1
|
Giada A, Giulia G, Paola S, Silvia F. Characterization of prokineticin system in Crohn's disease pathophysiology and pain, and its modulation by alcohol abuse: A preclinical study. Biochim Biophys Acta Mol Basis Dis 2023:166791. [PMID: 37336367 DOI: 10.1016/j.bbadis.2023.166791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/21/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Crohn's disease-(CD) pathogenesis is still unknown and chronic pain is a frequent symptom in CD-patients. Identifying novel therapeutic targets and predisposing factors is a primary goal. In this regard, prokineticin system-(PKS) appears a promising target. AIMS AND METHODS TNBS-model was used. DAI, abdominal and visceral pain, and muscle strength were monitored. CD-mice were sacrificed at two times (day 7 and 14 after TNBS) in order to identify PKS involvement in CD pathophysiology and pain. PKS characterization was performed in mesenteric lymph nodes-(MLN), colon, myenteric plexus-(MP), dorsal root ganglia-(DRGs) and spinal cord-(SC). Inflammation/neuroinflammation was also assessed in the same tissues. In order to evaluate alcohol abuse as a possible trigger for CD and its effect on PKS activation, naïve mice were administered (oral-gavage) with ethanol for 10 consecutive days. PKS as well as inflammation/neuroinflammation were evaluated in MLN, colon and MP. RESULTS TNBS treated-mice showed a rapid increase in DAI, abdominal/visceral hypersensitivity and a progressive strength loss. In all tissue analysed of CD-mice, a quick and significant increase of mRNA of PKs and PKRs was observed, associated with an increase of pro-inflammatory cytokines (IL-1β, IL-6 and TNFα) and macrophage/glia markers (iba1, CD11b and GFAP) levels. In alcohol abuse model, ethanol induced in colon and MP a significant PKS activation accompanied by inflammation/neuroinflammation. CONCLUSIONS We can assume that PKS may be involved in CD development and pain. Furthermore, alcohol appears to activate PKS and may be a trigger factor for CD.
Collapse
Affiliation(s)
- Amodeo Giada
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", University of Milan, Milan, Via Vanvitelli 32, 20129 Milano, Italy.
| | - Galimberti Giulia
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", University of Milan, Milan, Via Vanvitelli 32, 20129 Milano, Italy
| | - Sacerdote Paola
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", University of Milan, Milan, Via Vanvitelli 32, 20129 Milano, Italy
| | - Franchi Silvia
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", University of Milan, Milan, Via Vanvitelli 32, 20129 Milano, Italy
| |
Collapse
|
2
|
Moser SE, Brown AM, Clark BC, Arnold WD, Baumann CW. Neuromuscular mechanisms of weakness in a mouse model of chronic alcoholic myopathy. Alcohol Clin Exp Res 2022; 46:1636-1647. [PMID: 35869821 PMCID: PMC9804636 DOI: 10.1111/acer.14907] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Weakness is a common clinical symptom reported in individuals with chronic alcohol use disorder. However, it remains unclear whether low strength in these individuals is directly related to excessive ethanol intake, other deleterious factors (lifestyle, environment, genetics, etc.), or a combination of both. Therefore, we examined whether (and how) ethanol reduces the muscle's force-producing capacity using a controlled in vivo preclinical mouse model of excessive ethanol intake. METHODS To establish whether chronic ethanol consumption causes weakness, C57BL/6 female mice consumed 20% ethanol for 40 weeks (following a 2-week ethanol ramping period), and various measures of muscular force were quantified. Functional measures included all-limb grip strength and in vivo contractility of the left ankle dorsiflexors and plantarflexors. Once confirmed that mice consuming ethanol were weaker than age-matched controls, we sought to determine the potential neuromuscular mechanisms of muscle dysfunction by assessing neuromuscular excitation, muscle quantity, and muscle quality. RESULTS Mice consuming chronic ethanol were 13 to 16% weaker (p ≤ 0.016) than controls (i.e., mice consuming 100% water) with the negative impact of ethanol on voluntary grip strength (ƞ2 = 0.603) being slightly larger than that of electrically stimulated muscle contractility (ƞ2 = 0.482). Relative to controls, lean mass and muscle wet masses were 9 to 16% lower in ethanol-consuming mice (p ≤ 0.048, ƞ2 ≥ 0.268). No significant changes were observed between groups for indices of neuromuscular excitation at the level of the motor unit, neuromuscular junction, or plasmalemma (p ≥ 0.259, ƞ2 ≤ 0.097), nor was muscle quality altered after 40 weeks of 20% ethanol consumption (p ≥ 0.695, ƞ2 ≤ 0.012). CONCLUSIONS Together, these findings establish that chronic ethanol consumption in mice induces a substantial weakness in vivo that we interpret to be primarily due to muscle atrophy (i.e., reduced muscle quantity) and possibly, to a lesser degree, loss of central neural drive.
