1
|
Moreno-Cabañas A, Morales-Palomo F, Alvarez-Jimenez L, Mora-Gonzalez D, Ortega JF, Mora-Rodriguez R. Metformin and exercise effects on postprandial insulin sensitivity and glucose kinetics in pre-diabetic and diabetic adults. Am J Physiol Endocrinol Metab 2023; 325:E310-E324. [PMID: 37584610 DOI: 10.1152/ajpendo.00118.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/17/2023]
Abstract
The potential interaction between metformin and exercise on glucose-lowering effects remains controversial. We studied the separated and combined effects of metformin and/or exercise on fasting and postprandial insulin sensitivity in individuals with pre-diabetes and type 2 diabetes (T2D). Eight T2D adults (60 ± 4 yr) with overweight/obesity (32 ± 4 kg·m-2) under chronic metformin treatment (9 ± 6 yr; 1281 ± 524 mg·day-1) underwent four trials; 1) taking their habitual metformin treatment (MET), 2) substituting during 96 h their metformin medication by placebo (PLAC), 3) placebo combined with 50 min bout of high-intensity interval exercise (PLAC + EX), and 4) metformin combined with exercise (MET + EX). Plasma glucose kinetics using stable isotopes (6,6-2H2 and [U-13C] glucose), and glucose oxidation by indirect calorimetry, were assessed at rest, during exercise, and in a subsequent oral glucose tolerance test (OGTT). Postprandial glucose and insulin concentrations were analyzed as mean and incremental area under the curve (iAUC), and insulin sensitivity was calculated (i.e., MATSUDAindex and OGISindex). During OGTT, metformin reduced glucose iAUC (i.e., MET and MET + EX lower than PLAC and PLAC + EX, respectively; P = 0.023). MET + EX increased MATSUDAindex above PLAC (4.8 ± 1.4 vs. 3.3 ± 1.0, respectively; P = 0.018) and OGISindex above PLAC (358 ± 52 vs. 306 ± 46 mL·min-1·m-2, respectively; P = 0.006). Metformin decreased the plasma appearance of the ingested glucose (Ra OGTT; MET vs. PLAC, -3.5; 95% CI -0.1 to -6.8 µmol·kg-1·min-1; P = 0.043). Metformin combined with exercise potentiates insulin sensitivity during an OGTT in individuals with pre-diabetes and type 2 diabetes. Metformin's blood glucose-lowering effect seems mediated by decreased oral glucose entering the circulation (gut-liver effect) an effect partially blunted after exercise.NEW & NOTEWORTHY Metformin is the most prescribed oral antidiabetic medicine in the world but its mechanism of action and its interactions with exercise are not fully understood. Our stable isotope tracer data suggested that metformin reduces the rates of oral glucose entering the circulation (gut-liver effect). Exercise, in turn, tended to reduce postprandial insulin blood levels potentiating metformin improvements in insulin sensitivity. Thus, exercise potentiates metformin improvements in glycemic control and should be advised to metformin users.
