1
|
Justić H, Barić A, Ratko M, Šimunić I, Radmilović M, Pongrac M, Škokić S, Dobrivojević Radmilović M. The temporal dynamic of bradykinin type 2 receptor effects reveals its neuroprotective role in the chronic phase of cerebral and retinal ischemic injury. J Cereb Blood Flow Metab 2025; 45:153-170. [PMID: 39113417 PMCID: PMC11572167 DOI: 10.1177/0271678x241270241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/31/2024] [Accepted: 06/17/2024] [Indexed: 11/20/2024]
Abstract
The activation of the bradykinin type 2 receptor is intricately involved in acute post-ischemic inflammatory responses. However, its precise role in different stages of ischemic injury, especially in the chronic phase, remains unclear. Following simultaneous cerebral and retinal ischemia, bradykinin type 2 receptor knockout mice and their controls were longitudinally monitored for 35 days via magnetic resonance imaging, fundus photography, fluorescein angiography, behavioral assessments, vascular permeability measurements, and immunohistochemistry, as well as glycemic status assessments. Without impacting the lesion size, bradykinin type 2 receptor deficiency reduced acute cerebral vascular permeability preventing the loss of pericytes and tight junctions. In the chronic phase of ischemia, however, it resulted in increased astrogliosis and cortical neuronal loss, as well as higher functional deficits. The retinal findings demonstrated a similar pattern. Bradykinin type 2 receptor deficiency delayed, but exacerbated the development of retinal necrosis, increased subacute vascular permeability, and promoted retinal ganglion cell loss in the chronic phase of ischemia. This investigation sheds light on the temporal dynamic of bradykinin type 2 receptor effects in ischemia, pointing to a therapeutic potential in the subacute and chronic phases of ischemic injury.
Collapse
Affiliation(s)
- Helena Justić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Anja Barić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Martina Ratko
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Iva Šimunić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Marin Radmilović
- Sestre milosrdnice University Hospital Center, Department of Ophthalmology, Zagreb, Croatia
| | - Marta Pongrac
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Siniša Škokić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Marina Dobrivojević Radmilović
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
2
|
An overview of kinin mediated events in cancer progression and therapeutic applications. Biochim Biophys Acta Rev Cancer 2022; 1877:188807. [PMID: 36167271 DOI: 10.1016/j.bbcan.2022.188807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022]
Abstract
Kinins are bioactive peptides generated in the inflammatory milieu of the tissue microenvironment, which is involved in cancer progression and inflammatory response. Kinins signals through activation of two G-protein coupled receptors; inducible Bradykinin Receptor B1 (B1R) and constitutive receptor B2 (B2R). Activation of kinin receptors and its cross-talk with receptor tyrosine kinases activates multiple signaling pathways, including ERK/MAPK, PI3K, PKC, and p38 pathways regulating cancer hallmarks. Perturbations of the kinin-mediated events are implicated in various aspects of cancer invasion, matrix remodeling, and metastasis. In the tumor microenvironment, kinins initiate fibroblast activation, mesenchymal stem cell interactions, and recruitment of immune cells. Albeit the precise nature of kinin function in the metastasis and tumor microenvironment are not completely clear yet, several kinin receptor antagonists show anti-metastatic potential. Here, we showcase an overview of the complex biology of kinins and their role in cancer pathogenesis and therapeutic aspects.
Collapse
|
3
|
In silico drug designing for the identification of promising antagonist hit molecules against bradykinin receptor. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Souza LV, de Almeida SS, De Meneck F, Thomazini F, Araujo RC, Franco do MC. Polymorphism of the bradykinin type 2 receptor gene modulates blood pressure profile and microvascular function in prepubescent children. Peptides 2021; 137:170491. [PMID: 33412234 DOI: 10.1016/j.peptides.2020.170491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 11/20/2022]
Abstract
Previous reports reveal that +9/-9 polymorphism of the bradykinin B2 receptor (BDKRB2) is suggestive of cardiometabolic diseases. The aim of this study was to examine the impact of BDKRB2 + 9/-9 polymorphism genotypes on the blood pressure parameters and microvascular function in prepubescent children. We screened for BDKRB2 + 9/-9 polymorphism in the DNA of 145 children (86 boys and 59 girls), and its association with body composition, blood pressure levels, biochemical parameters, and endothelial function was determined. No significant association of the BDKRB2 genotypes with gender (P=0.377), race (P=0.949) or family history of cardiovascular disease (CVD) (P=0.858) was observed. Moreover, we did not identify any interaction between BDKRB2 genotypes with a phenotype of obesity (P=0.144). Children carrying the +9/+9 genotype exhibited a significant linear trend with higher levels of systolic blood pressure and pulse pressure (P<0.001). Moreover, the presence of +9 allele resulted in a decrease of reactive hyperemia index, showing a decreasing linear trend from -9/-9 to +9/+9, wherein this parameter of endothelial function was the lowest in the +9/+9 children, intermediate in the +9/-9 children, and the highest in the -9/-9 children (P<0.001). There was a significant inverse correlation between reactive hyperemia index and systolic blood pressure (r= - 0.348, P< 0.001) and pulse pressure (r= - 0.399, P< 0.001). Our findings indicate that the +9/+9 BDKRB2 genotype was associated with high blood pressure and microvascular dysfunction in prepubescent Brazilian children.
Collapse
Affiliation(s)
- Livia Victorino Souza
- Division of Nephrology, Medicine Department, School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | | | - Franciele De Meneck
- Division of Nephrology, Medicine Department, School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Fernanda Thomazini
- Division of Translational Medicine, School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Ronaldo Carvalho Araujo
- Biophysical Department, School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Maria Carmo Franco do
- Division of Nephrology, Medicine Department, School of Medicine, Federal University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
5
|
Lau J, Rousseau J, Kwon D, Bénard F, Lin KS. A Systematic Review of Molecular Imaging Agents Targeting Bradykinin B1 and B2 Receptors. Pharmaceuticals (Basel) 2020; 13:ph13080199. [PMID: 32824565 PMCID: PMC7464927 DOI: 10.3390/ph13080199] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/22/2022] Open
Abstract
Kinins, bradykinin and kallidin are vasoactive peptides that signal through the bradykinin B1 and B2 receptors (B1R and B2R). B2R is constitutively expressed in healthy tissues and mediates responses such as vasodilation, fluid balance and retention, smooth muscle contraction, and algesia, while B1R is absent in normal tissues and is induced by tissue trauma or inflammation. B2R is activated by kinins, while B1R is activated by kinins that lack the C-terminal arginine residue. Perturbations of the kinin system have been implicated in inflammation, chronic pain, vasculopathy, neuropathy, obesity, diabetes, and cancer. In general, excess activation and signaling of the kinin system lead to a pro-inflammatory state. Depending on the disease context, agonism or antagonism of the bradykinin receptors have been considered as therapeutic options. In this review, we summarize molecular imaging agents targeting these G protein-coupled receptors, including optical and radioactive probes that have been used to interrogate B1R/B2R expression at the cellular and anatomical levels, respectively. Several of these preclinical agents, described herein, have the potential to guide therapeutic interventions for these receptors.