Collapse
Affiliation(s)
- Samantha E. Moser
- Honors Tutorial CollegeOhio UniversityAthensOhioUSA,Ohio Musculoskeletal and Neurological Institute (OMNI)Ohio UniversityAthensOhioUSA
| | - Austin M. Brown
- Honors Tutorial CollegeOhio UniversityAthensOhioUSA,Ohio Musculoskeletal and Neurological Institute (OMNI)Ohio UniversityAthensOhioUSA
| | - Brian C. Clark
- Ohio Musculoskeletal and Neurological Institute (OMNI)Ohio UniversityAthensOhioUSA,Department of Biomedical SciencesOhio UniversityAthensOhioUSA
| | - W. David Arnold
- Department of NeurologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA,Department of Physical Medicine and RehabilitationThe Ohio State University Wexner Medical CenterColumbusOhioUSA,Department of NeuroscienceThe Ohio State University Wexner Medical CenterColumbusOhioUSA,Department of Physiology and Cell BiologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Cory W. Baumann
- Ohio Musculoskeletal and Neurological Institute (OMNI)Ohio UniversityAthensOhioUSA,Department of Biomedical SciencesOhio UniversityAthensOhioUSA
| |
Collapse
|
3
|
Zhu L, Li HD, Xu JJ, Li JJ, Cheng M, Meng XM, Huang C, Li J. Advancements in the Alcohol-Associated Liver Disease Model. Biomolecules 2022; 12:biom12081035. [PMID: 36008929 PMCID: PMC9406170 DOI: 10.3390/biom12081035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
Alcohol-associated liver disease (ALD) is an intricate disease that results in a broad spectrum of liver damage. The presentation of ALD can include simple steatosis, steatohepatitis, liver fibrosis, cirrhosis, and even hepatocellular carcinoma (HCC). Effective prevention and treatment strategies are urgently required for ALD patients. In previous decades, numerous rodent models were established to investigate the mechanisms of alcohol-associated liver disease and explore therapeutic targets. This review provides a summary of the latest developments in rodent models, including those that involve EtOH administration, which will help us to understand the characteristics and causes of ALD at different stages. In addition, we discuss the pathogenesis of ALD and summarize the existing in vitro models. We analyse the pros and cons of these models and their translational relevance and summarize the insights that have been gained regarding the mechanisms of alcoholic liver injury.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiao-Ming Meng
- Correspondence: (X.-M.M.); (C.H.); (J.L.); Tel.: +86-551-65161001 (J.L.); Fax: +86-551-65161001 (J.L.)
| | - Cheng Huang
- Correspondence: (X.-M.M.); (C.H.); (J.L.); Tel.: +86-551-65161001 (J.L.); Fax: +86-551-65161001 (J.L.)
| | - Jun Li
- Correspondence: (X.-M.M.); (C.H.); (J.L.); Tel.: +86-551-65161001 (J.L.); Fax: +86-551-65161001 (J.L.)
| |
Collapse
|
4
|
Gut Microbiota: Target for Modulation of Gut-Liver-Adipose Tissue Axis in Ethanol-Induced Liver Disease. Mediators Inflamm 2022; 2022:4230599. [PMID: 35633655 PMCID: PMC9142314 DOI: 10.1155/2022/4230599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/19/2022] [Accepted: 04/20/2022] [Indexed: 02/06/2023] Open
Abstract
Consumption of alcohol (ethanol) in various forms has been an integral part of human civilization. Since ages, it also has been an important cause of death and health impairment across the globe. Ethanol-mediated liver injury, known as alcoholic liver disease (ALD), is caused by surplus intake of alcohol. Several studies have proposed the different pathways that may be lead to ALD. One of the factors that may affect the cytochrome P450 (CYP2E1) metabolic pathway is gut dysbiosis. The gut microbiota produces various compounds that play an important role in regulating healthy functions of distal organs such as the adipose tissue and liver. Dysbiosis causes bacteremia, hepatic encephalopathy, and increased intestinal permeability. Recent clinical studies have found better understanding of the gut and liver axis. Another factor that may affect the ALD pathway is dysfunction of adipose tissue metabolism. Moreover, dysfunction of adipose tissue leads to ectopic fat deposition within the liver and disturbs lipid metabolism by increasing lipolysis/decreasing lipogenesis and impaired glucose tolerance of adipose tissue which leads to ectopic fat deposition within the liver. Adipokine secretion of resistin, leptin, and adiponectin is adversely modified upon prolonged alcohol consumption. In the combination of these two factors, a proinflammatory state is developed within the patient leading to the progression of ALD. Thus, the therapeutic approach for treatments and prevention for liver cirrhosis patients must be focused on the gut-liver-adipose tissue network modification with the use of probiotics, synbiotics, and prebiotics. This review is aimed at the effect of ethanol on gut and adipose tissue in both rodent and human alcoholic models.
