1
|
Dascălu AE, Furman C, Lancel S, Lipka E, Liberelle M, Boulanger E, Ghinet A. Ultrasound-Assisted Synthesis of Pyrazoline Derivatives as Potential Antagonists of RAGE-Mediated Pathologies: Insights from SAR Studies and Biological Evaluations. ChemMedChem 2025; 20:e202400527. [PMID: 39289154 DOI: 10.1002/cmdc.202400527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
In the context of age-related disorders, the receptor of advanced glycation end products (RAGE), plays a pivotal role in the pathogenesis of these conditions by triggering downstream signaling pathways associated with chronic inflammation and oxidative stress. Targeting this inflammaging phenomenon with RAGE antagonists holds promise for interventions with broad implications in healthy aging and the management of age-related conditions. This study explores the structure-activity relationship (SAR) of pyrazoline-based RAGE antagonists synthesized using an ultrasound-assisted green one-pot two-steps methodology. Our investigation identifies phenylurenyl-pyrazoline 2 g as a promising candidate, demonstrating superior efficiency compared to the reference antagonist Azeliragon (IC50=13 μM). Compound 2 g exhibits potent inhibition of the AGE2-BSA/sRAGE interaction (IC50=22 μM) and favorable affinity in Microscale Thermophoresis (MST) assays (Kd=17.1 μM), along with a favorable safety profile, with no apparent cytotoxicity observed in vitro in the MTS assay. These findings underscore the potential of pyrazoline-derived RAGE antagonists as therapeutic agents for addressing age-related disorders.
Collapse
Affiliation(s)
- Anca-Elena Dascălu
- Health and Environment, Laboratory of Sustainable Chemistry and Health, Junia, F-59000, Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
- Faculty of Chemistry, 'Alexandru Ioan Cuza' University of Iasi, Bd. Carol I, Nr. 11, 700506, Iasi, Romania
| | - Christophe Furman
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
- Univ. Lille, UFR Pharmacie, BP 83, F-59006, Lille, France
| | - Steve Lancel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
| | - Emmanuelle Lipka
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
- Univ. Lille, UFR Pharmacie, BP 83, F-59006, Lille, France
| | | | - Eric Boulanger
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
| | - Alina Ghinet
- Health and Environment, Laboratory of Sustainable Chemistry and Health, Junia, F-59000, Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
- Faculty of Chemistry, 'Alexandru Ioan Cuza' University of Iasi, Bd. Carol I, Nr. 11, 700506, Iasi, Romania
| |
Collapse
|
2
|
Rojas A, Lindner C, Schneider I, Gonzalez I, Uribarri J. The RAGE Axis: A Relevant Inflammatory Hub in Human Diseases. Biomolecules 2024; 14:412. [PMID: 38672429 PMCID: PMC11048448 DOI: 10.3390/biom14040412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
In 1992, a transcendental report suggested that the receptor of advanced glycation end-products (RAGE) functions as a cell surface receptor for a wide and diverse group of compounds, commonly referred to as advanced glycation end-products (AGEs), resulting from the non-enzymatic glycation of lipids and proteins in response to hyperglycemia. The interaction of these compounds with RAGE represents an essential element in triggering the cellular response to proteins or lipids that become glycated. Although initially demonstrated for diabetes complications, a growing body of evidence clearly supports RAGE's role in human diseases. Moreover, the recognizing capacities of this receptor have been extended to a plethora of structurally diverse ligands. As a result, it has been acknowledged as a pattern recognition receptor (PRR) and functionally categorized as the RAGE axis. The ligation to RAGE leads the initiation of a complex signaling cascade and thus triggering crucial cellular events in the pathophysiology of many human diseases. In the present review, we intend to summarize basic features of the RAGE axis biology as well as its contribution to some relevant human diseases such as metabolic diseases, neurodegenerative, cardiovascular, autoimmune, and chronic airways diseases, and cancer as a result of exposure to AGEs, as well as many other ligands.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca 34600000, Chile; (A.R.); (I.G.)
| | - Cristian Lindner
- Department of Radiology, Faculty of Medicine, University of Concepción, Concepción 4030000, Chile;
| | - Ivan Schneider
- Centre of Primary Attention, South Metropolitan Health Service, Santiago 3830000, Chile;
| | - Ileana Gonzalez
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca 34600000, Chile; (A.R.); (I.G.)
| | - Jaime Uribarri
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10021, USA
| |
Collapse
|
3
|
Chang CC, Cheng HC, Chou WC, Huang YT, Hsieh PL, Chu PM, Lee SD. Sesamin suppresses angiotensin-II-enhanced oxidative stress and hypertrophic markers in H9c2 cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:2165-2172. [PMID: 37357850 DOI: 10.1002/tox.23853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/06/2023] [Accepted: 05/29/2023] [Indexed: 06/27/2023]
Abstract
Myocardial hypertrophy plays a crucial role in cardiovascular disease (CVD) development. Myocardial hypertrophy is an adaptive response by myocardial cells to stress after cardiac injury to maintain cardiac output and function. Angiotensin II (Ang-II) regulates CVD through the renin-angiotensin-aldosterone system, and its signaling in cardiac myocytes leads to excessive reactive oxygen species (ROS) production, oxidative stress, and inflammation. Sesamin (SA), a natural compound in sesame seeds, has anti-inflammatory and anti-apoptotic effects. This study investigated whether SA could attenuate hypertrophic damage and oxidative injuries in H9c2 cells under Ang-II stimulation. We found that SA decreased the cell surface area. Furthermore, Ang-II treatment reduced Ang-II-increased ANP, BNP, and β-MHC expression. Ang-II enhanced NADPH oxidase activity, ROS formation, and decreased Superoxide Dismutase (SOD) activity. SA treatment reduces Ang-II-caused oxidative injuries. We also found that SA mitigates Ang-II-induced apoptosis and pro-inflammatory responses. In conclusion, SA could attenuate Ang-II-induced cardiac hypertrophic injuries by inhibiting oxidative stress, apoptosis, and inflammation in H9c2 cells. Therefore, SA might be a potential supplement for CVD management.
Collapse
Affiliation(s)
- Chih-Chia Chang
- Department of Radiation Therapy and Oncology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
- Department of Medical Laboratory and Biotechnology, Asia University, Taichung, Taiwan
| | - Hui-Ching Cheng
- Department of Orthopedic Surgery, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Wan-Ching Chou
- Department of Orthopedic Surgery, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Yu-Ting Huang
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Pei-Ming Chu
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shin-Da Lee
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan
- Department of Physical Therapy, Asia University, Taichung, Taiwan
| |
Collapse
|
4
|
Chou CL, Li CH, Fang TC. Benefits of Valsartan and Amlodipine in Lipolysis through PU.1 Inhibition in Fructose-Induced Adiposity. Nutrients 2022; 14:nu14183759. [PMID: 36145135 PMCID: PMC9502698 DOI: 10.3390/nu14183759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
High fructose intake has been implicated in obesity and metabolic syndrome, which are related to increased cardiovascular mortality. However, few studies have experimentally examined the role of renin–angiotensin system blockers and calcium channel blockers (CCB) in obesity. We investigated the effects of valsartan (an angiotensin II receptor blocker) and amlodipine (a CCB) on lipolysis through the potential mechanism of PU.1 inhibition. We observed that high fructose concentrations significantly increased adipose size and triglyceride, monoacylglycerol lipase, adipose triglyceride lipase, and stearoyl-CoA desaturase-1 (SCD1), activating transcription factor 3 and PU.1 levels in adipocytes in vitro. Subsequently, PU.1 inhibitor treatment was able to reduce triglyceride, SCD1, and PU.1 levels. In addition, elevated levels of triglyceride and PU.1, stimulated by a high fructose concentration, decreased with valsartan and amlodipine treatment. Overall, these findings suggest that high fructose concentrations cause triacylglycerol storage in adipocytes through PU.1-mediated activation. Furthermore, valsartan and amlodipine treatment reduced triacylglycerol storage in adipocytes by inhibiting PU.1 activation in high fructose concentrations in vitro. Thus, the benefits of valsartan and amlodipine in lipolysis may be through PU.1 inhibition in fructose-induced adiposity, and PU.1 inhibition might have a potential therapeutic role in lipolysis in fructose-induced obesity.
