, Treebak JT. Mitochondrial function in liver cells is resistant to perturbations in NAD + salvage capacity. J Biol Chem 2019; 294:13304-13326. [PMID: 31320478 DOI: 10.1074/jbc.ra118.006756] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
Supplementation with NAD precursors such as nicotinamide riboside (NR) has been shown to enhance mitochondrial function in the liver and to prevent hepatic lipid accumulation in high-fat diet (HFD)-fed rodents. Hepatocyte-specific knockout of the NAD+-synthesizing enzyme nicotinamide phosphoribosyltransferase (NAMPT) reduces liver NAD+ levels, but the metabolic phenotype of Nampt-deficient hepatocytes in mice is unknown. Here, we assessed Nampt's role in maintaining mitochondrial and metabolic functions in the mouse liver. Using the Cre-LoxP system, we generated hepatocyte-specific Nampt knockout (HNKO) mice, having a 50% reduction of liver NAD+ levels. We screened the HNKO mice for signs of metabolic dysfunction following 60% HFD feeding for 20 weeks ± NR supplementation and found that NR increases hepatic NAD+ levels without affecting fat mass or glucose tolerance in HNKO or WT animals. High-resolution respirometry revealed that NR supplementation of the HNKO mice did not increase state III respiration, which was observed in WT mice following NR supplementation. Mitochondrial oxygen consumption and fatty-acid oxidation were unaltered in primary HNKO hepatocytes. Mitochondria isolated from whole-HNKO livers had only a 20% reduction in NAD+, suggesting that the mitochondrial NAD+ pool is less affected by HNKO than the whole-tissue pool. When stimulated with tryptophan in the presence of [15N]glutamine, HNKO hepatocytes had a higher [15N]NAD+ enrichment than WT hepatocytes, indicating that HNKO mice compensate through de novo NAD+ synthesis. We conclude that NAMPT-deficient hepatocytes can maintain substantial NAD+ levels and that the Nampt knockout has only minor consequences for mitochondrial function in the mouse liver.
Collapse
Affiliation(s)
- Morten Dall
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Samuel A J Trammell
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Magnus Asping
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Anna S Hassing
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Marianne Agerholm
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Sara G Vienberg
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Matthew P Gillum
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, DK2200 Copenhagen, Denmark; Clinical Research Centre, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK2200 Copenhagen, Denmark.
| |
Collapse
|
26
|
Yang H, Zhu R, Zhao X, Liu L, Zhou Z, Zhao L, Liang B, Ma W, Zhao J, Liu J, Huang G. Sirtuin-mediated deacetylation of hnRNP A1 suppresses glycolysis and growth in hepatocellular carcinoma. Oncogene 2019; 38:4915-4931. [PMID: 30858544 DOI: 10.1038/s41388-019-0764-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/25/2019] [Accepted: 02/16/2019] [Indexed: 01/06/2023]
Abstract
Tumor cells undergo a metabolic shift in order to adapt to the altered microenvironment, although the underlying mechanisms have not been fully explored. HnRNP A1 is involved in the alternative splicing of the pyruvate kinase (PK) mRNA, allowing tumor cells to specifically produce the PKM2 isoform. We found that the acetylation status of hnRNP A1 in hepatocellular carcinoma (HCC) cells was dependent on glucose availability, which affected the PKM2-dependent glycolytic pathway. In the glucose-starved HCC cells, SIRT1 and SIRT6, members of deacetylase sirtuin family, were highly expressed and deacetylated hnRNP A1 after direct binding. We identified four lysine residues in hnRNP A1 that were deacetylated by SIRT1 and SIRT6, resulting in significant inhibition of glycolysis in HCC cells. Deacetylated hnRNP A1 reduced PKM2 and increased PKM1 alternative splicing in HCC cells under normal glucose conditions, thereby reducing the metabolic activity of PK and the non-metabolic PKM2-β-catenin signaling pathway. However, under glucose starvation, the low levels of acetylated hnRNP A1 reduced HCC cell metabolism to adapt to the nutrient deficiency. Taken together, sirtuin-mediated hnRNP A1 deacetylation inhibits HCC cell proliferation and tumorigenesis in a PKM2-dependent manner. These findings point to the metabolic reprogramming induced by hnRNP A1 acetylation in order to adapt to the nutritional status of the tumor microenvironment.