Collapse
Affiliation(s)
- Alfonso Moreno-Cabañas
- Exercise Physiology Lab at Toledo, University of Castilla-La Mancha, Toledo, Spain
- Center for Nutrition, Exercise and Metabolism, University of Bath, Bath, United Kingdom
- Department for Health, University of Bath, Bath, United Kingdom
| | - Felix Morales-Palomo
- Exercise Physiology Lab at Toledo, University of Castilla-La Mancha, Toledo, Spain
| | | | - Diego Mora-Gonzalez
- Department of Nursing, Physiotherapy, and Occupational Therapy, University of Castilla-La Mancha, Toledo, Spain
| | - Juan Fernando Ortega
- Exercise Physiology Lab at Toledo, University of Castilla-La Mancha, Toledo, Spain
| | | |
Collapse
|
2
|
Acute intravenous glucose load impairs early insulin secretion and insulin content in islet β cells in mice. Life Sci 2016; 144:148-55. [DOI: 10.1016/j.lfs.2015.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 11/14/2015] [Accepted: 12/04/2015] [Indexed: 01/04/2023]
|
3
|
Merovci A, Mari A, Solis-Herrera C, Xiong J, Daniele G, Chavez-Velazquez A, Tripathy D, Urban McCarthy S, Abdul-Ghani M, DeFronzo RA. Dapagliflozin lowers plasma glucose concentration and improves β-cell function. J Clin Endocrinol Metab 2015; 100:1927-32. [PMID: 25710563 PMCID: PMC4422889 DOI: 10.1210/jc.2014-3472] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND β-Cell dysfunction is a core defect in T2DM, and chronic, sustained hyperglycemia has been implicated in progressive β-cell failure, ie, glucotoxicity. The aim of the present study was to examine the effect of lowering the plasma glucose concentration with dapagliflozin, a glucosuric agent, on β-cell function in T2DM individuals. RESEARCH DESIGN AND METHODS Twenty-four subjects with T2DM received dapagliflozin (n = 16) or placebo (n = 8) for 2 weeks, and a 75-g oral glucose tolerance test (OGTT) and insulin clamp were performed before and after treatment. Plasma glucose, insulin, and C-peptide concentrations were measured during the OGTT. RESULTS Dapagliflozin significantly lowered both the fasting and 2-hour plasma glucose concentrations and the incremental area under the plasma glucose concentration curve (ΔG0-120) during OGTT by -33 ± 5 mg/dL, -73 ± 9 mg/dL, and -60 ± 12 mg/dL · min, respectively, compared to -13 ± 9, -33 ± 13, and -18 ± 9 reductions in placebo-treated subjects (both P < .01). The incremental area under the plasma C-peptide concentration curve tended to increase in dapagliflozin-treated subjects, whereas it did not change in placebo-treated subjects. Thus, ΔC-Pep0-120/ΔG0-120 increased significantly in dapagliflozin-treated subjects, whereas it did not change in placebo-treated subjects (0.019 ± 0.005 vs 0.002 ± 0.006; P < .01). Dapagliflozin significantly improved whole-body insulin sensitivity (insulin clamp). Thus, β-cell function, measured as ΔC-Pep0-120/ ΔG0-120 ÷ insulin resistance, increased by 2-fold (P < .01) in dapagliflozin-treated vs placebo-treated subjects. CONCLUSION Lowering the plasma glucose concentration with dapagliflozin markedly improves β-cell function, providing strong support in man for the glucotoxic effect of hyperglycemia on β-cell function.
Collapse
Affiliation(s)
- Aurora Merovci
- Division of Diabetes (A.Me., C.S., G.D., A.C.-V., D.T., S.U.M., M.A.-G., R.A.D.), University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229; and Consiglio Nazionale delle Ricerche Institute of Biomedical Engineering (A.Ma.), 35127 Padova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Gower BA, Goss AM. A lower-carbohydrate, higher-fat diet reduces abdominal and intermuscular fat and increases insulin sensitivity in adults at risk of type 2 diabetes. J Nutr 2015; 145:177S-83S. [PMID: 25527677 PMCID: PMC4264021 DOI: 10.3945/jn.114.195065] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/05/2014] [Accepted: 10/15/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Obesity, particularly visceral and ectopic adiposity, increases the risk of type 2 diabetes. OBJECTIVE The aim of this study was to determine if restriction of dietary carbohydrate is beneficial for body composition and metabolic health. METHODS Two studies were conducted. In the first, 69 overweight/obese men and women, 53% of whom were European American (EA) and 47% of