1
|
Max-Harry IM, Hashmi WJ, List BP, Kantake N, Corbin KL, Toribio RE, Nunemaker CS, Rosol TJ. The nuclear localization sequence and C-terminus of parathyroid hormone-related protein regulate normal pancreatic islet development and function. Gen Comp Endocrinol 2023; 340:114309. [PMID: 37236490 PMCID: PMC10323322 DOI: 10.1016/j.ygcen.2023.114309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/01/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023]
Abstract
Parathyroid hormone-related protein (PTHrP) is a pleiotropic hormone essential for morphogenesis, tissue differentiation, as well as cell regulation and function. PTHrP is expressed by pancreatic beta cells which are responsible for insulin secretion. Previous studies have reported that N-terminal PTHrP stimulated proliferation in beta cells in rodents. We have developed a knockin mouse model (PTHrP Δ/Δ) lacking the C-terminal and nuclear localization sequence (NLS) of PTHrP. These mice die at ∼day 5, are severely stunted in growth, weigh 54% less than control mice at day 1-2 and eventually fail to grow. PTHrP Δ/Δ mice are also hypoinsulinemic and hypoglycemic yet have nutrient intake proportional to size. To characterize the pancreatic islets in these mice, islets (∼10-20) were isolated from 2 to 5 day-old-mice using collagenase digestion. Islets from PTHrP Δ/Δ mice were smaller in size but secreted more insulin than littermate controls. PTHrP Δ/Δ and control mice islets were exposed to various glucose concentrations and intracellular calcium, the trigger for insulin release, was elevated for glucose concentrations of 8-20 mM. Immunofluorescence staining showed less glucagon-stained area in islets from PTHrP Δ/Δ mice (∼250 µm2) compared to islets from control mice (∼900 µm2), and ELISA confirmed there was reduced glucagon content. These data collectively demonstrate increased insulin secretion and reduced glucagon at the islet level, which may contribute to the observed hypoglycemia and early death in PTHrP Δ/Δ mice. Thus, the C-terminus and NLS of PTHrP are crucial to life, including regulation of glucose homeostasis and islet function.
Collapse
Affiliation(s)
- Ibiagbani M Max-Harry
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, USA; Molecular and Cellular Biology Program, College of Arts and Sciences, Ohio University, USA; Department of Biological Sciences, Ohio University, USA
| | - Waleed J Hashmi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; Molecular and Cellular Biology Program, College of Arts and Sciences, Ohio University, USA
| | - Brian P List
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, USA; Translational Biomedical Sciences Program, Graduate College, Ohio University, USA
| | - Noriko Kantake
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Kathryn L Corbin
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Ramiro E Toribio
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH, USA
| | - Craig S Nunemaker
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, USA; Translational Biomedical Sciences Program, Graduate College, Ohio University, USA.
| | - Thomas J Rosol
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; Ohio Musculoskeletal and Neurological Institute (OMNI), Heritage College of Osteopathic Medicine, Ohio University, USA.
| |
Collapse
|
2
|
D’Angelo CV, West HL, Whitticar NB, Corbin KL, Donovan LM, Stiadle BI, Nunemaker CS. Similarities in Calcium Oscillations Between Neonatal Mouse Islets and Mature Islets Exposed to Chronic Hyperglycemia. Endocrinology 2022; 163:6585503. [PMID: 35551371 PMCID: PMC9186310 DOI: 10.1210/endocr/bqac066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 11/19/2022]
Abstract
Pulsatility is important to islet function. As islets mature into fully developed insulin-secreting micro-organs, their ability to produce oscillatory intracellular calcium ([Ca2+]i) patterns in response to glucose also matures. In this study, we measured [Ca2+]i using fluorescence imaging to characterize oscillations from neonatal mice on postnatal (PN) days 0, 4, and 12 in comparison to adult islets. Under substimulatory (3-mM) glucose levels, [Ca2+]i was low and quiescent for adult islets as expected, as well as for PN day 12 islets. In contrast, one-third of islets on PN day 0 and 4 displayed robust [Ca2+]i oscillations in low glucose. In stimulatory glucose (11 mM) conditions, oscillations were present on all neonatal days but differed from patterns in adults. By PN day 12, [Ca2+]i oscillations were approaching characteristics of fully developed islets. The immature response pattern of neonatal islets was due, at least in part, to differences in adenosine 5'-triphosphate (ATP)-sensitive K+-channel activity estimated by [Ca2+]i responses to KATP channel agents diazoxide and tolbutamide. Neonatal [Ca2+]i patterns were also strikingly similar to patterns observed in mature islets exposed to hyperglycemic conditions (20 mM glucose for 48 hours): elevated [Ca2+]i and oscillations in low glucose along with reduced pulse mass in high glucose. Since a hallmark of diabetic islets is dedifferentiation, we propose that diabetic islets display features of "reverse maturation," demonstrating similar [Ca2+]i dynamics as neonatal islets. Pulsatility is thus an important emergent feature of neonatal islets. Our findings may provide insight into reversing β-cell dedifferentiation and to producing better functioning β cells from pluripotent stem cells.
Collapse
Affiliation(s)
- Cathleen V D’Angelo
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
| | - Hannah L West
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
- Honors Tutorial College, Ohio University, Athens, Ohio 45701, USA
| | - Nicholas B Whitticar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
- Translational Biomedical Sciences Program, Graduate College, Ohio University, Athens, Ohio 45701, USA
| | - Kathryn L Corbin
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
| | - Lauren M Donovan
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
| | - Benjamin I Stiadle
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
| | - Craig S Nunemaker
- Correspondence: Craig S. Nunemaker, PhD, Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, 1 Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
3
|
Swisa A, Glaser B, Dor Y. Metabolic Stress and Compromised Identity of Pancreatic Beta Cells. Front Genet 2017; 8:21. [PMID: 28270834 PMCID: PMC5318414 DOI: 10.3389/fgene.2017.00021] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/09/2017] [Indexed: 01/12/2023] Open
Abstract
Beta cell failure is a central feature of type 2 diabetes (T2D), but the molecular underpinnings of the process remain only partly understood. It has been suggested that beta cell failure in T2D involves massive cell death. Other studies ascribe beta cell failure to cell exhaustion, due to chronic oxidative or endoplasmic reticulum stress leading to cellular dysfunction. More recently it was proposed that beta cells in T2D may lose their differentiated identity, possibly even gaining features of other islet cell types. The loss of beta cell identity appears to be driven by glucotoxicity inhibiting the activity of key beta cell transcription factors including Pdx1, Nkx6.1, MafA and Pax6, thereby silencing beta cell genes and derepressing alternative islet cell genes. The loss of beta cell identity is at least partly reversible upon normalization of glycemia, with implications for the reversibility of T2D, although it is not known if beta cell failure reaches eventually a point of no return. In this review we discuss current evidence for metabolism-driven compromised beta cell identity, key knowledge gaps and opportunities for utility in the treatment of T2D.