Collapse
Affiliation(s)
- Chu-Lin Chou
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
- Division of Nephrology, Department of Internal Medicine, Hsin Kuo Min Hospital, Taipei Medical University, Taoyuan City 320, Taiwan
| | - Ching-Hao Li
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Te-Chao Fang
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: ; Tel.: +886-2-2737-2181
| |
Collapse
|
5
|
Suppression of angiotensin II-activated NOX4/NADPH oxidase and mitochondrial dysfunction by preserving glucagon-like peptide-1 attenuates myocardial fibrosis and hypertension. Eur J Pharmacol 2022; 927:175048. [DOI: 10.1016/j.ejphar.2022.175048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022]
|
6
|
Abstract
Neurohormones and inflammatory mediators have effects in both the heart and the peripheral vasculature. In patients with heart failure (HF), neurohormonal activation and increased levels of inflammatory mediators promote ventricular remodeling and development of HF, as well as vascular dysfunction and arterial stiffness. These processes may lead to a vicious cycle, whereby arterial stiffness perpetuates further ventricular remodeling leading to exacerbation of symptoms. Although significant advances have been made in the treatment of HF, currently available treatment strategies slow, but do not halt, this cycle. The current treatment for HF patients involves the inhibition of neurohormonal activation, which can reduce morbidity and mortality related to this condition. Beyond benefits associated with neurohormonal blockade, other strategies have focused on inhibition of inflammatory pathways implicated in the pathogenesis of HF. Unfortunately, attempts to target inflammation have not yet been successful to improve prognosis of HF. Further work is required to interrupt key maladaptive mechanisms involved in disease progression.
Collapse
|
7
|
Rodrigues MS, Pieri BLDS, Silveira GDB, Zaccaron RP, Venturini LM, Comin VH, Luiz KD, Silveira PCL. Reduction of oxidative stress improves insulin signaling in cardiac tissue of obese mice. EINSTEIN-SAO PAULO 2020; 18:eAO5022. [PMID: 32215468 PMCID: PMC7069732 DOI: 10.31744/einstein_journal/2020ao5022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 10/23/2019] [Indexed: 01/14/2023] Open
Abstract
Objective To evaluate the effects of oxidative stress on insulin signaling in cardiac tissue of obese mice. Methods Thirty Swiss mice were equally divided (n=10) into three groups: Control Group, Obese Group, and Obese Group Treated with N-acetylcysteine. After obesity and insulin resistance were established, the obese mice were treated with N-acetylcysteine at a dose of 50mg/kg daily for 15 days via oral gavage. Results Higher blood glucose levels and nitrite and carbonyl contents, and lower protein levels of glutathione peroxidase and phosphorylated protein kinase B were observed in the obese group when compared with their respective control. On the other hand, treatment with N-acetylcysteine was effective in reducing blood glucose levels and nitrite and carbonyl contents, and significantly increased protein levels of glutathione peroxidase and phosphorylated protein kinase B compared to the Obese Group. Conclusion Obesity and/or a high-lipid diet may result in oxidative stress and insulin resistance in the heart tissue of obese mice, and the use of N-acetylcysteine as a methodological and therapeutic strategy suggested there is a relation between them.
Collapse
Affiliation(s)
| | | | | | | | | | - Vitor Hugo Comin
- Universidade do Extremo Sul Catarinense , Criciúma , SC , Brazil
| | | | | |
Collapse
|
8
|
Kassem KM, Ali M, Rhaleb NE. Interleukin 4: Its Role in Hypertension, Atherosclerosis, Valvular, and Nonvalvular Cardiovascular Diseases. J Cardiovasc Pharmacol Ther 2019; 25:7-14. [PMID: 31401864 DOI: 10.1177/1074248419868699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hypertension is one of the major physiological risk factors for cardiovascular diseases, and it affects more than 1 billion adults worldwide, killing 9 million people every year according to World Health Organization. Also, hypertension is associated with increased risk of kidney disease and stroke. Studying the risk factors that contribute to the pathogenesis of hypertension is key to preventing and controlling hypertension. Numerous laboratories around to globe are very active pursuing research studies to delineate the factors, such as the role of immune system, which could contribute to hypertension. There are studies that were conducted on immune-deficient mice for which experimentally induced hypertension has been ameliorated. Thus, there are possibilities that immune reactivity could be associated with the development of certain type of hypertension. Furthermore, interleukin 4 has been associated with the development of pulmonary hypertension, which could lead to right ventricular remodeling. Also, the immune system is involved in valvular and nonvalvular cardiac remodeling. It has been demonstrated that there is a causative relationship between different interleukins and cardiac fibrosis.
Collapse
Affiliation(s)
- Kamal M Kassem
- Department of Internal Medicine, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Mahboob Ali
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Nour-Eddine Rhaleb
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, USA.,Department of Physiology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
9
|
Hrdlička J, Neckář J, Papoušek F, Husková Z, Kikerlová S, Vaňourková Z, Vernerová Z, Akat F, Vašinová J, Hammock BD, Hwang SH, Imig JD, Falck JR, Červenka L, Kolář F. Epoxyeicosatrienoic Acid-Based Therapy Attenuates the Progression of Postischemic Heart Failure in Normotensive Sprague-Dawley but Not in Hypertensive Ren-2 Transgenic Rats. Front Pharmacol 2019; 10:159. [PMID: 30881303 PMCID: PMC6406051 DOI: 10.3389/fphar.2019.00159] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) and their analogs have been identified as potent antihypertensive compounds with cardio- and renoprotective actions. Here, we examined the effect of EET-A, an orally active EET analog, and c-AUCB, an inhibitor of the EETs degrading enzyme soluble epoxide hydrolase, on the progression of post-myocardial infarction (MI) heart failure (HF) in normotensive Hannover Sprague-Dawley (HanSD) and in heterozygous Ren-2 transgenic rats (TGR) with angiotensin II-dependent hypertension. Adult male rats (12 weeks old) were subjected to 60-min left anterior descending (LAD) coronary artery occlusion or sham (non-MI) operation. Animals were treated with EET-A and c-AUCB (10 and 1 mg/kg/day, respectively) in drinking water, given alone or combined for 5 weeks starting 24 h after MI induction. Left ventricle (LV) function and geometry were assessed by echocardiography before MI and during the progression of HF. At the end of the study, LV function was determined by catheterization and tissue samples were collected. Ischemic mortality due to the incidence of sustained ventricular fibrillation was significantly higher in TGR than in HanSD rats (35.4 and 17.7%, respectively). MI-induced HF markedly increased LV end-diastolic pressure (Ped) and reduced fractional shortening (FS) and the peak rate of pressure development [+(dP/dt)max] in untreated HanSD compared to sham (non-MI) group [Ped: 30.5 ± 3.3 vs. 9.7 ± 1.3 mmHg; FS: 11.1 ± 1.0 vs. 40.8 ± 0.5%; +(dP/dt)max: 3890 ± 291 vs. 5947 ± 309 mmHg/s]. EET-A and c-AUCB, given alone, tended to improve LV function parameters in HanSD rats. Their combination amplified the cardioprotective effect of single therapy and reached significant differences compared to untreated HanSD controls [Ped: 19.4 ± 2.2 mmHg; FS: 14.9 ± 1.0%; +(dP/dt)max: 5278 ± 255 mmHg/s]. In TGR, MI resulted in the impairment of LV function like HanSD rats. All treatments reduced the increased level of albuminuria in TGR compared to untreated MI group, but neither single nor combined EET-based therapy improved LV function. Our results indicate that EET-based therapy attenuates the progression of post-MI HF in HanSD, but not in TGR, even though they exhibited renoprotective action in TGR hypertensive rats.