whom were African American (AA), were provided with 1 of 2 diets (lower-fat diet: 55%, 18%, and 27% of energy from carbohydrate, protein, and fat, respectively; lower-carbohydrate diet: 43%, 18%, and 39%, respectively) for 8 wk at a eucaloric level and 8 wk at a hypocaloric level. In the second study, 30 women with polycystic ovary syndrome (PCOS) were provided with 2 diets (lower-fat diet: 55%, 18%, and 27% of energy from carbohydrate, protein, and fat, respectively; lower-carbohydrate diet: 41%, 19%, and 40%, respectively) at a eucaloric level for 8 wk in a random-order crossover design. RESULTS As previously reported, among overweight/obese adults, after the eucaloric phase, participants who consumed the lower-carbohydrate vs. the lower-fat diet lost more intra-abdominal adipose tissue (IAAT) (11 ± 3% vs. 1 ± 3%; P < 0.05). After weight loss, participants who consumed the lower-carbohydrate diet had 4.4% less total fat mass. Original to this report, across the entire 16-wk study, AAs lost more fat mass with a lower-carbohydrate diet (6.2 vs. 2.9 kg; P < 0.01), whereas EAs showed no difference between diets. As previously reported, among women with PCOS, the lower-carbohydrate arm showed decreased fasting insulin (-2.8 μIU/mL; P < 0.001) and fasting glucose (-4.7 mg/dL; P < 0.01) and increased insulin sensitivity (1.06 arbitrary units; P < 0.05) and "dynamic" β-cell response (96.1 · 10(9); P < 0.001). In the lower-carbohydrate arm, women lost both IAAT (-4.8 cm(2); P < 0.01) and intermuscular fat (-1.2 cm(2); P < 0.01). In the lower-fat arm, women lost lean mass (-0.6 kg; P < 0.05). Original to this report, after the lower-carbohydrate arm, the change in IAAT was positively associated with the change in tumor necrosis factor α (P < 0.05). CONCLUSION A modest reduction in dietary carbohydrate has beneficial effects on body composition, fat distribution, and glucose metabolism. This trial was registered at clinicaltrials.gov as NCT00726908 and NCT01028989.
Collapse
Affiliation(s)
- Barbara A Gower
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Amy M Goss
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
5
|
Kim YA, Ku EJ, Khang AR, Hong ES, Kim KM, Moon JH, Choi SH, Park KS, Jang HC, Lim S. Role of various indices derived from an oral glucose tolerance test in the prediction of conversion from prediabetes to type 2 diabetes. Diabetes Res Clin Pract 2014; 106:351-9. [PMID: 25245975 DOI: 10.1016/j.diabres.2014.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/16/2014] [Accepted: 08/23/2014] [Indexed: 12/15/2022]
Abstract
AIMS The clinical implications of prediabetes for development of type 2 diabetes may differ for Asian ethnicity. We investigated various indices derived from a 2-h oral glucose tolerance test (OGTT) in people with prediabetes to predict their future risk of diabetes. METHODS We recruited 406 consecutive subjects with prediabetes from 2005 to 2006 and followed them up every 3-6 months for up to 9 years. Prediabetes was defined as isolated impaired fasting glucose (IFG), isolated impaired glucose tolerance (IGT), combined glucose intolerance (CGI), or isolated elevated HbA1c (5.7-6.4%, 39-46 mmol/mol) without IFG or IGT. The rate of diabetes conversion was compared between prediabetes categories. The association of glycemic indices with development of diabetes was also investigated. RESULTS Eighty-one patients were diagnosed with diabetes during the 9-year follow-up (median 46.0 months). The rate of diabetes conversion was higher in subjects with CGI (31.9%), or isolated IGT (18.5%) than in those with isolated IFG (15.2%) or isolated elevated HbA1c (10.9%). Surrogate markers reflecting β-cell dysfunction were more closely associated with diabetes conversion than insulin resistance indices. Subjects with a 30-min postload glucose ≥ 165 mg/dL and a 30-min C-peptide < 5 ng/mL had 8.83 times greater risk (95% confidence interval 2.98-26.16) of developing diabetes than other prediabetic subjects. CONCLUSIONS In Asians, at least Koreans, β-cell dysfunction seems to be the major determinant for diabetes conversion. A combination of high glucose and low C-peptide levels at 30 min after OGTT may be a good predictor for diabetes conversion in this population.