Collapse
Affiliation(s)
- Avital Swisa
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical SchoolJerusalem, Israel
| | - Benjamin Glaser
- Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical CenterJerusalem, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical SchoolJerusalem, Israel,*Correspondence: Yuval Dor,
| |
Collapse
|
4
|
Glynn E, Thompson B, Vadrevu S, Lu S, Kennedy RT, Ha J, Sherman A, Satin LS. Chronic Glucose Exposure Systematically Shifts the Oscillatory Threshold of Mouse Islets: Experimental Evidence for an Early Intrinsic Mechanism of Compensation for Hyperglycemia. Endocrinology 2016; 157:611-23. [PMID: 26697721 PMCID: PMC4733117 DOI: 10.1210/en.2015-1563] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mouse islets exhibit glucose-dependent oscillations in electrical activity, intracellular Ca(2+) and insulin secretion. We developed a mathematical model in which a left shift in glucose threshold helps compensate for insulin resistance. To test this experimentally, we exposed isolated mouse islets to varying glucose concentrations overnight and monitored their glucose sensitivity the next day by measuring intracellular Ca(2+), electrical activity, and insulin secretion. Glucose sensitivity of all oscillation modes was increased when overnight glucose was greater than 2.8mM. To determine whether threshold shifts were a direct effect of glucose or involved secreted insulin, the KATP opener diazoxide (Dz) was coapplied with glucose to inhibit insulin secretion. The addition of Dz or the insulin receptor antagonist s961 increased islet glucose sensitivity, whereas the KATP blocker tolbutamide tended to reduce it. This suggests insulin and glucose have opposing actions on the islet glucose threshold. To test the hypothesis that the threshold shifts were due to changes in plasma membrane KATP channels, we measured cell KATP conductance, which was confirmed to be reduced by high glucose pretreatment and further reduced by Dz. Finally, treatment of INS-1 cells with glucose and Dz overnight reduced high affinity sulfonylurea receptor (SUR1) trafficking to the plasma membrane vs glucose alone, consistent with insulin increasing KATP conductance by altering channel number. The results support a role for metabolically regulated KATP channels in the maintenance of glucose homeostasis.
Collapse
Affiliation(s)
- Eric Glynn
- Department of Pharmacology and Brehm Diabetes Research Center (E.G., B.T., S.V., L.S.S.) and Department of Chemistry (S.L., R.T.K.), University of Michigan, Ann Arbor, Michigan 48105; and Laboratory of Biological Modeling (J.H., A.S.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Benjamin Thompson
- Department of Pharmacology and Brehm Diabetes Research Center (E.G., B.T., S.V., L.S.S.) and Department of Chemistry (S.L., R.T.K.), University of Michigan, Ann Arbor, Michigan 48105; and Laboratory of Biological Modeling (J.H., A.S.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Suryakiran Vadrevu
- Department of Pharmacology and Brehm Diabetes Research Center (E.G., B.T., S.V., L.S.S.) and Department of Chemistry (S.L., R.T.K.), University of Michigan, Ann Arbor, Michigan 48105; and Laboratory of Biological Modeling (J.H., A.S.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Shusheng Lu
- Department of Pharmacology and Brehm Diabetes Research Center (E.G., B.T., S.V., L.S.S.) and Department of Chemistry (S.L., R.T.K.), University of Michigan, Ann Arbor, Michigan 48105; and Laboratory of Biological Modeling (J.H., A.S.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Robert T Kennedy
- Department of Pharmacology and Brehm Diabetes Research Center (E.G., B.T., S.V., L.S.S.) and Department of Chemistry (S.L., R.T.K.), University of Michigan, Ann Arbor, Michigan 48105; and Laboratory of Biological Modeling (J.H., A.S.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Joon Ha
- Department of Pharmacology and Brehm Diabetes Research Center (E.G., B.T., S.V., L.S.S.) and Department of Chemistry (S.L., R.T.K.), University of Michigan, Ann Arbor, Michigan 48105; and Laboratory of Biological Modeling (J.H., A.S.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Arthur Sherman
- Department of Pharmacology and Brehm Diabetes Research Center (E.G., B.T., S.V., L.S.S.) and Department of Chemistry (S.L., R.T.K.), University of Michigan, Ann Arbor, Michigan 48105; and Laboratory of Biological Modeling (J.H., A.S.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Leslie S Satin
- Department of Pharmacology and Brehm Diabetes Research Center (E.G., B.T., S.V., L.S.S.) and Department of Chemistry (S.L., R.T.K.), University of Michigan, Ann Arbor, Michigan 48105; and Laboratory of Biological Modeling (J.H., A.S.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
5
|
Sesti F, Wu X, Liu S. Oxidation of KCNB1 K(+) channels in central nervous system and beyond. World J Biol Chem 2014; 5:85-92. [PMID: 24921000 PMCID: PMC4050120 DOI: 10.4331/wjbc.v5.i2.85] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/26/2014] [Accepted: 03/03/2014] [Indexed: 02/05/2023] Open
Abstract
KCNB1, a voltage-gated potassium (K(+)) channel that conducts a major delayed rectifier current in the brain, pancreas and cardiovascular system is a key player in apoptotic programs associated with oxidative stress. As a result, this protein represents a bona fide drug target for limiting the toxic effects of oxygen radicals. Until recently the consensus view was that reactive oxygen species trigger a pro-apoptotic surge in KCNB1 current via phosphorylation and SNARE-dependent incorporation of KCNB1 channels into the plasma membrane. However, new evidence shows that KCNB1 can be modified by oxidants and that oxidized KCNB1 channels can directly activate pro-apoptotic signaling pathways. Hence, a more articulated picture of the pro-apoptotic role of KCNB1 is emerging in which the protein induces cell's death through distinct molecular mechanisms and activation of multiple pathways. In this review article we discuss the diverse functional, toxic and protective roles that KCNB1 channels play in the major organs where they are expressed.