Collapse
Affiliation(s)
- Joseph Lau
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3 Canada
| | - Julie Rousseau
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3 Canada
| | - Daniel Kwon
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3 Canada
| | - François Bénard
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3 Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3 Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
6
|
Sriramula S. Kinin B1 receptor: A target for neuroinflammation in hypertension. Pharmacol Res 2020; 155:104715. [DOI: 10.1016/j.phrs.2020.104715] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/11/2020] [Accepted: 02/16/2020] [Indexed: 11/25/2022]
|
7
|
Swietlik EM, Gräf S, Morrell NW. The role of genomics and genetics in pulmonary arterial hypertension. Glob Cardiol Sci Pract 2020; 2020:e202013. [PMID: 33150157 PMCID: PMC7590931 DOI: 10.21542/gcsp.2020.13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Emilia M Swietlik
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom.,Addenbrooke's Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom.,Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Stefan Gräf
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom.,Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom.,NIHR BioResource for Translational Research, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom.,Addenbrooke's Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom.,Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom.,NIHR BioResource for Translational Research, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
8
|
Mesquita TRR, Miguel-dos-Santos R, Jesus ICGD, de Almeida GKM, Fernandes VA, Gomes AAL, Guatimosim S, Martins-Silva L, Ferreira AJ, Capettini LDSA, Pesquero JL, Lauton-Santos S. Ablation of B1- and B2-kinin receptors causes cardiac dysfunction through redox-nitroso unbalance. Life Sci 2019; 228:121-127. [DOI: 10.1016/j.lfs.2019.04.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 01/03/2023]
|
9
|
Nunes RAB, Lima LB, Tanaka NI, da Costa Pereira A, Krieger JE, Mansur AJ. Genetic associations of bradykinin type 2 receptor, alpha-adrenoceptors and endothelial nitric oxide synthase with blood pressure and left ventricular mass in outpatients without overt heart disease. IJC HEART & VASCULATURE 2018; 21:45-49. [PMID: 30294660 PMCID: PMC6171079 DOI: 10.1016/j.ijcha.2018.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/20/2018] [Accepted: 09/11/2018] [Indexed: 11/28/2022]
Abstract
Background Physiological pathways such as bradykinin, renin-angiotensin, neurohormones and nitric oxide have been shown to play an important role in the regulation of cardiovascular function. Genetic variants of these pathways may impact blood pressure and left ventricular (LV) mass in different populations. To evaluate associations of genetic polymorphisms of bradykinin B2 receptor (BDKRB2), alpha-adrenergic receptors (ADRA) and endothelial nitric oxide synthase (eNOS) on the modulation of the blood pressure and the left ventricular mass. Methods We enrolled 758 individuals without overt heart disease. Blood pressure was estimated by auscultatory method during the clinical examination. Left ventricular (LV) mass was assessed by echocardiography. Genotypes for ADRA1A rs1048101, ADRA2A rs553668, ADRA2B rs28365031, eNOS rs2070744, eNOS rs1799983, and BDKRB2 rs5810761 polymorphisms were assessed by high-resolution melting analysis. Results BDKRB2 polymorphism rs5810761 was associated with blood pressure. Carriers of DD genotype had higher levels of SBP and DBP than carrier of II genotype (p = 0.013 and p = 0.007, respectively). eNOS polymorphism rs1799983 was associated with DBP. Carriers of GT genotype had lower levels of DBP than carriers of GG genotype (p = 0.018). eNOS polymorphism rs2070744 was associated with LV mass. Carriers of TC genotype had higher LV mass than carriers of TT genotype (p = 0.028). Conclusions In a cohort of individuals without overt heart disease, the BDKRB2 rs5810761 polymorphism (DD genotype carriers) were associated higher systolic and diastolic blood pressures, and the eNOS rs1799983 polymorphism (T allele carriers) were associated with lower diastolic blood pressure. The eNOS rs2070744 polymorphism (C allele carriers) was associated with higher left ventricular mass. These data suggest that eNOS and bradykinin receptor genetic variants may be potential markers of common cardiovascular phenotypes.