Collapse
|
5
|
Simon L, Edwards S, Molina PE. Pathophysiological Consequences of At-Risk Alcohol Use; Implications for Comorbidity Risk in Persons Living With Human Immunodeficiency Virus. Front Physiol 2022; 12:758230. [PMID: 35115952 PMCID: PMC8804300 DOI: 10.3389/fphys.2021.758230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022] Open
Abstract
At-risk alcohol use is a significant risk factor associated with multisystemic pathophysiological effects leading to multiorgan injury and contributing to 5.3% of all deaths worldwide. The alcohol-mediated cellular and molecular alterations are particularly salient in vulnerable populations, such as people living with HIV (PLWH), diminishing their physiological reserve, and accelerating the aging process. This review presents salient alcohol-associated mechanisms involved in exacerbation of cardiometabolic and neuropathological comorbidities and their implications in the context of HIV disease. The review integrates consideration of environmental factors, such as consumption of a Western diet and its interactions with alcohol-induced metabolic and neurocognitive dyshomeostasis. Major alcohol-mediated mechanisms that contribute to cardiometabolic comorbidity include impaired substrate utilization and storage, endothelial dysfunction, dysregulation of the renin-angiotensin-aldosterone system, and hypertension. Neuroinflammation and loss of neurotrophic support in vulnerable brain regions significantly contribute to alcohol-associated development of neurological deficits and alcohol use disorder risk. Collectively, evidence suggests that at-risk alcohol use exacerbates cardiometabolic and neurocognitive pathologies and accelerates biological aging leading to the development of geriatric comorbidities manifested as frailty in PLWH.
Collapse
|
6
|
Santos-Molina L, Herrerias A, Zawatsky CN, Gunduz-Cinar O, Cinar R, Iyer MR, Wood CM, Lin Y, Gao B, Kunos G, Godlewski G. Effects of a Peripherally Restricted Hybrid Inhibitor of CB1 Receptors and iNOS on Alcohol Drinking Behavior and Alcohol-Induced Endotoxemia. Molecules 2021; 26:5089. [PMID: 34443679 PMCID: PMC8399901 DOI: 10.3390/molecules26165089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022] Open
Abstract
Alcohol consumption is associated with gut dysbiosis, increased intestinal permeability, endotoxemia, and a cascade that leads to persistent systemic inflammation, alcoholic liver disease, and other ailments. Craving for alcohol and its consequences depends, among other things, on the endocannabinoid system. We have analyzed the relative role of central vs. peripheral cannabinoid CB1 receptors (CB1R) using a "two-bottle" as well as a "drinking in the dark" paradigm in mice. The globally acting CB1R antagonist rimonabant and the non-brain penetrant CB1R antagonist JD5037 inhibited voluntary alcohol intake upon systemic but not upon intracerebroventricular administration in doses that elicited anxiogenic-like behavior and blocked CB1R-induced hypothermia and catalepsy. The peripherally restricted hybrid CB1R antagonist/iNOS inhibitor S-MRI-1867 was also effective in reducing alcohol consumption after oral gavage, while its R enantiomer (CB1R inactive/iNOS inhibitor) was not. The two MRI-1867 enantiomers were equally effective in inhibiting an alcohol-induced increase in portal blood endotoxin concentration that was caused by increased gut permeability. We conclude that (i) activation of peripheral CB1R plays a dominant role in promoting alcohol intake and (ii) the iNOS inhibitory function of MRI-1867 helps in mitigating the alcohol-induced increase in endotoxemia.
Collapse
Affiliation(s)
- Luis Santos-Molina
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (L.S.-M.); (A.H.); (G.K.)
| | - Alexa Herrerias
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (L.S.-M.); (A.H.); (G.K.)
| | - Charles N. Zawatsky
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (C.N.Z.); (R.C.)
| | - Ozge Gunduz-Cinar
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Resat Cinar
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (C.N.Z.); (R.C.)
| | - Malliga R. Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (M.R.I.); (C.M.W.)
| | - Casey M. Wood
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (M.R.I.); (C.M.W.)
| | - Yuhong Lin
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (Y.L.); (B.G.)
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (Y.L.); (B.G.)