Collapse
|
6
|
Rountree AM, Reed BJ, Cummings BP, Jung SR, Stanhope KL, Graham JL, Griffen SC, Hull RL, Havel PJ, Sweet IR. Loss of coupling between calcium influx, energy consumption and insulin secretion associated with development of hyperglycaemia in the UCD-T2DM rat model of type 2 diabetes. Diabetologia 2013; 56:803-13. [PMID: 23404441 PMCID: PMC3855025 DOI: 10.1007/s00125-012-2808-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/03/2012] [Indexed: 10/27/2022]
Abstract
AIMS/HYPOTHESIS Previous studies on isolated islets have demonstrated tight coupling between calcium (Ca(2+)) influx and oxygen consumption rate (OCR) that is correlated with insulin secretion rate (ISR). To explain these observations, we have proposed a mechanism whereby the activation of a highly energetic process (Ca(2+)/metabolic coupling process [CMCP]) by Ca(2+) mediates the stimulation of ISR. The aim of the study was to test whether impairment of the CMCP could play a role in the development of type 2 diabetes. METHODS Glucose- and Ca(2+)-mediated changes in OCR and ISR in isolated islets were compared with the time course of changes of plasma insulin concentrations observed during the progression to hyperglycaemia in a rat model of type-2 diabetes (the University of California at Davis type 2 diabetes mellitus [UCD-T2DM] rat). Islets were isolated from UCD-T2DM rats before, 1 week, and 3 weeks after the onset of hyperglycaemia. RESULTS Glucose stimulation of cytosolic Ca(2+) and OCR was similar for islets harvested before and 1 week after the onset of hyperglycaemia. In contrast, a loss of decrement in islet OCR and ISR in response to Ca(2+) channel blockade coincided with decreased fasting plasma insulin concentrations observed in rats 3 weeks after the onset of hyperglycaemia. CONCLUSIONS/INTERPRETATION These results suggest that phenotypic impairment of diabetic islets in the UCD-T2DM rat is downstream of Ca(2+) influx and involves unregulated stimulation of the CMCP. The continuously elevated levels of CMCP induced by chronic hyperglycaemia in these islets may mediate the loss of islet function.
Collapse
Affiliation(s)
- A M Rountree
- Diabetes and Obesity Center of Excellence, University of Washington, 850 Republican Street, Seattle, WA 98109-8055, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hectors TLM, Vanparys C, Pereira-Fernandes A, Martens GA, Blust R. Evaluation of the INS-1 832/13 cell line as a beta-cell based screening system to assess pollutant effects on beta-cell function. PLoS One 2013; 8:e60030. [PMID: 23555872 PMCID: PMC3605429 DOI: 10.1371/journal.pone.0060030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/22/2013] [Indexed: 01/15/2023] Open
Abstract
Environmental pollutants have recently emerged as potential risk factors for metabolic diseases, urging systematic investigation of pollutant effects on metabolic disease processes. To enable risk assessment of these so-called metabolic disruptors the use of stable, robust and well-defined cell based screening systems has recently been encouraged. Since beta-cell (dys)functionality is central in diabetes pathophysiology, the need to develop beta-cell based pollutant screening systems is evident. In this context, the present research evaluated the strengths and weaknesses of the INS-1 832/13 pancreatic beta-cell line as diabetogenic pollutant screening system with a focus on beta-cell function. After optimization of exposure conditions, positive (exendin-4, glibenclamide) and negative (diazoxide) control compounds for acute insulin secretion responses were tested and those with the most profound effects were selected to allow potency estimations and ranking of pollutants. This was followed by a first explorative screening of acute bisphenol A and bis(2-ethylhexyl)phthalate effects. The same approach was applied for chronic exposures, focusing primarily on evaluation of acknowledged chronic stimulators (diazoxide, T0901317, exendin-4) or inhibitors (glibenclamide) of insulin secretion responses to select the most responsive ones for use as control compounds in a chronic pollutant testing framework. Our results showed that INS-1 832/13 cells responded conform previous observations regarding acute effects of control compounds on insulin secretion, while bisphenol A and bis(2-ethylhexyl)phthalate had limited acute effects. Furthermore, chronic exposure to known beta-cell reactive compounds resulted in deviating insulin secretion and insulin content profiles compared to previous reports. In conclusion, this INS-1 subclone appears to lack certain characteristics needed to respond appropriately to acute pollutant exposure or long term exposure to known beta-cell reactive compounds and thus seems to be, in our setting, inadequate as a diabetogenic pollutant screening system.
Collapse
Affiliation(s)
- Tine L M Hectors
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Antwerp, Belgium.
| | | | | | | | | |
Collapse
|
8
|
Bensellam M, Laybutt DR, Jonas JC. The molecular mechanisms of pancreatic β-cell glucotoxicity: recent findings and future research directions. Mol Cell Endocrinol 2012; 364:1-27. [PMID: 22885162 DOI: 10.1016/j.mce.2012.08.003] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/11/2012] [Accepted: 08/01/2012] [Indexed: 02/06/2023]
Abstract
It is well established that regular physiological stimulation by glucose plays a crucial role in the maintenance of the β-cell differentiated phenotype. In contrast, prolonged or repeated exposure to elevated glucose concentrations both in vitro and in vivo exerts deleterious or toxic effects on the β-cell phenotype, a concept termed as glucotoxicity. Evidence indicates that the latter may greatly contribute to the pathogenesis of type 2 diabetes. Through the activation of several mechanisms and signaling pathways, high glucose levels exert deleterious effects on β-cell function and survival and thereby, lead to the worsening of the disease over time. While the role of high glucose-induced β-cell overstimulation, oxidative stress, excessive Unfolded Protein Response (UPR) activation, and loss of differentiation in the alteration of the β-cell phenotype is well ascertained, at least in vitro and in animal models of type 2 diabetes, the role of other mechanisms such as inflammation, O-GlcNacylation, PKC activation, and amyloidogenesis requires further confirmation. On the other hand, protein glycation is an emerging mechanism that may play an important role in the glucotoxic deterioration of the β-cell phenotype. Finally, our recent evidence suggests that hypoxia may also be a new mechanism of β-cell glucotoxicity. Deciphering these molecular mechanisms of β-cell glucotoxicity is a mandatory first step toward the development of therapeutic strategies to protect β-cells and improve the functional β-cell mass in type 2 diabetes.