Collapse
Affiliation(s)
- Rafael Amorim Belo Nunes
- Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil.,Applied Statistics Center (CEA) of Institute of Mathematics and Statistics (IME), Universidade de São Paulo, Brazil
| | - Larissa Barbosa Lima
- Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil.,Applied Statistics Center (CEA) of Institute of Mathematics and Statistics (IME), Universidade de São Paulo, Brazil
| | - Nelson Ithiro Tanaka
- Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil.,Applied Statistics Center (CEA) of Institute of Mathematics and Statistics (IME), Universidade de São Paulo, Brazil
| | - Alexandre da Costa Pereira
- Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil.,Applied Statistics Center (CEA) of Institute of Mathematics and Statistics (IME), Universidade de São Paulo, Brazil
| | - José Eduardo Krieger
- Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil.,Applied Statistics Center (CEA) of Institute of Mathematics and Statistics (IME), Universidade de São Paulo, Brazil
| | - Alfredo José Mansur
- Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil.,Applied Statistics Center (CEA) of Institute of Mathematics and Statistics (IME), Universidade de São Paulo, Brazil
| |
Collapse
|
10
|
Enhancement of bradykinin-induced relaxation by focal brain ischemia in the rat middle cerebral artery: Receptor expression upregulation and activation of multiple pathways. PLoS One 2018; 13:e0198553. [PMID: 29912902 PMCID: PMC6005516 DOI: 10.1371/journal.pone.0198553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 05/21/2018] [Indexed: 01/06/2023] Open
Abstract
Focal brain ischemia markedly affects cerebrovascular reactivity. So far, these changes have mainly been related to alterations in the level of smooth muscle cell function while alterations of the endothelial lining have not yet been studied in detail. We have, therefore, investigated the effects of ischemia/reperfusion injury on bradykinin (BK)-induced relaxation since BK is an important mediator of tissue inflammation and affects vascular function in an endothelium-dependent manner. Focal brain ischemia was induced in rats by endovascular filament occlusion (2h) of the middle cerebral artery (MCA). After 22h reperfusion, both MCAs were harvested and the response to BK studied in organ bath experiments. Expression of the BK receptor subtypes 1 and 2 (B1, B2) was determined by real-time semi-quantitative RT-qPCR methodology, and whole mount immunofluorescence staining was performed to show the B2 receptor protein expression. In control animals, BK did not induce significant vasomotor effects despite a functionally intact endothelium and robust expression of B2 mRNA. After ischemia/reperfusion injury, BK induced a concentration-related sustained relaxation in all arteries studied, more pronounced in the ipsilateral than in the contralateral MCA. The B2 mRNA was significantly upregulated and the B1 mRNA displayed de novo expression, again more pronounced ipsi- than contralaterally. Endothelial cells displaying B2 receptor immunofluorescence were observed scattered or clustered in previously occluded MCAs. Relaxation to BK was mediated by B2 receptor activation, abolished after endothelium denudation, and largely diminished by blocking nitric oxide (NO) release or soluble guanylyl cyclase activity. Relaxation to BK was partially inhibited by charybdotoxin (ChTx), but not apamin or iberiotoxin suggesting activation of an endothelium-dependent hyperpolarization pathway. When the NO-cGMP pathway was blocked, BK induced a transient relaxation which was suppressed by ChTx. After ischemia/reperfusion injury BK elicits endothelium-dependent relaxation which was not detectable in control MCAs. This gain of function is mediated by B2 receptor activation and involves the release of NO and activation of an endothelium-dependent hyperpolarization. It goes along with increased B2 mRNA and protein expression, leaving the functional role of the de novo B1 receptor expression still open.
Collapse
|
11
|
First Report of Eurycoma longifolia Jack Root Extract Causing Relaxation of Aortic Rings in Rats. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1361508. [PMID: 27800486 PMCID: PMC5075299 DOI: 10.1155/2016/1361508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/12/2016] [Accepted: 09/14/2016] [Indexed: 12/29/2022]
Abstract
Although Eurycoma longifolia has been studied for erectile function, the blood pressure- (BP-) lowering effect has yet to be verified. Hence, this study aims at investigating the BP-lowering properties of the plant with a view to develop an antihypertensive agent that could also preserve erectile function. Ethanolic root extract was partitioned by hexane, dichloromethane (DCM), ethyl acetate, butanol, and water. The DCM fraction, found to be potent in relaxing phenylephrine- (PE-) precontracted rat aortic rings, was further purified by column chromatography. Subfraction DCM-II, being the most active in relaxing aortae, was studied for effects on the renin-angiotensin and kallikrein-kinin systems in aortic rings. The effect of DCM-II on angiotensin-converting enzyme (ACE) activity was also evaluated in vitro. Results showed that DCM-II reduced (p < 0.05) the contractions evoked by angiotensin I and angiotensin II (Ang II). In PE-precontracted rings treated with DCM-II, the Ang II-induced contraction was attenuated (p < 0.05) while bradykinin- (BK-) induced relaxation enhanced (p < 0.001). In vitro, DCM-II inhibited (p < 0.001) the activity of ACE. These data demonstrate that the vasodilatory effect of DCM-II appears to be mediated via inhibition of Ang II type 1 receptor and ACE as well as enhancement of Ang II type 2 receptor activation and BK activity.
Collapse
|
12
|
Regoli D, Gobeil F. Critical insights into the beneficial and protective actions of the kallikrein-kinin system. Vascul Pharmacol 2015; 64:1-10. [PMID: 25579779 DOI: 10.1016/j.vph.2014.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/26/2014] [Indexed: 12/20/2022]
Abstract
Hypertension is characterized by an imbalance between the renin-angiotensin system (RAS) and the kallikrein-kinin system (KKS). Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II AT-1 receptor antagonists (also known as sartans or ARBs) are potent modulators of these systems and are highly effective as first-line treatments for hypertension, diabetic nephropathies, and diseases of the brain and coronary arteries. However, these agents are mechanistically distinct and should not be considered interchangeable. In this mini-review, we provide novel insights into the often neglected roles of the KKS in the beneficial, protective, and reparative actions of ACEIs. Indeed, ACEIs are the only antihypertensive drugs that properly reduce the imbalance between the RAS and the KKS, thereby restoring optimal cardiovascular homeostasis and significantly reducing morbidity and the risk of all-cause mortality among individuals affected by hypertension and other cardiovascular diseases.
Collapse
Affiliation(s)
- Domenico Regoli
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.
| | - Fernand Gobeil
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1H 5N4.
| |
Collapse
|
13
|
Bowman-Birk protease inhibitor from Vigna unguiculata seeds enhances the action of bradykinin-related peptides. Molecules 2014; 19:17536-58. [PMID: 25361421 PMCID: PMC6271500 DOI: 10.3390/molecules191117536] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/02/2014] [Accepted: 10/09/2014] [Indexed: 01/13/2023] Open
Abstract
The hydrolysis of bradykinin (Bk) by different classes of proteases in plasma and tissues leads to a decrease in its half-life. Here, Bk actions on smooth muscle and in vivo cardiovascular assays in association with a protease inhibitor, Black eyed-pea trypsin and chymotrypsin inhibitor (BTCI) and also under the effect of trypsin and chymotrypsin were evaluated. Two synthetic Bk-related peptides, Bk1 and Bk2, were used to investigate the importance of additional C-terminal amino acid residues on serine protease activity. BTCI forms complexes with Bk and analogues at pH 5.0, 7.4 and 9.0, presenting binding constants ranging from 103 to 104 M−1. Formation of BTCI-Bk complexes is probably driven by hydrophobic forces, coupled with slight conformational changes in BTCI. In vitro assays using guinea pig (Cavia porcellus) ileum showed that Bk retains the ability to induce smooth muscle contraction in the presence of BTCI. Moreover, no alteration in the inhibitory activity of BTCI in complex with Bk and analogous was observed. When the BTCI and BTCI-Bk complexes were tested in vivo, a decrease of vascular resistance and consequent hypotension and potentiating renal and aortic vasodilatation induced by Bk and Bk2 infusions was observed. These results indicate that BTCI-Bk complexes may be a reliable strategy to act as a carrier and protective approach for Bk-related peptides against plasma serine proteases cleavage, leading to an increase in their half-life. These findings also indicate that BTCI could remain stable in some tissues to inhibit chymotrypsin or trypsin-like enzymes that cleave and inactivate bradykinin in situ.