Collapse
Affiliation(s)
- Jaroslav Hrdlička
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia.,Department of Physiology, Faculty of Science, Charles University, Prague, Czechia
| | - Jan Neckář
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia.,Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - František Papoušek
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Zuzana Husková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Soňa Kikerlová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Zdenka Vaňourková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Zdenka Vernerová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Firat Akat
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia.,Department of Physiology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Jana Vašinová
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Sung Hee Hwang
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - John D Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern, Dallas, TX, United States
| | - Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - František Kolář
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
10
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 693] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
11
|
Zimmer A, Bagchi AK, Vinayak K, Bello-Klein A, Singal PK. Innate immune response in the pathogenesis of heart failure in survivors of myocardial infarction. Am J Physiol Heart Circ Physiol 2018; 316:H435-H445. [PMID: 30525893 DOI: 10.1152/ajpheart.00597.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Among the different cardiovascular disease complications, atherosclerosis-induced myocardial infarction (MI) is the major contributor of heart failure (HF) and loss of life. This review presents short- and long-term features of post-MI in human hearts and animal models. It is known that the heart does not regenerate, and thus loss of cardiac cells after an MI event is permanent. In survivors of a heart attack, multiple neurohumoral adjustments as well as simultaneous remodeling in both infarcted and noninfarcted regions of the heart help sustain pump function post-MI. In the early phase, migration of inflammatory cells to the infarcted area helps repair and remove the cell debris, while apoptosis results in the elimination of damaged cardiomyocytes, and there is an increase in the antioxidant response to protect the survived myocardium against oxidative stress (OS) injury. However, in the late phase, it appears that there is a relative increase in OS and activation of the innate inflammatory response in cardiomyocytes without any obvious inflammatory cells. In this late stage in survivors of MI, a progressive slow activation of these processes leads to apoptosis, fibrosis, cardiac dysfunction, and HF. Thus, this second phase of an increase in OS, innate inflammatory response, and apoptosis results in wall thinning, dilatation, and consequently HF. It is important to note that this inflammatory response appears to be innate to cardiomyocytes. Blunting of this innate immune cardiomyocyte response may offer new hope for the management of HF.
Collapse
Affiliation(s)
- Alexsandra Zimmer
- Labaratòrio de Fisiologia Cardiovascular, Departmento de Fisiologia, Institute de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Ashim K Bagchi
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg, Manitoba , Canada
| | - Kartik Vinayak
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg, Manitoba , Canada
| | - Adriane Bello-Klein
- Labaratòrio de Fisiologia Cardiovascular, Departmento de Fisiologia, Institute de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Pawan K Singal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg, Manitoba , Canada
| |
Collapse
|
12
|
Rovira-Llopis S, Apostolova N, Bañuls C, Muntané J, Rocha M, Victor VM. Mitochondria, the NLRP3 Inflammasome, and Sirtuins in Type 2 Diabetes: New Therapeutic Targets. Antioxid Redox Signal 2018; 29:749-791. [PMID: 29256638 DOI: 10.1089/ars.2017.7313] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Type 2 diabetes mellitus and hyperglycemia can lead to the development of comorbidities such as atherosclerosis and microvascular/macrovascular complications. Both type 2 diabetes and its complications are related to mitochondrial dysfunction and oxidative stress. Type 2 diabetes is also a chronic inflammatory condition that leads to inflammasome activation and the release of proinflammatory mediators, including interleukins (ILs) IL-1β and IL-18. Moreover, sirtuins are energetic sensors that respond to metabolic load, which highlights their relevance in metabolic diseases, such as type 2 diabetes. Recent Advances: Over the past decade, great progress has been made in clarifying the signaling events regulated by mitochondria, inflammasomes, and sirtuins. Nod-like receptor family pyrin domain containing 3 (NLRP3) is the best characterized inflammasome, and the generation of oxidant species seems to be critical for its activation. NLRP3 inflammasome activation and altered sirtuin levels have been observed in type 2 diabetes. Critical Issue: Despite increasing evidence of the relationship between the NLRP3 inflammasome, mitochondrial dysfunction, and oxidative stress and of their participation in type 2 diabetes physiopathology, therapeutic strategies to combat type 2 diabetes that target NLRP3 inflammasome and sirtuins are yet to be consolidated. FUTURE DIRECTIONS In this review article, we attempt to provide an overview of the existing literature concerning the crosstalk between mitochondrial impairment and the inflammasome, with particular attention to cellular and mitochondrial redox metabolism and the potential role of the NLRP3 inflammasome and sirtuins in the pathogenesis of type 2 diabetes. In addition, we discuss potential targets for therapeutic intervention based on these molecular interactions. Antioxid. Redox Signal. 29, 749-791.
Collapse
Affiliation(s)
- Susana Rovira-Llopis
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Nadezda Apostolova
- 2 Department of Pharmacology, University of Valencia , Valencia, Spain .,4 CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED de Enfermedades Hepáticas y Digestivas (CIBERehd) , Madrid, Spain
| | - Celia Bañuls
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Jordi Muntané
- 3 Department of General Surgery, Hospital University "Virgen del Rocío"/IBiS/CSIC/University of Seville , Seville, Spain .,4 CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED de Enfermedades Hepáticas y Digestivas (CIBERehd) , Madrid, Spain
| | - Milagros Rocha
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain .,4 CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED de Enfermedades Hepáticas y Digestivas (CIBERehd) , Madrid, Spain
| | - Victor M Victor
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain .,4 CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED de Enfermedades Hepáticas y Digestivas (CIBERehd) , Madrid, Spain .,5 Department of Physiology, University of Valencia , Valencia, Spain
| |
Collapse
|
13
|
Shakeri H, Lemmens K, Gevaert AB, De Meyer GRY, Segers VFM. Cellular senescence links aging and diabetes in cardiovascular disease. Am J Physiol Heart Circ Physiol 2018; 315:H448-H462. [PMID: 29750567 DOI: 10.1152/ajpheart.00287.2018] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aging is a powerful independent risk factor for cardiovascular diseases such as atherosclerosis and heart failure. Concomitant diabetes mellitus strongly reinforces this effect of aging on cardiovascular disease. Cellular senescence is a fundamental mechanism of aging and appears to play a crucial role in the onset and prognosis of cardiovascular disease in the context of both aging and diabetes. Senescent cells are in a state of cell cycle arrest but remain metabolically active by secreting inflammatory factors. This senescence-associated secretory phenotype is a trigger of chronic inflammation, oxidative stress, and decreased nitric oxide bioavailability. A complex interplay between these three mechanisms results in age- and diabetes-associated cardiovascular damage. In this review, we summarize current knowledge on cellular senescence and its secretory phenotype, which might be the missing link between aging and diabetes contributing to cardiovascular disease.