Collapse
Affiliation(s)
- Hao Yang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Rongxuan Zhu
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xiaoping Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Liu Liu
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zhaoli Zhou
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Li Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Beibei Liang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Wenjing Ma
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jian Zhao
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, 200433, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
27
|
Graae AS, Grarup N, Ribel-Madsen R, Lystbæk SH, Boesgaard T, Staiger H, Fritsche A, Wellner N, Sulek K, Kjolby M, Backe MB, Chubanava S, Prats C, Serup AK, Birk JB, Dubail J, Gillberg L, Vienberg SG, Nykjær A, Kiens B, Wojtaszewski JFP, Larsen S, Apte SS, Häring HU, Vaag A, Zethelius B, Pedersen O, Treebak JT, Hansen T, Holst B. ADAMTS9 Regulates Skeletal Muscle Insulin Sensitivity Through Extracellular Matrix Alterations. Diabetes 2019; 68:502-514. [PMID: 30626608 PMCID: PMC6385758 DOI: 10.2337/db18-0418] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 12/14/2018] [Indexed: 12/17/2022]
Abstract
The ADAMTS9 rs4607103 C allele is one of the few gene variants proposed to increase the risk of type 2 diabetes through an impairment of insulin sensitivity. We show that the variant is associated with increased expression of the secreted ADAMTS9 and decreased insulin sensitivity and signaling in human skeletal muscle. In line with this, mice lacking Adamts9 selectively in skeletal muscle have improved insulin sensitivity. The molecular link between ADAMTS9 and insulin signaling was characterized further in a model where ADAMTS9 was overexpressed in skeletal muscle. This selective overexpression resulted in decreased insulin signaling presumably mediated through alterations of the integrin β1 signaling pathway and disruption of the intracellular cytoskeletal organization. Furthermore, this led to impaired mitochondrial function in mouse muscle-an observation found to be of translational character because humans carrying the ADAMTS9 risk allele have decreased expression of mitochondrial markers. Finally, we found that the link between ADAMTS9 overexpression and impaired insulin signaling could be due to accumulation of harmful lipid intermediates. Our findings contribute to the understanding of the molecular mechanisms underlying insulin resistance and type 2 diabetes and point to inhibition of ADAMTS9 as a potential novel mode of treating insulin resistance.
Collapse
Affiliation(s)
- Anne-Sofie Graae
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Grarup
- Section for Metabolic Genetics, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Ribel-Madsen
- Section for Metabolic Genetics, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
- Danish Diabetes Academy, Novo Nordisk Foundation, Odense, Denmark
- Steno Diabetes Center, Gentofte, Denmark
| | - Sara H Lystbæk
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine Boesgaard
- Section for Metabolic Genetics, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Harald Staiger
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research, Tübingen, Germany
- Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research, Tübingen, Germany
- Department of Internal Medicine IV, University Hospital of Tübingen, Tübingen, Germany
| | - Niels Wellner
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Karolina Sulek
- Section for Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mads Kjolby
- Danish Diabetes Academy, Novo Nordisk Foundation, Odense, Denmark
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Marie Balslev Backe
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sabina Chubanava
- Section for Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Clara Prats
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Annette K Serup
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jesper B Birk
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Johanne Dubail
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | | | - Sara G Vienberg
- Section for Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Nykjær
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research, Tübingen, Germany
- Department of Internal Medicine IV, University Hospital of Tübingen, Tübingen, Germany
| | - Allan Vaag
- Cardiovascular and Metabolic Disease Translational Medicine Unit, Early Clinical Development, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Björn Zethelius
- Geriatrics, Department of Public Health and Caring Services, Uppsala University, Uppsala, Sweden
| | - Oluf Pedersen
- Section for Metabolic Genetics, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas T Treebak
- Section for Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Section for Metabolic Genetics, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Holst
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Li Z, Zhang X, Guo Z, Zhong Y, Wang P, Li J, Li Z, Liu P. SIRT6 Suppresses NFATc4 Expression and Activation in Cardiomyocyte Hypertrophy. Front Pharmacol 2019; 9:1519. [PMID: 30670969 PMCID: PMC6331469 DOI: 10.3389/fphar.2018.01519] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/11/2018] [Indexed: 12/15/2022] Open
Abstract
NFATc4, a member from the Nuclear Factor of Activated T cells (NFATs) transcription factor family, plays a pivotal role in the development of cardiac hypertrophy. NFATc4 is dephosphorylated by calcineurin and translocated from the cytoplasm to the nucleus to regulate the expression of hypertrophic genes, like brain natriuretic polypeptide (BNP). The present study identified SIRT6, an important subtype of NAD+ dependent class III histone deacetylase, to be a negative regulator of NFATc4 in cardiomyocyte hypertrophy. In phenylephrine (PE)-induced hypertrophic cardiomyocyte model, overexpression of SIRT6 by adenovirus infection or by plasmid transfection repressed the protein and mRNA expressions of NFATc4, elevated its phosphorylation level, prevented its nuclear accumulation, subsequently suppressed its transcriptional activity and downregulated its target gene BNP. By contrast, mutant of SIRT6 without deacetylase activity (H133Y) did not demonstrate these effects, suggesting that the inhibitory effect of SIRT6 on NFATc4 was dependent on its deacetylase activity. Moreover, the effect of SIRT6 overexpression on repressing BNP expression was reversed by NFATc4 replenishment, whereas the effect of SIRT6 deficiency on upregulating BNP was recovered by NFATc4 silencing. Mechanistically, interactions between SIRT6 and NFATc4 might possibly facilitate the deacetylation of NFATc4 by SIRT6, thereby preventing the activation of NFATc4. In conclusion, the present study reveals that SIRT6 suppresses the expression and activation of NFATc4. These findings provide more evidences of the anti-hypertrophic effect of SIRT6 and suggest SIRT6 as a potential therapeutic target for cardiac hypertrophy.
