1
|
Li W, Zhu K, Liu Y, Liu M, Chen Q. Recent advances in PKC inhibitor development: Structural design strategies and therapeutic applications. Eur J Med Chem 2025; 287:117290. [PMID: 39904144 DOI: 10.1016/j.ejmech.2025.117290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
Protein kinase C (PKC) isozymes play critical roles in diverse cellular processes and are implicated in numerous diseases, including cancer, diabetes, and autoimmune disorders. Despite extensive research efforts spanning four decades, only one PKC inhibitor has received clinical approval, highlighting the challenges in developing selective and efficacious PKC-targeting therapeutics. Here we review recent advances in the development of small-molecule PKC inhibitors, focusing on structural design strategies, pharmacological activities, and structure-activity relationships. We analyze emerging approaches including fragment-based drug design, allosteric targeting, and natural product derivatization that have yielded promising new scaffold classes. Special attention is given to innovations in achieving isozyme selectivity, particularly for PKCα and PKCβ, which have proven crucial for therapeutic applications. We discuss how integration of computational methods, structural biology insights, and rational design principles has advanced our understanding of PKC inhibition mechanisms. This comprehensive analysis reveals key challenges in PKC drug development, including the need for enhanced selectivity and reduced off-target effects, while highlighting promising directions for future therapeutic development. Our findings provide a framework for designing next-generation PKC inhibitors with improved clinical potential.
Collapse
Affiliation(s)
- Wen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Kun Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yuyin Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Meixi Liu
- Department of Endocrinology, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, 618000, China
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
2
|
Khan SU, Cervantes-Villagrana RD, Eduardo Del Río-Robles J, Tomás-Morales JA, Torres-Santos Y, Vázquez-Prado J, Reyes-Cruz G. Calcium sensing receptor stimulates breast cancer cell migration and invasion via protein kinase C ζ. Exp Cell Res 2025; 447:114523. [PMID: 40120711 DOI: 10.1016/j.yexcr.2025.114523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Calcium-sensing receptor (CaSR), a G protein-coupled receptor, is overexpressed in certain breast cancer tumors where it drives cell migration and secretion of chemotactic agonists, likely contributing to metastatic dissemination. Since CaSR activates breast cancer cell migration via the Gβγ-PI3K-mTORC2/Rac-1 pathway, we hypothesized that PKCζ and perhaps other protein kinase C (PKC) isoforms, known as mTORC2-regulated effectors, are involved in migratory and invasive signaling elicited by CaSR. We analyzed the effect of PKC inhibitors and siRNAs which pointed to PKCζ as effector of CaSR in cell migration and invasion. In breast cancer phosphoproteomic CPTAC datasets, we identified a group of Luminal A subtype cancer patients having active PKCζ, according to its phosphorylation status at the turn motif. In addition, various phosphorylated RacGEFs, including TRIO, ARHGEF26, DOCK1 and DOCK7, clustered as phosphoproteins with active PKCζ. We therefore introduce atypical PKCζ as an effector component of the CaSR-Gβγ-PI3K-mTORC2 pathway in the activation of the promigratory small GTPase Rac. These results support ongoing initiatives to establish critical elements of the CaSR signaling pathway as potential targets in metastatic breast cancer.
Collapse
Affiliation(s)
- Safir Ullah Khan
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav-IPN), Mexico City, Mexico
| | | | - Jorge Eduardo Del Río-Robles
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav-IPN), Mexico City, Mexico
| | - Janik Adriana Tomás-Morales
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav-IPN), Mexico City, Mexico
| | - Yazmin Torres-Santos
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav-IPN), Mexico City, Mexico
| | - José Vázquez-Prado
- Department of Pharmacology, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav-IPN), Mexico City, Mexico
| | - Guadalupe Reyes-Cruz
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav-IPN), Mexico City, Mexico.
| |
Collapse
|
3
|
Balantzategi U, Gaminde-Blasco A, Kearns CA, Bayón-Cordero L, Sánchez-Gómez MV, Zugaza JL, Appel B, Alberdi E. Amyloid-β Dysregulates Oligodendroglial Lineage Cell Dynamics and Myelination via PKC in the Zebrafish Spinal Cord. Glia 2025. [PMID: 40087862 DOI: 10.1002/glia.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
Soluble forms of amyloid-β (Aβ) peptide have been proposed as candidates to induce oligodendrocyte (OL) and myelin dysfunctions in the early stages of Alzheimer's disease (AD) pathology. Nevertheless, little is known about how Aβ affects OL differentiation and myelination in vivo, and the underlying molecular mechanisms. In this study, we explored the effects of a brain intraventricular injection of Aβ on OLs and myelin in the developing spinal cord of zebrafish larvae. Using quantitative fluorescent in situ RNA hybridization assays, we demonstrated that Aβ altered myrf and mbp mRNA levels and the regional distribution of mbp during larval development, suggesting an early differentiation of OLs. Through live imaging of Tg(myrf:mScarlet) and Tg(mbpa:tagRFP) zebrafish lines, both crossed with Tg(olig2:EGFP), we found that Aβ increased the number of myrf+ and mbp+ OLs in the dorsal spinal cord at 72 hpf and 5 dpf, respectively, without affecting total cell numbers. Furthermore, Aβ also increased the number of Sox10+cells, myelin sheaths per OL, and the number of myelinated axons in the dorsal spinal cord at 8 dpf compared to vehicle-injected control animals. Interestingly, the treatment of Aβ-injected zebrafish with the pan-PKC inhibitor Gö6983 restored the aforementioned alterations in OLs and myelin to control levels. Altogether, not only do we demonstrate that Aβ induces a precocious oligodendroglial differentiation leading to dysregulated myelination, but we also identified PKC as a key player in Aβ-induced pathology.
Collapse
Affiliation(s)
- Uxue Balantzategi
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Adhara Gaminde-Blasco
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Christina A Kearns
- Department of Pediatrics, Section of Developmental Biology, University of Colorado-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Laura Bayón-Cordero
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - María Victoria Sánchez-Gómez
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - José Luis Zugaza
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| | - Bruce Appel
- Department of Pediatrics, Section of Developmental Biology, University of Colorado-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Elena Alberdi
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
| |
Collapse
|
4
|
Gentry ZO, McAteer OD, Hamad JL, Moran JA, Kim JT, Marsden MD, Zack JA, Wender PA. Synthesis and preclinical evaluation of tigilanol tiglate analogs as latency-reversing agents for the eradication of HIV. SCIENCE ADVANCES 2025; 11:eads1911. [PMID: 39854456 PMCID: PMC11778240 DOI: 10.1126/sciadv.ads1911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025]
Abstract
Tigilanol tiglate (EBC-46) is a selective modulator of protein kinase C (PKC) isoforms that is Food and Drug Administration (FDA) approved for the treatment of mast cell tumors in canines with up to an 88% cure rate. Recently, it has been FDA approved for the treatment of soft tissue sarcomas in humans. The role of EBC-46 and, especially, its analogs in efforts to eradicate HIV, treat neurological and cardiovascular disorders, or enhance antigen density in antigen-targeted chimeric antigen receptor-T cell and chimeric antigen receptor-natural killer cell immunotherapies has not been reported. Enabled by our previously reported scalable synthesis of EBC-46, we report herein the systematic design, synthesis, and evaluation of EBC-46 analogs, including those inaccessible from the natural source and their PKC affinities, ability to translocate PKC, nuclear factor κB activity, and efficacy in reversing HIV latency in Jurkat-Latency cells. Leading analogs show exceptional PKC affinities, isoform selectivities, and functional activities, serving as promising candidates for therapeutic applications.
Collapse
Affiliation(s)
- Zachary O. Gentry
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Owen D. McAteer
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Jennifer L. Hamad
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jose A. Moran
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Jocelyn T. Kim
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew D. Marsden
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
- Department of Medicine (Division of Infectious Diseases), School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Jerome A. Zack
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Medicine, Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Paul A. Wender
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Zhang R, Liao W, Chen X, Wang J, Li J, Chen G, Wu W, Wang X, Zhang Y, Chen Z, Zhu X, Lin Z, Zhu Y, Ma L, Yu H. PKCα regulates the secretion of PDL1-carrying small extracellular vesicles in a p53-dependent manner. Cell Death Dis 2025; 16:19. [PMID: 39809736 PMCID: PMC11733117 DOI: 10.1038/s41419-025-07341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 12/06/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Small extracellular vesicles (sEVs), carrying PD-L1, have been implicated in immune evasion and tumor progression. However, understanding how PD-L1 sEVs are secreted still needs to be improved. We found that the secretion dynamics of PD-L1 sEVs is similar to that of other sEVs. Intracellular calcium and the associated downstream PKC signaling plays pivotal roles in releasing PD-L1 sEVs in non-small cell lung cancer cells (NSCLC). Particularly, we observed that knocking down PKCα has profound impacts on PD-L1 sEVs secretion, especially in the resting state and in the activated state, when induced by an intracellular calcium rise. Furthermore, our study revealed that PKCα regulates PD-L1 expression and PD-L1 sEVs secretion by influencing STAT1 phosphorylation and nuclear translocation in a p53-dependent manner. Notably, p53 can regulate STAT1 phosphorylation and nuclear localization, but it does not affect PKCα expression. This suggests that PKCα plays a significant role in regulating PD-L1 expression. Our findings suggest that targeting PKCα to modulate PD-L1 dynamics in NSCLC may be a promising therapeutic strategy to enhance the efficacy of immunotherapeutic interventions.
Collapse
Grants
- Macau Science and Technology Development Fund, Macau, China, Project code 0062/2021/A2, 002/2023/ALC, 003/2022/ALC & 006/2023/SKL
- Macau Science and Technology Development Fund, Macau, China, Project code 003/2022/ALC
- Macau Science and Technology Development Fund, Macau, China, Project code 0062/2021/A2, 002/2023/ALC & 006/2023/SKL
Collapse
Affiliation(s)
- Ren Zhang
- School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Weilin Liao
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xi Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
- Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Basic Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Junyi Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jiaqi Li
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Geer Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Weiyu Wu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xiaoxuan Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yao Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Ziyu Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xiaoyu Zhu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Zicong Lin
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yizhun Zhu
- School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lijuan Ma
- School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Haijie Yu
- School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
6
|
Pieles O, Morsczeck C. The Role of Protein Kinase C During the Differentiation of Stem and Precursor Cells into Tissue Cells. Biomedicines 2024; 12:2735. [PMID: 39767642 PMCID: PMC11726769 DOI: 10.3390/biomedicines12122735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/05/2025] Open
Abstract
Protein kinase C (PKC) plays an essential role during many biological processes including development from early embryonic stages until the terminal differentiation of specialized cells. This review summarizes the current knowledge about the involvement of PKC in molecular processes during the differentiation of stem/precursor cells into tissue cells with a particular focus on osteogenic, adipogenic, chondrogenic and neuronal differentiation by using a comprehensive approach. Interestingly, studies examining the overall role of PKC, or one of its three isoform groups (classical, novel and atypical PKCs), often showed controversial results. A discrete observation of distinct isoforms demonstrated that the impact on differentiation differs highly between the isoforms, and that during a certain process, the influence of only some isoforms is crucial, while others are less important. In particular, PKCβ inhibits, and PKCδ strongly supports osteogenesis, whereas it is the other way around for adipogenesis. PKCε is another isoform that overwhelmingly supports adipogenic differentiation. In addition, PKCα plays an important role in chondrogenesis, while neuronal differentiation has been positively associated with numerous isoforms including classical, novel and atypical PKCs. In a cellular context, various upstream mediators, like the canonical and non-canonical Wnt pathways, endogenously control PKC activity and thus, their activity interferes with the influence of PKC on differentiation. Downstream of PKC, several proteins and pathways build the molecular bridge between the enzyme and the control of differentiation, of which only a few have been well characterized so far. In this context, PKC also cooperates with other kinases like Akt or protein kinase A (PKA). Furthermore, PKC is capable of directly phosphorylating transcription factors with pivotal function for a certain developmental process. Ultimately, profound knowledge about the role of distinct PKC isoforms and the involved signaling pathways during differentiation constitutes a promising tool to improve the use of stem cells in regenerative therapies by precisely manipulating the activity of PKC or downstream effectors.