Collapse
Affiliation(s)
- Mohammed Bensellam
- Université catholique de Louvain, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Brussels, Belgium
| | | | | |
Collapse
|
9
|
Lynch CJ, Zhou Q, Shyng SL, Heal DJ, Cheetham SC, Dickinson K, Gregory P, Firnges M, Nordheim U, Goshorn S, Reiche D, Turski L, Antel J. Some cannabinoid receptor ligands and their distomers are direct-acting openers of SUR1 K(ATP) channels. Am J Physiol Endocrinol Metab 2012; 302:E540-51. [PMID: 22167524 PMCID: PMC3311290 DOI: 10.1152/ajpendo.00250.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Here, we examined the chronic effects of two cannabinoid receptor-1 (CB1) inverse agonists, rimonabant and ibipinabant, in hyperinsulinemic Zucker rats to determine their chronic effects on insulinemia. Rimonabant and ibipinabant (10 mg·kg⁻¹·day⁻¹) elicited body weight-independent improvements in insulinemia and glycemia during 10 wk of chronic treatment. To elucidate the mechanism of insulin lowering, acute in vivo and in vitro studies were then performed. Surprisingly, chronic treatment was not required for insulin lowering. In acute in vivo and in vitro studies, the CB1 inverse agonists exhibited acute K channel opener (KCO; e.g., diazoxide and NN414)-like effects on glucose tolerance and glucose-stimulated insulin secretion (GSIS) with approximately fivefold better potency than diazoxide. Followup studies implied that these effects were inconsistent with a CB1-mediated mechanism. Thus effects of several CB1 agonists, inverse agonists, and distomers during GTTs or GSIS studies using perifused rat islets were unpredictable from their known CB1 activities. In vivo rimonabant and ibipinabant caused glucose intolerance in CB1 but not SUR1-KO mice. Electrophysiological studies indicated that, compared with diazoxide, 3 μM rimonabant and ibipinabant are partial agonists for K channel opening. Partial agonism was consistent with data from radioligand binding assays designed to detect SUR1 K(ATP) KCOs where rimonabant and ibipinabant allosterically regulated ³H-glibenclamide-specific binding in the presence of MgATP, as did diazoxide and NN414. Our findings indicate that some CB1 ligands may directly bind and allosterically regulate Kir6.2/SUR1 K(ATP) channels like other KCOs. This mechanism appears to be compatible with and may contribute to their acute and chronic effects on GSIS and insulinemia.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/agonists
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Allosteric Regulation
- Animals
- Anti-Obesity Agents/adverse effects
- Anti-Obesity Agents/chemistry
- Anti-Obesity Agents/pharmacology
- Anti-Obesity Agents/therapeutic use
- Cell Line, Transformed
- Chlorocebus aethiops
- Cricetinae
- Glucose Intolerance/chemically induced
- Glucose Intolerance/metabolism
- Humans
- Hypoglycemic Agents/adverse effects
- Hypoglycemic Agents/chemistry
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/therapeutic use
- Islets of Langerhans/drug effects
- Islets of Langerhans/metabolism
- Ligands
- Male
- Membrane Transport Modulators/adverse effects
- Membrane Transport Modulators/chemistry
- Membrane Transport Modulators/pharmacology
- Membrane Transport Modulators/therapeutic use
- Mice
- Mice, Knockout
- Mice, Obese
- Potassium Channels, Inwardly Rectifying/agonists
- Potassium Channels, Inwardly Rectifying/genetics
- Potassium Channels, Inwardly Rectifying/metabolism
- Rats
- Rats, Zucker
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptors, Drug/agonists
- Receptors, Drug/genetics
- Receptors, Drug/metabolism
- Recombinant Proteins/agonists
- Recombinant Proteins/antagonists & inhibitors
- Recombinant Proteins/metabolism
- Stereoisomerism
- Sulfonylurea Receptors
Collapse
Affiliation(s)
- Christopher J Lynch
- Dept. of Cellular & Molecular Physiology, Pennsylvania State College of Medicine, Hershey, PA 17033, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ritzel RA, Jayasinghe S, Hansen JB, Sturis J, Langen R, Butler PC. Beta-cell selective K(ATP)-channel activation protects beta-cells and human islets from human islet amyloid polypeptide induced toxicity. ACTA ACUST UNITED AC 2010; 165:158-62. [PMID: 20619299 DOI: 10.1016/j.regpep.2010.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 06/07/2010] [Accepted: 06/28/2010] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND AIMS In type 2 diabetes mellitus (T2DM) chronic beta-cell stimulation and oligomers of aggregating human islet amyloid polypeptide (h-IAPP) cause beta-cell dysfunction and induce beta-cell apoptosis. Therefore we asked whether beta-cell rest prevents h-IAPP induced beta-cell apoptosis. MATERIALS AND METHODS We induced beta-cell rest with a beta-cell selective K(ATP)-channel opener (K(ATP)CO) in RIN cells and human islets exposed to h-IAPP versus r-IAPP. Apoptosis was quantified by time-lapse video microscopy (TLVM) in RIN cells and TUNEL staining in human islets. Whole islets were also studied with TLVM over 48h to examine islet architecture. RESULTS In RIN cells and human islets h-IAPP induced apoptosis (p<0.001 h-IAPP versus r-IAPP). Concomitant incubation with K(ATP)CO inhibited apoptosis (p<0.001). K(ATP)CO also reduced h-IAPP induced expansion of whole islets (disintegration of islet architecture) by ~70% (p<0.05). Thioflavin-binding assays show that K(ATP)CO does not directly inhibit amyloid formation. CONCLUSIONS Opening of K(ATP)-channels reduces beta-cell vulnerability to apoptosis induced by h-IAPP oligomers. This effect is not due to a direct interaction of K(ATP)CO with h-IAPP, but might be mediated through hyperpolarization of the beta-cell membrane induced by opening of K(ATP)-channels. Induction of beta-cell rest with beta-cell selective K(ATP)-channel openers may provide a strategy to protect beta-cells from h-IAPP induced apoptosis and to prevent beta-cell deficiency in T2DM.
Collapse
Affiliation(s)
- Robert A Ritzel
- Larry Hillblom Islet Research Center, UCLA David Geffen School of Medicine, Los Angeles, CA 90095-7073, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Talchai C, Lin HV, Kitamura T, Accili D. Genetic and biochemical pathways of beta-cell failure in type 2 diabetes. Diabetes Obes Metab 2009; 11 Suppl 4:38-45. [PMID: 19817787 DOI: 10.1111/j.1463-1326.2009.01115.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We review mechanisms of beta-cell failure in type 2 diabetes. A wealth of information indicates that it is caused by impaired insulin secretion and decreased beta-cell mass. Interestingly, there appears to be a link between these two mechanisms. The earliest reaction to peripheral insulin resistance is an increase in insulin production, owing primarily to increased secretion, and to a lesser extent to decreased clearance. Experimental animal models indicate that hyperinsulinaemia promotes an increase in beta-cell mass, largely via increased beta-cell replication. In contrast, following the onset of overt diabetes, there is a slowly progressive loss of beta-cell function and mass, both in animal models and in diabetic humans. It is of great interest that most diabetes-associated genes identified in genome-wide association studies appear to be enriched in the beta-cell and to have the potential to regulate mass and/or function. Here, we review evidence derived from experimental animal models to unravel the mechanisms underlying beta-cell dysfunction. We focus primarily on signalling pathways, as opposed to nutrient sensing, and specifically on the notion that insulin and growth factor signalling via Foxo1 in pancreatic beta-cells links insulin secretion with cellular proliferation and survival.