Collapse
Affiliation(s)
- Zhenzhen Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaoying Zhang
- Department of Pharmacology, School of Medicine, Xizang Minzu University, Shaanxi, China
| | - Zhen Guo
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yao Zhong
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Department of Cardiology, Third People's Hospital of Dongguan, Dongguan, China
| | - Panxia Wang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jingyan Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhuoming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
29
|
Abstract
The concept of replenishing or elevating NAD+ availability to combat metabolic disease and ageing is an area of intense research. This has led to a need to define the endogenous regulatory pathways and mechanisms cells and tissues utilise to maximise NAD+ availability such that strategies to intervene in the clinical setting are able to be fully realised. This review discusses the importance of different salvage pathways involved in metabolising the vitamin B3 class of NAD+ precursor molecules, with a particular focus on the recently identified nicotinamide riboside kinase pathway at both a tissue-specific and systemic level.
Collapse
|
30
|
Brouwers B, Stephens NA, Costford SR, Hopf ME, Ayala JE, Yi F, Xie H, Li JL, Gardell SJ, Sparks LM, Smith SR. Elevated Nicotinamide Phosphoribosyl Transferase in Skeletal Muscle Augments Exercise Performance and Mitochondrial Respiratory Capacity Following Exercise Training. Front Physiol 2018; 9:704. [PMID: 29942262 PMCID: PMC6004371 DOI: 10.3389/fphys.2018.00704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/22/2018] [Indexed: 11/25/2022] Open
Abstract
Mice overexpressing NAMPT in skeletal muscle (NamptTg mice) develop higher exercise endurance and maximal aerobic capacity (VO2max) following voluntary exercise training compared to wild-type (WT) mice. Here, we aimed to investigate the mechanisms underlying by determining skeletal muscle mitochondrial respiratory capacity in NamptTg and WT mice. Body weight and body composition, tissue weight (gastrocnemius, quadriceps, soleus, heart, liver, and epididymal white adipose tissue), skeletal muscle and liver glycogen content, VO2max, skeletal muscle mitochondrial respiratory capacity (measured by high-resolution respirometry), skeletal muscle gene expression (measured by microarray and qPCR), and skeletal muscle protein content (measured by Western blot) were determined following 6 weeks of voluntary exercise training (access to running wheel) in 13-week-old male NamptTg (exercised NamptTg) mice and WT (exercised WT) mice. Daily running distance and running time during the voluntary exercise training protocol were recorded. Daily running distance (p = 0.51) and running time (p = 0.85) were not significantly different between exercised NamptTg mice and exercised WT mice. VO2max was higher in exercised NamptTg mice compared to exercised WT mice (p = 0.02). Body weight (p = 0.92), fat mass (p = 0.49), lean mass (p = 0.91), tissue weight (all p > 0.05), and skeletal muscle (p = 0.72) and liver (p = 0.94) glycogen content were not significantly different between exercised NamptTg mice and exercised WT mice. Complex I oxidative phosphorylation (OXPHOS) respiratory capacity supported by fatty acid substrates (p < 0.01), maximal (complex I+II) OXPHOS respiratory capacity supported by glycolytic (p = 0.02) and fatty acid (p < 0.01) substrates, and maximal uncoupled respiratory capacity supported by fatty acid substrates (p < 0.01) was higher in exercised NamptTg mice compared to exercised WT mice. Transcriptomic analyses revealed differential expression for genes involved in oxidative metabolism in exercised NamptTg mice compared to exercised WT mice, specifically, enrichment for the gene set related to the SIRT3-mediated signaling pathway. SIRT3 protein content correlated with NAMPT protein content (r = 0.61, p = 0.04). In conclusion, NamptTg mice develop higher exercise capacity following voluntary exercise training compared to WT mice, which is paralleled by higher mitochondrial respiratory capacity in skeletal muscle. The changes in SIRT3 targets suggest that these effects are due to remodeling of mitochondrial function.