Collapse
Affiliation(s)
| | - Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany;
| |
Collapse
|
7
|
Xue W, Chu H, Wang J, Sun Y, Qiu X, Song C, Tan L, Ding C, Liao Y. Coronavirus nucleocapsid protein enhances the binding of p-PKCα to RACK1: Implications for inhibition of nucleocytoplasmic trafficking and suppression of the innate immune response. PLoS Pathog 2024; 20:e1012097. [PMID: 39602452 PMCID: PMC11633972 DOI: 10.1371/journal.ppat.1012097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 12/11/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
The hallmark of coronavirus infection lies in its ability to evade host immune defenses, a process intricately linked to the nuclear entry of transcription factors crucial for initiating the expression of antiviral genes. Central to this evasion strategy is the manipulation of the nucleocytoplasmic trafficking system, which serves as an effective target for the virus to modulate the expression of immune response-related genes. In this investigation, we discovered that infection with the infectious bronchitis virus (IBV) dynamically impedes the nuclear translocation of several transcription factors such as IRF3, STAT1, STAT2, NF-κB p65, and the p38 MAPK, leading to compromised transcriptional induction of key antiviral genes such as IFNβ, IFITM3, and IL-8. Further examination revealed that during the infection process, components of the nuclear pore complex (NPC), particularly FG-Nups (such as NUP62, NUP153, NUP42, and TPR), undergo cytosolic dispersion from the nuclear envelope; NUP62 undergoes phosphorylation, and NUP42 exhibits a mobility shift in size. These observations suggest a disruption in nucleocytoplasmic trafficking. Screening efforts identified the IBV nucleocapsid (N) protein as the agent responsible for the cytoplasmic distribution of FG-Nups, subsequently hindering the nuclear entry of transcription factors and suppressing the expression of antiviral genes. Interactome analysis further revealed that the IBV N protein interacts with the scaffold protein RACK1, facilitating the recruitment of activated protein kinase C alpha (p-PKCα) to RACK1 and relocating the p-PKCα-RACK1 complex to the cytoplasm. These observations are conserved across diverse coronaviruses N proteins. Concurrently, the presence of both RACK1 and PKCα/β proved essential for the phosphorylation and cytoplasmic dispersion of NUP62, the suppression of antiviral cytokine expression, and efficient virus replication. These findings unveil a novel, highly effective, and evolutionarily conserved mechanism.
Collapse
Affiliation(s)
- Wenxiang Xue
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, P. R. China
| | - Hongyan Chu
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, P. R. China
| | - Jiehuang Wang
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, P. R. China
| | - Yingjie Sun
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, P. R. China
| | - Xusheng Qiu
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, P. R. China
| | - Cuiping Song
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, P. R. China
| | - Lei Tan
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, P. R. China
| | - Chan Ding
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, P. R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, P. R. China
| | - Ying Liao
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, P. R. China
| |
Collapse
|
8
|
Herneisen AL, Peters ML, Smith TA, Shortt E, Lourido S. SPARK regulates AGC kinases central to the Toxoplasma gondii asexual cycle. eLife 2024; 13:RP93877. [PMID: 39136687 PMCID: PMC11321763 DOI: 10.7554/elife.93877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Apicomplexan parasites balance proliferation, persistence, and spread in their metazoan hosts. AGC kinases, such as PKG, PKA, and the PDK1 ortholog SPARK, integrate environmental signals to toggle parasites between replicative and motile life stages. Recent studies have cataloged pathways downstream of apicomplexan PKG and PKA; however, less is known about the global integration of AGC kinase signaling cascades. Here, conditional genetics coupled to unbiased proteomics demonstrates that SPARK complexes with an elongin-like protein to regulate the stability of PKA and PKG in the model apicomplexan Toxoplasma gondii. Defects attributed to SPARK depletion develop after PKG and PKA are down-regulated. Parasites lacking SPARK differentiate into the chronic form of infection, which may arise from reduced activity of a coccidian-specific PKA ortholog. This work delineates the signaling topology of AGC kinases that together control transitions within the asexual cycle of this important family of parasites.
Collapse
Affiliation(s)
- Alice L Herneisen
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Michelle L Peters
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Tyler A Smith
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Emily Shortt
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
9
|
Hodapp SJ, Gravel N, Kannan N, Newton AC. Cancer-associated mutations in protein kinase C theta are loss-of-function. Biochem J 2024; 481:759-775. [PMID: 38752473 PMCID: PMC11346454 DOI: 10.1042/bcj20240148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/11/2024]
Abstract
The Ca2+-independent, but diacylglycerol-regulated, novel protein kinase C (PKC) theta (θ) is highly expressed in hematopoietic cells where it participates in immune signaling and platelet function. Mounting evidence suggests that PKCθ may be involved in cancer, particularly blood cancers, breast cancer, and gastrointestinal stromal tumors, yet how to target this kinase (as an oncogene or as a tumor suppressor) has not been established. Here, we examine the effect of four cancer-associated mutations, R145H/C in the autoinhibitory pseudosubstrate, E161K in the regulatory C1A domain, and R635W in the regulatory C-terminal tail, on the cellular activity and stability of PKCθ. Live-cell imaging studies using the genetically-encoded fluorescence resonance energy transfer-based reporter for PKC activity, C kinase activity reporter 2 (CKAR2), revealed that the pseudosubstrate and C1A domain mutations impaired autoinhibition to increase basal signaling. This impaired autoinhibition resulted in decreased stability of the protein, consistent with the well-characterized behavior of Ca2+-regulated PKC isozymes wherein mutations that impair autoinhibition are paradoxically loss-of-function because the mutant protein is degraded. In marked contrast, the C-terminal tail mutation resulted in enhanced autoinhibition and enhanced stability. Thus, the examined mutations were loss-of-function by different mechanisms: mutations that impaired autoinhibition promoted the degradation of PKC, and those that enhanced autoinhibition stabilized an inactive PKC. Supporting a general loss-of-function of PKCθ in cancer, bioinformatics analysis revealed that protein levels of PKCθ are reduced in diverse cancers, including lung, renal, head and neck, and pancreatic. Our results reveal that PKCθ function is lost in cancer.
Collapse
Affiliation(s)
- Stefanie J. Hodapp
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, U.S.A
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Nathan Gravel
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, U.S.A
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, U.S.A
| | - Alexandra C. Newton
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, U.S.A
| |
Collapse
|
10
|
Herneisen AL, Peters ML, Smith TA, Shortt E, Lourido S. SPARK regulates AGC kinases central to the Toxoplasma gondii asexual cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.30.564746. [PMID: 37961644 PMCID: PMC10634940 DOI: 10.1101/2023.10.30.564746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Apicomplexan parasites balance proliferation, persistence, and spread in their metazoan hosts. AGC kinases, such as PKG, PKA, and the PDK1 ortholog SPARK, integrate environmental signals to toggle parasites between replicative and motile life stages. Recent studies have cataloged pathways downstream of apicomplexan PKG and PKA; however, less is known about the global integration of AGC kinase signaling cascades. Here, conditional genetics coupled to unbiased proteomics demonstrates that SPARK complexes with an elongin-like protein to regulate the stability of PKA and PKG in the model apicomplexan Toxoplasma gondii. Defects attributed to SPARK depletion develop after PKG and PKA are down-regulated. Parasites lacking SPARK differentiate into the chronic form of infection, which may arise from reduced activity of a coccidian-specific PKA ortholog. This work delineates the signaling topology of AGC kinases that together control transitions within the asexual cycle of this important family of parasites.
Collapse
Affiliation(s)
- Alice L. Herneisen
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Michelle L. Peters
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Tyler A. Smith
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Emily Shortt
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
11
|
Chen XR, Dixit K, Yang Y, McDermott MI, Imam HT, Bankaitis VA, Igumenova TI. A novel bivalent interaction mode underlies a non-catalytic mechanism for Pin1-mediated protein kinase C regulation. eLife 2024; 13:e92884. [PMID: 38687676 PMCID: PMC11060717 DOI: 10.7554/elife.92884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/08/2024] [Indexed: 05/02/2024] Open
Abstract
Regulated hydrolysis of the phosphoinositide phosphatidylinositol(4,5)-bis-phosphate to diacylglycerol and inositol-1,4,5-P3 defines a major eukaryotic pathway for translation of extracellular cues to intracellular signaling circuits. Members of the lipid-activated protein kinase C isoenzyme family (PKCs) play central roles in this signaling circuit. One of the regulatory mechanisms employed to downregulate stimulated PKC activity is via a proteasome-dependent degradation pathway that is potentiated by peptidyl-prolyl isomerase Pin1. Here, we show that contrary to prevailing models, Pin1 does not regulate conventional PKC isoforms α and βII via a canonical cis-trans isomerization of the peptidyl-prolyl bond. Rather, Pin1 acts as a PKC binding partner that controls PKC activity via sequestration of the C-terminal tail of the kinase. The high-resolution structure of full-length Pin1 complexed to the C-terminal tail of PKCβII reveals that a novel bivalent interaction mode underlies the non-catalytic mode of Pin1 action. Specifically, Pin1 adopts a conformation in which it uses the WW and PPIase domains to engage two conserved phosphorylated PKC motifs, the turn motif and hydrophobic motif, respectively. Hydrophobic motif is a non-canonical Pin1-interacting element. The structural information combined with the results of extensive binding studies and experiments in cultured cells suggest that non-catalytic mechanisms represent unappreciated modes of Pin1-mediated regulation of AGC kinases and other key enzymes/substrates.
Collapse
Affiliation(s)
- Xiao-Ru Chen
- Department of Biochemistry & Biophysics, Texas A&M UniversityCollege StationUnited States
| | - Karuna Dixit
- Department of Biochemistry & Biophysics, Texas A&M UniversityCollege StationUnited States
| | - Yuan Yang
- Department of Biochemistry & Biophysics, Texas A&M UniversityCollege StationUnited States
| | - Mark I McDermott
- Department of Cell Biology & Genetics, Texas A&M UniversityCollege StationUnited States
| | - Hasan Tanvir Imam
- Department of Biochemistry & Biophysics, Texas A&M UniversityCollege StationUnited States
| | - Vytas A Bankaitis
- Department of Cell Biology & Genetics, Texas A&M UniversityCollege StationUnited States
| | - Tatyana I Igumenova
- Department of Biochemistry & Biophysics, Texas A&M UniversityCollege StationUnited States
- Department of Cell Biology & Genetics, Texas A&M UniversityCollege StationUnited States
| |
Collapse
|
12
|
Khatun S, Amin SA, Choudhury D, Chowdhury B, Jha T, Gayen S. Advances in structure-activity relationships of HDAC inhibitors as HIV latency-reversing agents. Expert Opin Drug Discov 2024; 19:353-368. [PMID: 38258439 DOI: 10.1080/17460441.2024.2305730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
INTRODUCTION HIV-infected cells may rebound due to the existence of the silent HIV-infected memory CD4+ T cells (HIV latency). This HIV latency makes the disease almost incurable. In latency, the integrated proviral DNA of HIV is transcriptionally silenced partly due to the activity of histone deacetylases (HDACs). Hence, inhibition of HDAC is considered a prime target for HIV latency reversal. AREAS COVERED A brief biology and function of HDACs have been discussed to identify key points to design HDAC inhibitors (HDACis). This article summarizes recent achievements in the development of HDACis to achieve HIV latency reversal. Structure-activity relationships (SARs) of some series of compounds were also explored. EXPERT OPINION Depletion of the HIV reservoir is the only way to end this deadly epidemic. HDACis are latency-reversing agents (LRA) that can be used to 'shock' the latently infected CD4+ T cells to induce them to produce viral proteins. It is interesting to note that HDAC3, which is extensively expressed in resting T cells, is specifically preferred by benzamide-containing HDACis for inhibition. Thus, the benzamide class of compounds should be explored. Nevertheless, more data on selective HDAC inhibition is needed for further development of HDACis in HIV latency reversal.