Collapse
|
14
|
Blaes N, Girolami JP. Targeting the 'Janus face' of the B2-bradykinin receptor. Expert Opin Ther Targets 2013; 17:1145-66. [PMID: 23957374 DOI: 10.1517/14728222.2013.827664] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Kinins are main active mediators of the kallikrein-kinin system (KKS) via bradykinin type 1 inducible (B1R) and type 2 constitutive (B2R) receptors. B2R mediates most physiological bradykinin (BK) responses, including vasodilation, natriuresis, NO, prostaglandins release. AREAS COVERED The article summarizes knowledge on kinins, B2R signaling and biological functions; highlights crosstalks between B2R and renin-angiotensin system (RAS). The double role (Janus face) in physiopathology, namely the beneficial protection of the endothelium, which forms the basis for the therapeutical utilization of B2 receptor agonists, on the one side, and the involvement of B2R in inflammation or infection diseases and in pain mechanisms, which justifies the use of B2R antagonists, on the other side, is extensively analyzed. EXPERT OPINION For decades, the B2R has been unconsciously activated during angiotensin-converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB) treatments. Whether direct B2R targeting with stable agonists could bring additional therapeutic benefit to RAS inhibition should be investigated. Efficacy, established in experimental models, should be confirmed by translational studies in cardiovascular pathologies, glaucoma, Duchenne cardiopathy and during brain cancer therapy. The other face of B2R is targeted by antagonists already approved to treat hereditary angioedema. The use of antagonists could be extended to other angioedema and efficacy tested against acute pain and inflammatory diseases.
Collapse
Affiliation(s)
- Nelly Blaes
- INSERM, U1048, Institute of Metabolic and Cardiovascular Diseases, I2MC, Université Paul Sabatier , F-31432, Toulouse , France
| | | |
Collapse
|
15
|
Marcon R, Claudino RF, Dutra RC, Bento AF, Schmidt EC, Bouzon ZL, Sordi R, Morais RLT, Pesquero JB, Calixto JB. Exacerbation of DSS-induced colitis in mice lacking kinin B(1) receptors through compensatory up-regulation of kinin B(2) receptors: the role of tight junctions and intestinal homeostasis. Br J Pharmacol 2013; 168:389-402. [PMID: 22889120 DOI: 10.1111/j.1476-5381.2012.02136.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 07/20/2012] [Accepted: 08/02/2012] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Kinins are pro-inflammatory peptides that are released during tissue injury, including that caused by inflammatory bowel disease. Herein, we assessed the role and underlying mechanisms through which the absence of kinin B(1) receptors exacerbates the development of dextran sulfate sodium (DSS)-induced colitis in mice. EXPERIMENTAL APPROACH B(1) and B(2) receptor antagonists and B(1) receptor knockout mice (B1(-/-) ) were used to assess the involvement of B(1) and B(2) receptor signalling in a DSS-colitis. B(1) receptor, B(2) receptor, occludin and claudin-4 expression, cytokine levels and cell permeability were evaluated in colon from wild-type (WT) and B1(-/-) mice. KEY RESULTS DSS-induced colitis was significantly exacerbated in B1(-/-) compared with WT mice. IL-1β, IFN-γ, keratinocyte-derived chemokine and macrophage inflammatory protein-2 were markedly increased in the colon from DSS-treated B1(-/-) compared with DSS-treated WT mice. Treatment of WT mice with a selective B(1) receptor antagonist, DALBK or SSR240612, had no effect on DSS-induced colitis. Of note, B(2) receptor mRNA expression was significantly up-regulated in colonic tissue from the B1(-/-) mice after DSS administration. Moreover, treatment with a selective B(2) receptor antagonist prevented the exacerbation of colitis in B1(-/-) mice following DSS administration. The water- or DSS-treated B1(-/-) mice showed a decrease in occludin gene expression, which was partially prevented by the B(2) receptor antagonist. CONCLUSIONS AND IMPLICATIONS A loss of B(1) receptors markedly exacerbates the severity of DSS-induced colitis in mice. The increased susceptibility of B1(-/-) may be associated with compensatory overexpression of B(2) receptors, which, in turn, modulates tight junction expression.
Collapse
Affiliation(s)
- R Marcon
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kashuba E, Bailey J, Allsup D, Cawkwell L. The kinin-kallikrein system: physiological roles, pathophysiology and its relationship to cancer biomarkers. Biomarkers 2013; 18:279-96. [PMID: 23672534 DOI: 10.3109/1354750x.2013.787544] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The kinin-kallikrein system (KKS) is an endogenous multiprotein cascade, the activation of which leads to triggering of the intrinsic coagulation pathway and enzymatic hydrolysis of kininogens with the consequent release of bradykinin-related peptides. This system plays a crucial role in inflammation, vasodilation, smooth muscle contraction, cardioprotection, vascular permeability, blood pressure control, coagulation and pain. In this review, we will outline the physiology and pathophysiology of the KKS and also highlight the association of this system with carcinogenesis and cancer progression.
Collapse
Affiliation(s)
- Elena Kashuba
- Postgraduate Medical Institute, University of Hull, Hull, UK
| | | | | | | |
Collapse
|
17
|
Impact of kinins in the treatment of cardiovascular diseases. Pharmacol Ther 2012; 135:94-111. [DOI: 10.1016/j.pharmthera.2012.04.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 03/02/2012] [Indexed: 12/24/2022]
|
18
|
|
19
|
Bradykinin type-2 receptor expression correlates with age and is subjected to transcriptional regulation. Int J Vasc Med 2011; 2012:159646. [PMID: 21977324 PMCID: PMC3185256 DOI: 10.1155/2012/159646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 07/11/2011] [Indexed: 01/19/2023] Open
Abstract
Accumulating work in experimental animals suggests that bradykinin (BK) exerts cardioprotective effects via bradykinin type-2 receptors (BK-2Rs). In human end-stage heart failure, BK-2Rs are significantly downregulated by mechanisms that have remained elusive. Heart tissues from idiopathic dilated cardiomyopathy (IDC; n = 7), coronary heart disease (CHD; n = 6), and normal patients (n = 6) were analyzed by RT-PCR, SSCP, and Western blotting. In normal and IDC hearts, BK-2R expression increased with age, with a lower relative increase in IDC hearts. BK-2R mRNA and protein levels showed a positive linear correlation, suggesting transcriptional regulation. Two known BK-2R promoter polymorphisms, −58T/C and −9/+9, were found to be present in the study population. The allelic frequencies for the C-allele in −58T/C were 0.58 in normal and CHD hearts and 0.81 in IDC hearts. Furthermore, the allelic frequencies for the −9 and +9 alleles were 0.42 and 0.58 in normal hearts and 0.64 and 0.36 in IDC hearts, respectively. All analyzed CHD hearts were homozygous for the −9 allele. Thus, the expression of cardioprotective BK-2Rs in human hearts is increased with age in normal and IDC hearts and may be regulated on the transcriptional level. Moreover, comparison of normal subjects and patients with failing hearts revealed different allelic frequencies in each of two known BK-2R gene polymorphisms.