Collapse
Affiliation(s)
- C Talchai
- Naomi Berrie Diabetes Center, Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | | | | | | |
Collapse
|
12
|
Marcora SM. Commentaries on Viewpoint: Evidence that reduced skeletal muscle recruitment explains the lactate paradox during exercise at high altitude. J Appl Physiol (1985) 2009; 106:743-4. [DOI: 10.1152/japplphysiol.zdg-8397-vpcomm.2008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
13
|
Affiliation(s)
- Rebecca J Brown
- Clinical Endocrinology Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
14
|
Palmitate-induced beta-cell dysfunction is associated with excessive NO production and is reversed by thiazolidinedione-mediated inhibition of GPR40 transduction mechanisms. PLoS One 2008; 3:e2182. [PMID: 18478115 PMCID: PMC2366067 DOI: 10.1371/journal.pone.0002182] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 03/13/2008] [Indexed: 11/19/2022] Open
Abstract
Background Type 2 diabetes often displays hyperlipidemia. We examined palmitate effects on pancreatic islet function in relation to FFA receptor GPR40, NO generation, insulin release, and the PPARγ agonistic thiazolidinedione, rosiglitazone. Principal Findings Rosiglitazone suppressed acute palmitate-stimulated GPR40-transduced PI hydrolysis in HEK293 cells and insulin release from MIN6c cells and mouse islets. Culturing islets 24 h with palmitate at 5 mmol/l glucose induced β-cell iNOS expression as revealed by confocal microscopy and increased the activities of ncNOS and iNOS associated with suppression of glucose-stimulated insulin response. Rosiglitazone reversed these effects. The expression of iNOS after high-glucose culturing was unaffected by rosiglitazone. Downregulation of GPR40 by antisense treatment abrogated GPR40 expression and suppressed palmitate-induced iNOS activity and insulin release. Conclusion We conclude that, in addition to mediating acute FFA-stimulated insulin release, GPR40 is an important regulator of iNOS expression and dysfunctional insulin release during long-term exposure to FFA. The adverse effects of palmitate were counteracted by rosiglitazone at GPR40, suggesting that thiazolidinediones are beneficial for β-cell function in hyperlipidemic type 2 diabetes.
Collapse
|
15
|
|
16
|
Abstract
Forkhead proteins, and FoxO1 in particular, play a significant role in regulating whole body energy metabolism. Glucose homeostasis is achieved by adjusting endogenous glucose production as well as glucose uptake by peripheral tissues in response to insulin. In the fasted state, the liver is primarily responsible for maintaining glucose levels, with FoxO1 playing a key role in promoting the expression of gluconeogenic enzymes. Following feeding, pancreatic beta cells secrete insulin, which promotes the uptake of glucose by peripheral tissues including skeletal muscle and adipose tissue, and can in part suppress gluconeogenic enzyme expression in the liver. In addition to directly regulating metabolism, FoxO1 also plays a role in the formation of both adipose tissue and skeletal muscle, two major organs that are critical for maintaining energy homeostasis. The importance of FoxO1 in energy homeostasis is particularly striking under conditions of metabolic dysfunction or insulin resistance. In obese or diabetic states, FoxO1-dependent gene expression promotes some of the deleterious characteristics associated with these conditions, including hyperglycemia and glucose intolerance. In addition, the increase in pancreatic beta cell mass that normally occurs in response to a rise in insulin demand is blunted by nuclear FoxO1 expression. However, under these same pathophysiological conditions, FoxO1 expression may help drive the expression of genes involved in combating oxidative stress, thereby preserving cellular function. FoxO1 may also be involved in promoting the switch from carbohydrate to fatty acid as the major energy source during starvation.
Collapse
|
17
|
Leung YM, Kwan EP, Ng B, Kang Y, Gaisano HY. SNAREing voltage-gated K+ and ATP-sensitive K+ channels: tuning beta-cell excitability with syntaxin-1A and other exocytotic proteins. Endocr Rev 2007; 28:653-63. [PMID: 17878408 DOI: 10.1210/er.2007-0010] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The three SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, syntaxin, SNAP25 (synaptosome-associated protein of 25 kDa), and synaptobrevin, constitute the minimal machinery for exocytosis in secretory cells such as neurons and neuroendocrine cells by forming a series of complexes prior to and during vesicle fusion. It was subsequently found that these SNARE proteins not only participate in vesicle fusion, but also tether with voltage-dependent Ca(2+) channels to form an excitosome that precisely regulates calcium entry at the site of exocytosis. In pancreatic islet beta-cells, ATP-sensitive K(+) (K(ATP)) channel closure by high ATP concentration leads to membrane depolarization, voltage-dependent Ca(2+) channel opening, and insulin secretion, whereas subsequent opening of voltage-gated K(+) (Kv) channels repolarizes the cell to terminate exocytosis. We have obtained evidence that syntaxin-1A physically interacts with Kv2.1 (the predominant Kv in beta-cells) and the sulfonylurea receptor subunit of beta-cell K(ATP) channel to modify their gating behaviors. A model has proposed that the conformational changes of syntaxin-1A during exocytosis induce distinct functional modulations of K(ATP) and Kv2.1 channels in a manner that optimally regulates cell excitability and insulin secretion. Other proteins involved in exocytosis, such as Munc-13, tomosyn, rab3a-interacting molecule, and guanyl nucleotide exchange factor II, have also been implicated in direct or indirect regulation of beta-cell ion channel activities and excitability. This review discusses this interesting aspect that exocytotic proteins not only promote secretion per se, but also fine-tune beta-cell excitability via modulation of ion channel gating.
Collapse
Affiliation(s)
- Yuk M Leung
- Departmnet of Physiology, China Medical University, Taichung 40402, Taiwan.
| | | | | | | | | |
Collapse
|
18
|
Ng B, Kang Y, Elias CL, He Y, Xie H, Hansen JB, Wahl P, Gaisano HY. The actions of a novel potent islet beta-cell specific ATP-sensitive K+ channel opener can be modulated by syntaxin-1A acting on sulfonylurea receptor 1. Diabetes 2007; 56:2124-34. [PMID: 17496234 DOI: 10.2337/db07-0030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Islet beta-cell-specific ATP-sensitive K(+) (K(ATP)) channel openers thiadiazine dioxides induce islet rest to improve insulin secretion, but their molecular basis of action remains unclear. We reported that syntaxin-1A binds nucleotide binding folds of sulfonylurea receptor 1 (SUR1) in beta-cells to inhibit K(ATP) channels. As a strategy to elucidate the molecular mechanism of action of these K(ATP) channel openers, we explored the possibility that 6-chloro-3-(1-methylcyclobutyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide (NNC55-0462) might influence syntaxin-1A-SUR1 interactions or vice versa. Whole-cell and inside-out patch-clamp electrophysiology was used to examine the effects of glutathione S-transferase (GST)-syntaxin-1A dialysis or green fluorescence protein/syntaxin-1A cotransfection on NNC55-0462 actions. In vitro pull-down binding studies were used to examine NNC55-0462 influence on syntaxin-1A-SUR1 interactions. Dialysis of GST-syntaxin-1A into the cell cytoplasm reduced both potency and efficacy of extracellularly perfused NNC55-0462 in a HEK cell line stably expressing Kir6.2/SUR1 (BA8 cells) and in rat islet beta-cells. Moreover, inside-out membrane patches excised from BA8 cells showed that both GST-syntaxin-1A and its H3 domain inhibited K(ATP) channels previously activated by NNC55-0462. This action on K(ATP) channels is isoform-specific to syntaxin-1A because syntaxin-2 was without effect. Furthermore, the parent compound diazoxide showed similar sensitivity to GST-syntaxin-1A inhibition. NNC55-0462, however, did not influence syntaxin-1A-SUR1 binding interaction. Our results demonstrated that syntaxin-1A interactions with SUR1 at its cytoplasmic domains can modulate the actions of the K(ATP) channel openers NNC55-0462 and diazoxide on K(ATP) channels. The reduced levels of islet syntaxin-1A in diabetes would thus be expected to exert a positive influence on the therapeutic effects of this class of K(ATP) channel openers.