Collapse
Affiliation(s)
- Samima Khatun
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Sk Abdul Amin
- Department of Pharmaceutical Technology, JIS University, Kolkata, India
| | | | - Boby Chowdhury
- Department of Pharmaceutical Technology, JIS University, Kolkata, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
13
|
Aldossary SA, Alsalem M, Grubb BD. Role of bradykinin and prostaglandin EP4 receptors in regulating TRPV1 channel sensitization in rat dorsal root ganglion neurons. Basic Clin Pharmacol Toxicol 2024; 134:345-360. [PMID: 38009541 DOI: 10.1111/bcpt.13967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/23/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023]
Abstract
Transient receptor potential vanilloid type-1 (TRPV1) channels play key roles in chronic pain conditions and are modulated by different inflammatory mediators to elicit heat sensitisation. Bradykinin is a 9-amino acid peptide chain that promotes inflammation. The aim of present study is to investigate how bradykinin and prostaglandin receptors (EP3 and EP4 ) modulate the sensitisation of TRPV1-mediated responses. Calcium imaging studies of rat dorsal root ganglion (DRG) neurons were employed to investigate the desensitizing responses of TRPV1 ion channels by capsaicin, and the re-sensitization of TRPV1 by bradykinin, then to explore the role EP3 and EP4 receptors in mediating these bradykinin-dependent effects. Immunocytochemistry was used to study the co-expression and distribution of EP4, TRPV1, COX-1 and B2 in rat DRG neurons. Desensitization was seen upon repeated capsaicin application, we show that bradykinin-mediated sensitization of capsaicin-evoked calcium responses in rat DRG neurons occurs is dependent on COX-1 activity and utilizes a pathway that involves EP4 but not EP3 receptors. Immunocytochemical techniques revealed that EP4, TRPV1, COX-1 and B2 proteins are expressed mainly in small diameter (<1000 μm2 ) cell bodies of rat DRG neurons which are typically nociceptors. The present study provides suggestive evidence for a potential signalling pathway through which bradykinin may regulate TRPV1 ion channel function via EP4 receptors. In addition to confirming existing knowledge, the anatomical distribution and colocalization of these proteins in DRG neurons as revealed by this study offer valuable insight.
Collapse
Affiliation(s)
- Sara A Aldossary
- Faculty of Clinical Pharmacy, King Faisal University, Hofuf, Saudi Arabia
| | | | - Blair D Grubb
- Executive Office, University of Dundee, Nethergate, Dundee, DD1 4HN, UK
| |
Collapse
|
14
|
Ragupathi A, Kim C, Jacinto E. The mTORC2 signaling network: targets and cross-talks. Biochem J 2024; 481:45-91. [PMID: 38270460 PMCID: PMC10903481 DOI: 10.1042/bcj20220325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024]
Abstract
The mechanistic target of rapamycin, mTOR, controls cell metabolism in response to growth signals and stress stimuli. The cellular functions of mTOR are mediated by two distinct protein complexes, mTOR complex 1 (mTORC1) and mTORC2. Rapamycin and its analogs are currently used in the clinic to treat a variety of diseases and have been instrumental in delineating the functions of its direct target, mTORC1. Despite the lack of a specific mTORC2 inhibitor, genetic studies that disrupt mTORC2 expression unravel the functions of this more elusive mTOR complex. Like mTORC1 which responds to growth signals, mTORC2 is also activated by anabolic signals but is additionally triggered by stress. mTORC2 mediates signals from growth factor receptors and G-protein coupled receptors. How stress conditions such as nutrient limitation modulate mTORC2 activation to allow metabolic reprogramming and ensure cell survival remains poorly understood. A variety of downstream effectors of mTORC2 have been identified but the most well-characterized mTORC2 substrates include Akt, PKC, and SGK, which are members of the AGC protein kinase family. Here, we review how mTORC2 is regulated by cellular stimuli including how compartmentalization and modulation of complex components affect mTORC2 signaling. We elaborate on how phosphorylation of its substrates, particularly the AGC kinases, mediates its diverse functions in growth, proliferation, survival, and differentiation. We discuss other signaling and metabolic components that cross-talk with mTORC2 and the cellular output of these signals. Lastly, we consider how to more effectively target the mTORC2 pathway to treat diseases that have deregulated mTOR signaling.
Collapse
Affiliation(s)
- Aparna Ragupathi
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, U.S.A
| | - Christian Kim
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, U.S.A
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, U.S.A
| |
Collapse
|
15
|
Hamshaw I, Ellahouny Y, Malusickis A, Newman L, Ortiz-Jacobs D, Mueller A. The role of PKC and PKD in CXCL12 and CXCL13 directed malignant melanoma and acute monocytic leukemic cancer cell migration. Cell Signal 2024; 113:110966. [PMID: 37949381 DOI: 10.1016/j.cellsig.2023.110966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/03/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Cancer metastasis is the leading cause of cancer related mortality. Chemokine receptors and proteins in their downstream signalling axis represent desirable therapeutic targets for the prevention of metastasis. Despite this, current therapeutics have experienced limited success in clinical trials due to a lack of insight into the downstream signalling pathway of specific chemokine receptor cascades in different tumours. In this study, we investigated the role of protein kinase C (PKC) and protein kinase D (PKD) in CXCL12 and CXCL13 stimulated SK-MEL-28 (malignant melanoma) and THP-1 (acute monocytic leukaemia) cell migration. While PKC and PKD had no active role in CXCL12 or CXCL13 stimulated THP-1 cell migration, PKC and PKD inhibition reduced CXCL12 stimulated migration and caused profound effects upon the cytoskeleton of SK-MEL-28 cells. Furthermore, only PKC and not PKD inhibition reduced CXCL13 stimulated migration in SK-MEL-28 cells however PKC inhibition failed to stimulate any changes to the actin cytoskeleton. These findings indicate that PKC inhibitors would be a useful therapeutic for the prevention of both CXCL12 and CXCL13 stimulated migration and PKD inhibitors for CXCL12 stimulated migration in malignant melanoma.
Collapse
Affiliation(s)
- Isabel Hamshaw
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK
| | | | - Artur Malusickis
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK
| | - Lia Newman
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK
| | | | - Anja Mueller
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
16
|
Gonzales DT, Schuhmacher M, Lennartz HM, Iglesias-Artola JM, Kuhn SM, Barahtjan P, Zechner C, Nadler A. Quantifying single-cell diacylglycerol signaling kinetics after uncaging. Biophys J 2023; 122:4699-4709. [PMID: 37978803 PMCID: PMC10754688 DOI: 10.1016/j.bpj.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/07/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023] Open
Abstract
Studying the role of molecularly distinct lipid species in cell signaling remains challenging due to a scarcity of methods for performing quantitative lipid biochemistry in living cells. We have recently used lipid uncaging to quantify lipid-protein affinities and rates of lipid trans-bilayer movement and turnover in the diacylglycerol signaling pathway. This approach is based on acquiring live-cell dose-response curves requiring light dose titrations and experimental determination of uncaging photoreaction efficiency. We here aimed to develop a methodological approach that allows us to retrieve quantitative kinetic data from uncaging experiments that 1) require only typically available datasets without the need for specialized additional constraints and 2) should in principle be applicable to other types of photoactivation experiments. Our new analysis framework allows us to identify model parameters such as diacylglycerol-protein affinities and trans-bilayer movement rates, together with initial uncaged diacylglycerol levels, using noisy single-cell data for a broad variety of structurally different diacylglycerol species. We find that lipid unsaturation degree and side-chain length generally correlate with faster lipid trans-bilayer movement and turnover and also affect lipid-protein affinities. In summary, our work demonstrates how rate parameters and lipid-protein affinities can be quantified from single-cell signaling trajectories with sufficient sensitivity to resolve the subtle kinetic differences caused by the chemical diversity of cellular signaling lipid pools.
Collapse
Affiliation(s)
- David T Gonzales
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany
| | - Milena Schuhmacher
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - H Mathilda Lennartz
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Sascha M Kuhn
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Pavel Barahtjan
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Christoph Zechner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany.
| | - André Nadler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
17
|
Singh RK, Kumar S, Kumar S, Shukla A, Kumar N, Patel AK, Yadav LK, Kaushalendra, Antiwal M, Acharya A. Potential implications of protein kinase Cα in pathophysiological conditions and therapeutic interventions. Life Sci 2023; 330:121999. [PMID: 37536614 DOI: 10.1016/j.lfs.2023.121999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
PKCα is a molecule with many functions that play an important role in cell survival and death to maintain cellular homeostasis. Alteration in the normal functioning of PKCα is responsible for the complicated etiology of many pathologies, including cancer, cardiovascular diseases, kidney complications, neurodegenerative diseases, diabetics, and many others. Several studies have been carried out over the years on this kinase's function, and regulation in normal physiology and pathological conditions. A lot of data with antithetical results have therefore accumulated over time to create a complex framework of physiological implications connected to the PKCα function that needs comprehensive elucidation. In light of this information, we critically analyze the multiple roles played by PKCα in basic cellular processes and their molecular mechanism during various pathological conditions. This review further discusses the current approaches to manipulating PKCα signaling amplitude in the patient's favour and proposed PKCα as a therapeutic target to reverse pathological states.
Collapse
Affiliation(s)
- Rishi Kant Singh
- Lab of Hematopoiesis and Leukemia, KSBS, Indian Institute of Technology, Delhi, New Delhi 110016, India; Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Sanjay Kumar
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Sandeep Kumar
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Alok Shukla
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Naveen Kumar
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Anand Kumar Patel
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Lokesh Kumar Yadav
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Kaushalendra
- Department of Zoology, Pachhunga University College Campus, Mizoram University, Aizawl 796001, India
| | - Meera Antiwal
- Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Arbind Acharya
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
18
|
Chen XR, Dixit K, Yang Y, McDermott MI, Imam HT, Bankaitis VA, Igumenova TI. A novel bivalent interaction mode underlies a non-catalytic mechanism for Pin1-mediated Protein Kinase C regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558341. [PMID: 37781616 PMCID: PMC10541119 DOI: 10.1101/2023.09.18.558341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Regulated hydrolysis of the phosphoinositide phosphatidylinositol(4,5)-bis-phosphate to diacylglycerol and inositol-1,4,5-P3 defines a major eukaryotic pathway for translation of extracellular cues to intracellular signaling circuits. Members of the lipid-activated protein kinase C isoenzyme family (PKCs) play central roles in this signaling circuit. One of the regulatory mechanisms employed to downregulate stimulated PKC activity is via a proteasome-dependent degradation pathway that is potentiated by peptidyl-prolyl isomerase Pin1. Here, we show that contrary to prevailing models, Pin1 does not regulate conventional PKC isoforms α and βII via a canonical cis-trans isomerization of the peptidyl-prolyl bond. Rather, Pin1 acts as a PKC binding partner that controls PKC activity via sequestration of the C-terminal tail of the kinase. The high-resolution structure of Pin1 complexed to the C-terminal tail of PKCβII reveals that a novel bivalent interaction mode underlies the non-catalytic mode of Pin1 action. Specifically, Pin1 adopts a compact conformation in which it engages two conserved phosphorylated PKC motifs, the turn motif and hydrophobic motif, the latter being a non-canonical Pin1-interacting element. The structural information, combined with the results of extensive binding studies and in vivo experiments suggest that non-catalytic mechanisms represent unappreciated modes of Pin1-mediated regulation of AGC kinases and other key enzymes/substrates.