Collapse
|
20
|
Schweitzer GG, Castorena CM, Hamada T, Funai K, Arias EB, Cartee GD. The B2 receptor of bradykinin is not essential for the post-exercise increase in glucose uptake by insulin-stimulated mouse skeletal muscle. Physiol Res 2011; 60:511-9. [PMID: 21401298 DOI: 10.33549/physiolres.932085] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Bradykinin can enhance skeletal muscle glucose uptake (GU), and exercise increases both bradykinin production and muscle insulin sensitivity, but bradykinin's relationship with post-exercise insulin action is uncertain. Our primary aim was to determine if the B2 receptor of bradykinin (B2R) is essential for the post-exercise increase in GU by insulin-stimulated mouse soleus muscles. Wildtype (WT) and B2R knockout (B2RKO) mice were sedentary or performed 60 minutes of treadmill exercise. Isolated soleus muscles were incubated with [³H]-2-deoxyglucose +/-insulin (60 or 100 microU/ml). GU tended to be greater for WT vs. B2RKO soleus with 60 microU/ml insulin (P=0.166) and was significantly greater for muscles with 100 microU/ml insulin (P<0.05). Both genotypes had significant exercise-induced reductions (P<0.05) in glycemia and insulinemia, and the decrements for glucose (approximately 14 %) and insulin (approximately 55 %) were similar between genotypes. GU tended to be greater for exercised vs. sedentary soleus with 60 microU/ml insulin (P=0.063) and was significantly greater for muscles with 100 microU/ml insulin (P<0.05). There were no significant interactions between genotype and exercise for blood glucose, plasma insulin or GU. These results indicate that the B2R is not essential for the exercise-induced decrements in blood glucose or plasma insulin or for the post-exercise increase in GU by insulin-stimulated mouse soleus muscle.
Collapse
Affiliation(s)
- G G Schweitzer
- Muscle Biology Laboratory, University of Michigan, School of Kinesiology, Ann Arbor, MI, USA
| | | | | | | | | | | |
Collapse
|
21
|
Attenuation of angiotensin II-induced hypertension and cardiac hypertrophy in transgenic mice overexpressing a type 1 receptor mutant. Am J Hypertens 2009; 22:1320-5. [PMID: 19779471 DOI: 10.1038/ajh.2009.181] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The angiotensin II (AngII) type 1 receptor (AT1) regulates cardiovascular function by activating various signal pathways. The purpose of this study was to evaluate the effects of a mutant AT1 receptor on AngII-responding blood pressure and cardiac hypertrophy in conjunction with altered AngII activation of RhoA and Akt. METHODS A mutant AT1 receptor was constructed and overexpressed in C57BL mice using a ubiquitous-expression vector pCAGGS. The phenotype and signal transduction of the transgenic (TG) mice were compared with the wild-type (WT) mice. RESULTS The TG mice showed a similar baseline phenotype as WT mice, but their blood pressure in response to continuous AngII infusion was significantly lower, as measured on days 3, 4, 7, and 14, with a difference of 20 mm Hg by day 14. There was also a significantly larger heart-to-total-body-weight ratio in the WT mice, whose heart weight (HW) was 0.441 +/- 0.008% of total body weight (BW) compared to the TG mice at 0.416 +/- 0.008%. Aortic endothelial cells isolated from these TG mice displayed an altered signaling profile, such as diminished activation of Akt and RhoA in response to AngII. In contrast, Galphaq coupling and ERK/JNK activation did not change. CONCLUSION The expression of an AT1 mutant receptor in the presence of WT receptor can effectively modulate AngII-effected signaling. Furthermore, the elimination of Akt and RhoA activation by AngII significantly reduces but does not eliminate its hypertensive effect.
Collapse
|
22
|
Rodrigues ES, Martin RP, Felipe SA, Bader M, Oliveira SM, Shimuta SI. Cross talk between kinin and angiotensin II receptors in mouse abdominal aorta. Biol Chem 2009; 390:907-13. [DOI: 10.1515/bc.2009.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Bradykinin (BK) is a vasorelaxant, algesic and inflammatory agent. Angiotensin II (AngII) is known to control vascular tone and promote growth, inflammation and artherogenesis. There is evidence for cross talking between BK and AngII receptors. Therefore, the effect of lack of kinin receptors was assessed in mice with genetic disruption of B1 or B2 and both receptors. Responsiveness of abdominal aortic rings to BK and AngII as well as the receptor gene expression of both peptides were analysed. Although no specific phenotype was displayed in the normotensive and healthy mice lacking the kinin receptors, a decreased expression level of the remaining kinin receptor mRNA was observed. AT1 receptor mRNA level was also reduced, indicating that kinin receptors regulate AngII receptors. Downregulation of the receptors was well correlated with reduction in the reactivity of both agonists to induce contraction of aortic rings, but other signal regulations must be sought in these transgenic mice. We conclude that cross talk between kinin and AngII receptors occurs in mouse abdominal aorta and that both peptides may regulate the initiation and progression of important pathophysiological processes, such as hypertension and inflammation.