Collapse
Affiliation(s)
- Hadis Shakeri
- Laboratory of Physiopharmacology, University of Antwerp , Antwerp , Belgium
| | - Katrien Lemmens
- Laboratory of Physiopharmacology, University of Antwerp , Antwerp , Belgium
| | - Andreas B Gevaert
- Laboratory of Physiopharmacology, University of Antwerp , Antwerp , Belgium.,Laboratory for Cellular and Molecular Cardiology, Department of Cardiology, University Hospital Antwerp, Edegem, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp , Antwerp , Belgium
| | - Vincent F M Segers
- Laboratory of Physiopharmacology, University of Antwerp , Antwerp , Belgium.,Department of Cardiology, University Hospital Antwerp, Edegem, Belgium
| |
Collapse
|
14
|
Li W, Tang R, Ouyang S, Ma F, Liu Z, Wu J. Folic acid prevents cardiac dysfunction and reduces myocardial fibrosis in a mouse model of high-fat diet-induced obesity. Nutr Metab (Lond) 2017; 14:68. [PMID: 29118818 PMCID: PMC5668988 DOI: 10.1186/s12986-017-0224-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/24/2017] [Indexed: 12/13/2022] Open
Abstract
Background Folic acid (FA) is an antioxidant that can reduce reactive oxygen species generation and can blunt cardiac dysfunction during ischemia. We hypothesized that FA supplementation prevents cardiac fibrosis and cardiac dysfunction induced by obesity. Methods Six-week-old C57BL6/J mice were fed a high-fat diet (HFD), normal diet (ND), or an HFD supplemented with folic acid (FAD) for 14 weeks. Cardiac function was measured using a transthoracic echocardiographic exam. Phenotypic analysis included measurements of body and heart weight, blood glucose and tissue homocysteine (Hcy) content, and heart oxidative stress status. Results HFD consumption elevated fasting blood glucose levels and caused obesity and heart enlargement. FA supplementation in HFD-fed mice resulted in reduced fasting blood glucose, heart weight, and heart tissue Hcy content. We also observed a significant cardiac systolic dysfunction when mice were subjected to HFD feeding as indicated by a reduction in the left ventricular ejection fraction and fractional shortening. However, FAD treatment improved cardiac function. FA supplementation protected against cardiac fibrosis induced by HFD. In addition, HFD increased malondialdehyde concentration of the heart tissue and reduced the levels of antioxidant enzyme, glutathione, and catalase. HFD consumption induced myocardial oxidant stress with amelioration by FA treatment. Conclusion FA supplementation significantly lowers blood glucose levels and heart tissue Hcy content and reverses cardiac dysfunction induced by HFD in mice. These functional improvements of the heart may be mediated by the alleviation of oxidative stress and myocardial fibrosis.
Collapse
Affiliation(s)
- Wei Li
- Graduate School of Peking Union Medical College, NO. 9, Dongdansantiao, Dongcheng District, Beijing, 100730 China.,Department of Biochemistry, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing, 100020 China
| | - Renqiao Tang
- Graduate School of Peking Union Medical College, NO. 9, Dongdansantiao, Dongcheng District, Beijing, 100730 China.,Department of Biochemistry, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing, 100020 China
| | - Shengrong Ouyang
- Graduate School of Peking Union Medical College, NO. 9, Dongdansantiao, Dongcheng District, Beijing, 100730 China
| | - Feifei Ma
- Graduate School of Peking Union Medical College, NO. 9, Dongdansantiao, Dongcheng District, Beijing, 100730 China
| | - Zhuo Liu
- Graduate School of Peking Union Medical College, NO. 9, Dongdansantiao, Dongcheng District, Beijing, 100730 China
| | - Jianxin Wu
- Graduate School of Peking Union Medical College, NO. 9, Dongdansantiao, Dongcheng District, Beijing, 100730 China.,Department of Biochemistry, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing, 100020 China
| |
Collapse
|
15
|
Thorwald M, Rodriguez R, Lee A, Martinez B, Peti-Peterdi J, Nakano D, Nishiyama A, Ortiz RM. Angiotensin receptor blockade improves cardiac mitochondrial activity in response to an acute glucose load in obese insulin resistant rats. Redox Biol 2017; 14:371-378. [PMID: 29049981 PMCID: PMC5647524 DOI: 10.1016/j.redox.2017.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/21/2017] [Accepted: 10/05/2017] [Indexed: 12/19/2022] Open
Abstract
Hyperglycemia increases the risk of oxidant overproduction in the heart through activation of a multitude of pathways. Oxidation of mitochondrial enzymes may impair their function resulting in accumulation of intermediates and reverse electron transfer, contributing to mitochondrial dysfunction. Furthermore, the renin-angiotensin system (RAS) becomes inappropriately activated during metabolic syndrome, increasing oxidant production. To combat excess oxidant production, the transcription factor, nuclear factor erythriod-2- related factor 2 (Nrf2), induces expression of many antioxidant genes. We hypothesized that angiotensin II receptor type 1 (AT1) blockade improves mitochondrial function in response to an acute glucose load via upregulation of Nrf2. To address this hypothesis, an oral glucose challenge was performed in three groups prior to dissection (n = 5–8 animals/group/time point) of adult male rats: 1) Long Evans Tokushima Otsuka (LETO; lean strain-control), 2) insulin resistant, obese Otsuka Long Evans Tokushima Fatty (OLETF), and 3) OLETF + angiotensin receptor blocker (ARB; 10 mg olmesartan/kg/d × 6 weeks). Hearts were collected at T0, T60, and T120 minutes post-glucose infusion. ARB increased Nrf2 binding 32% compared to OLETF at T60. Total superoxide dismutase (SOD) and catalase (CAT) activities were increased 45% and 66% respectively in ARB treated animals compared to OLETF. Mitochondrial enzyme activities of aconitase, complex I, and complex II increased by 135%, 33% and 66%, respectively in ARB compared to OLETF. These data demonstrate the protective effects of AT1 blockade on mitochondrial function during the manifestation of insulin resistance suggesting that the inappropriate activation of AT1 during insulin resistance may impair Nrf2 translocation and subsequent antioxidant activities and mitochondrial function. ARB increases cardiac mitochondrial enzyme activity in insulin resistant rats. Nrf2 binding activity increases when AT1 receptor activation is blocked. Glucose suppresses total cardiac GPx and CAT activities during insulin resistance.
Collapse
Affiliation(s)
- Max Thorwald
- School of Natural Sciences, University of California, Merced, USA.
| | - Ruben Rodriguez
- School of Natural Sciences, University of California, Merced, USA
| | - Andrew Lee
- School of Natural Sciences, University of California, Merced, USA
| | - Bridget Martinez
- School of Natural Sciences, University of California, Merced, USA
| | - Janos Peti-Peterdi
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daisuke Nakano
- Department of Pharmacology, Kagawa University Medical School, Kagawa, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University Medical School, Kagawa, Japan
| | - Rudy M Ortiz
- School of Natural Sciences, University of California, Merced, USA
| |
Collapse
|
16
|
Numaga-Tomita T, Oda S, Shimauchi T, Nishimura A, Mangmool S, Nishida M. TRPC3 Channels in Cardiac Fibrosis. Front Cardiovasc Med 2017; 4:56. [PMID: 28936433 PMCID: PMC5594069 DOI: 10.3389/fcvm.2017.00056] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/21/2017] [Indexed: 01/18/2023] Open
Abstract
Cardiac stiffness, caused by interstitial fibrosis due to deposition of extracellular matrix proteins, is thought as a major clinical outcome of heart failure with preserved ejection fraction (HFpEF). Canonical transient receptor potential (TRPC) subfamily proteins are components of Ca2+-permeable non-selective cation channels activated by receptor stimulation and mechanical stress, and have been attracted attention as a key mediator of maladaptive cardiac remodeling. How TRPC-mediated local Ca2+ influx encodes a specific signal to induce maladaptive cardiac remodeling has been long obscure, but our recent studies suggest a pathophysiological significance of channel activity-independent function of TRPC proteins for amplifying redox signaling in heart. This review introduces the current understanding of the physiological and pathophysiological roles of TRPCs, especially focuses on the role of TRPC3 as a positive regulator of reactive oxygen species (PRROS) in heart. We have revealed that TRPC3 stabilizes NADPH oxidase 2 (Nox2), a membrane-bound reactive oxygen species (ROS)-generating enzyme, by forming stable protein complex with Nox2, which leads to amplification of mechanical stress-induced ROS signaling in cardiomyocytes, resulting in induction of fibrotic responses in cardiomyocytes and cardiac fibroblasts. Thus, the TRPC3 function as PRROS will offer a new therapeutic strategy for the prevention or treatment of HFpEF.