Collapse
|
19
|
Zafar S, Khan K, Badshah Y, Shahid K, Trembley JH, Hafeez A, Ashraf NM, Arslan H, Shabbir M, Afsar T, Almajwal A, Razak S. Exploring the prognostic significance of PKCε variants in cervical cancer. BMC Cancer 2023; 23:819. [PMID: 37667176 PMCID: PMC10476323 DOI: 10.1186/s12885-023-11236-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/29/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Protein Kinase C-epsilon (PKCε) is a member of the novel subfamily of PKCs (nPKCs) that plays a role in cancer development. Studies have revealed that its elevated expression levels are associated with cervical cancer. Previously, we identified pathogenic variations in its different domains through various bioinformatics tools and molecular dynamic simulation. In the present study, the aim was to find the association of its variants rs1553369874 and rs1345511001 with cervical cancer and to determine the influence of these variants on the protein-protein interactions of PKCε, which can lead towards cancer development and poor survival rates. METHODS The association of the variants with cervical cancer and its clinicopathological features was determined through genotyping analysis. Odds ratio and relative risk along with Fisher exact test were calculated to evaluate variants significance and disease risk. Protein-protein docking was performed and docked complexes were subjected to molecular dynamics simulation to gauge the variants impact on PKCε's molecular interactions. RESULTS This study revealed that genetic variants rs1553369874 and rs1345511001 were associated with cervical cancer. Smad3 interacts with PKCε and this interaction promotes cervical cancer angiogenesis; therefore, Smad3 was selected for protein-protein docking. The analysis revealed PKCε variants promoted aberrant interactions with Smad3 that might lead to the activation of oncogenic pathways. The data obtained from this study suggested the prognostic significance of PRKCE gene variants rs1553369874 and rs1345511001. CONCLUSION Through further in vitro and in vivo validation, these variants can be used at the clinical level as novel prognostic markers and therapeutic targets against cervical cancer.
Collapse
Affiliation(s)
- Sameen Zafar
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Yasmin Badshah
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| | - Kanza Shahid
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Janeen H Trembley
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Minneapolis VA Health Care System Research Service, Minneapolis, MN, USA
| | - Amna Hafeez
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Naeem Mahmood Ashraf
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Hamid Arslan
- University of Bonn, LIMES Institute (AG-Netea), Carl-Troll-Str. 31, 53115, Bonn, Germany
| | - Maria Shabbir
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
20
|
Torosyan H, Paul MD, Forget A, Lo M, Diwanji D, Pawłowski K, Krogan NJ, Jura N, Verba KA. Structural insights into regulation of the PEAK3 pseudokinase scaffold by 14-3-3. Nat Commun 2023; 14:3543. [PMID: 37336883 PMCID: PMC10279700 DOI: 10.1038/s41467-023-38864-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 05/16/2023] [Indexed: 06/21/2023] Open
Abstract
PEAK pseudokinases are molecular scaffolds which dimerize to regulate cell migration, morphology, and proliferation, as well as cancer progression. The mechanistic role dimerization plays in PEAK scaffolding remains unclear, as there are no structures of PEAKs in complex with their interactors. Here, we report the cryo-EM structure of dimeric PEAK3 in complex with an endogenous 14-3-3 heterodimer. Our structure reveals an asymmetric binding mode between PEAK3 and 14-3-3 stabilized by one pseudokinase domain and the SHED domain of the PEAK3 dimer. The binding interface contains a canonical phosphosite-dependent primary interaction and a unique secondary interaction not observed in previous structures of 14-3-3/client complexes. Additionally, we show that PKD regulates PEAK3/14-3-3 binding, which when prevented leads to PEAK3 nuclear enrichment and distinct protein-protein interactions. Altogether, our data demonstrate that PEAK3 dimerization forms an unusual secondary interface for 14-3-3 binding, facilitating 14-3-3 regulation of PEAK3 localization and interactome diversity.
Collapse
Affiliation(s)
- Hayarpi Torosyan
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94158, USA
- Biophysics Graduate Program, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Michael D Paul
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Antoine Forget
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Megan Lo
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Devan Diwanji
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94158, USA
- Medical Scientist Training Program, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Krzysztof Pawłowski
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Biochemistry and Microbiology, Warsaw University of Life Sciences, 02-787, Warszawa, Poland
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94158, USA.
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA.
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA.
| | - Kliment A Verba
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA.
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
21
|
Counteracting Colon Cancer by Inhibiting Mitochondrial Respiration and Glycolysis with a Selective PKCδ Activator. Int J Mol Sci 2023; 24:ijms24065710. [PMID: 36982784 PMCID: PMC10054007 DOI: 10.3390/ijms24065710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Metabolic reprogramming is a central hub in tumor development and progression. Therefore, several efforts have been developed to find improved therapeutic approaches targeting cancer cell metabolism. Recently, we identified the 7α-acetoxy-6β-benzoyloxy-12-O-benzoylroyleanone (Roy-Bz) as a PKCδ-selective activator with potent anti-proliferative activity in colon cancer by stimulating a PKCδ-dependent mitochondrial apoptotic pathway. Herein, we investigated whether the antitumor activity of Roy-Bz, in colon cancer, could be related to glucose metabolism interference. The results showed that Roy-Bz decreased the mitochondrial respiration in human colon HCT116 cancer cells, by reducing electron transfer chain complexes I/III. Consistently, this effect was associated with downregulation of the mitochondrial markers cytochrome c oxidase subunit 4 (COX4), voltage-dependent anion channel (VDAC) and mitochondrial import receptor subunit TOM20 homolog (TOM20), and upregulation of synthesis of cytochrome c oxidase 2 (SCO2). Roy-Bz also dropped glycolysis, decreasing the expression of critical glycolytic markers directly implicated in glucose metabolism such as glucose transporter 1 (GLUT1), hexokinase 2 (HK2) and monocarboxylate transporter 4 (MCT4), and increasing TP53-induced glycolysis and apoptosis regulator (TIGAR) protein levels. These results were further corroborated in tumor xenografts of colon cancer. Altogether, using a PKCδ-selective activator, this work evidenced a potential dual role of PKCδ in tumor cell metabolism, resulting from the inhibition of both mitochondrial respiration and glycolysis. Additionally, it reinforces the antitumor therapeutic potential of Roy-Bz in colon cancer by targeting glucose metabolism.
Collapse
|
22
|
Phosphatidylserine in the Nervous System: Cytoplasmic Regulator of the AKT and PKC Signaling Pathways and Extracellular "Eat-Me" Signal in Microglial Phagocytosis. Mol Neurobiol 2023; 60:1050-1066. [PMID: 36401705 DOI: 10.1007/s12035-022-03133-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
Abstract
Phosphatidylserine (PtdSer) is an important anionic phospholipid found in eukaryotic cells and has been proven to serve as a beneficial factor in the treatment of neurodegenerative diseases. PtdSer resides in the inner leaflet of the plasma membrane, where it is involved in regulating the AKT and PKC signaling pathways; however, it becomes exposed to the extracellular leaflet during neurodevelopmental processes and neurodegenerative diseases, participating in microglia-mediated synaptic and neuronal phagocytosis. In this paper, we review several characteristics of PtdSer, including the synthesis and translocation of PtdSer, the functions of cytoplasmic and exposed PtdSer, and different PtdSer-detection materials used to further understand the role of PtdSer in the nervous system.
Collapse
|
23
|
Network pharmacology study of the mechanism underlying the therapeutic effect of Zhujing pill and its main component oleanolic acid against diabetic retinopathy. Biosci Rep 2023; 43:232265. [PMID: 36714956 PMCID: PMC9894013 DOI: 10.1042/bsr20220893] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/28/2022] [Accepted: 12/12/2022] [Indexed: 01/31/2023] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of blindness in the working population worldwide, with few effective drugs available for its treatment in the early stages. The Zhujing pill (ZJP) is well-established to enhance the early symptoms of DR, but the mechanism underlying its therapeutic effect remains unclear. In the present study, we used systems biology and multidirectional pharmacology to screen the main active ingredients of ZJP and retrieved DrugBank and Genecards databases to obtain 'drug-disease' common targets. Using bioinformatics analysis, we obtained the core targets, and potential mechanisms of action of ZJP and its main components for the treatment of DR. Molecular docking was used to predict the binding sites and the binding affinity of the main active ingredients to the core targets. The predicted mechanism was verified in animal experiments. We found that the main active ingredient of ZJP was oleanolic acid, and 63 common 'drug-disease' targets were identified. Topological analysis and cluster analysis based on the protein-protein interaction network of the Metascape database screened the core targets as PRKCA, etc. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that these core targets were significantly enriched in the pro-angiogenic pathway of the VEGF signaling pathway. Molecular docking and surface plasmon resonance revealed that ZJP and its main active component, oleanolic acid had the highest binding affinity with PKC-α, the core target of the VEGF signaling pathway. Animal experiments validated that ZJP and oleanolic acid could improve DR.
Collapse
|
24
|
You Y, Mathukumali K, Das J. Comparison of the ligand binding site of C1 domains: a molecular dynamics simulation study of the C1 domain-phorbol 13-acetate-membrane system. J Biomol Struct Dyn 2023; 41:11796-11809. [PMID: 36602779 PMCID: PMC10319914 DOI: 10.1080/07391102.2022.2163699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023]
Abstract
C1 domains are lipid-binding structural units of about 50 residues. Typical C1 domains associate with the plasma membrane and bind to diacylglycerol/phorbol ester during the activation of the proteins containing these domains. Although the overall structure of the C1 domains are similar, there are differences in their primary sequence and in the orientation of the ligand/lipid binding residues. To gain structural insights into the ligand/lipid binding, we performed molecular docking of phorbol 13-acetate into the C1 domain and 1.0 μs molecular dynamics simulation on the C1 domain-ligand-lipid ternary system for PKCθ C1A, PKCδ C1B, PKCβII C1B, PKCθ C1B, Munc13-1 C1, and βII-Chimaerin C1. We divided these C1 domains into three types based on the orientations of Gln-27 and Trp/Tyr-22. In type 1, Trp/Tyr-22 is outside and Gln-27 is inside the ligand binding pocket. In type 2, both Trp/Tyr-22 and Gln-27 are outside the ligand binding pocket, and in type 3, Trp/Tyr-22 is inside and Gln-27 is outside the pocket. The type 1 C1 domains showed higher ligand binding and higher membrane binding with a shorter distance between the C1 domain and the membrane than the type 2 and type 3. For ligand binding, Pro-11 plays a major role in the type 1 and 2, and Gly-23 in the type 1 and type 3 C1 domains. This study elucidates the role of Gln-27, Trp-22, Pro-11 and Gly-23 in ligand/lipid binding in typical C1 domains and bears significance in developing selective modulators of C1 domain-containing proteins.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Youngki You
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, U.S.A
| | - Kavya Mathukumali
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, U.S.A
| | - Joydip Das
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, U.S.A
| |
Collapse
|
25
|
Min X, Zhang X, Wang S, Kim KM. Activation of PKCβII through nuclear trafficking guided by βγ subunits of trimeric G protein and 14-3-3ε. Life Sci 2022; 312:121245. [PMID: 36503900 DOI: 10.1016/j.lfs.2022.121245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
AIMS Conventional members of protein kinase C (PKC) family, including PKCβII, are constitutively phosphorylated on three major motifs and located in the cytosol in a primed state. In response to cellular stimuli, PKCβII is activated through inducible phosphorylation and Mdm2-mediated ubiquitination. In this study, we aimed to identify the activation mechanism of PKCβII, focusing on the signaling cascade that regulate the phosphorylation and ubiquitination. MATERIALS AND METHODS Loss-of-function approaches and mutants of PDK1/PKCβII that display different regulatory properties were used to identify the cellular components and processes responsible for endocytosis. KEY FINDINGS Phorbol 12-myristate 13-acetate (PMA)-induced phosphorylation and ubiquitination of PKCβII, which are needed for its translocation to the plasma membrane, required the presence of both Gβγ and 14-3-3ε. Gβγ and 14-3-3ε mediated the constitutive phosphorylation of PKCβII by scaffolding PI3K and PDK1 in the cytosol, which is an inactive but required state for the activation of PKCβII by subsequent signals. In response to PMA treatment, the signaling complex translocated to the nucleus with dissociation of PI3K from it. Thereafter, PDK1 stably interacted with 14-3-3ε and was dephosphorylated; PKCβII interacted with Mdm2 along with Gβγ, leading to its ubiquitination at two lysine residues on its C-tail. Finally, PDK1/14-3-3ε and ubiquitinated PKCβII translocated to the plasma membrane. SIGNIFICANCE As PKCβII mediates a wide range of cellular functions and plays important roles in the pathogenesis of various diseases, our results will provide clues to understand the pathogenesis of PKCβII-related disorders and facilitate their treatment.