Collapse
Affiliation(s)
- Betty Ng
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Juric D, Wojciechowski P, Das DK, Netticadan T. Prevention of concentric hypertrophy and diastolic impairment in aortic-banded rats treated with resveratrol. Am J Physiol Heart Circ Physiol 2007; 292:H2138-43. [PMID: 17488730 DOI: 10.1152/ajpheart.00852.2006] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was designed to examine the effects of the antioxidant resveratrol on cardiac structure and function in pressure overload (PO)-induced cardiac hypertrophy. Male Sprague-Dawley rats were subjected to sham operation and the aortic banding procedure. A subgroup of sham control and aortic-banded rats were treated with resveratrol for 2 wk after surgery. Echocardiographic analysis of cardiac structure and function along with Western blot analysis of endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), and redox factor-1 (ref-1) were performed in all groups after 4 wk of surgery. Banded rats showed significantly increased left ventricle-to-body weight ratio. Echocardiographic analysis showed that the interventricular septal wall thickness and left ventricular posterior wall thickness at systole and diastole were significantly increased in banded rats. Also, a significant increase in isovolumic relaxation time was observed in banded rats. Measured eNOS, iNOS, and ref-1 protein levels were significantly reduced in banded rats. Resveratrol treatment prevented the above changes in cardiac structure, function, and protein expression in banded rats. Aortic banding after 4 wk resulted in concentric remodeling and impaired contractile function due to PO on the heart. The 2-wk treatment with resveratrol was found to abolish PO-induced cardiac hypertrophy. Resveratrol may therefore be beneficial against PO-induced cardiac hypertrophy found in clinical settings of hypertension and aortic valve stenosis.
Collapse
Affiliation(s)
- Danijel Juric
- Cardiovascular Research Center, University of Connecticut School of Medicine, Farmington, CT 06030-1110, USA
| | | | | | | |
Collapse
|
20
|
Ma Z, Portwood N, Brodin D, Grill V, Björklund A. Effects of diazoxide on gene expression in rat pancreatic islets are largely linked to elevated glucose and potentially serve to enhance beta-cell sensitivity. Diabetes 2007; 56:1095-106. [PMID: 17229937 DOI: 10.2337/db06-0322] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Diazoxide enhances glucose-induced insulin secretion from beta-cells through mechanisms that are not fully elucidated. Here, we used microarray analysis (Affymetrix) to investigate effects of diazoxide. Pancreatic islets were cultured overnight at 27, 11, or 5.5 mmol/l glucose with or without diazoxide. Inclusion of diazoxide upregulated altogether 211 genes (signal log(2) ratio > or =0.5) and downregulated 200 genes (signal log(2) ratio -0.5 or lower), and 92% of diazoxide's effects (up- and downregulation) were observed only after coculture with 11 or 27 mmol/l glucose. We found that 11 mmol/l diazoxide upregulated 97 genes and downregulated 21 genes. Increasing the glucose concentration to 27 mmol/l markedly shifted these proportions toward downregulation (101 genes upregulated and 160 genes downregulated). At 27 mmol/l glucose, most genes downregulated by diazoxide were oppositely affected by glucose (80%). Diazoxide influenced expression of several genes central to beta-cell metabolism. Diazoxide downregulated genes of fatty acid oxidation, upregulated genes of fatty acid synthesis, and downregulated uncoupling protein 2 and lactic acid dehydrogenase. Diazoxide upregulated certain genes known to support beta-cell functionality, such as NKX6.1 and PDX1. Long-term elevated glucose is permissive for most of diazoxide's effects on gene expression, the proportion of effects shifting to downregulation with increasing glucose concentration. Effects of diazoxide on gene expression could serve to enhance beta-cell functionality during continuous hyperglycemia.
Collapse
Affiliation(s)
- Zuheng Ma
- Endocrine and Diabetes Unit, Department of Molecular Medicine and Surgery, Karolinska Hospital, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
21
|
Dubois M, Vacher P, Roger B, Huyghe D, Vandewalle B, Kerr-Conte J, Pattou F, Moustaïd-Moussa N, Lang J. Glucotoxicity inhibits late steps of insulin exocytosis. Endocrinology 2007; 148:1605-14. [PMID: 17204559 DOI: 10.1210/en.2006-1022] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Prolonged exposure of beta-cells to high glucose (glucotoxicity) diminishes insulin secretion in response to glucose and has been linked to altered generation of metabolism-secretion coupling factors. We have investigated whether glucotoxicity may also alter calcium handling and late steps in secretion such as exocytosis. Clonal INS-1E beta-cells cultured at high glucose (20 or 30 mM vs. 5.5 mM) for 72 h exhibited elevated basal intracellular calcium ([Ca2+]i), which was KATP-channel dependent and due to long-term activation of protein kinase A. An increased amplitude and shortened duration of depolarization-evoked rises in [Ca2+]i were apparent. These changes were probably linked to the observed increased filling of intracellular stores and to short-term activation of protein kinase A. Insulin secretion was reduced not only by acute stimulation with either glucose or KCl but more importantly by direct calcium stimulation of permeabilized cells. These findings indicate a defect in the final steps of exocytosis. To confirm this, we measured expression levels of some 30 proteins implicated in trafficking/exocytosis of post-Golgi vesicles. Several proteins required for calcium-induced exocytosis of secretory granules were down-regulated, such as the soluble N-ethylmaleimide-sensitive factor-sensitive factor attachment receptor (SNARE) proteins VAMP-2 [vesicle (v)-SNARE, vesicle-associated membrane protein 2] and syntaxin 1 as well as complexin. VAMP-2 was also reduced in human islets. In contrast, cell immunostaining and expression levels of several fluorescent proteins suggested that other post-trans-Golgi trafficking steps and compartments are preserved and that cells were not degranulated. Thus, these studies indicate that, in addition to known metabolic changes, glucotoxicity impedes generation of signals for secretion and diminishes the efficiency of late steps in exocytosis.