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (L.S.-M.); (A.H.); (G.K.)
| | - Grzegorz Godlewski
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (L.S.-M.); (A.H.); (G.K.)
| |
Collapse
|
7
|
Evangelou E, Suzuki H, Bai W, Pazoki R, Gao H, Matthews PM, Elliott P. Alcohol consumption in the general population is associated with structural changes in multiple organ systems. eLife 2021; 10:65325. [PMID: 34059199 PMCID: PMC8192119 DOI: 10.7554/elife.65325] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Excessive alcohol consumption is associated with damage to various organs, but its multi-organ effects have not been characterised across the usual range of alcohol drinking in a large general population sample. Methods: We assessed global effect sizes of alcohol consumption on quantitative magnetic resonance imaging phenotypic measures of the brain, heart, aorta, and liver of UK Biobank participants who reported drinking alcohol. Results: We found a monotonic association of higher alcohol consumption with lower normalised brain volume across the range of alcohol intakes (–1.7 × 10−3 ± 0.76 × 10−3 per doubling of alcohol consumption, p=3.0 × 10−14). Alcohol consumption was also associated directly with measures of left ventricular mass index and left ventricular and atrial volume indices. Liver fat increased by a mean of 0.15% per doubling of alcohol consumption. Conclusions: Our results imply that there is not a ‘safe threshold’ below which there are no toxic effects of alcohol. Current public health guidelines concerning alcohol consumption may need to be revisited. Funding: See acknowledgements.
Collapse
Affiliation(s)
- Evangelos Evangelou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom.,Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Hideaki Suzuki
- Department of Cardiovascular Medicine, Tohoku University Hospital, Sendai, Japan.,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Wenjia Bai
- Department of Brain Sciences, Imperial College London, London, United Kingdom.,Data Science Institute, Imperial College London, London, United Kingdom
| | - Raha Pazoki
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom.,Division of Biomedical Sciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom
| | - He Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom.,MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College London, London, United Kingdom.,UK Dementia Research Institute at Imperial College London, London, United Kingdom.,National Institute for Health Research Imperial College Biomedical Research Centre, Imperial College London, London, United Kingdom
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom.,MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom.,UK Dementia Research Institute at Imperial College London, London, United Kingdom.,National Institute for Health Research Imperial College Biomedical Research Centre, Imperial College London, London, United Kingdom.,British Heart Foundation Centre for Research Excellence, Imperial College London, London, United Kingdom
| |
Collapse
|
8
|
Effect of RGPU-260, a Novel GABA Derivative, on Functional Reserves of Rat Heart after Chronic Alcohol Intoxication. Bull Exp Biol Med 2021; 170:631-635. [PMID: 33788110 DOI: 10.1007/s10517-021-05121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Indexed: 10/21/2022]
Abstract
The effect of a new derivative of GABA, the compound RGPU-260, on the heart contractility of rats exposed to chronic alcohol intoxication (10% ethanol solution for 24 weeks) was studied. In comparison with intact rats, the alcoholized ones were characterized with smaller increments in the rates of myocardial contraction (+dP/dtmax) and relaxation (-dP/dtmax), left ventricular pressure, and maximum intensity of functioning of structures during the load tests (volume load/preload, stimulation of the cardiac adrenergic receptors, and occlusion of the ascending aorta/afterload) attesting to degraded cardiac contractility function. In rats treated with RGPU-260 (daily, 25 mg/kg intragastrically during 14 days), these parameters were higher in comparison with control values indicating a positive action of the examined agent on inotropic function of the heart. Effectiveness of cardiotropic action of RGPU-260 was comparable to that of the reference drug mildronate.
Collapse
|
9
|
Chhatriya B, Sarkar P, Nath D, Ray S, Das K, Mohapatra SK, Goswami S. Pilot study identifying circulating miRNA signature specific to alcoholic chronic pancreatitis and its implication on alcohol-mediated pancreatic tissue injury. JGH OPEN 2020; 4:1079-1087. [PMID: 33319040 PMCID: PMC7731805 DOI: 10.1002/jgh3.12389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/15/2020] [Accepted: 06/28/2020] [Indexed: 11/12/2022]
Abstract
Background and Aim Alcohol exerts its effects on organs in multiple ways. Alcoholic chronic pancreatitis (ACP) is a disease in which alcohol triggers the pathological changes in pancreas, leading to chronic inflammation and fibrosis. The molecular mechanism behind these changes is not clear. Identification of key circulating miRNA changes in ACP patients and determination of the fraction that is secreted from diseased pancreas not only could serve as potential biomarker for assessing disease severity, but also could help identifying the molecular alterations prevailing in the organ precipitating the disease, to some extent. Methods We performed microRNA microarray using the Affymetrix miRNA 4.0 platform to identify differentially expressed miRNAs in serum of ACP patients as compared to alcoholic control individuals and then found out how many of them could be pancreas-specific and exosomally secreted. We further analyzed a pancreatitis-specific gene expression data set to find out the differentially expressed genes in diseased pancreas and explored the possible role of those selected miRNAs in regulation of gene expression in ACP. Results We identified 14 miRNAs differentially expressed in both serum and pancreas and also identified their experimentally validated targets. Transcription factors modulating the miRNA expression in an alcohol-dependent manner were also identified and characterized to derive the miRNA-gene-TF interaction network responsible for progression of the disease. Conclusions Differentially expressed miRNA signature demonstrated significant changes in both pro- and anti-inflammatory pathways probably balancing the chronic inflammation in the pancreas. Our findings also suggested possible involvement of pancreatic stellate cells in disease progression.