Collapse
Affiliation(s)
- Takuro Numaga-Tomita
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Sayaka Oda
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Tsukasa Shimauchi
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Translational Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Akiyuki Nishimura
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Supachoke Mangmool
- Faculty of Pharmacy, Department of Pharmacology, Mahidol University, Bangkok, Thailand
| | - Motohiro Nishida
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.,Department of Translational Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
17
|
Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS Sources in Physiological and Pathological Conditions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1245049. [PMID: 27478531 PMCID: PMC4960346 DOI: 10.1155/2016/1245049] [Citation(s) in RCA: 810] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/04/2016] [Accepted: 05/23/2016] [Indexed: 12/19/2022]
Abstract
There is significant evidence that, in living systems, free radicals and other reactive oxygen and nitrogen species play a double role, because they can cause oxidative damage and tissue dysfunction and serve as molecular signals activating stress responses that are beneficial to the organism. Mitochondria have been thought to both play a major role in tissue oxidative damage and dysfunction and provide protection against excessive tissue dysfunction through several mechanisms, including stimulation of opening of permeability transition pores. Until recently, the functional significance of ROS sources different from mitochondria has received lesser attention. However, the most recent data, besides confirming the mitochondrial role in tissue oxidative stress and protection, show interplay between mitochondria and other ROS cellular sources, so that activation of one can lead to activation of other sources. Thus, it is currently accepted that in various conditions all cellular sources of ROS provide significant contribution to processes that oxidatively damage tissues and assure their survival, through mechanisms such as autophagy and apoptosis.
Collapse
Affiliation(s)
- Sergio Di Meo
- Dipartimento di Biologia, Università di Napoli “Federico II”, 80126 Napoli, Italy
| | - Tanea T. Reed
- Department of Chemistry, Eastern Kentucky University, Richmond, KY 40475, USA
| | - Paola Venditti
- Dipartimento di Biologia, Università di Napoli “Federico II”, 80126 Napoli, Italy
| | - Victor Manuel Victor
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46010 Valencia, Spain
| |
Collapse
|
18
|
Kovács Á, Fülöp GÁ, Kovács A, Csípő T, Bódi B, Priksz D, Juhász B, Beke L, Hendrik Z, Méhes G, Granzier HL, Édes I, Fagyas M, Papp Z, Barta J, Tóth A. Renin overexpression leads to increased titin-based stiffness contributing to diastolic dysfunction in hypertensive mRen2 rats. Am J Physiol Heart Circ Physiol 2016; 310:H1671-82. [PMID: 27059079 DOI: 10.1152/ajpheart.00842.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/30/2016] [Indexed: 01/09/2023]
Abstract
Hypertension (HTN) is a major risk factor for heart failure. We investigated the influence of HTN on cardiac contraction and relaxation in transgenic renin overexpressing rats (carrying mouse Ren-2 renin gene, mRen2, n = 6). Blood pressure (BP) was measured. Cardiac contractility was characterized by echocardiography, cellular force measurements, and biochemical assays were applied to reveal molecular mechanisms. Sprague-Dawley (SD) rats (n = 6) were used as controls. Transgenic rats had higher circulating renin activity and lower cardiac angiotensin-converting enzyme two levels. Systolic BP was elevated in mRen2 rats (235.11 ± 5.32 vs. 127.03 ± 7.56 mmHg in SD, P < 0.05), resulting in increased left ventricular (LV) weight/body weight ratio (4.05 ± 0.09 vs. 2.77 ± 0.08 mg/g in SD, P < 0.05). Transgenic renin expression had no effect on the systolic parameters, such as LV ejection fraction, cardiomyocyte Ca(2+)-activated force, and Ca(2+) sensitivity of force production. In contrast, diastolic dysfunction was observed in mRen2 compared with SD rats: early and late LV diastolic filling ratio (E/A) was lower (1.14 ± 0.04 vs. 1.87 ± 0.08, P < 0.05), LV isovolumetric relaxation time was longer (43.85 ± 0.89 vs. 28.55 ± 1.33 ms, P < 0.05), cardiomyocyte passive tension was higher (1.74 ± 0.06 vs. 1.28 ± 0.18 kN/m(2), P < 0.05), and lung weight/body weight ratio was increased (6.47 ± 0.24 vs. 5.78 ± 0.19 mg/g, P < 0.05), as was left atrial weight/body weight ratio (0.21 ± 0.03 vs. 0.14 ± 0.03 mg/g, P < 0.05). Hyperphosphorylation of titin at Ser-12742 within the PEVK domain and a twofold overexpression of protein kinase C-α in mRen2 rats were detected. Our data suggest a link between the activation of renin-angiotensin-aldosterone system and increased titin-based stiffness through phosphorylation of titin's PEVK element, contributing to diastolic dysfunction.
Collapse
Affiliation(s)
- Árpád Kovács
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Á Fülöp
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Kovács
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Csípő
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Beáta Bódi
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dániel Priksz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Béla Juhász
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Lívia Beke
- Department of Pathology, Medical Center, University of Debrecen, Debrecen, Hungary
| | - Zoltán Hendrik
- Department of Pathology, Medical Center, University of Debrecen, Debrecen, Hungary
| | - Gábor Méhes
- Department of Pathology, Medical Center, University of Debrecen, Debrecen, Hungary
| | - Henk L Granzier
- Department of Physiology, University of Arizona, Tucson, Arizona; and
| | - István Édes
- Department of Cardiology, Medical Center, University of Debrecen, Debrecen, Hungary; Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Miklós Fagyas
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Department of Cardiology, Medical Center, University of Debrecen, Debrecen, Hungary
| | - Zoltán Papp
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Barta
- Department of Cardiology, Medical Center, University of Debrecen, Debrecen, Hungary;
| | - Attila Tóth
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
19
|
Abdulla MH, Sattar MA, Johns EJ. Effects of tempol on altered metabolism and renal vascular responsiveness in fructose-fed rats. Appl Physiol Nutr Metab 2016; 41:210-8. [DOI: 10.1139/apnm-2015-0411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This study investigated the effect of tempol (a superoxide dismutase mimetic) on renal vasoconstrictor responses to angiotensin II (Ang II) and adrenergic agonists in fructose-fed Sprague–Dawley rats (a model of metabolic syndrome). Rats were fed 20% fructose in drinking water (F) for 8 weeks. One fructose-fed group received tempol (FT) at 1 mmol·L–1 in drinking water for 8 weeks or as an infusion (1.5 mg·kg–1·min–1) intrarenally. At the end of the treatment regimen, the renal responses to noradrenaline, phenylephrine, methoxamine, and Ang II were determined. F rats exhibited hyperinsulinemia, hyperuricemia, hypertriglyceridemia, and hypertension. Tempol reduced blood glucose and insulin levels (all p < 0.05) in FT rats compared with their untreated counterparts. The vasoconstriction response to all agonists was lower in F rats than in control rats by about 35%–65% (all p < 0.05). Vasoconstrictor responses to noradrenaline, phenylephrine, and methoxamine but not Ang II were about 41%–75% higher in FT rats compared with F rats (all p < 0.05). Acute tempol infusion blunted responses to noradrenaline, methoxamine, and Ang II in control rats by 32%, 33%, and 62%, while it blunted responses to noradrenaline and Ang II in F rats by 26% and 32%, respectively (all p < 0.05), compared with their untreated counterparts. Superoxide radicals play a crucial role in controlling renal vascular responses to adrenergic agonists in insulin-resistant rats. Chronic but not acute tempol treatment enhances renal vascular responsiveness in fructose-fed rats.