Collapse
|
23
|
Barbosa AMRB, Felipe SA, Araujo RC, Kawamoto EM, Carvalho MHC, Scavone C, Pesquero JB, Shimuta SI. Altered reactivity of gastric fundus smooth muscle in the mouse with targeted disruption of the kinin B1 receptor gene. Peptides 2009; 30:901-5. [PMID: 19428767 DOI: 10.1016/j.peptides.2009.01.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 01/28/2009] [Accepted: 01/29/2009] [Indexed: 11/26/2022]
Abstract
Relaxing action of sodium nitroprusside (SNP) was significantly reduced in the stomach fundus of mice lacking the kinin B(1) receptor (B(1)(-/-)). Increased basal cGMP accumulation was correlated with attenuated SNP induced dose-dependent relaxation in B(1)(-/-) when compared with wild type (WT) control mice. These responses to SNP were completely blocked by the guanylate cyclase inhibitor ODQ (10 microM). It was also found that Ca(2+)-dependent, constitutive nitric oxide synthase (cNOS) activity was unchanged but the Ca(2+)-independent inducible NOS (iNOS) activity was greater in B(1)(-/-) mice than in WT animals. Zaprinast (100 microM), a specific phosphodiesterase inhibitor, increased the nitrergic relaxations and the accumulation of the basal as well as the SNP-stimulated cGMP in WT but not in B(1)(-/-) stomach fundus. From these findings it is concluded that the inhibited phosphodiesterase activity and high level of cGMP reduced the resting muscle tone, impairing the relaxant responses of the stomach in B(1)(-/-) mice. In addition, it can be suggested that functional B(2) receptor might be involved in the NO compensatory mechanism associated with the deficiency of kinin B(1) receptor in the gastric tissue of the transgenic mice.
Collapse
Affiliation(s)
- Ana M R B Barbosa
- Department of Biophysics, Universidade Federal de São Paulo-Escola Paulista de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Côté J, Savard M, Bovenzi V, Bélanger S, Morin J, Neugebauer W, Larouche A, Dubuc C, Gobeil F. Novel kinin B1 receptor agonists with improved pharmacological profiles. Peptides 2009; 30:788-95. [PMID: 19150636 DOI: 10.1016/j.peptides.2008.12.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 12/17/2008] [Accepted: 12/18/2008] [Indexed: 10/21/2022]
Abstract
There is some evidence to suggest that inducible kinin B1 receptors (B1R) may play beneficial and protecting roles in cardiovascular-related pathologies such as hypertension, diabetes, and ischemic organ diseases. Peptide B1R agonists bearing optimized pharmacological features (high potency, selectivity and stability toward proteolysis) hold promise as valuable therapeutic agents in the treatment of these diseases. In the present study, we used solid-phase methodology to synthesize a series of novel peptide analogues based on the sequence of Sar[dPhe(8)]desArg(9)-bradykinin, a relatively stable peptide agonist with moderate affinity for the human B1R. We evaluated the pharmacological properties of these peptides using (1) in vitro competitive binding experiments on recombinant human B1R and B2R (for index of selectivity determination) in transiently transfected human embryonic kidney 293 cells (HEK-293T cells), (2) ex vivo vasomotor assays on isolated human umbilical veins expressing endogenous human B1R, and (3) in vivo blood pressure tests using anesthetized lipopolysaccharide-immunostimulated rabbits. Key chemical modifications at the N-terminus, the positions 3 and 5 on Sar[dPhe(8)]desArg(9)-bradykinin led to potent analogues. For example, peptides 18 (SarLys[Hyp(3),Cha(5), dPhe(8)]desArg(9)-bradykinin) and 20 (SarLys[Hyp(3),Igl(5), dPhe(8)]desArg(9)-bradykinin) outperformed the parental molecule in terms of affinity, functional potency and duration of action in vitro and in vivo. These selective agonists should be valuable in future animal and human studies to investigate the potential benefits of B1R activation.
Collapse
Affiliation(s)
- Jérôme Côté
- Department of Pharmacology, Université de Sherbrooke, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Austinat M, Braeuninger S, Pesquero JB, Brede M, Bader M, Stoll G, Renné T, Kleinschnitz C. Blockade of Bradykinin Receptor B1 but Not Bradykinin Receptor B2 Provides Protection From Cerebral Infarction and Brain Edema. Stroke 2009; 40:285-93. [DOI: 10.1161/strokeaha.108.526673] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Madeleine Austinat
- From Department of Neurology (M.A., S.B., G.S., C.K.), Department of Anesthesiology (M.Brede), and Institute for Clinical Biochemistry and Pathobiochemistry (T.R.), University of Würzburg, Würzburg, Germany; Departamento de Biofisica (J.B.P.), Universidade Federal de São Paulo, São Paulo, Brazil; Max-Delbrück-Center for Molecular Medicine (M.Bader), Berlin-Buch, Germany
| | - Stefan Braeuninger
- From Department of Neurology (M.A., S.B., G.S., C.K.), Department of Anesthesiology (M.Brede), and Institute for Clinical Biochemistry and Pathobiochemistry (T.R.), University of Würzburg, Würzburg, Germany; Departamento de Biofisica (J.B.P.), Universidade Federal de São Paulo, São Paulo, Brazil; Max-Delbrück-Center for Molecular Medicine (M.Bader), Berlin-Buch, Germany
| | - João B. Pesquero
- From Department of Neurology (M.A., S.B., G.S., C.K.), Department of Anesthesiology (M.Brede), and Institute for Clinical Biochemistry and Pathobiochemistry (T.R.), University of Würzburg, Würzburg, Germany; Departamento de Biofisica (J.B.P.), Universidade Federal de São Paulo, São Paulo, Brazil; Max-Delbrück-Center for Molecular Medicine (M.Bader), Berlin-Buch, Germany
| | - Marc Brede
- From Department of Neurology (M.A., S.B., G.S., C.K.), Department of Anesthesiology (M.Brede), and Institute for Clinical Biochemistry and Pathobiochemistry (T.R.), University of Würzburg, Würzburg, Germany; Departamento de Biofisica (J.B.P.), Universidade Federal de São Paulo, São Paulo, Brazil; Max-Delbrück-Center for Molecular Medicine (M.Bader), Berlin-Buch, Germany
| | - Michael Bader
- From Department of Neurology (M.A., S.B., G.S., C.K.), Department of Anesthesiology (M.Brede), and Institute for Clinical Biochemistry and Pathobiochemistry (T.R.), University of Würzburg, Würzburg, Germany; Departamento de Biofisica (J.B.P.), Universidade Federal de São Paulo, São Paulo, Brazil; Max-Delbrück-Center for Molecular Medicine (M.Bader), Berlin-Buch, Germany
| | - Guido Stoll
- From Department of Neurology (M.A., S.B., G.S., C.K.), Department of Anesthesiology (M.Brede), and Institute for Clinical Biochemistry and Pathobiochemistry (T.R.), University of Würzburg, Würzburg, Germany; Departamento de Biofisica (J.B.P.), Universidade Federal de São Paulo, São Paulo, Brazil; Max-Delbrück-Center for Molecular Medicine (M.Bader), Berlin-Buch, Germany