Collapse
Affiliation(s)
| | - Piyali Sarkar
- Department of Cytogenetics Tata Medical Centre Kolkata India
| | - Debashis Nath
- Department of Medicine Indira Gandhi Memorial Hospital Agartala India
| | - Sukanta Ray
- School of Digestive and Liver Diseases Institute of Post Graduate Medical Education and Research Kolkata India
| | - Kshaunish Das
- School of Digestive and Liver Diseases Institute of Post Graduate Medical Education and Research Kolkata India
| | | | | |
Collapse
|
10
|
Kondo R, Iwakiri Y. The lymphatic system in alcohol-associated liver disease. Clin Mol Hepatol 2020; 26:633-638. [PMID: 32951411 PMCID: PMC7641555 DOI: 10.3350/cmh.2020.0179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022] Open
Abstract
The lymphatic system plays vital roles in interstitial fluid balance and immune cell surveillance. The effect of alcohol on the lymphatic system is poorly understood. This review article explores the role of the lymphatic system in the pathogenesis of alcohol-related disease including alcoholic liver disease (ALD) and the therapeutic potential of targeting hepatic lymphatics for the treatment of ALD.
Collapse
Affiliation(s)
- Reiichiro Kondo
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Yasuko Iwakiri
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
11
|
Osna NA, Bhatia R, Thompson C, Batra SK, Kumar S, Cho Y, Szabo G, Molina PE, Weinman SA, Ganesan M, Kharbanda KK. Role of non-Genetic Risk Factors in Exacerbating Alcohol-related organ damage. Alcohol 2020; 87:63-72. [PMID: 32497558 PMCID: PMC7483997 DOI: 10.1016/j.alcohol.2020.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 02/08/2023]
Abstract
This review provides a summary of the symposium titled "Role of Non-Genetic Risk Factors in Exacerbating Alcohol-Related Organ Damage", which was held at the 42nd Annual Meeting of the Research Society on Alcoholism. The goals of the symposium were to provide newer insights into the role of non-genetic factors, including specific external factors, notably infectious agents or lifestyle factors, that synergistically act to exacerbate alcohol pathogenicity to generate more dramatic downstream biological defects. This summary of the symposium will benefit junior/senior basic scientists and clinicians currently investigating/treating alcohol-induced organ pathology, as well as undergraduate, graduate, and post-graduate students and fellows.
Collapse
Affiliation(s)
- Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Rakesh Bhatia
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Christopher Thompson
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Surinder K Batra
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Sushil Kumar
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Yeonhee Cho
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Gyongyi Szabo
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Patricia E Molina
- Department of Physiology, LSUHSC-New Orleans, New Orleans, LA, United States
| | - Steven A Weinman
- Department of Internal Medicine and the Liver Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States; Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
12
|
Hsu MF, Koike S, Mello A, Nagy LE, Haj FG. Hepatic protein-tyrosine phosphatase 1B disruption and pharmacological inhibition attenuate ethanol-induced oxidative stress and ameliorate alcoholic liver disease in mice. Redox Biol 2020; 36:101658. [PMID: 32769011 PMCID: PMC7408361 DOI: 10.1016/j.redox.2020.101658] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/29/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022] Open
Abstract
Alcoholic liver disease (ALD) is a major health problem and a significant cause of liver-related death. Currently, the mainstay for ALD therapy is alcohol abstinence highlighting the need to develop pharmacotherapeutic approaches. Protein-tyrosine phosphatase 1B (PTP1B) is an established regulator of hepatic functions, but its role in ALD is mostly unexplored. In this study, we used mice with liver-specific PTP1B disruption as well as pharmacological inhibition to investigate the in vivo function of this phosphatase in ALD. We report upregulation of hepatic PTP1B in the chronic plus binge mouse model and, importantly, in liver biopsies of alcoholic hepatitis patients. Also, mice with hepatic PTP1B disruption attenuated ethanol-induced injury, inflammation, and steatosis compared with ethanol-fed control animals. Moreover, PTP1B deficiency was associated with decreased ethanol-induced oxidative stress in vivo and ex vivo. Further, pharmacological modulation of oxidative balance in hepatocytes identified diminished oxidative stress as a contributor to the salutary effects of PTP1B deficiency. Notably, PTP1B pharmacological inhibition elicited beneficial effects and mitigated hepatic injury, inflammation, and steatosis caused by ethanol feeding. In summary, these findings causally link hepatic PTP1B and ALD and define a potential therapeutic target for the management of this disease.