Collapse
Affiliation(s)
- Ye An Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Eu Jeong Ku
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Ah Reum Khang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Department of Internal Medicine, Kyungpook National University College of Medicine and Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Eun Shil Hong
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Department of Internal Medicine, Konkuk University College of Medicine and Konkuk University Chungju Hospital, Chungju, South Korea
| | - Kyoung Min Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jae Hoon Moon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Sung Hee Choi
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Hak Chul Jang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea.
| |
Collapse
|
6
|
Gower BA, Chandler-Laney PC, Ovalle F, Goree LL, Azziz R, Desmond RA, Granger WM, Goss AM, Bates GW. Favourable metabolic effects of a eucaloric lower-carbohydrate diet in women with PCOS. Clin Endocrinol (Oxf) 2013; 79:550-7. [PMID: 23444983 PMCID: PMC4111472 DOI: 10.1111/cen.12175] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 12/20/2012] [Accepted: 02/17/2013] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Diet-induced reduction in circulating insulin may be an attractive nonpharmacological treatment for women with polycystic ovary syndrome (PCOS) among whom elevated insulin may exacerbate symptoms by stimulating testosterone synthesis. This study was designed to determine whether a modest reduction in dietary carbohydrate (CHO) content affects β-cell responsiveness, serum testosterone concentration and insulin sensitivity in women with PCOS. DESIGN In a crossover design, two diets ('Standard,' STD, 55:18:27% energy from carbohydrate/protein/fat; lower-carbohydrate, 41:19:40) were provided for 8 weeks in random order with a 4-week washout between. PATIENTS Thirty women with PCOS. MEASUREMENTS β-cell responsiveness assessed as the C-peptide response to glucose during a liquid meal test; insulin sensitivity from insulin and glucose values throughout the test; insulin resistance (HOMA-IR); and total testosterone by immunoassay. RESULTS Paired t-test indicated that the lower-CHO diet induced significant decreases in basal β-cell response (PhiB), fasting insulin, fasting glucose, HOMA-IR, total testosterone and all cholesterol measures, and significant increases in insulin sensitivity and dynamic ('first-phase') β-cell response. The STD diet induced a decrease in HDL-C and an increase in the total cholesterol-to-HDL-C ratio. Across all data combined, the change in testosterone was positively associated with the changes in fasting insulin, PhiB and insulin AUC (P < 0·05). CONCLUSIONS In women with PCOS, modest reduction in dietary CHO in the context of a weight-maintaining diet has numerous beneficial effects on the metabolic profile that may lead to a decrease in circulating testosterone.
Collapse
Affiliation(s)
- Barbara A Gower
- Department of Nutrition Sciences, University of Alabama at Birmingham, 1675 University Blvd., Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Gower BA, Goree LL, Chandler-Laney PC, Ellis AC, Casazza K, Granger WM. A higher-carbohydrate, lower-fat diet reduces fasting glucose concentration and improves β-cell function in individuals with impaired fasting glucose. Metabolism 2012; 61:358-65. [PMID: 21944267 PMCID: PMC3248972 DOI: 10.1016/j.metabol.2011.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 07/21/2011] [Accepted: 07/25/2011] [Indexed: 02/07/2023]
Abstract
The objective was to examine the effects of diet macronutrient composition on insulin sensitivity, fasting glucose, and β-cell response to glucose. Participants were 42 normal glucose-tolerant (NGT; fasting glucose <100 mg/dL) and 27 impaired fasting glucose (IFG), healthy, overweight/obese (body mass index, 32.5 ± 4.2 kg/m(2)) men and women. For 8 weeks, participants were provided with eucaloric diets, either higher carbohydrate/lower fat (55% carbohydrate, 18% protein, 27% fat) or lower carbohydrate/higher fat (43:18:39). Insulin sensitivity and β-cell response to glucose (basal, dynamic [PhiD], and static) were calculated by mathematical modeling using glucose, insulin, and C-peptide data obtained during a liquid meal tolerance test. After 8 weeks, NGT on the higher-carbohydrate/lower-fat diet had higher insulin sensitivity than NGT on the lower-carbohydrate/higher fat diet; this pattern was not observed among IFG. After 8 weeks, IFG on the higher-carbohydrate/lower-fat diet had lower fasting glucose and higher PhiD than IFG on the lower-carbohydrate/higher-fat diet; this pattern was not observed among NGT. Within IFG, fasting glucose at baseline and the change in fasting glucose over the intervention were inversely associated with baseline PhiD (-0.40, P < .05) and the change in PhiD (-0.42, P < .05), respectively. Eight weeks of a higher-carbohydrate/lower-fat diet resulted in higher insulin sensitivity in healthy, NGT, overweight/obese individuals, and lower fasting glucose and greater glucose-stimulated insulin secretion in individuals with IFG. If confirmed, these results may have an impact on dietary recommendations for overweight individuals with and without IFG.