Collapse
Affiliation(s)
- Mathilde Dubois
- Université de Bordeaux, Cell Biology Program, and Institut National de la Santé et de la Recherche Médicale E347, Pessac, France
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hinke SA, Martens GA, Cai Y, Finsi J, Heimberg H, Pipeleers D, Van de Casteele M. Methyl succinate antagonises biguanide-induced AMPK-activation and death of pancreatic beta-cells through restoration of mitochondrial electron transfer. Br J Pharmacol 2007; 150:1031-43. [PMID: 17339833 PMCID: PMC2013909 DOI: 10.1038/sj.bjp.0707189] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Two mechanisms have been proposed to explain the insulin-sensitising properties of metformin in peripheral tissues: (a) inhibition of electron transport chain complex I, and (b) activation of the AMP activated protein kinase (AMPK). However the relationship between these mechanisms and their contribution to beta-cell death and dysfunction in vitro, are currently unclear. EXPERIMENTAL APPROACH The effects of biguanides (metformin and phenformin) were tested on MIN6 beta-cells and primary FACS-purified rat beta-cells. Cell metabolism was assessed biochemically and by FACS analysis, and correlated with AMPK phosphorylation state and cell viability, with or without fuel substrates. KEY RESULTS In MIN6 cells, metformin reduced mitochondrial complex I activity by up to 44% and a 25% net reduction in mitochondrial reducing potential. In rat beta-cells, metformin caused NAD(P)H accumulation above maximal glucose-inducible levels, mimicking the effect of rotenone. Drug exposure caused phosphorylation of AMPK on Thr(172) in MIN6 cell extracts, indicative of kinase activation. Methyl succinate, a complex II substrate, appeared to bypass metformin blockade of complex I. This resulted in reduced phosphorylation of AMPK, establishing a link between biguanide-induced mitochondrial inhibition and AMPK activation. Corresponding assessment of cell death indicated that methyl succinate decreased biguanide toxicity to beta-cells in vitro. CONCLUSIONS AND IMPLICATIONS AMPK activation can partly be attributed to metformin's inhibitory action on mitochondrial complex I. Anaplerotic fuel metabolism via complex II rescued beta-cells from metformin-associated toxicity. We propose that utilisation of anaplerotic nutrients may reconcile in vitro and in vivo effects of metformin on the pancreatic beta-cell.
Collapse
Affiliation(s)
- S A Hinke
- Diabetes Research Center and Juvenile Diabetes Research Center for Beta Cell Therapy in Europe, Brussels Free University (VUB) Laarbeeklaan 103, Brussels, Belgium
| | - G A Martens
- Diabetes Research Center and Juvenile Diabetes Research Center for Beta Cell Therapy in Europe, Brussels Free University (VUB) Laarbeeklaan 103, Brussels, Belgium
| | - Y Cai
- Diabetes Research Center and Juvenile Diabetes Research Center for Beta Cell Therapy in Europe, Brussels Free University (VUB) Laarbeeklaan 103, Brussels, Belgium
| | - J Finsi
- Diabetes Research Center and Juvenile Diabetes Research Center for Beta Cell Therapy in Europe, Brussels Free University (VUB) Laarbeeklaan 103, Brussels, Belgium
| | - H Heimberg
- Diabetes Research Center and Juvenile Diabetes Research Center for Beta Cell Therapy in Europe, Brussels Free University (VUB) Laarbeeklaan 103, Brussels, Belgium
| | - D Pipeleers
- Diabetes Research Center and Juvenile Diabetes Research Center for Beta Cell Therapy in Europe, Brussels Free University (VUB) Laarbeeklaan 103, Brussels, Belgium
| | - M Van de Casteele
- Diabetes Research Center and Juvenile Diabetes Research Center for Beta Cell Therapy in Europe, Brussels Free University (VUB) Laarbeeklaan 103, Brussels, Belgium
- Author for correspondence:
| |
Collapse
|
23
|
Huang Q, Bu S, Yu Y, Guo Z, Ghatnekar G, Bu M, Yang L, Lu B, Feng Z, Liu S, Wang F. Diazoxide prevents diabetes through inhibiting pancreatic beta-cells from apoptosis via Bcl-2/Bax rate and p38-beta mitogen-activated protein kinase. Endocrinology 2007; 148:81-91. [PMID: 17053028 DOI: 10.1210/en.2006-0738] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Increased apoptosis of pancreatic beta-cells plays an important role in the occurrence and development of type 2 diabetes. We examined the effect of diazoxide on pancreatic beta-cell apoptosis and its potential mechanism in Otsuka Long Evans Tokushima Fatty (OLETF) rats, an established animal model of human type 2 diabetes, at the prediabetic and diabetic stages. We found a significant increase with age in the frequency of apoptosis, the sequential enlargement of islets, and the proliferation of the connective tissue surrounding islets, accompanied with defective insulin secretory capacity and increased blood glucose in untreated OLETF rats. In contrast, diazoxide treatment (25 mg.kg(-1).d(-1), administered ip) inhibited beta-cell apoptosis, ameliorated changes of islet morphology and insulin secretory function, and increased insulin stores significantly in islet beta-cells whether diazoxide was used at the prediabetic or diabetic stage. Linear regression showed the close correlation between the frequency of apoptosis and hyperglycemia (r = 0.913; P < 0.0001). Further study demonstrated that diazoxide up-regulated Bcl-2 expression and p38beta MAPK, which expressed at very low levels due to the high glucose, but not c-jun N-terminal kinase and ERK. Hence, diazoxide may play a critical role in protection from apoptosis. In this study, we demonstrate that diazoxide prevents the onset and development of diabetes in OLETF rats by inhibiting beta-cell apoptosis via increasing p38beta MAPK, elevating Bcl-2/Bax ratio, and ameliorating insulin secretory capacity and action.
Collapse
Affiliation(s)
- Qin Huang
- Department of Endocrinology, Changhai Hospital, Shanghai 200433, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Brage S, Ekelund U, Brage N, Hennings MA, Froberg K, Franks PW, Wareham NJ. Alterations of blood pressure in type 1 diabetic children and adolescents. J Appl Physiol (1985) 2006; 103:682-92. [PMID: 17463305 DOI: 10.1152/japplphysiol.00092.2006] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to assess the association between metabolic control, microalbuminuria, and diabetic nephropathy with ambulatory blood pressure monitoring (ABPM) in normotensive individuals with type 1 diabetes mellitus (DM). ABPM was undertaken in 68 normotensive type 1 diabetic patients with a mean age of 14.4+/-4.2 years. Microalbuminuria was diagnosed on the basis of a urinary albumin excretion rate grater than 20 microg/min in two of the three 24-h urine collections. Hypertension (HT) frequency was greater in the microalbuminuric patients than normoalbuminuric patients (54 vs 17.54%, p=0.05) with ABPM. Microalbuminuric patients had a higher diastolic pressure burden than normoalbuminuric patients. There were no differences in systolic and diastolic dips between the two groups. Diastolic pressure loads in all periods showed a significant correlation with duration of diabetes, mean HbA1c from the onset of diabetes, and level of microalbuminuria. Nocturnal dipping was reduced in 41.2% of the patients. In the normoalbuminuric group 41.1% and in the microalbuminuric group 63.6% were nondippers. Our data demonstrate higher 24-h and daytime diastolic blood pressure load and loss of nocturnal dip in type 1 diabetic adolescents and children. High diastolic blood pressure burden in diabetic patients could represent a risk for nephropathy.