Collapse
Affiliation(s)
- Ming-Fo Hsu
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA, 95616, USA.
| | - Shinichiro Koike
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Aline Mello
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Laura E Nagy
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Fawaz G Haj
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA, 95616, USA; Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, University of California Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
13
|
Oh KH, Sheoran S, Richmond JE, Kim H. Alcohol induces mitochondrial fragmentation and stress responses to maintain normal muscle function in Caenorhabditis elegans. FASEB J 2020; 34:8204-8216. [PMID: 32294300 DOI: 10.1096/fj.201903166r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 12/17/2022]
Abstract
Chronic excessive ethanol consumption has distinct toxic and adverse effects on a variety of tissues. In skeletal muscle, ethanol causes alcoholic myopathy, which is characterized by myofiber atrophy and the loss of muscle strength. Alcoholic myopathy is more prevalent than all inherited muscle diseases combined. Current evidence indicates that ethanol directly impairs muscle organization and function. However, the underlying mechanism by which ethanol causes toxicity in muscle is poorly understood. Here, we show that the nematode Caenorhabditis elegans exhibits the key features of alcoholic myopathy when exposed to ethanol. As in mammals, ethanol exposure impairs muscle strength and induces the expression of protective genes, including oxidative stress response genes. In addition, ethanol exposure causes the fragmentation of mitochondrial networks aligned with myofibril lattices. This ethanol-induced mitochondrial fragmentation is dependent on the mitochondrial fission factor DRP-1 (dynamin-related protein 1) and its receptor proteins on the outer mitochondrial membrane. Our data indicate that this fragmentation contributes to the activation of the mitochondrial unfolded protein response (UPR). We also found that robust, perpetual mitochondrial UPR activation effectively reduces muscle weakness caused by ethanol exposure. Our results strongly suggest that the modulation of mitochondrial stress responses may provide a method to ameliorate alcohol toxicity and damage to muscle.
Collapse
Affiliation(s)
- Kelly H Oh
- Department of Cell Biology & Anatomy, Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.,School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Seema Sheoran
- Department of Biological Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Janet E Richmond
- Department of Biological Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Hongkyun Kim
- Department of Cell Biology & Anatomy, Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.,School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
14
|
Azizi M, Abbasi N, Mohamadpour M, Bakhtiyari S, Asadi S, Shirzadpour E, Aidy A, Mohamadpour M, Amraei M. Investigating the effect of Crocus sativus L. petal hydroalcoholic extract on inflammatory and enzymatic indices resulting from alcohol use in kidney and liver of male rats. J Inflamm Res 2019; 12:269-283. [PMID: 31632125 PMCID: PMC6790211 DOI: 10.2147/jir.s216125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022] Open
Abstract
Background Studies have shown that consumption of high levels of alcohol causes many negative effects on the liver and kidneys where antioxidant ingredients can be a proper solution to reducing the resulting damages. So, the present study investigated the effect of hydroalcoholic extract of Crocus sativus L. (saffron) petal with antioxidant properties on the changes in inflammatory and enzymatic indices resulting from alcohol use in the male rats’ kidney and liver. Materials and methods After preparing the extract, LD50 was determined and high-performance liquid chromatography (HPLC) was employed to specify the type and the rate of the active ingredients of the extract. Then, 36 male Wistar rats were randomly assigned into six groups (n=6). The first group was only administered with normal saline and the second group only received ethyl alcohol 6 mL/kg/day·BW. The third and the fourth groups received ethyl alcohol 6 mL/kg/day·BW plus 167.5 and 335 mg/kg/day·BW saffron petal extract for 8 weeks. The fifth and the sixth groups received ethyl alcohol 6 mL/kg/day·BW for the first 8 weeks and were subsequently gavage fed on saffron extract for 167.5 and 335 mg/kg/day·BW, respectively, during the next 8 weeks. In the beginning and after the termination of the treatment, blood samples were collected from all rats. Results The LD50 of the extract was about 670 mg/kg. The HPLC results indicated that the extract contains important antioxidant ingredients. At the end of the study, the serum concentration of the inflammatory indices, renal enzymes, and hepatic enzymes experienced a significant reduction in all of the intervened groups compared to the negative control group (minimum significant difference: P<0.05) except for the treatment group 1. Conclusion Based on the current results, the extract has a protective effect in a dosage-dependent way and greater protective roles were documented for higher dosages.