Collapse
Affiliation(s)
- Xiao Min
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, Republic of Korea
| | - Xiaohan Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Shujie Wang
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, Republic of Korea
| | - Kyeong-Man Kim
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, Republic of Korea.
| |
Collapse
|
26
|
Lordén G, Wozniak JM, Doré K, Dozier LE, Cates-Gatto C, Patrick GN, Gonzalez DJ, Roberts AJ, Tanzi RE, Newton AC. Enhanced activity of Alzheimer disease-associated variant of protein kinase Cα drives cognitive decline in a mouse model. Nat Commun 2022; 13:7200. [PMID: 36418293 PMCID: PMC9684486 DOI: 10.1038/s41467-022-34679-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/01/2022] [Indexed: 11/27/2022] Open
Abstract
Exquisitely tuned activity of protein kinase C (PKC) isozymes is essential to maintaining cellular homeostasis. Whereas loss-of-function mutations are generally associated with cancer, gain-of-function variants in one isozyme, PKCα, are associated with Alzheimer's disease (AD). Here we show that the enhanced activity of one variant, PKCα M489V, is sufficient to rewire the brain phosphoproteome, drive synaptic degeneration, and impair cognition in a mouse model. This variant causes a modest 30% increase in catalytic activity without altering on/off activation dynamics or stability, underscoring that enhanced catalytic activity is sufficient to drive the biochemical, cellular, and ultimately cognitive effects observed. Analysis of hippocampal neurons from PKCα M489V mice reveals enhanced amyloid-β-induced synaptic depression and reduced spine density compared to wild-type mice. Behavioral studies reveal that this mutation alone is sufficient to impair cognition, and, when coupled to a mouse model of AD, further accelerates cognitive decline. The druggability of protein kinases positions PKCα as a promising therapeutic target in AD.
Collapse
Affiliation(s)
- Gema Lordén
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jacob M Wozniak
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kim Doré
- Center for Neural Circuits and Behavior, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Lara E Dozier
- Section of Neurobiology. Division of Biological sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Chelsea Cates-Gatto
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Gentry N Patrick
- Section of Neurobiology. Division of Biological sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - David J Gonzalez
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Amanda J Roberts
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Alexandra C Newton
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
27
|
Eickhoff A, Tjaden J, Stahlke S, Vorgerd M, Theis V, Matschke V, Theiss C. Effects of progesterone on T-type-Ca 2+-channel expression in Purkinje cells. Neural Regen Res 2022; 17:2465-2471. [PMID: 35535898 PMCID: PMC9120685 DOI: 10.4103/1673-5374.339008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Plasticity of cerebellar Purkinje cells (PC) is influenced by progesterone via the classical progesterone receptors PR-A and PR-B by stimulating dendritogenesis, spinogenesis, and synaptogenesis in these cells. Dissociated PC cultures were used to analyze progesterone effects at a molecular level on the voltage-gated T-type-Ca2+-channels Cav3.1, Cav3.2, and Cav3.3 as they helped determine neuronal plasticity by regulating Ca2+-influx in neuronal cells. The results showed direct effects of progesterone on the mRNA expression of T-type-Ca2+-channels, as well as on the protein kinases A and C being involved in downstream signaling pathways that play an important role in neuronal plasticity. For the mRNA expression studies of T-type-Ca2+-channels and protein kinases of the signaling cascade, laser microdissection and purified PC cultures of different maturation stages were used. Immunohistochemical staining was also performed to characterize the localization of T-type-Ca2+-channels in PC. Experimental progesterone treatment was performed on the purified PC culture for 24 and 48 hours. Our results show that progesterone increases the expression of Cav3.1 and Cav3.3 and associated protein kinases A and C in PC at the mRNA level within 48 hours after treatment at latest. These effects extend the current knowledge of the function of progesterone in the central nervous system and provide an explanatory approach for its influence on neuronal plasticity.
Collapse
Affiliation(s)
- Annika Eickhoff
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Bochum, Germany
| | - Jonas Tjaden
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Bochum, Germany
| | - Sarah Stahlke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, Neuromuscular Center Ruhrgebiet, University Hospital Bergmannsheil, Ruhr-Universität Bochum, Bochum, Germany
| | - Verena Theis
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Bochum, Germany
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
28
|
Sakakibara S, Sakane A, Sasaki T, Shinohara M, Maruo T, Miyata M, Mizutani K, Takai Y. Identification of lysophosphatidic acid in serum as a factor that promotes epithelial apical junctional complex organization. J Biol Chem 2022; 298:102426. [PMID: 36030821 PMCID: PMC9520027 DOI: 10.1016/j.jbc.2022.102426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022] Open
Abstract
The apical junctional complex (AJC) consists of adherens junctions (AJs) and tight junctions and regulates epithelial integrity and remodeling. However, it is unclear how AJC organization is regulated based on environmental cues. We found here using cultured EpH4 mouse mammary epithelial cells that fetal bovine serum (FBS) in a culture medium showed an activity to promote AJC organization and that FBS showed an activity to promote tight junction formation even in the absence of AJ proteins, such as E-cadherin, αE-catenin, and afadin. Furthermore, we purified the individual factor responsible for these functions from FBS and identified this molecule as lysophosphatidic acid (LPA). In validation experiments, purified LPA elicited the same activity as FBS. In addition, we found that the AJC organization–promoting activity of LPA was mediated through the LPA receptor 1/5 via diacylglycerol–novel PKC and Rho–ROCK pathway activation in a mutually independent, but complementary, manner. We demonstrated that the Rho–ROCK pathway activation–mediated AJC organization was independent of myosin II-induced actomyosin contraction, although this signaling pathway was previously shown to induce myosin II activation. These findings are in contrast to the literature, as previous results suggested an AJC organization–disrupting activity of LPA. The present results indicate that LPA in serum has an AJC organization–promoting activity in a manner dependent on or independent of AJ proteins.
Collapse
Affiliation(s)
- Shotaro Sakakibara
- Department of Biochemistry, Tokushima University Graduate School of Medicine, Tokushima 770-8503, Japan; Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0047, Japan
| | - Ayuko Sakane
- Department of Biochemistry, Tokushima University Graduate School of Medicine, Tokushima 770-8503, Japan; Department of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima 770-8503, Japan.
| | - Takuya Sasaki
- Department of Biochemistry, Tokushima University Graduate School of Medicine, Tokushima 770-8503, Japan
| | - Masakazu Shinohara
- Division of Epidemiology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan; The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Tomohiko Maruo
- Department of Biochemistry, Tokushima University Graduate School of Medicine, Tokushima 770-8503, Japan; Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0047, Japan
| | - Muneaki Miyata
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0047, Japan
| | - Kiyohito Mizutani
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0047, Japan.
| | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0047, Japan.
| |
Collapse
|
29
|
Jubaidi FF, Zainalabidin S, Taib IS, Abdul Hamid Z, Mohamad Anuar NN, Jalil J, Mohd Nor NA, Budin SB. The Role of PKC-MAPK Signalling Pathways in the Development of Hyperglycemia-Induced Cardiovascular Complications. Int J Mol Sci 2022; 23:ijms23158582. [PMID: 35955714 PMCID: PMC9369123 DOI: 10.3390/ijms23158582] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular disease is the most common cause of death among diabetic patients worldwide. Hence, cardiovascular wellbeing in diabetic patients requires utmost importance in disease management. Recent studies have demonstrated that protein kinase C activation plays a vital role in the development of cardiovascular complications via its activation of mitogen-activated protein kinase (MAPK) cascades, also known as PKC-MAPK pathways. In fact, persistent hyperglycaemia in diabetic conditions contribute to preserved PKC activation mediated by excessive production of diacylglycerol (DAG) and oxidative stress. PKC-MAPK pathways are involved in several cellular responses, including enhancing oxidative stress and activating signalling pathways that lead to uncontrolled cardiac and vascular remodelling and their subsequent dysfunction. In this review, we discuss the recent discovery on the role of PKC-MAPK pathways, the mechanisms involved in the development and progression of diabetic cardiovascular complications, and their potential as therapeutic targets for cardiovascular management in diabetic patients.
Collapse
Affiliation(s)
- Fatin Farhana Jubaidi
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.T.); (Z.A.H.); (N.A.M.N.)
- Correspondence: (F.F.J.); (S.B.B.); Tel.: +603-9289-7645 (S.S.B.)
| | - Satirah Zainalabidin
- Center for Toxicology and Health Risk Research, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (S.Z.); (N.N.M.A.)
| | - Izatus Shima Taib
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.T.); (Z.A.H.); (N.A.M.N.)
| | - Zariyantey Abdul Hamid
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.T.); (Z.A.H.); (N.A.M.N.)
| | - Nur Najmi Mohamad Anuar
- Center for Toxicology and Health Risk Research, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (S.Z.); (N.N.M.A.)
| | - Juriyati Jalil
- Center for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Nor Anizah Mohd Nor
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.T.); (Z.A.H.); (N.A.M.N.)
- Faculty of Health Sciences, University College MAIWP International, Kuala Lumpur 68100, Malaysia
| | - Siti Balkis Budin
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.T.); (Z.A.H.); (N.A.M.N.)
- Correspondence: (F.F.J.); (S.B.B.); Tel.: +603-9289-7645 (S.S.B.)
| |
Collapse
|
30
|
The role of protein kinases as key drivers of metabolic dysfunction-associated fatty liver disease progression: New insights and future directions. Life Sci 2022; 305:120732. [PMID: 35760093 DOI: 10.1016/j.lfs.2022.120732] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 02/07/2023]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD), proposed in 2020 is a novel term for non-alcoholic fatty liver disease (NAFLD) which was coined for the first time in 1980. It is a leading cause of the most chronic liver disease and hepatic failure all over the world, and unfortunately, with no licensed drugs for treatment yet. The progress of the disease is driven by the triggered inflammatory process, oxidative stress, and insulin resistance in many pathways, starting with simple hepatic steatosis to non-alcoholic steatohepatitis, fibrosis, cirrhosis, and liver cancer. Protein kinases (PKs), such as MAPK, ErbB, PKC, PI3K/Akt, and mTOR, govern most of the pathological pathways by acting on various downstream key points in MAFLD and regulating both hepatic gluco- lipo-neogenesis and inflammation. Therefore, modulating the function of those potential protein kinases that are effectively involved in MAFLD might be a promising therapeutic approach for tackling this disease. In the current review, we have discussed the key role of protein kinases in the pathogenesis of MAFLD and performed a protein-protein interaction (PPI) network among the main proteins of each kinase pathway with MAFLD-related proteins to predict the most likely targets of the PKs in MAFLD. Moreover, we have reported the experimental, pre-clinical, and clinical data for the most recent investigated molecules that are activating p38-MAPK and AMPK proteins and inhibiting the other PKs to improve MAFLD condition by regulating oxidation and inflammation signalling.
Collapse
|
31
|
Black JD, Affandi T, Black AR, Reyland ME. PKCα and PKCδ: Friends and Rivals. J Biol Chem 2022; 298:102194. [PMID: 35760100 PMCID: PMC9352922 DOI: 10.1016/j.jbc.2022.102194] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 01/06/2023] Open
Abstract
PKC comprises a large family of serine/threonine kinases that share a requirement for allosteric activation by lipids. While PKC isoforms have significant homology, functional divergence is evident among subfamilies and between individual PKC isoforms within a subfamily. Here, we highlight these differences by comparing the regulation and function of representative PKC isoforms from the conventional (PKCα) and novel (PKCδ) subfamilies. We discuss how unique structural features of PKCα and PKCδ underlie differences in activation and highlight the similar, divergent, and even opposing biological functions of these kinases. We also consider how PKCα and PKCδ can contribute to pathophysiological conditions and discuss challenges to targeting these kinases therapeutically.