Collapse
Affiliation(s)
- Barbara A Gower
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Kanat M, Mari A, Norton L, Winnier D, DeFronzo RA, Jenkinson C, Abdul-Ghani MA. Distinct β-cell defects in impaired fasting glucose and impaired glucose tolerance. Diabetes 2012; 61:447-53. [PMID: 22275086 PMCID: PMC3266412 DOI: 10.2337/db11-0995] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To characterize the defects in β-cell function in subjects with impaired fasting glucose (IFG) and compare the results to impaired glucose tolerance (IGT) and normal glucose tolerance (NGT) subjects, β-cell glucose sensitivity and rate sensitivity during the oral glucose tolerance test were measured with the model by Mari in 172 Mexican Americans. A subgroup (n=70) received a 2-h hyperglycemic clamp (+125 mg/dL), and first- and second-phase insulin secretion were quantitated. Compared with NGT, subjects with IFG and IGT manifested a decrease in β-cell glucose sensitivity; IFG subjects, but not IGT subjects, had decreased β-cell rate sensitivity. In IFG subjects, the defect in β-cell glucose sensitivity was time dependent, began to improve after 60 min, and was comparable to NGT after 90 min. The incremental area under the plasma C-peptide concentration curve during the first 12 min of the hyperglycemic clamp (ΔC-pep[AUC]0-12) was inversely related with the increase in FPG concentration (r=-36, r=0.001), whereas ΔC-pep[AUC]15-120 positively correlated with FPG concentration (r=0.29, r<0.05). When adjusted for the prevailing level of insulin resistance, first-phase insulin secretion was markedly decreased in both IFG and IGT, whereas second-phase insulin secretion was decreased only in IGT. These results demonstrate distinct defects in β-cell function in IFG and IGT.
Collapse
|
9
|
Kanat M, Norton L, Winnier D, Jenkinson C, DeFronzo RA, Abdul-Ghani MA. Impaired early- but not late-phase insulin secretion in subjects with impaired fasting glucose. Acta Diabetol 2011; 48:209-17. [PMID: 21553243 DOI: 10.1007/s00592-011-0285-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 04/11/2011] [Indexed: 12/21/2022]
Abstract
Subjects with impaired fasting glucose (IFG) are at increased risk for type 2 diabetes. We recently demonstrated that IFG subjects have increased hepatic insulin resistance with normal insulin sensitivity in skeletal muscle. In this study, we quantitated the insulin secretion rate from deconvolution analysis of the plasma C-peptide concentration during an oral glucose tolerance test (OGTT) and compared the results in IFG subjects with those in subjects with impaired glucose tolerance (IGT) and normal glucose tolerance (NGT). One hundred and one NGT subjects, 64 subjects with isolated IGT, 24 subjects with isolated IFG, and 48 subjects with combined (IFG + IGT) glucose intolerance (CGI) received an OGTT. Plasma glucose, insulin, and C-peptide concentrations were measured before and every 15 min after glucose ingestion. Insulin secretion rate (ISR) was determined by deconvolution of plasma C-peptide concentration. Inverse of the Matsuda index of whole body insulin sensitivity was used as a measure of insulin resistance; 56 subjects also received a euglycemic hyperinsulinemic clamp. The insulin secretion/insulin resistance (disposition) index was calculated as the ratio between incremental area under the ISR curve (∆ISR[AUC]) to incremental area under the glucose curve (∆G[AUC]) factored by the severity of insulin resistance (measured by Matsuda index during OGTT or glucose disposal during insulin clamp). Compared to NGT, the insulin secretion/insulin resistance index during first 30 min of OGTT was reduced by 47, 49, and 74% in IFG, IGT, and CGI, respectively (all < 0.0001). The insulin secretion/insulin resistance index during the second hour (60-120 min) of the OGTT in subjects with IFG was similar to that in NGT (0.79 ± 0.6 vs. 0.72 ± 0.5, respectively, P = NS), but was profoundly reduced in subjects with IGT and CGI (0.31 ± 0.2 and 0.19 ± 0.11, respectively; P < 0.0001 vs. both NGT and IFG). Early-phase insulin secretion is impaired in both IFG and IGT, while the late-phase insulin secretion is impaired only in subjects with IGT.