| | - Thomas Renné
- From Department of Neurology (M.A., S.B., G.S., C.K.), Department of Anesthesiology (M.Brede), and Institute for Clinical Biochemistry and Pathobiochemistry (T.R.), University of Würzburg, Würzburg, Germany; Departamento de Biofisica (J.B.P.), Universidade Federal de São Paulo, São Paulo, Brazil; Max-Delbrück-Center for Molecular Medicine (M.Bader), Berlin-Buch, Germany
| | - Christoph Kleinschnitz
- From Department of Neurology (M.A., S.B., G.S., C.K.), Department of Anesthesiology (M.Brede), and Institute for Clinical Biochemistry and Pathobiochemistry (T.R.), University of Würzburg, Würzburg, Germany; Departamento de Biofisica (J.B.P.), Universidade Federal de São Paulo, São Paulo, Brazil; Max-Delbrück-Center for Molecular Medicine (M.Bader), Berlin-Buch, Germany
| |
Collapse
|
26
|
Gieldon A, Lopez JJ, Glaubitz C, Schwalbe H. Theoretical study of the human bradykinin-bradykinin B2 receptor complex. Chembiochem 2008; 9:2487-97. [PMID: 18803210 DOI: 10.1002/cbic.200800324] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The interaction of bradykinin (BK) with the bradykinin B2 receptor (B2R) was analyzed by using molecular modeling (MM) and molecular dynamics (MD) simulations. A homology model for B2R has been generated and the recently determined receptor-bound solid-state NMR spectroscopic structure of BK (Lopez et al., Angew. Chem. 2008, 120, 1692-1695; Angew. Chem. Int. Ed. 2008, 47, 1668-1671) has been modeled into the binding pocket of the receptor to probe the putative ligand-receptor interface. The experimental hormone structure fitted well into the binding pocket of the receptor model and remained stable during the MD simulation. We propose a parallel orientation of the side chains for Arg1 and Arg9 in BK that is bound to B2R. The MD simulation study also allows the conformational changes that lead to the activated form of B2R to be analyzed. The hydrogen bond between N140 (3.35) and W283 (6.48) is the key interaction that keeps the receptor in its inactive form. This hydrogen bond is broken during the MD simulation due to rotation of transmembrane helix 3 (TM3) and is replaced by a new hydrogen bond between W283 (6.48) and N324 (7.45). We propose that this interaction is specific for the activated form of the bradykinin B2 receptor. Additionally, we compared and discussed our putative model in the context of the structural model of the partially activated rhodopsin (Rh*) and with the known biochemical and structural data.
Collapse
Affiliation(s)
- Artur Gieldon
- Johann Wolfgang Goethe-Universität, Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Frankfurt Germany
| | | | | | | |
Collapse
|
27
|
Lehmann A. Ecallantide (DX-88), a plasma kallikrein inhibitor for the treatment of hereditary angioedema and the prevention of blood loss in on-pump cardiothoracic surgery. Expert Opin Biol Ther 2008; 8:1187-99. [DOI: 10.1517/14712598.8.8.1187] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Compensatory function of bradykinin B1 receptor in the inhibitory effect of captopril on cardiomyocyte hypertrophy and cardiac fibroblast proliferation in neonatal rats. Chin Med J (Engl) 2008. [DOI: 10.1097/00029330-200807010-00014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
29
|
Yin H, Chao J, Bader M, Chao L. Differential role of kinin B1 and B2 receptors in ischemia-induced apoptosis and ventricular remodeling. Peptides 2007; 28:1383-9. [PMID: 17644219 PMCID: PMC2067250 DOI: 10.1016/j.peptides.2007.05.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 05/15/2007] [Accepted: 05/16/2007] [Indexed: 11/17/2022]
Abstract
We investigated the role of kinin receptors in cardiac remodeling after ischemia/reperfusion (I/R). Bradykinin injection improved cardiac contractility, diastolic function, reduced infarct size and prevented left ventricular thinning after I/R, whereas des-Arg(9)-BK injection had no protective effects. Bradykinin, but not des-Arg(9)-BK, reduced cardiomyocyte apoptosis and increased Akt and GSK-3beta phosphorylation. Furthermore, myocardial infarct size was similar between wild type and B2 knockout mice after I/R, but significantly reduced in kinin B1 receptor knockout mice. These results indicate that the kinin B2 receptor, but not the B1 receptor, protects against I/R-induced cardiac dysfunction by inhibiting apoptosis and limiting ventricular remodeling.
Collapse
Affiliation(s)
- Hang Yin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425-2211, USA
| | | | | | | |
Collapse
|
30
|
Tan Y, Keum JS, Wang B, McHenry MB, Lipsitz SR, Jaffa AA. Targeted deletion of B2-kinin receptors protects against the development of diabetic nephropathy. Am J Physiol Renal Physiol 2007; 293:F1026-35. [PMID: 17596525 DOI: 10.1152/ajprenal.00203.2007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diabetic nephropathy (DN), the leading cause of end-stage renal failure, is clinically manifested by albuminuria and a progressive decline in glomerular filtration rate. The factors and mechanisms that contribute to progression of DN are still undefined. To address the contribution of B(2)-kinin receptors (B2KR) to the development of DN, we studied B2KR knockout mice (B2KR(-/-)) and their wild-type littermates (B2KR(+/+)). Diabetes was induced by daily injections of streptozotocin (50 mg/kg body wt) for 3-5 days. A total of 48 mice divided into 4 groups were used: group 1, wild-type control (B2KR(+/+) C); group 2, wild-type diabetic (B2KR(+/+) D); group 3, B2KR knockout control (B2KR(-/-) C); and group 4, B2KR knockout diabetic (B2KR(-/-) D). Glucose levels and albumin excretion rate (AER) were measured at predetermined intervals. Half of the mice were killed at 3 mo, and the remaining half, at 6 mo. Plasma glucose levels were markedly elevated in both B2KR(+/+) D and B2KR(-/-) D groups of mice compared with their controls. Diabetic B2KR(-/-) mice displayed reduced AER as well as reduced glomerular and tubular injury compared with diabetic B2KR(+/+) mice. The renoprotection conferred by deletion of B2KR was associated with increased renal expression of B(1)-kinin and angiotensin II AT(2) receptors and decreased expression of connective tissue growth factor. At a cellular level, our findings demonstrate that bradykinin downregulates the expression of AT(2) receptors in mesangial cells. These findings provide the first evidence that targeted deletion of B2KR protects against the development of DN.