Collapse
Affiliation(s)
- Søren Brage
- MRC Epidemiology Unit, Cambridge CB1 9NL, UK.
| | | | | | | | | | | | | |
Collapse
|
25
|
Calbet JAL, Lundby C, Sander M, Robach P, Saltin B, Boushel R. Effects of ATP-induced leg vasodilation on VO2 peak and leg O2 extraction during maximal exercise in humans. Am J Physiol Regul Integr Comp Physiol 2006; 291:R447-53. [PMID: 16914431 DOI: 10.1152/ajpregu.00746.2005] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During maximal whole body exercise VO2 peak is limited by O2 delivery. In turn, it is though that blood flow at near-maximal exercise must be restrained by the sympathetic nervous system to maintain mean arterial pressure. To determine whether enhancing vasodilation across the leg results in higher O2 delivery and leg VO2 during near-maximal and maximal exercise in humans, seven men performed two maximal incremental exercise tests on the cycle ergometer. In random order, one test was performed with and one without (control exercise) infusion of ATP (8 mg in 1 ml of isotonic saline solution) into the right femoral artery at a rate of 80 microg.kg body mass-1.min-1. During near-maximal exercise (92% of VO2 peak), the infusion of ATP increased leg vascular conductance (+43%, P<0.05), leg blood flow (+20%, 1.7 l/min, P<0.05), and leg O2 delivery (+20%, 0.3 l/min, P<0.05). No effects were observed on leg or systemic VO2. Leg O2 fractional extraction was decreased from 85+/-3 (control) to 78+/-4% (ATP) in the infused leg (P<0.05), while it remained unchanged in the left leg (84+/-2 and 83+/-2%; control and ATP; n=3). ATP infusion at maximal exercise increased leg vascular conductance by 17% (P<0.05), while leg blood flow tended to be elevated by 0.8 l/min (P=0.08). However, neither systemic nor leg peak VO2 values where enhanced due to a reduction of O2 extraction from 84+/-4 to 76+/-4%, in the control and ATP conditions, respectively (P<0.05). In summary, the VO2 of the skeletal muscles of the lower extremities is not enhanced by limb vasodilation at near-maximal or maximal exercise in humans. The fact that ATP infusion resulted in a reduction of O2 extraction across the exercising leg suggests a vasodilating effect of ATP on less-active muscle fibers and other noncontracting tissues and that under normal conditions these regions are under high vasoconstrictor influence to ensure the most efficient flow distribution of the available cardiac output to the most active muscle fibers of the exercising limb.
Collapse
Affiliation(s)
- J A L Calbet
- Departament of Physical Education, University of Las Palmas de Gran Canaria, Canary Islands, Spain.
| | | | | | | | | | | |
Collapse
|
26
|
Yamazaki H, Philbrick W, Zawalich KC, Zawalich WS. Acute and chronic effects of glucose and carbachol on insulin secretion and phospholipase C activation: studies with diazoxide and atropine. Am J Physiol Endocrinol Metab 2006; 290:E26-E33. [PMID: 16105864 DOI: 10.1152/ajpendo.00149.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The acute and chronic effects of 20 mM glucose and 10 microM carbachol on beta-cell responses were investigated. Acute exposure of rat islets to 20 mM glucose increased glucose usage rates and resulted in a large insulin-secretory response during a dynamic perifusion. The secretory, but not the metabolic, effect of 20 mM glucose was abolished by simultaneous exposure to 100 microM diazoxide. Glucose (20 mM) significantly increased inositol phosphate (IP) accumulation, an index of phospholipase C (PLC) activation, from [(3)H]inositol-prelabeled islets. Diazoxide, but not atropine, abolished this effect as well. Unlike 20 mM glucose, 10 microM carbachol (in the presence of 5 mM glucose) increased IP accumulation but had no effect on insulin secretion or glucose (5 mM) metabolism. The IP effect was abolished by 50 microM atropine but not by diazoxide. Chronic 3-h exposure of islets to 20 mM glucose or 10 microM carbachol profoundly reduced both the insulin-secretory and PLC responses to a subsequent 20 mM glucose stimulus. The adverse effects of chronic glucose exposure were abolished by diazoxide but not by atropine. In contrast, the adverse effects of carbachol were abolished by atropine but not by diazoxide. Prior 3 h of exposure to 20 mM glucose or carbachol had no inhibitory effect on glucose metabolism. Significant secretory responses could be evoked from 20 mM glucose- or carbachol-pretreated islets by the inclusion of forskolin. These findings support the concept that an early event in the evolution of beta-cell desensitization is the impaired activation of islet PLC.
Collapse
Affiliation(s)
- Hanae Yamazaki
- Yale University School of Nursing, New Haven, CT 06536-0740, USA
| | | | | | | |
Collapse
|
27
|
Takeda S, Mochizuki S, Saini HK, Elimban V, Dhalla NS. Modification of alterations in cardiac function and sarcoplasmic reticulum by vanadate in ischemic-reperfused rat hearts. J Appl Physiol (1985) 2005; 99:999-1005. [PMID: 15879166 DOI: 10.1152/japplphysiol.00234.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To study the cardioprotective effects of vanadate on ischemia-reperfusion (I/R) injury, isolated rat hearts perfused at constant flow were subjected to global ischemia for 30 min followed by reperfusion for 30 min. In this experimental model, I/R markedly decreased ventricular developed pressure and increased end-diastolic pressure. Pretreatment of hearts with 4 microM vanadate attenuated I/R-induced cardiac dysfunction. The reduction in sarcoplasmic reticulum (SR) Ca2+ uptake and Ca2+ release, as well as SR protein contents for Ca2+-pump ATPase and Ca2+-release channel, was also prevented by vanadate. Pretreatment of hearts with an antioxidant mixture containing superoxide dismutase + catalase exerted effects similar to those of vanadate in I/R hearts. Postischemic treatment of hearts with vanadate or superoxide dismutase + catalase also had beneficial effects on I/R-induced changes in cardiac performance and SR function. Alterations in cardiac function and SR Ca2+ transport due to an oxyradical-generating system (xanthine + xanthine oxidase) or an oxidant (H2O2) were attenuated by treatment with vanadate. These results suggest that vanadate may exert beneficial effects on cardiac performance and SR function in I/R hearts because of its antioxidant action.
Collapse
Affiliation(s)
- Satoshi Takeda
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, 351 Tache Ave., Winnipeg, MB, Canada R2H 2A6
| | | | | | | | | |
Collapse
|