Collapse
Affiliation(s)
- Mustafa Kanat
- Diabetes Division, University of Texas Health Science Center, San Antonio, 78229, USA
| | | | | | | | | | | |
Collapse
|
10
|
Shears SB. Molecular basis for the integration of inositol phosphate signaling pathways via human ITPK1. ACTA ACUST UNITED AC 2009; 49:87-96. [PMID: 19200440 DOI: 10.1016/j.advenzreg.2008.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Stephen B Shears
- Inositol Signaling Section, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, NIH, DHSS, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
11
|
Abdul-Ghani MA, Matsuda M, Jani R, Jenkinson CP, Coletta DK, Kaku K, DeFronzo RA. The relationship between fasting hyperglycemia and insulin secretion in subjects with normal or impaired glucose tolerance. Am J Physiol Endocrinol Metab 2008; 295:E401-6. [PMID: 18492770 PMCID: PMC4043181 DOI: 10.1152/ajpendo.00674.2007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 04/29/2008] [Indexed: 01/09/2023]
Abstract
To assess the relationship between the fasting plasma glucose (FPG) concentration and insulin secretion in normal glucose tolerance (NGT) and impaired glucose tolerance (IGT) subjects, 531 nondiabetic subjects with NGT (n = 293) and IGT (n = 238; 310 Japanese and 232 Mexican Americans) received an oral glucose tolerance test (OGTT) with measurement of plasma glucose, insulin, and C-peptide every 30 min. The insulin secretion rate was determined by plasma C-peptide deconvolution. Insulin sensitivity (Matsuda index) was measured from plasma insulin and glucose concentrations. The insulin secretion/insulin resistance (IS/IR) or disposition index was calculated as DeltaISR/DeltaG / IR. As FPG increased in NGT subjects, the IS/IR index declined exponentially over the range of FPG from 70 to 125 mg/dl. The relationship between the IS/IR index and FPG was best fit with the equation: 28.8 exp(-0.036 FPG). For every 28 mg/dl increase in FPG, the IS/IR index declined by 63%. A similar relationship between IS/IR index and FPG was observed in IGT. However, the decay constant was lower than in NGT. The IS/IR index for early-phase insulin secretion (0-30 min) was correlated with the increase in FPG in both NGT and IGT (r = -0.43, P < 0.0001 and r = -0.20, P = 0.001, respectively). However, the correlation between late-phase insulin secretion (60-120 min) and FPG was not significant. In conclusion, small increments in FPG, within the "normal" range, are associated with a marked decline in glucose-stimulated insulin secretion and the decrease in insulin secretion with increasing FPG is greater in subjects with NGT than IGT and primarily is due to a decline in early-phase insulin secretion.