Collapse
Affiliation(s)
- Monireh Azizi
- Department of Anatomy, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Naser Abbasi
- Biotechnology and Medicinal Plants Research Center, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran.,Department of Pharmacology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Mojtaba Mohamadpour
- Student Research Committee, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Salar Bakhtiyari
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Sirous Asadi
- Student Research Committee, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Ehsan Shirzadpour
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Ali Aidy
- Biotechnology and Medicinal Plants Research Center, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Mahmoud Mohamadpour
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Mansour Amraei
- Biotechnology and Medicinal Plants Research Center, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran.,Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
15
|
Wang Y, Li X, Zhang C, Wang H, Li Z, Zhu J, Yu Y. Selective micro-structural integrity impairment of the isthmus subregion of the corpus callosum in alcohol-dependent males. BMC Psychiatry 2019; 19:96. [PMID: 30909890 PMCID: PMC6434796 DOI: 10.1186/s12888-019-2079-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 03/15/2019] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Previous studies have provided evidence that alcohol-dependent patients have abnormality in corpus callosum (CC); however, it is unclear whether micro-structural integrity of the CC subregions is differentially affected in this disorder. METHODS In this study, a total of 39 male individuals, including 19 alcohol-dependent patients and 20 age-matched healthy controls, underwent diffusion tensor imaging (DTI). CC was reconstructed by DTI tractography and was divided into seven subregions. Multiple diffusion metrics of each subregion were compared between two groups. RESULTS Compared to healthy controls, patients exhibited increased axial diffusivity (P = 0.007), radial diffusivity (P = 0.009) and mean diffusivity (P = 0.005) in the isthmus. In addition, we observed that daily alcohol intake was correlated positively with radial diffusivity and mean diffusivity and negatively with fractional anisotropy, while abstinence time of hospitalization was negatively correlated with mean diffusivity in the patients. CONCLUSION These findings suggest a selective micro-structural integrity impairment of the corpus callosum subregions in alcohol dependence, characterized by axon and myelin alterations in the isthmus.
Collapse
Affiliation(s)
- Yajun Wang
- 0000 0004 1771 3402grid.412679.fDepartment of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui Province China
| | - Xiaohu Li
- 0000 0004 1771 3402grid.412679.fDepartment of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui Province China
| | - Cun Zhang
- 0000 0004 1771 3402grid.412679.fDepartment of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui Province China
| | - Haibao Wang
- 0000 0004 1771 3402grid.412679.fDepartment of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui Province China
| | - Zipeng Li
- 0000 0004 1771 3402grid.412679.fDepartment of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui Province China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China.
| |
Collapse
|
16
|
Khan H, Ullah H, Nabavi SM. Mechanistic insights of hepatoprotective effects of curcumin: Therapeutic updates and future prospects. Food Chem Toxicol 2018; 124:182-191. [PMID: 30529260 DOI: 10.1016/j.fct.2018.12.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 11/20/2018] [Accepted: 12/03/2018] [Indexed: 02/08/2023]
Abstract
The liver is the most essential organ of the body performing vital functions. Hepatic disorders affect the physiological and biochemical functions of the body. These disorders include hepatitis B, hepatitis C, alcoholic liver disease (ALD), nonalcoholic fatty liver disease (NAFLD), liver cirrhosis, hepatic failure and hepatocellular carcinoma (HCC). Drugs related hepatotoxicity is one of the major challenges facing by clinicians as it is a leading cause of liver failure. During post-marketing surveillance studies, detection and reporting of drug-induced hepatotoxicity may lead to drug withdrawal or warnings. Several mechanisms are involved in hepatotoxicity such as cell membrane disruption, initiating an immune response, alteration of cellular pathways of drug metabolism, accumulation of reactive oxygen species (ROS), lipid peroxidation and cell death. Curcumin, the active ingredient of turmeric and exhibits therapeutic potential for the treatment of diabetes, cardiovascular disorders and various types of cancers. Curcumin is strong anti-oxidant and anti-inflammatory effects and thus it possesses hepatoprotective properties. Despite its low bioavailability, its hepatoprotective effects have been studied in various protocols of hepatotoxicity including acetaminophen, alcohol, lindane, carbon tetrachloride (CCL4), diethylnitrosamine and heavy metals induced hepatotoxicities. This report reviews the hepatoprotective effects of curcumin with a focus on its mechanistic insights in various hepatotoxic protocols.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan.