Collapse
Affiliation(s)
- Jennifer D Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE.
| | - Trisiani Affandi
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus
| | - Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Mary E Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus.
| |
Collapse
|
32
|
Azizi Z, Choopani S, Salimi M, Majlessi N, Naghdi N. Protein Kinase C Involvement in Neuroprotective Effects of Thymol and Carvacrol Against Toxicity Induced by Amyloid-β in Rat Hippocampal Neurons. Basic Clin Neurosci 2022; 13:295-304. [PMID: 36457884 PMCID: PMC9706300 DOI: 10.32598/bcn.2021.666.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/03/2021] [Accepted: 02/25/2021] [Indexed: 06/17/2023] Open
Abstract
INTRODUCTION We have reported that thymol and carvacrol can improve cognitive abilities in Alzheimer Disease (AD) rat models. However, the mechanism of their action is not yet fully understood. Recently, our in vitro results suggested that PC12 cell death induced by Aβ25-35 can be protected by thymol and carvacrol via Protein Kinase C (PKC) and Reactive Oxygen Species (ROS) pathways. So, we hypothesize that the mechanisms of thymol and carvacrol in improving the learning impairment in the AD rat model may be related to their effects on PKC. So, the activity of PKC and protein expression levels of PKCα were examined in the hippocampal cells of the AD rat model. METHODS To examine the thymol and carvacrol effects, we performed a behavioral test in AD rat models induced by Aβ25-35 neurotoxicity. To access the underlying mechanism of the protective effects, western blotting was performed with antibodies against PKCα. We also measured the PKC activity assay by Elisa. Histopathological studies were carried out in the hippocampus with Hematoxylin and Eosin (H&E) staining. RESULTS The escape latency increased in Aβ-received rats compared to the control group, and thymol and carvacrol reversed this deficit. Furthermore, these compounds could enhance the PKC activity and increase the PKCα expression ratio. Moreover, H&E staining showed that Aβ caused shrinkage of the CA1 pyramidal neurons. However, thymol and carvacrol treatments could prevent this effect of Aβ peptides. CONCLUSION This study suggests that Amyloid-Beta (Aβ) results in memory decline and histochemical disturbances in the hippocampus. Moreover, these results revealed that thymol and carvacrol could have protective effects on cognition in AD-like models via PKC activation. HIGHLIGHTS Rat's ability to find the invisible platform in the Morris Water Maze (MWM) was impaired by Amyloid-Beta (Aβ) infusion in the hippocampus, while this effect was reversed by thymol or carvacrol administration.Aβ significantly downregulated the Protein Kinase C (PKC) activity in rats' hippocampus.Western blot analysis demonstrated that Aβ significantly reduced PKCα protein expression in AD rat model hippocampal cells.The expression ratio of PKCα was upregulated following the injection of thymol and carvacrol in rats.Injection of Aβ in the hippocampus resulted in histochemical disturbances in CA1 pyramidal neurons.Carvacrol and thymol can prevent several histological changes induced by Aβ. PLAIN LANGUAGE SUMMARY Alzheimer's disease is one of the most important brain diseases in which the learning and memory are impaired. One of the main causes of Alzheimer's disease is the presence of amyloid beta plaques in the neurons. Protein kinase C enzyme reduces amyloid production and accumulation in the brain. In the present study, we tested the possible effects of carvacrol and thymol in a rat model of Alzheimer's disease. Memory impairment was induced in adult rats by intra-cerebral infusion of amyloid β. One week later, the memory-impaired animals were treated with carvacrol and thymol. Finally, we tested their memory in a Morris water maze apparatus. Furthermore, their hippocampus was dissected and PKC activity and the neuronal injury was evaluated. Our findings exhibited that thymol and carvacrol improved rats' memory performance. In addition, thymol and carvacrol significantly increased PKC activity and prevented neuronal cell loss in the rat hippocampus. This study shows that thymol and carvacrol have beneficial effects on memory and cognitive function via PKC activation.
Collapse
Affiliation(s)
- Zahra Azizi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Samira Choopani
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Mona Salimi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Nahid Majlessi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Nasser Naghdi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
33
|
Gada KD, Kawano T, Plant LD, Logothetis DE. An optogenetic tool to recruit individual PKC isozymes to the cell surface and promote specific phosphorylation of membrane proteins. J Biol Chem 2022; 298:101893. [PMID: 35367414 PMCID: PMC9062429 DOI: 10.1016/j.jbc.2022.101893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 12/30/2022] Open
Abstract
The PKC family consists of several closely related kinases. These enzymes regulate the function of proteins through the phosphorylation of hydroxyl groups on serines and/or threonines. The selective activation of individual PKC isozymes has proven challenging because of a lack of specific activator molecules. Here, we developed an optogenetic blue light-activated PKC isozyme that harnesses a plant-based dimerization system between the photosensitive cryptochrome-2 (CRY2) and the N terminus of the transcription factor calcium and integrin-binding protein 1 (CIB1) (N-terminal region of the CRY2-binding domain of CIB1). We show that tagging CRY2 with the catalytic domain of PKC isozymes can efficiently promote its translocation to the cell surface upon blue light exposure. We demonstrate this system using PKCε and show that this leads to robust activation of a K+ channel (G protein-gated inwardly rectifying K+ channels 1 and 4), previously shown to be activated by PKCε. We anticipate that this approach can be utilized for other PKC isoforms to provide a reliable and direct stimulus for targeted membrane protein phosphorylation by the relevant PKCs.
Collapse
Affiliation(s)
- Kirin D Gada
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences and College of Science, Northeastern University, Boston, Massachusetts, USA
| | - Takeharu Kawano
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences and College of Science, Northeastern University, Boston, Massachusetts, USA
| | - Leigh D Plant
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences and College of Science, Northeastern University, Boston, Massachusetts, USA; Center for Drug Discovery, Bouvé College of Health Sciences and College of Science, Northeastern University, Boston, Massachusetts, USA
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences and College of Science, Northeastern University, Boston, Massachusetts, USA; Center for Drug Discovery, Bouvé College of Health Sciences and College of Science, Northeastern University, Boston, Massachusetts, USA; Department of Chemistry and Chemical Biology, Bouvé College of Health Sciences and College of Science, Northeastern University, Boston, Massachusetts, USA.
| |
Collapse
|
34
|
Aslam N, Alvi F. Protein Kinase C Life Cycle: Explained Through Systems Biology Approach. Front Physiol 2022; 13:818688. [PMID: 35492590 PMCID: PMC9049586 DOI: 10.3389/fphys.2022.818688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/04/2022] [Indexed: 11/18/2022] Open
Abstract
Protein kinase C (PKC) enzymes are a family of kinases that mediate signal transduction originating at the cell surface. Most cell membranes can contain functional PKC enzymes. Aberrations in the PKC life cycle may result in cellular damage and dysfunction. For example, some cancerous cells exhibit alterations in PKC activity. Here, we use a systems biology approach to describe a molecular model of the PKC life cycle. Understanding the PKC life cycle is necessary to identify new drug targets. The PKC life cycle is composed of three key regulatory processes: maturation, activation, and termination. These processes precisely control PKC enzyme levels. This model describes the fate of PKC during de novo synthesis and PKC’s lipid-mediated activation cycle. We utilize a systems biology approach to show the PKC life cycle is controlled by multiple phosphorylation and dephosphorylation events. PKC processing events can be divided into two types: maturation via processing of newly synthesized enzyme and secondary messenger-dependent activation of dormant, but catalytically competent enzyme. Newly synthesized PKC enzyme is constitutively processed through three ordered phosphorylations and stored in the cytosol as a stable, signaling-competent inactive and autoinhibited molecule. Upon extracellular stimulation, diacylglycerol (DAG) and calcium ion (Ca2+) generated at the membrane bind PKC. PKC then undergoes cytosol-to-membrane translocation and subsequent activation. Our model shows that, once activated, PKC is prone to dephosphorylation and subsequent degradation. This model also describes the role of HSP70 in stabilization and re-phosphorylation of dephosphorylated PKC, replenishing the PKC pool. Our model shows how the PKC pool responds to different intensities of extracellular stimuli? We show that blocking PHLPP dephosphorylation replenishes the PKC pool in a dose-dependent manner. This model provides a comprehensive understanding of PKC life cycle regulation.
Collapse
Affiliation(s)
- Naveed Aslam
- BioSystOmics, Houston, TX, United States
- *Correspondence: Naveed Aslam,
| | - Farah Alvi
- BioSystOmics, Houston, TX, United States
- Department of Physics, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| |
Collapse
|
35
|
Recombinant humanized IgG1 maintain liver triglyceride homeostasis through Arylacetamide deacetylase in ApoE -/- mice. Int Immunopharmacol 2022; 108:108741. [PMID: 35397394 DOI: 10.1016/j.intimp.2022.108741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/11/2022] [Accepted: 03/28/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND & AIMS Hyperlipidemia is a lipid metabolism disorder associated with elevated serum triglyceride (TG) and/or cholesterol. Over the years, studies have shown that hyperlipidemia is associated with combordities, incluing diabetes and obesity, gradually becoming a public health concern. Current treatment approaches remain limited due to the lack of effective drugs. Here we investigated the function of recombinant humanized IgG1 in maintaining liver TG homeostasis and the underlying mechanisms. METHODS ApoE-/- mice were fed a high-fat diet (HFD) for 20 weeks to induce hyperlipidemia. RNA sequencing (RNA-Seq) was performed to identify differences in gene expression in different groups of ApoE-/- mice liver. In vitro lipid accumulation in primary mouse hepatocytes was induced using a free fatty acid (FFA) mixture. Gene and protein expression were assessed in primary mouse hepatocytes by qPCR and Western blot. Gene reporter assays and ChIP-PCR were used to determine arylacetamide deacetylase (Aadac) promoter activity. RESULTS Recombinant humanized IgG1 could significantly decrease the serum level of TG and low-density lipoproteins (LDL-C). Moreover, hepatic TG and lipid droplets were also reduced compared to the HFD group. Mouse liver RNA-Seq revealed that administration of recombinant humanized IgG1 significantly elevated the expression of Aadac. In vitro, knock-down of Aadac could nullify the effect of recombinant humanized IgG1 on decreasing the lipid droplets induced by FFA in primary mouse hepatocytes. Gene Reporter assays and ChIP-PCR demonstrated that the foxa1 response element in the Aadac promoter played a key role in Aadac expression induced by recombinant humanized IgG1. Moreover, recombinant humanized IgG1 repressed phosphorylation of PKCδ and resulted in foxa1 elevation. Finally, neonatal Fc receptor (FcRn) knock-down reversed the effect of recombinant humanized IgG1 on the expression of PKCδ phosphorylation, foxa1 and Aadac. CONCLUSIONS Our findings suggest that recombinant humanized IgG1 plays an important role in maintaining liver TG homeostasis via the FcRn/PKCδ/foxa1/Aadac pathway.
Collapse
|
36
|
Bermúdez V, Tenconi PE, Giusto NM, Mateos MV. Canonical phospholipase D isoforms in visual function and ocular response to stress. Exp Eye Res 2022; 217:108976. [DOI: 10.1016/j.exer.2022.108976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/09/2022] [Accepted: 02/01/2022] [Indexed: 01/10/2023]
|
37
|
Panagiotopoulos AA, Kalyvianaki K, Serifoglou B, Konstantinou E, Notas G, Castanas E, Kampa M. OXER1 mediates testosterone-induced calcium responses in prostate cancer cells. Mol Cell Endocrinol 2022; 539:111487. [PMID: 34634385 DOI: 10.1016/j.mce.2021.111487] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/23/2021] [Accepted: 10/06/2021] [Indexed: 12/11/2022]
Abstract
In prostate cancer, calcium homeostasis plays a significant role in the disease's development and progression. Intracellular calcium changes are an important secondary signal, triggered by a variety of extracellular stimuli, that controls many cellular functions. One of the main events affecting calcium is androgen signaling. Indeed, via calcium changes, androgens regulate cell processes like cell growth, differentiation and motility. In the present work we explored the nature of the receptor involved in calcium response induced by membrane-acting testosterone in prostate cancer cells. We report that testosterone, independently of the presence of the classical androgen receptor, can rapidly increase intracellular calcium from calcium stores, through the oxoeicosanoid receptor 1 (OXER1) and a specific signaling cascade that triggers calcium release from the endoplasmic reticulum. These findings reveal for the first time the receptor involved in the rapid calcium changes induced by androgens. Moreover, they further support the notion that androgens, even in the absence of AR, can still exert specific effects that regulate cancer cell fate.