Collapse
Affiliation(s)
- Mohammed H. Abdulla
- Department of Physiology, School of Medicine, University College Cork, Cork, Ireland
| | - Munavvar A. Sattar
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, 11800 Penang, Malaysia
| | - Edward J. Johns
- Department of Physiology, School of Medicine, University College Cork, Cork, Ireland
| |
Collapse
|
20
|
Kushwaha PS, Singh AK, Keshari AK, Maity S, Saha S. An Updated Review on the Phytochemistry, Pharmacology, and Clinical Trials of Salacia oblonga. Pharmacogn Rev 2016; 10:109-114. [PMID: 28082793 PMCID: PMC5214554 DOI: 10.4103/0973-7847.194046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Salacia oblonga (S. oblonga), a perennial herb, has been used for thousands of years in ayurvedic medicine and is closely associated with prevention, treatment, and cure of various human ailments such as obesity and diabetes. A vast and wide range of chemical compounds such as polyphenols, friedelane-type triterpenes, norfriedelane-type triterpenes, eudesmane-type sesquiterpenes including various glycosides had been isolated from this plant. This review is aimed to survey the literature covering the phytochemistry and pharmacology of S. oblonga and to review the scientific data including active components and their multi-targeted mechanisms of action against various metabolic syndromes. We also included clinical trials related to this plant in this review. The overview would assist researchers to gather scientific information related to S. oblonga in future.
Collapse
Affiliation(s)
- Priya Singh Kushwaha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Ashok K Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Amit K Keshari
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Siddhartha Maity
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
21
|
Insulin resistance: an additional risk factor in the pathogenesis of cardiovascular disease in type 2 diabetes. Heart Fail Rev 2015; 21:11-23. [DOI: 10.1007/s10741-015-9515-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Bostick B, Habibi J, Ma L, Aroor A, Rehmer N, Hayden MR, Sowers JR. Dipeptidyl peptidase inhibition prevents diastolic dysfunction and reduces myocardial fibrosis in a mouse model of Western diet induced obesity. Metabolism 2014; 63:1000-11. [PMID: 24933400 PMCID: PMC4128682 DOI: 10.1016/j.metabol.2014.04.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/04/2014] [Accepted: 04/04/2014] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Consumption of a high-fat/high-fructose Western diet (WD) is linked to rising obesity and heart disease, particularly diastolic dysfunction which characterizes early obesity/metabolic cardiomyopathy. Mounting evidence supports a role for inflammation, oxidative stress and fibrosis in the pathophysiology of metabolic cardiomyopathy. Dipeptidyl peptidase-4 (DPP-4) is a circulating exopeptidase recently reported to be elevated in the plasma of patients with insulin resistance (IR), obesity and heart failure. We hypothesized that a model of WD induced obesity/metabolic cardiomyopathy would exhibit increased DPP-4 activity and cardiac fibrosis with DPP-4 inhibition preventing cardiac fibrosis and the associated diastolic dysfunction. MATERIALS/METHODS Four-week-old C57BL6/J mice were fed a high-fat/high-fructose WD with the DPP-4 inhibitor MK0626 for 16 weeks. Cardiac function was examined by high-resolution cine-cardiac magnetic resonance imaging (MRI). Phenotypic analysis included measurements of body and heart weight, systemic IR and DPP-4 activity. Immunohistochemistry and transmission electron microscopy (TEM) were utilized to identify underlying pathologic mechanisms. RESULTS We found that chronic WD consumption caused obesity, IR, elevated plasma DPP-4 activity, heart enlargement and diastolic dysfunction. DPP-4 inhibition with MK0626 in WD fed mice resulted in >75% reduction in plasma DPP-4 activity, improved IR and normalized diastolic relaxation. WD consumption induced myocardial oxidant stress and fibrosis with amelioration by MK0626. TEM of hearts from WD fed mice revealed abnormal mitochondrial and perivascular ultrastructure partially corrected by MK0626. CONCLUSIONS This study provides evidence of a role for increased DPP-4 activity in metabolic cardiomyopathy and a potential role for DPP-4 inhibition in prevention and/or correction of oxidant stress/fibrosis and associated diastolic dysfunction.
Collapse
Affiliation(s)
- Brian Bostick
- Division of Cardiovascular Medicine, Diabetes Cardiovascular Center, University of Missouri, Columbia, MO, USA; Department of Medicine, University of Missouri, Columbia, MO, USA; Harry S. Truman Memorial Veterans Hospital, Columbia MO, USA
| | - Javad Habibi
- Department of Medicine, University of Missouri, Columbia, MO, USA; Harry S. Truman Memorial Veterans Hospital, Columbia MO, USA; Division of Endocrinology and Metabolism, Diabetes Cardiovascular Center, University of Missouri, Columbia, MO, USA
| | - Lixin Ma
- Harry S. Truman Memorial Veterans Hospital, Columbia MO, USA; Department of Radiology, University of Missouri, Columbia, MO, USA
| | - Annayya Aroor
- Department of Medicine, University of Missouri, Columbia, MO, USA; Harry S. Truman Memorial Veterans Hospital, Columbia MO, USA; Division of Endocrinology and Metabolism, Diabetes Cardiovascular Center, University of Missouri, Columbia, MO, USA
| | - Nathan Rehmer
- Department of Medicine, University of Missouri, Columbia, MO, USA; Harry S. Truman Memorial Veterans Hospital, Columbia MO, USA; Division of Endocrinology and Metabolism, Diabetes Cardiovascular Center, University of Missouri, Columbia, MO, USA
| | - Melvin R Hayden
- Department of Medicine, University of Missouri, Columbia, MO, USA; Harry S. Truman Memorial Veterans Hospital, Columbia MO, USA; Division of Endocrinology and Metabolism, Diabetes Cardiovascular Center, University of Missouri, Columbia, MO, USA
| | - James R Sowers
- Department of Medicine, University of Missouri, Columbia, MO, USA; Harry S. Truman Memorial Veterans Hospital, Columbia MO, USA; Division of Endocrinology and Metabolism, Diabetes Cardiovascular Center, University of Missouri, Columbia, MO, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
23
|
AKBAR N, SOKOLOVSKI S, DUNAEV A, BELCH J, RAFAILOV E, KHAN F. In vivo
noninvasive measurement of skin autofluorescence biomarkers relate to cardiovascular disease in mice. J Microsc 2014; 255:42-8. [DOI: 10.1111/jmi.12135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 04/09/2014] [Indexed: 02/03/2023]
Affiliation(s)
- N. AKBAR
- Vascular and Inflammatory Diseases Research Unit; Division of Cardiovascular and Diabetes Medicine; Medical Research Institute; Ninewells Hospital and Medical School; University of Dundee; Dundee Scotland
| | - S. SOKOLOVSKI
- Photonics and Nanoscience Group; Division of Physics; The School of Engineering; Physics and Mathematics; University of Dundee; Dundee Scotland
| | - A. DUNAEV
- Photonics and Nanoscience Group; Division of Physics; The School of Engineering; Physics and Mathematics; University of Dundee; Dundee Scotland
| | - J.J.F. BELCH
- Vascular and Inflammatory Diseases Research Unit; Division of Cardiovascular and Diabetes Medicine; Medical Research Institute; Ninewells Hospital and Medical School; University of Dundee; Dundee Scotland
| | - E. RAFAILOV
- Photonics and Nanoscience Group; Division of Physics; The School of Engineering; Physics and Mathematics; University of Dundee; Dundee Scotland
| | - F. KHAN
- Vascular and Inflammatory Diseases Research Unit; Division of Cardiovascular and Diabetes Medicine; Medical Research Institute; Ninewells Hospital and Medical School; University of Dundee; Dundee Scotland
| |
Collapse
|
24
|
Nkum BC, Micah FB, Ankrah TC, Nyan O. Left ventricular hypertrophy and insulin resistance in adults from an urban community in The Gambia: cross-sectional study. PLoS One 2014; 9:e93606. [PMID: 24705608 PMCID: PMC3976294 DOI: 10.1371/journal.pone.0093606] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/05/2014] [Indexed: 12/22/2022] Open
Abstract