Collapse
Affiliation(s)
- Bram Brouwers
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, United States
| | - Natalie A Stephens
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, United States
| | - Sheila R Costford
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, United States
| | - Meghan E Hopf
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, United States
| | - Julio E Ayala
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, United States
| | - Fanchao Yi
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, United States
| | - Hui Xie
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, United States
| | - Jian-Liang Li
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, United States
| | - Stephen J Gardell
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, United States
| | - Lauren M Sparks
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, United States.,Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, United States
| | - Steven R Smith
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, United States.,Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, United States
| |
Collapse
|
31
|
Nielsen KN, Peics J, Ma T, Karavaeva I, Dall M, Chubanava S, Basse AL, Dmytriyeva O, Treebak JT, Gerhart-Hines Z. NAMPT-mediated NAD + biosynthesis is indispensable for adipose tissue plasticity and development of obesity. Mol Metab 2018; 11:178-188. [PMID: 29551635 PMCID: PMC6001355 DOI: 10.1016/j.molmet.2018.02.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 12/11/2022] Open
Abstract
Objective The ability of adipose tissue to expand and contract in response to fluctuations in nutrient availability is essential for the maintenance of whole-body metabolic homeostasis. Given the nutrient scarcity that mammals faced for millions of years, programs involved in this adipose plasticity were likely evolved to be highly efficient in promoting lipid storage. Ironically, this previously advantageous feature may now represent a metabolic liability given the caloric excess of modern society. We speculate that nicotinamide adenine dinucleotide (NAD+) biosynthesis exemplifies this concept. Indeed NAD+/NADH metabolism in fat tissue has been previously linked with obesity, yet whether it plays a causal role in diet-induced adiposity is unknown. Here we investigated how the NAD+ biosynthetic enzyme nicotinamide phosphoribosyltransferase (NAMPT) supports adipose plasticity and the pathological progression to obesity. Methods We utilized a newly generated Nampt loss-of-function model to investigate the tissue-specific and systemic metabolic consequences of adipose NAD+ deficiency. Energy expenditure, glycemic control, tissue structure, and gene expression were assessed in the contexts of a high dietary fat burden as well as the transition back to normal chow diet. Results Fat-specific Nampt knockout (FANKO) mice were completely resistant to high fat diet (HFD)-induced obesity. This was driven in part by reduced food intake. Furthermore, HFD-fed FANKO mice were unable to undergo healthy expansion of adipose tissue mass, and adipose depots were rendered fibrotic with markedly reduced mitochondrial respiratory capacity. Yet, surprisingly, HFD-fed FANKO mice exhibited improved glucose tolerance compared to control littermates. Removing the HFD burden largely reversed adipose fibrosis and dysfunction in FANKO animals whereas the improved glucose tolerance persisted. Conclusions These findings indicate that adipose NAMPT plays an essential role in handling dietary lipid to modulate fat tissue plasticity, food intake, and systemic glucose homeostasis. Fat-specific Nampt knockout (FANKO) does not alter body composition on chow diet. NAMPT is essential for adipose expansion and weight gain from high dietary fat. Loss of adipose NAD+ decreases food intake and improves glucose tolerance. High fat diet-induced metabolic dysfunction in FANKO mice is reversible.
Collapse
Affiliation(s)
- Karen Nørgaard Nielsen
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Julia Peics
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Tao Ma
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Iuliia Karavaeva
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Morten Dall
- Section for Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sabina Chubanava
- Section for Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Astrid L Basse
- Section for Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Laboratory of Neural Plasticity, Institute of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark; Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, 2400 Copenhagen, Denmark
| | - Jonas T Treebak
- Section for Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Zachary Gerhart-Hines
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|