Collapse
Affiliation(s)
| | - Konstantina Kalyvianaki
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
| | - Bourcin Serifoglou
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
| | - Evangelia Konstantinou
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
| | - George Notas
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
| | - Elias Castanas
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece.
| | - Marilena Kampa
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece.
| |
Collapse
|
38
|
Xun Y, Zhou P, Yang Y, Li C, Zhang J, Hu H, Qin B, Zhang Z, Wang Q, Lu Y, Wang S. Role of Nox4 in High Calcium-Induced Renal Oxidative Stress Damage and Crystal Deposition. Antioxid Redox Signal 2022; 36:15-38. [PMID: 34435888 DOI: 10.1089/ars.2020.8159] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aims: We aimed at exploring the role of nicotinamide adenine dinucleotide phosphate oxidase subunit 4 (Nox4) in the regulation of hypercalciuria-induced renal oxidative damage and crystal depositions. Results: High calcium activated Nox4 expression through protein kinase C (PKC). Downregulation of Nox4 expression attenuated hypercalciuria-induced osteoblast-associated protein expression, oxidative stress injury, and crystal deposition in rat kidneys of 1,25-dihydroxyvitamin D3 (VitD) urolithiasis model. Further, calcium-induced activation of mitogen-activated protein kinase (MAPK), overexpression of osteoblast-associated protein, oxidative stress injury, apoptosis, and calcium salt deposition in normal rat kidney epithelial-like (NRK-52E) cells were reversed by downregulating Nox4 expression but were enhanced by upregulating Nox4 expression in vitro. Moreover, calcium-induced increases of osteoblast-associated protein expression were attenuated by the c-Jun-N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) inhibitors. Innovation: Our results demonstrated the effect of Nox4 in the pathological process of kidney stones in in vitro and in vivo studies for the first time. Calcium aggravates renal oxidative stress injury and crystal deposition by activating the Nox4-related reactive oxygen species (ROS)-ERK/JNK pathway in the rat kidney. This study is expected to provide a new theoretical basis for the prevention and treatment of kidney stones. Conclusion: Nox4-derived ROS induced by calcium through PKC caused oxidative stress damage and apoptosis in renal tubular epithelial cells; in addition, Nox4-derived ROS induced by calcium mediated abnormal activation of the bone morphogenetic protein 2 (BMP2) signaling pathway through the MAPK signaling pathway, which induced renal tubular epithelial cells to transdifferentiate into osteoblast-like cells, resulting in the formation of a kidney stone. Antioxid. Redox Signal. 36, 15-38.
Collapse
Affiliation(s)
- Yang Xun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Peng Zhou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yuanyuan Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Cong Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jiaqiao Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Henglong Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Baolong Qin
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Zongbiao Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Qing Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yuchao Lu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
39
|
Yin H, Shi A, Wu J. Platelet-Activating Factor Promotes the Development of Non-Alcoholic Fatty Liver Disease. Diabetes Metab Syndr Obes 2022; 15:2003-2030. [PMID: 35837578 PMCID: PMC9275506 DOI: 10.2147/dmso.s367483] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifaceted clinicopathological syndrome characterised by excessive hepatic lipid accumulation that causes steatosis, excluding alcoholic factors. Platelet-activating factor (PAF), a biologically active lipid transmitter, induces platelet activation upon binding to the PAF receptor. Recent studies have found that PAF is associated with gamma-glutamyl transferase, which is an indicator of liver disease. Moreover, PAF can stimulate hepatic lipid synthesis and cause hypertriglyceridaemia. Furthermore, the knockdown of the PAF receptor gene in the animal models of NAFLD helped reduce the inflammatory response, improve glucose homeostasis and delay the development of NAFLD. These findings suggest that PAF is associated with NAFLD development. According to reports, patients with NAFLD or animal models have marked platelet activation abnormalities, mainly manifested as enhanced platelet adhesion and aggregation and altered blood rheology. Pharmacological interventions were accompanied by remission of abnormal platelet activation and significant improvement in liver function and lipids in the animal model of NAFLD. These confirm that platelet activation may accompany a critical importance in NAFLD development and progression. However, how PAFs are involved in the NAFLD signalling pathway needs further investigation. In this paper, we review the relevant literature in recent years and discuss the role played by PAF in NAFLD development. It is important to elucidate the pathogenesis of NAFLD and to find effective interventions for treatment.
Collapse
Affiliation(s)
- Hang Yin
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, People’s Republic of China
| | - Anhua Shi
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, People’s Republic of China
| | - Junzi Wu
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, People’s Republic of China
- Correspondence: Junzi Wu; Anhua Shi, Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, People’s Republic of China, Tel/Fax +86 187 8855 7524; +86 138 8885 0813, Email ;
| |
Collapse
|
40
|
Cansado J, Soto T, Franco A, Vicente-Soler J, Madrid M. The Fission Yeast Cell Integrity Pathway: A Functional Hub for Cell Survival upon Stress and Beyond. J Fungi (Basel) 2021; 8:jof8010032. [PMID: 35049972 PMCID: PMC8781887 DOI: 10.3390/jof8010032] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
The survival of eukaryotic organisms during environmental changes is largely dependent on the adaptive responses elicited by signal transduction cascades, including those regulated by the Mitogen-Activated Protein Kinase (MAPK) pathways. The Cell Integrity Pathway (CIP), one of the three MAPK pathways found in the simple eukaryote fission of yeast Schizosaccharomyces pombe, shows strong homology with mammalian Extracellular signal-Regulated Kinases (ERKs). Remarkably, studies over the last few decades have gradually positioned the CIP as a multi-faceted pathway that impacts multiple functional aspects of the fission yeast life cycle during unperturbed growth and in response to stress. They include the control of mRNA-stability through RNA binding proteins, regulation of calcium homeostasis, and modulation of cell wall integrity and cytokinesis. Moreover, distinct evidence has disclosed the existence of sophisticated interplay between the CIP and other environmentally regulated pathways, including Stress-Activated MAP Kinase signaling (SAPK) and the Target of Rapamycin (TOR). In this review we present a current overview of the organization and underlying regulatory mechanisms of the CIP in S. pombe, describe its most prominent functions, and discuss possible targets of and roles for this pathway. The evolutionary conservation of CIP signaling in the dimorphic fission yeast S. japonicus will also be addressed.
Collapse
|
41
|
Chen XZ, Huang Q, Yu XY, Dai C, Shen Y, Lin ZH. Insights into the structural requirements of PKCζ inhibitors as potential anti-arthritis agents based on 3D-QSAR, homology modeling and docking approach. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Lordén G, Newton A. Conventional protein kinase C in the brain: repurposing cancer drugs for neurodegenerative treatment? Neuronal Signal 2021; 5:NS20210036. [PMID: 34737895 PMCID: PMC8536831 DOI: 10.1042/ns20210036] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/23/2022] Open
Abstract
Protein Kinase C (PKC) isozymes are tightly regulated kinases that transduce a myriad of signals from receptor-mediated hydrolysis of membrane phospholipids. They play an important role in brain physiology, and dysregulation of PKC activity is associated with neurodegeneration. Gain-of-function mutations in PKCα are associated with Alzheimer's disease (AD) and mutations in PKCγ cause spinocerebellar ataxia (SCA) type 14 (SCA14). This article presents an overview of the role of the conventional PKCα and PKCγ in neurodegeneration and proposes repurposing PKC inhibitors, which failed in clinical trials for cancer, for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Gema Lordén
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, U.S.A
| | - Alexandra C. Newton
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, U.S.A
| |
Collapse
|
43
|
Cui W, Wu H, Yu X, Song T, Xu X, Xu F. The Calcium Channel α2δ1 Subunit: Interactional Targets in Primary Sensory Neurons and Role in Neuropathic Pain. Front Cell Neurosci 2021; 15:699731. [PMID: 34658790 PMCID: PMC8514986 DOI: 10.3389/fncel.2021.699731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
Neuropathic pain is mainly triggered after nerve injury and associated with plasticity of the nociceptive pathway in primary sensory neurons. Currently, the treatment remains a challenge. In order to identify specific therapeutic targets, it is necessary to clarify the underlying mechanisms of neuropathic pain. It is well established that primary sensory neuron sensitization (peripheral sensitization) is one of the main components of neuropathic pain. Calcium channels act as key mediators in peripheral sensitization. As the target of gabapentin, the calcium channel subunit α2δ1 (Cavα2δ1) is a potential entry point in neuropathic pain research. Numerous studies have demonstrated that the upstream and downstream targets of Cavα2δ1 of the peripheral primary neurons, including thrombospondins, N-methyl-D-aspartate receptors, transient receptor potential ankyrin 1 (TRPA1), transient receptor potential vanilloid family 1 (TRPV1), and protein kinase C (PKC), are involved in neuropathic pain. Thus, we reviewed and discussed the role of Cavα2δ1 and the associated signaling axis in neuropathic pain conditions.
Collapse
Affiliation(s)
- Wenqiang Cui
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongyun Wu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaowen Yu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ting Song
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiangqing Xu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fei Xu
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
44
|
Tsuji K, Ishii T, Kobayakawa T, Ohashi N, Nomura W, Tamamura H. Fluorescence resonance energy transfer-based screening for protein kinase C ligands using 6-methoxynaphthalene-labeled 1,2-diacylglycerol-lactones. Org Biomol Chem 2021; 19:8264-8271. [PMID: 34338277 DOI: 10.1039/d1ob00814e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protein kinase C (PKC) is associated with a central cellular signal transduction pathway and disorders such as cancer and Alzheimer-type dementia and is therefore a target for the treatment of these diseases. The development of simple methods suitable for high-throughput screening to find potent PKC ligands is desirable. We have developed an assay based on fluorescence-quenching screening with a solvatochromic fluorophore attached to a competitive probe and its alternative method based on Förster/fluorescence resonance energy transfer (FRET) phenomena. Here, an improved FRET-based PKC binding assay using a diacylglycerol (DAG) lactone labeled with a donor fluorescent dye, 6-methoxynaphthalene (6MN), was developed. The 6MN-labeled DAG-lactone has a higher binding affinity for the PKCδ C1b domain and the fluorescent PKCδ C1b domain labeled by fluorescein as an acceptor fluorescent dye (Fl-δC1b) than the diethylaminocoumarin (DEAC)-labeled DAG-lactone. The combination of the 6MN-labeled DAG-lactone and Fl-δC1b showed a change in fluorescence response larger than that of the DEAC-labeled DAG-lactone and Fl-δC1b. The IC50 values of known PKC ligands calculated by the present FRET-based method using 6MN-labeled DAG-lactone agree well with the Ki values obtained by the conventional radioisotope-based assays. Some false positive compounds, identified by the previous solvatochromic fluorophore-based method, were found to be negative by this method. The present FRET-based PKC binding assay is more sensitive and could be more useful.