Objective To determine the association between left ventricular hypertrophy and insulin resistance in Gambians. Design Cross-sectional study. Setting Outpatient clinics of Royal Victoria Teaching Hospital and Medical Research Council Laboratories in Banjul. Participants Three hundred and sixteen consecutive patients were enrolled from outpatient clinics. The data of 275 participants (89 males) were included in the analysis with a mean (± standard deviation) age of 53.7 (±11.9) years. Interventions A questionnaire was filled and anthropometric measurements were taken. 2-D guided M-mode echocardiography, standard 12-1ead electrocardiogram, fasting insulin and the oral glucose tolerance test were performed. Main Outcome Measures The Penn formula was used to determine the left ventricular mass index, 125 g/m2 in males and 110 g/m2 in females as the cut-off for left ventricular hypertrophy. Using the fasting insulin and fasting glucose levels, the insulin resistance was estimated by the homeostatic model assessment formula. Logistic regression analysis was used to determine the association between left ventricular hypertrophy and insulin resistance. Results The mean Penn left ventricular mass index was 119.5 (±54.3) and the prevalence of Penn left ventricular mass index left ventricular hypertrophy was 41%. The mean fasting glucose was 5.6 (±2.5) mmol/l, fasting insulin was 6.39 (±5.49) μU/ml and insulin resistance was 1.58 (±1.45). There was no association between Penn left ventricular mass index left ventricular hypertrophy and log of insulin resistance in univariate (OR = 0.98, 95% CI = 0.80 – 1.19, p = 0.819) and multivariate logistic regression (OR = 0.93, 95% CI = 0.76–1.15, p = 0.516) analysis. Conclusion No association was found in this study between left ventricular hypertrophy and insulin resistance in Gambians and this does not support the suggestion that insulin is an independent determinant of left ventricular hypertrophy in hypertensives.
Collapse
Affiliation(s)
- Bernard Cudjoe Nkum
- Department of Medicine, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- * E-mail:
| | - Frank Botsi Micah
- Department of Medicine, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Theophilus C. Ankrah
- Department of Medicine, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Ousman Nyan
- Department of Medicine, Royal Victoria Teaching Hospital, Banjul, The Gambia
| |
Collapse
|
25
|
Abstract
SIGNIFICANCE Despite recent medical advances, cardiovascular disease and heart failure (HF) continue to be major health concerns, and related mortality remains high. As a result, investigation of the mechanisms involved in the development of HF continues to be an active field of study. RECENT ADVANCES The renin-angiotensin system (RAS) and its effector molecule, angiotensin (Ang) II, affect cardiac function through both systemic and local actions, and have been shown to play a major role in cardiac remodeling and dysfunction in the failing heart. Many of the downstream effects of AngII signaling are mediated by elevated levels of reactive oxygen species (ROS) and oxidative stress, which have also been implicated in the pathology of HF. CRITICAL ISSUES Inhibitors of the RAS have proven beneficial in the treatment of patients at risk for and suffering from HF, but remain only partially effective. ROS can be generated from several different sources, and the oxidative state is normally tightly regulated in the heart. How AngII increases ROS levels and causes dysregulation of the cardiac oxidative state has been the subject of considerable interest in recent years. FUTURE DIRECTIONS A better understanding of this process and the mechanisms involved should lead to the development of more effective HF therapies and improved outcomes.
Collapse
Affiliation(s)
- Daniela Zablocki
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, University of Medicine and Dentistry of New Jersey , Newark, New Jersey
| | | |
Collapse
|
26
|
Manrique C, DeMarco VG, Aroor AR, Mugerfeld I, Garro M, Habibi J, Hayden MR, Sowers JR. Obesity and insulin resistance induce early development of diastolic dysfunction in young female mice fed a Western diet. Endocrinology 2013; 154:3632-42. [PMID: 23885014 PMCID: PMC5398539 DOI: 10.1210/en.2013-1256] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 07/16/2013] [Indexed: 01/09/2023]
Abstract
Cardiovascular disease (CVD), including heart failure, constitutes the main source of morbidity and mortality in men and women with diabetes. Although healthy young women are protected against CVD, postmenopausal and diabetic women lose this CVD protection. Obesity, insulin resistance, and diabetes promote heart failure in females, and diastolic dysfunction is the earliest manifestation of this heart failure. To examine the mechanisms promoting diastolic dysfunction in insulin-resistant females, this investigation evaluated the impact of 8 weeks of a high-fructose/high-fat Western diet (WD) on insulin sensitivity and cardiac structure and function in young C57BL6/J female versus male mice. Insulin sensitivity was determined by hyperinsulinemic-euglycemic clamps and two-dimensional echocardiograms were used to evaluate cardiac function. Both males and females developed systemic insulin resistance after 8 weeks of a WD. However, only the females developed diastolic dysfunction. The diastolic dysfunction promoted by the WD was accompanied by increases in collagen 1, a marker of stiffness, increased oxidative stress, reduced insulin metabolic signaling, and increased mitochondria and cardiac microvascular alterations as determined by electron microscopy. Aldosterone (a promoter of cardiac stiffness) levels were higher in females compared with males but were not affected by the WD in either gender. These data suggest a predisposition toward developing early diastolic heart failure in females exposed to a WD. These data are consistent with the notion that higher aldosterone levels, in concert with insulin resistance, may promote myocardial stiffness and diastolic dysfunction in response to overnutrition in females.
Collapse
Affiliation(s)
- Camila Manrique
- MD, Professor of Medicine and Medical Pharmacology and Physiology, University of Missouri, D109 Diabetes Center Health Sciences Center, One Hospital Drive, Columbia, Missouri 65212.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Aroor AR, Sowers JR, Bender SB, Nistala R, Garro M, Mugerfeld I, Hayden MR, Johnson MS, Salam M, Whaley-Connell A, Demarco VG. Dipeptidylpeptidase inhibition is associated with improvement in blood pressure and diastolic function in insulin-resistant male Zucker obese rats. Endocrinology 2013; 154:2501-13. [PMID: 23653460 PMCID: PMC3689282 DOI: 10.1210/en.2013-1096] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Diastolic dysfunction is a prognosticator for future cardiovascular events that demonstrates a strong correlation with obesity. Pharmacological inhibition of dipeptidylpeptidase-4 (DPP-4) to increase the bioavailability of glucagon-like peptide-1 is an emerging therapy for control of glycemia in type 2 diabetes patients. Accumulating evidence suggests that glucagon-like peptide-1 has insulin-independent actions in cardiovascular tissue. However, it is not known whether DPP-4 inhibition improves obesity-related diastolic dysfunction. Eight-week-old Zucker obese (ZO) and Zucker lean rats were fed normal chow diet or diet containing the DPP-4 inhibitor, linagliptin (LGT), for 8 weeks. Plasma DPP-4 activity was 3.3-fold higher in ZO compared with Zucker lean rats and was reduced by 95% with LGT treatment. LGT improved echocardiographic and pressure volume-derived indices of diastolic function that were impaired in ZO control rats, without altering food intake or body weight gain during the study period. LGT also blunted elevated blood pressure progression in ZO rats involving improved skeletal muscle arteriolar function, without reducing left ventricular hypertrophy, fibrosis, or oxidative stress in ZO hearts. Expression of phosphorylated- endothelial nitric oxide synthase (eNOS)(Ser1177), total eNOS, and sarcoplasmic reticulum calcium ATPase 2a protein was elevated in the LGT-treated ZO heart, suggesting improved Ca(2+) handling. The ZO myocardium had an abnormal mitochondrial sarcomeric arrangement and cristae structure that were normalized by LGT. These studies suggest that LGT reduces blood pressure and improves intracellular Cai(2+) mishandling and cardiomyocyte ultrastructure, which collectively result in improvements in diastolic function in the absence of reductions in left ventricular hypertrophy, fibrosis, or oxidative stress in insulin-resistant ZO rats.