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Seyed M Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Abstract
Patients who suffer from alcohol use disorders (AUDs) usually go through various socio-behavioral and pathophysiological changes that take place in the brain and other organs. Recently, consumption of unhealthy food and excess alcohol along with a sedentary lifestyle has become a norm in both developed and developing countries. Despite the beneficial effects of moderate alcohol consumption, chronic and/or excessive alcohol intake is reported to negatively affect the brain, liver and other organs, resulting in cell death, organ damage/failure and death. The most effective therapy for alcoholism and alcohol related comorbidities is alcohol abstinence, however, chronic alcoholic patients cannot stop drinking alcohol. Therefore, targeted therapies are urgently needed to treat such populations. Patients who suffer from alcoholism and/or alcohol abuse experience harmful effects and changes that occur in the brain and other organs. Upon stopping alcohol consumption, alcoholic patients experience acute withdrawal symptoms followed by a protracted abstinence syndrome resulting in the risk of relapse to heavy drinking. For the past few decades, several drugs have been available for the treatment of AUDs. These drugs include medications to reduce or stop severe alcohol withdrawal symptoms during alcohol detoxification as well as recovery medications to reduce alcohol craving and support abstinence. However, there is no drug that completely antagonizes the adverse effects of excessive amounts of alcohol. This review summarizes the drugs which are available and approved by the FDA and their mechanisms of action as well as the medications that are under various phases of preclinical and clinical trials. In addition, the repurposing of the FDA approved drugs, such as anticonvulsants, antipsychotics, antidepressants and other medications, to prevent alcoholism and treat AUDs and their potential target mechanisms are summarized.
Collapse
Affiliation(s)
- Mohammed Akbar
- Division of Neuroscience and Behavior, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA.
| | - Mark Egli
- Division of Neuroscience and Behavior, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - Young-Eun Cho
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - Antonio Noronha
- Division of Neuroscience and Behavior, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
18
|
Choi Y, Abdelmegeed MA, Song BJ. Preventive effects of indole-3-carbinol against alcohol-induced liver injury in mice via antioxidant, anti-inflammatory, and anti-apoptotic mechanisms: Role of gut-liver-adipose tissue axis. J Nutr Biochem 2017; 55:12-25. [PMID: 29331880 DOI: 10.1016/j.jnutbio.2017.11.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/01/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022]
Abstract
Indole-3-carbinol (I3C), found in Brassica family vegetables, exhibits antioxidant, anti-inflammatory, and anti-cancerous properties. Here, we aimed to evaluate the preventive effects of I3C against ethanol (EtOH)-induced liver injury and study the protective mechanism(s) by using the well-established chronic-plus-binge alcohol exposure model. The preventive effects of I3C were evaluated by conducting various histological, biochemical, and real-time PCR analyses in mouse liver, adipose tissue, and colon, since functional alterations of adipose tissue and intestine can also participate in promoting EtOH-induced liver damage. Daily treatment with I3C alleviated EtOH-induced liver injury and hepatocyte apoptosis, but not steatosis, by attenuating elevated oxidative stress, as evidenced by the decreased levels of hepatic lipid peroxidation, hydrogen peroxide, CYP2E1, NADPH-oxidase, and protein acetylation with maintenance of mitochondrial complex I, II, and III protein levels and activities. I3C also restored the hepatic antioxidant capacity by preventing EtOH-induced suppression of glutathione contents and mitochondrial aldehyde dehydrogenase-2 activity. I3C preventive effects were also achieved by attenuating the increased levels of hepatic proinflammatory cytokines, including IL1β, and neutrophil infiltration. I3C also attenuated EtOH-induced gut leakiness with decreased serum endotoxin levels through preventing EtOH-induced oxidative stress, apoptosis of enterocytes, and alteration of tight junction protein claudin-1. Furthermore, I3C alleviated adipose tissue inflammation and decreased free fatty acid release. Collectively, I3C prevented EtOH-induced liver injury via attenuating the damaging effect of ethanol on the gut-liver-adipose tissue axis. Therefore, I3C may also have a high potential for translational research in treating or preventing other types of hepatic injury associated with oxidative stress and inflammation.
Collapse
Affiliation(s)
- Youngshim Choi
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.
| | - Mohamed A Abdelmegeed
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.
| |
Collapse
|