Collapse
Affiliation(s)
- Muhammad A Abdul-Ghani
- Diabetes Division, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Marshall C, Hitman GA, Cassell PG, Turner MD. Effect of glucolipotoxicity and rosiglitazone upon insulin secretion. Biochem Biophys Res Commun 2007; 356:756-62. [PMID: 17379187 DOI: 10.1016/j.bbrc.2007.03.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 03/08/2007] [Indexed: 01/19/2023]
Abstract
Type 2 diabetes is characterised by elevated blood glucose and fatty acid concentrations, and aberrant expression of exocytotic soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. Restoration of normoglycaemia is often accomplished through use of the thiazolidinedione drug rosiglitazone (RSG), although little is known of its actions on the pancreas. Here we report that high glucose resulted in 96.6+/-0.2% inhibition of secretagogue-stimulated insulin secretion and 44.9+/-6.2% reduction in beta-cell insulin content. High glucose and lipid resulted in altered target-SNARE expression, syntaxin 1 becoming barely detectable whilst SNAP-25 was greatly up-regulated. RSG intervention further increased the expression of SNAP-25, but did not up-regulate syntaxin 1 expression. In summary, high glucose results in almost total attenuation of stimulated insulin secretion, partial depletion of beta-cell insulin stores and dysregulation of SNARE protein expression. RSG up-regulates SNAP-25 expression, but crucially not syntaxin 1 and hence fails to enhance insulin secretion.
Collapse
Affiliation(s)
- Catriona Marshall
- Centre for Diabetes and Metabolic Medicine, Institute of Cell and Molecular Science, Queen Mary's School of Medicine and Dentistry, University of London, Whitechapel, London E1 2AT, UK
| | | | | | | |
Collapse
|
13
|
Abdul-Ghani MA, Tripathy D, DeFronzo RA. Contributions of beta-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. Diabetes Care 2006. [PMID: 16644654 DOI: 10.2337/dc05-2179] [Citation(s) in RCA: 568] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Impaired glucose tolerance (IGT) and impaired fasting glucose (IFG) are intermediate states in glucose metabolism that exist between normal glucose tolerance and overt diabetes. Epidemiological studies demonstrate that the two categories describe distinct populations with only partial overlap, suggesting that different metabolic abnormalities characterize IGT and IFG. Insulin resistance and impaired beta-cell function, the primary defects observed in type 2 diabetes, both can be detected in subjects with IGT and IFG. However, clinical studies suggest that the site of insulin resistance varies between the two disorders. While subjects with IGT have marked muscle insulin resistance with only mild hepatic insulin resistance, subjects with IFG have severe hepatic insulin resistance with normal or near-normal muscle insulin sensitivity. Both IFG and IGT are characterized by a reduction in early-phase insulin secretion, while subjects with IGT also have impaired late-phase insulin secretion. The distinct metabolic features present in subjects with IFG and IGT may require different therapeutic interventions to prevent their progression to type 2 diabetes.
Collapse
Affiliation(s)
- Muhammad A Abdul-Ghani
- Division of Diabetes, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, USA.
| | | | | |
Collapse
|
14
|
Chang AM, Smith MJ, Bloem CJ, Galecki AT, Halter JB. Effect of lowering postprandial hyperglycemia on insulin secretion in older people with impaired glucose tolerance. Am J Physiol Endocrinol Metab 2004; 287:E906-11. [PMID: 15213063 DOI: 10.1152/ajpendo.00156.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucose tolerance declines with age, resulting in a high prevalence of diabetes and impaired glucose tolerance (IGT) in the older population. Hyperglycemia per se can lead to impaired beta-cell function (glucose toxicity). We tested the role of glucose toxicity in age-related beta-cell dysfunction in older people (65 +/- 8 yr) with IGT treated with the alpha-glucosidase inhibitor acarbose (n = 14) or placebo (n = 13) for 6 wk in a randomized, double-blind study. Baseline and posttreatment studies included 1) an oral glucose tolerance test (OGTT), 2) 1-h postprandial glucose monitoring, 3) a frequently sampled intravenous glucose tolerance test (insulin sensitivity, or S(I)), and 4) glucose ramp clamp (insulin secretion rates, or ISR), in which a variable glucose infusion increases plasma glucose from 5 to 10 mM. The treatment groups had similar baseline body mass index; fasting, 2-h OGTT, and 1-h postprandial glucose levels; and S(I). In these carefully matched older people with IGT, both fasting (5.7 +/- 0.2 vs. 6.3 +/- 0.2 mM, P = 0.002) and 1-h postprandial glucose levels (6.9 +/- 0.3 vs. 8.2 +/- 0.4 mM, P = 0.02) were significantly lower in the acarbose than in the placebo group. Despite this reduction of chronic hyperglycemia in the acarbose vs. placebo group, measures of insulin secretion (ISR area under the curve: 728 +/- 55 vs. 835 +/- 81 pmol/kg, P = 0.9) and acute insulin response to intravenous glucose (329 +/- 67 vs. 301 +/- 54 pM, P = 0.4) remained unchanged and impaired. Thus short-term improvement of chronic hyperglycemia does not reverse beta-cell dysfunction in older people with IGT.