Collapse
Affiliation(s)
- Yan Tan
- Department of Medicine, Division of Endocrinology-Diabetes-Medical Genetics, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | |
Collapse
|
31
|
Madeddu P, Emanueli C, El-Dahr S. Mechanisms of Disease: the tissue kallikrein–kinin system in hypertension and vascular remodeling. ACTA ACUST UNITED AC 2007; 3:208-21. [PMID: 17389890 DOI: 10.1038/ncpneph0444] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 01/16/2007] [Indexed: 11/09/2022]
Abstract
The pathogenesis of arterial hypertension often involves a rise in systemic vascular resistance (vasoconstriction and vascular remodeling) and impairment of salt excretion in the kidney (inappropriate salt retention despite elevated blood pressure). Experimental and clinical evidence implicate an imbalance between endogenous vasoconstrictor and vasodilator systems in the development and maintenance of hypertension. Kinins (bradykinin and lys-bradykinin) are endogenous vasodilators and natriuretic peptides known best for their ability to antagonize angiotensin-induced vasoconstriction and sodium retention. In humans, angiotensin-converting enzyme inhibitors, a potent class of antihypertensive agents, lower blood pressure at least partially by favoring enhanced kinin accumulation in plasma and target tissues. The beneficial actions of kinins in renal and cardiovascular disease are largely mediated by nitric oxide and prostaglandins, and extend beyond their recognized role in lowering blood pressure to include cardioprotection and nephroprotection. This article is a review of exciting, recently generated genetic, biochemical and clinical data from studies that have examined the importance of the tissue kallikrein-kinin system in protection from hypertension, vascular remodeling and renal fibrosis. Development of novel therapeutic approaches to bolster kinin activity in the vascular wall and in specific compartments in the kidney might be a highly effective strategy for the treatment of hypertension and its complications, including cardiac hypertrophy and renal failure.
Collapse
Affiliation(s)
- Paolo Madeddu
- Experimental Cardiovascular Medicine, Bristol Heart Institute, Bristol University, Bristol, UK.
| | | | | |
Collapse
|
32
|
Cayla C, Todiras M, Iliescu R, Saul VV, Gross V, Pilz B, Chai G, Merino VF, Pesquero JB, Baltatu OC, Bader M. Mice deficient for both kinin receptors are normotensive and protected from endotoxin-induced hypotension. FASEB J 2007; 21:1689-98. [PMID: 17289925 DOI: 10.1096/fj.06-7175com] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Kinins play a central role in the modulation of cardiovascular function and in the pathophysiology of inflammation. These peptides mediate their effects by binding to two specific G-protein coupled receptors named B1 and B2. To evaluate the full functional relevance of the kallikrein-kinin system, we generated mice lacking both kinin receptors (B1B2-/-). Because of the close chromosomal position of both kinin receptor genes, B1B2-/- mice could not be obtained by simple breeding of the single knockout lines. Therefore, we inactivated the B1 receptor gene by homologous recombination in embryonic stem cells derived from B2-deficient animals. The B1B2-/- mice exhibited undetectable levels of mRNAs for both receptors and a lack of response to bradykinin (B2 agonist) and des-Arg9-bradykinin (B1 agonist), as attested by contractility studies with isolated smooth muscle tissues. B1B2-/- mice are healthy and fertile, and no sign of cardiac abnormality was detected. They are normotensive but exhibit a lower heart rate than controls. Furthermore, kinin receptor deficiency affects the pathogenesis of endotoxin-induced hypotension. While blood pressure decreased markedly in wild-type mice and B2-/- and moderately in B1-/- mice after bacterial lipopolysaccharide (LPS) injection, blood pressure remained unchanged in B1B2-/- mice. These results clearly demonstrate a pivotal role of kinins and their receptors in hypotension induced by endotoxemia in mice.
Collapse
Affiliation(s)
- Cécile Cayla
- Max-Delbrück-Center for Molecular Medicine, D-13092 Berlin-Buch, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The bradykinin B1 receptor is an inducible G-protein-coupled receptor. It is induced or upregulated at the site of inflammation or injury. A large body of preclinical data supports the development of B1 antagonists as novel therapeutics for the treatment of pain and inflammation. The necessary in vitro and in vivo drug discovery tools are currently available to evaluate novel B1 antagonists. Two major classes of small-molecule B1 antagonists, arylsulfonamide-based and biphenyl-based B1 antagonists, have been disclosed in the last few years.
Collapse
Affiliation(s)
- Jian Jeffrey Chen
- Amgen Inc., Chemistry Research and Development, One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| | | |
Collapse
|
34
|
Bawolak MT, Fortin JP, Vogel LK, Adam A, Marceau F. The bradykinin B2 receptor antagonist icatibant (Hoe 140) blocks aminopeptidase N at micromolar concentrations: Off-target alterations of signaling mediated by the bradykinin B1 and angiotensin receptors. Eur J Pharmacol 2006; 551:108-11. [PMID: 17026984 DOI: 10.1016/j.ejphar.2006.08.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 08/15/2006] [Accepted: 08/21/2006] [Indexed: 10/24/2022]
Abstract
The N-terminal sequence of icatibant, a widely used peptide antagonist of the bradykinin B(2) receptors, is analogous to that of other known aminopeptidase N inhibitors. Icatibant competitively inhibited the hydrolysis of L-Ala-p-nitroanilide by recombinant aminopeptidase N (K(i) 9.1 microM). In the rabbit aorta, icatibant (10-30 microM) potentiated angiotensin III, but not angiotensin II (contraction mediated by angiotensin AT(1) receptors), and Lys-des-Arg(9)-bradykinin, but not des-Arg(9)-bradykinin (effects mediated by the bradykinin B(1) receptors), consistent with the known susceptibility of these agonists to aminopeptidase N. At concentrations possibly reached in vivo (e.g., in kidneys), icatibant alters physiological systems different from bradykinin B(2) receptors.
Collapse
Affiliation(s)
- Marie-Thérèse Bawolak
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Québec Qc, Canada G1V 4G2
| | | | | | | | | |
Collapse
|