Collapse
Affiliation(s)
- Kohei Tsuji
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Takahiro Ishii
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Nami Ohashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Wataru Nomura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
45
|
Unraveling the hidden role of a uORF-encoded peptide as a kinase inhibitor of PKCs. Proc Natl Acad Sci U S A 2021; 118:2018899118. [PMID: 34593629 PMCID: PMC8501901 DOI: 10.1073/pnas.2018899118] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 02/01/2023] Open
Abstract
Approximately 40% of human messenger RNAs (mRNAs) contain upstream open reading frames (uORFs) in their 5' untranslated regions. Some of these uORF sequences, thought to attenuate scanning ribosomes or lead to mRNA degradation, were recently shown to be translated, although the function of the encoded peptides remains unknown. Here, we show a uORF-encoded peptide that exhibits kinase inhibitory functions. This uORF, upstream of the protein kinase C-eta (PKC-η) main ORF, encodes a peptide (uPEP2) containing the typical PKC pseudosubstrate motif present in all PKCs that autoinhibits their kinase activity. We show that uPEP2 directly binds to and selectively inhibits the catalytic activity of novel PKCs but not of classical or atypical PKCs. The endogenous deletion of uORF2 or its overexpression in MCF-7 cells revealed that the endogenously translated uPEP2 reduces the protein levels of PKC-η and other novel PKCs and restricts cell proliferation. Functionally, treatment of breast cancer cells with uPEP2 diminished cell survival and their migration and synergized with chemotherapy by interfering with the response to DNA damage. Furthermore, in a xenograft of MDA-MB-231 breast cancer tumor in mice models, uPEP2 suppressed tumor progression, invasion, and metastasis. Tumor histology showed reduced proliferation, enhanced cell death, and lower protein expression levels of novel PKCs along with diminished phosphorylation of PKC substrates. Hence, our study demonstrates that uORFs may encode biologically active peptides beyond their role as translation regulators of their downstream ORFs. Together, we point to a unique function of a uORF-encoded peptide as a kinase inhibitor, pertinent to cancer therapy.
Collapse
|
46
|
Todd VM, Vecchi LA, Clements ME, Snow KP, Ontko CD, Himmel L, Pinelli C, Rafat M, Johnson RW. Hypoxia inducible factor signaling in breast tumors controls spontaneous tumor dissemination in a site-specific manner. Commun Biol 2021; 4:1122. [PMID: 34556788 PMCID: PMC8460839 DOI: 10.1038/s42003-021-02648-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023] Open
Abstract
Hypoxia is a common feature in tumors and induces signaling that promotes tumor cell survival, invasion, and metastasis, but the impact of hypoxia inducible factor (HIF) signaling in the primary tumor on dissemination to bone in particular remains unclear. To better understand the contributions of hypoxia inducible factor 1 alpha (HIF1α), HIF2α, and general HIF pathway activation in metastasis, we employ a PyMT-driven spontaneous murine mammary carcinoma model with mammary specific deletion of Hif1α, Hif2α, or von Hippel-Lindau factor (Vhl) using the Cre-lox system. Here we show that Hif1α or Hif2α deletion in the primary tumor decreases metastatic tumor burden in the bone marrow, while Vhl deletion increases bone tumor burden, as hypothesized. Unexpectedly, Hif1α deletion increases metastatic tumor burden in the lung, while deletion of Hif2α or Vhl does not affect pulmonary metastasis. Mice with Hif1α deleted tumors also exhibit reduced bone volume as measured by micro computed tomography, suggesting that disruption of the osteogenic niche may be involved in the preference for lung dissemination observed in this group. Thus, we reveal that HIF signaling in breast tumors controls tumor dissemination in a site-specific manner.
Collapse
Affiliation(s)
- Vera M Todd
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University, Nashville, TN, USA
| | - Lawrence A Vecchi
- Vanderbilt Center for Bone Biology, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Miranda E Clements
- Tumor Microenvironment and Metastasis Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katherine P Snow
- Vanderbilt Center for Bone Biology, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Health, and Society, Vanderbilt University, Nashville, TN, USA
| | - Cayla D Ontko
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Lauren Himmel
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christopher Pinelli
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marjan Rafat
- Vanderbilt Center for Bone Biology, Vanderbilt University, Nashville, TN, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Rachelle W Johnson
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Center for Bone Biology, Vanderbilt University, Nashville, TN, USA.
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
47
|
Cole TR, Igumenova TI. Reactivity of Thiol-Rich Zn Sites in Diacylglycerol-Sensing PKC C1 Domain Probed by NMR Spectroscopy. Front Mol Biosci 2021; 8:728711. [PMID: 34447788 PMCID: PMC8382798 DOI: 10.3389/fmolb.2021.728711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
Conserved homology 1 (C1) domains are peripheral zinc finger domains that are responsible for recruiting their host signaling proteins, including Protein Kinase C (PKC) isoenzymes, to diacylglycerol-containing lipid membranes. In this work, we investigated the reactivity of the C1 structural zinc sites, using the cysteine-rich C1B regulatory region of the PKCα isoform as a paradigm. The choice of Cd2+ as a probe was prompted by previous findings that xenobiotic metal ions modulate PKC activity. Using solution NMR and UV-vis spectroscopy, we found that Cd2+ spontaneously replaced Zn2+ in both structural sites of the C1B domain, with the formation of all-Cd and mixed Zn/Cd protein species. The Cd2+ substitution for Zn2+ preserved the C1B fold and function, as probed by its ability to interact with a potent tumor-promoting agent. Both Cys3His metal-ion sites of C1B have higher affinity to Cd2+ than Zn2+, but are thermodynamically and kinetically inequivalent with respect to the metal ion replacement, despite the identical coordination spheres. We find that even in the presence of the oxygen-rich sites presented by the neighboring peripheral membrane-binding C2 domain, the thiol-rich sites can successfully compete for the available Cd2+. Our results indicate that Cd2+ can target the entire membrane-binding regulatory region of PKCs, and that the competition between the thiol- and oxygen-rich sites will likely determine the activation pattern of PKCs.
Collapse
Affiliation(s)
- Taylor R Cole
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Tatyana I Igumenova
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| |
Collapse
|
48
|
Cilleros-Mañé V, Just-Borràs L, Polishchuk A, Durán M, Tomàs M, Garcia N, Tomàs JM, Lanuza MA. M 1 and M 2 mAChRs activate PDK1 and regulate PKC βI and ε and the exocytotic apparatus at the NMJ. FASEB J 2021; 35:e21724. [PMID: 34133802 DOI: 10.1096/fj.202002213r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 05/07/2021] [Accepted: 05/24/2021] [Indexed: 01/14/2023]
Abstract
Neuromuscular junctions (NMJ) regulate cholinergic exocytosis through the M1 and M2 muscarinic acetylcholine autoreceptors (mAChR), involving the crosstalk between receptors and downstream pathways. Protein kinase C (PKC) regulates neurotransmission but how it associates with the mAChRs remains unknown. Here, we investigate whether mAChRs recruit the classical PKCβI and the novel PKCε isoforms and modulate their priming by PDK1, translocation and activity on neurosecretion targets. We show that each M1 and M2 mAChR activates the master kinase PDK1 and promotes a particular priming of the presynaptic PKCβI and ε isoforms. M1 recruits both primed-PKCs to the membrane and promotes Munc18-1, SNAP-25, and MARCKS phosphorylation. In contrast, M2 downregulates PKCε through a PKA-dependent pathway, which inhibits Munc18-1 synthesis and PKC phosphorylation. In summary, our results discover a co-dependent balance between muscarinic autoreceptors which orchestrates the presynaptic PKC and their action on ACh release SNARE-SM mechanism. Altogether, this molecular signaling explains previous functional studies at the NMJ and guide toward potential therapeutic targets.
Collapse
Affiliation(s)
- V Cilleros-Mañé
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| | - L Just-Borràs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| | - A Polishchuk
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| | - M Durán
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| | - M Tomàs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| | - N Garcia
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| | - J M Tomàs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| | - M A Lanuza
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| |
Collapse
|
49
|
Singh RK, Kumar S, Tomar MS, Verma PK, Kumar A, Kumar S, Kumar N, Singh JP, Acharya A. Putative role of natural products as Protein Kinase C modulator in different disease conditions. ACTA ACUST UNITED AC 2021; 29:397-414. [PMID: 34216003 DOI: 10.1007/s40199-021-00401-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 05/25/2021] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Protein kinase C (PKC) is a promising drug target for various therapeutic areas. Natural products derived from plants, animals, microorganisms, and marine organisms have been used by humans as medicine from prehistoric times. Recently, several compounds derived from plants have been found to modulate PKC activities through competitive binding with ATP binding site, and other allosteric regions of PKC. As a result fresh race has been started in academia and pharmaceutical companies to develop an effective naturally derived small-molecule inhibitor to target PKC activities. Herein, in this review, we have discussed several natural products and their derivatives, which are reported to have an impact on PKC signaling cascade. METHODS All information presented in this review article regarding the regulation of PKC by natural products has been acquired by a systematic search of various electronic databases, including ScienceDirect, Scopus, Google Scholar, Web of science, ResearchGate, and PubMed. The keywords PKC, natural products, curcumin, rottlerin, quercetin, ellagic acid, epigallocatechin-3 gallate, ingenol 3 angelate, resveratrol, protocatechuic acid, tannic acid, PKC modulators from marine organism, bryostatin, staurosporine, midostaurin, sangivamycin, and other relevant key words were explored. RESULTS The natural products and their derivatives including curcumin, rottlerin, quercetin, ellagic acid, epigallocatechin-3 gallate, ingenol 3 angelate, resveratrol, bryostatin, staurosporine, and midostaurin play a major role in the management of PKC activity during various disease progression. CONCLUSION Based on the comprehensive literature survey, it could be concluded that various natural products can regulate PKC activity during disease progression. However, extensive research is needed to circumvent the challenge of isoform specific regulation of PKC by natural products.
Collapse
Affiliation(s)
- Rishi Kant Singh
- Department of Zoology, Institute of Science, BHU, Varanasi, 221005, India
| | | | - Munendra Singh Tomar
- Department of Pharmaceutical Science, School of Pharmacy, University of Colorado, Denver, USA
| | | | - Amit Kumar
- Department of Zoology, Institute of Science, BHU, Varanasi, 221005, India
| | - Sandeep Kumar
- Department of Zoology, Institute of Science, BHU, Varanasi, 221005, India
| | - Naveen Kumar
- Department of Zoology, Institute of Science, BHU, Varanasi, 221005, India
| | - Jai Prakash Singh
- Department of Panchkarma, Institute of Medical Science, BHU, Varanasi, India, 221005
| | - Arbind Acharya
- Department of Zoology, Institute of Science, BHU, Varanasi, 221005, India.
| |
Collapse
|
50
|
Stress granules safeguard against MAPK signaling hyperactivation by sequestering PKC/Pck2: new findings and perspectives. Curr Genet 2021; 67:857-863. [PMID: 34100129 DOI: 10.1007/s00294-021-01192-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/08/2021] [Accepted: 05/15/2021] [Indexed: 01/28/2023]
Abstract
Stress granule (SG) assembly is a conserved cellular strategy that copes with stress-related damage and promotes cell survival. SGs form through a process of liquid-liquid phase separation. Cellular signaling also appears to employ SG assembly as a mechanism for controlling cell survival and cell death by spatial compartmentalization of signal-transducing factors. While several lines of evidence highlight the importance of SGs as signaling hubs, where protein components of signaling pathways can be temporarily sequestered, shielded from the cytoplasm, the regulation and physiological significance of SGs in this aspect remain largely obscure. A recent study of the heat-shock response in the fission yeast Schizosaaccharomyces pombe provides an unexpected answer to this question. Recently, we demonstrated that the PKC orthologue Pck2 in fission yeast translocates into SGs through phase separation in a PKC kinase activity-dependent manner upon high-heat stress (HHS). Importantly, the downstream MAPK Pmk1 promotes Pck2 recruitment into SGs, which intercepts MAPK hyperactivation and cell death, thus posing SGs as a negative feedback circuit in controlling MAPK signaling. Intriguingly, HHS, but not modest-heat stress targets Pck2 to SGs, independent of canonical SG machinery. Finally, cells fail to activate MAPK signaling when Pck2 is sequestrated into SGs. In this review, we will discuss how SGs have a role as signaling hubs beyond serving as a repository for non-translated mRNAs during acute stress.
Collapse
|