Collapse
Affiliation(s)
- Annette M Chang
- Department of Internal Medicine, University of Michigan, 1111 CCGC Bldg., 1500 E. Medical Center Dr., Ann Arbor, MI 48109-0926, USA
| | | | | | | | | |
Collapse
|
15
|
Abstract
The homeostatic corrections that have emerged in the course of human evolution to cope with catastrophic events involve a complex multisystem endeavor, of which the endocrine contribution is an integral component. Although the repertoire of endocrine changes has been probed in some detail, discerning the vulnerabilities and failure of this system is far more challenging. The ensuing endocrine topics illustrate some of the current issues reflecting attempts to gain an improved insight and clinical outcome for critical illness.
Collapse
Affiliation(s)
- Eric S Nylen
- Department of Medicine, Section of Endocrinology, George Washington University School of Medicine, and Veterans Affairs Medical Center, 50 Irving St, NW, Rm GE246, Washington, DC 20422, USA.
| | | |
Collapse
|
16
|
Renström E, Ivarsson R, Shears SB. Inositol 3,4,5,6-tetrakisphosphate inhibits insulin granule acidification and fusogenic potential. J Biol Chem 2002; 277:26717-20. [PMID: 12055181 DOI: 10.1074/jbc.c200314200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ClC Cl(-) channels in endosomes, synaptosomes, lysosomes, and beta-cell insulin granules provide charge neutralization support for the functionally indispensable acidification of the luminal interior by electrogenic H(+)-ATPases (Jentsch, T. J., Stein, V., Weinreich, F., and Zdebik, A. A. (2002) Physiol. Rev. 82, 503-568). Regulation of ClC activity is, therefore, of widespread biological significance (Forgac, M. (1999) J. Biol. Chem. 274, 12951-12954). We now ascribe just such a regulatory function to the increases in cellular levels of inositol 3,4,5,6-tetrakisphosphate (Ins(3,4,5,6)P(4)) that inevitably accompany activation of the ubiquitous Ins(1,4,5)P(3) signaling pathway. We used confocal imaging to record insulin granule acidification in single mouse pancreatic beta-cells. Granule acidification was reduced by perfusion of single cells with 10 microm Ins(3,4,5,6)P(4) (the concentration following receptor activation), whereas at 1 microm ("resting" levels), Ins(3,4,5,6)P(4) was ineffective. This response to Ins(3,4,5,6)P(4) was not mimicked by 100 microm Ins(1,4,5,6)P(4) or by 100 microm Ins(1,3,4,5,6)P(5). Ins(3,4,5,6)P(4) did not affect granular H(+)-ATPase activity or H(+) leak, indicating that Ins(3,4,5,6)P(4) instead inhibited charge neutralization by ClC. The Ins(3,4,5,6)P(4)-mediated inhibition of vesicle acidification reduced exocytic release of insulin as determined by whole-cell capacitance recordings. This may impinge upon type 2 diabetes etiology. Regulatory control over vesicle acidification by this negative signaling pathway in other cell types should be considered.
Collapse
Affiliation(s)
- Erik Renström
- Department of Physiological Sciences, Lund University, BMC F11 SE-221 84 Lund, Sweden.
| | | | | |
Collapse
|