Collapse
Affiliation(s)
- Annayya R Aroor
- Department of Internal Medicine, University of Missouri School of Medicine, and Diabetes and Cardiovascular Center, Columbia, MO 65212, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Whaley-Connell A, Habibi J, Rehmer N, Ardhanari S, Hayden MR, Pulakat L, Krueger C, Ferrario CM, DeMarco VG, Sowers JR. Renin inhibition and AT(1)R blockade improve metabolic signaling, oxidant stress and myocardial tissue remodeling. Metabolism 2013; 62:861-72. [PMID: 23352204 PMCID: PMC3640616 DOI: 10.1016/j.metabol.2012.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 11/30/2012] [Accepted: 12/19/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Strategies that block angiotensin II actions on its angiotensin type 1 receptor or inhibit actions of aldosterone have been shown to reduce myocardial hypertrophy and interstitial fibrosis in states of insulin resistance. Thereby, we sought to determine if combination of direct renin inhibition with angiotensin type 1 receptor blockade in vivo, through greater reductions in systolic blood pressure (SBP) and aldosterone would attenuate left ventricular hypertrophy and interstitial fibrosis to a greater extent than either intervention alone. MATERIALS/METHODS We utilized the transgenic Ren2 rat which manifests increased tissue expression of murine renin which, in turn, results in increased renin-angiotensin system activity, aldosterone secretion and insulin resistance. Ren2 rats were treated with aliskiren, valsartan, the combination (aliskiren+valsartan), or vehicle for 21 days. RESULTS Compared to Sprague-Dawley controls, Ren2 rats displayed increased systolic blood pressure, elevated serum aldosterone levels, cardiac tissue hypertrophy, interstitial fibrosis and ultrastructural remodeling. These biochemical and functional alterations were accompanied by increases in the NADPH oxidase subunit Nox2 and 3-nitrotyrosine content along with increases in mammalian target of rapamycin and reductions in protein kinase B phosphorylation. Combination therapy contributed to greater reductions in systolic blood pressure and serum aldosterone but did not result in greater improvement in metabolic signaling or markers of oxidative stress, fibrosis or hypertrophy beyond either intervention alone. CONCLUSIONS Thereby, our data suggest that the greater impact of combination therapy on reductions in aldosterone does not translate into greater reductions in myocardial fibrosis or hypertrophy in this transgenic model of tissue renin overexpression.
Collapse
Affiliation(s)
- Adam Whaley-Connell
- Research Service, Harry S. Truman Memorial Veterans Hospital, 800 Hospital Drive, Columbia, MO 65201, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bu L, Liu Z, Zou J, Gao X, Bao Y, Qu S. Blocking central galanin receptors attenuates insulin sensitivity in myocytes of diabetic trained rats. J Neurosci Res 2013; 91:971-7. [PMID: 23653288 DOI: 10.1002/jnr.23228] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/23/2013] [Accepted: 03/05/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Le Bu
- Department of Endocrinology; Shanghai 10th People's Hospital, Tongji University School of Medicine; Shanghai; China
| | - Zhimin Liu
- Department of Endocrinology; Changzheng Hospital, Second Military Medical University; Shanghai; China
| | - Junjie Zou
- Department of Endocrinology; Changzheng Hospital, Second Military Medical University; Shanghai; China
| | - Xiang Gao
- Department of Nephrology; Changzheng Hospital, Second Military Medical University; Shanghai; China
| | - Yi Bao
- Department of Endocrinology; Changzheng Hospital, Second Military Medical University; Shanghai; China
| | - Shen Qu
- Department of Endocrinology; Shanghai 10th People's Hospital, Tongji University School of Medicine; Shanghai; China
| |
Collapse
|
30
|
Rocha M, Apostolova N, Herance JR, Rovira-Llopis S, Hernandez-Mijares A, Victor VM. Perspectives and Potential Applications of Mitochondria-Targeted Antioxidants in Cardiometabolic Diseases and Type 2 Diabetes. Med Res Rev 2013; 34:160-89. [PMID: 23650093 DOI: 10.1002/med.21285] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Milagros Rocha
- Fundacion para la Investigacion Sanitaria y Biomedica de la Comunidad Valenciana FISABIO; Valencia Spain
- University Hospital Doctor Peset, Endocrinology Service; Valencia Spain
- INCLIVA Foundation; Valencia Spain
| | - Nadezda Apostolova
- Department of Pharmacology and CIBER CB06/04/0071 Research Group, CIBER Hepatic and Digestive Diseases; University of Valencia; Valencia Spain
| | - Jose Raul Herance
- CRC-Centre d'Imatge Molecular (CRC-CIM), Parc de Recerca Biomedica de Barcelona (PRBB); Barcelona Spain
| | - Susana Rovira-Llopis
- Fundacion para la Investigacion Sanitaria y Biomedica de la Comunidad Valenciana FISABIO; Valencia Spain
- University Hospital Doctor Peset, Endocrinology Service; Valencia Spain
| | - Antonio Hernandez-Mijares
- Fundacion para la Investigacion Sanitaria y Biomedica de la Comunidad Valenciana FISABIO; Valencia Spain
- University Hospital Doctor Peset, Endocrinology Service; Valencia Spain
- INCLIVA Foundation; Valencia Spain
- Department of Medicine, University of Valencia; Valencia Spain
| | - Victor M. Victor
- Fundacion para la Investigacion Sanitaria y Biomedica de la Comunidad Valenciana FISABIO; Valencia Spain
- University Hospital Doctor Peset, Endocrinology Service; Valencia Spain
- INCLIVA Foundation; Valencia Spain
- Department of Pharmacology and CIBER CB06/04/0071 Research Group, CIBER Hepatic and Digestive Diseases; University of Valencia; Valencia Spain
- Department of Physiology, University of Valencia; Valencia Spain
| |
Collapse
|
31
|
Sovari AA, Rutledge CA, Jeong EM, Dolmatova E, Arasu D, Liu H, Vahdani N, Gu L, Zandieh S, Xiao L, Bonini MG, Duffy HS, Dudley SC. Mitochondria oxidative stress, connexin43 remodeling, and sudden arrhythmic death. Circ Arrhythm Electrophysiol 2013; 6:623-31. [PMID: 23559673 DOI: 10.1161/circep.112.976787] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Previously, we showed that a mouse model (ACE8/8) of cardiac renin-angiotensin system activation has a high rate of spontaneous ventricular tachycardia and sudden cardiac death secondary to a reduction in connexin43 level. Angiotensin-II activation increases reactive oxygen species (ROS) production, and ACE8/8 mice show increased cardiac ROS. We sought to determine the source of ROS and whether ROS played a role in the arrhythmogenesis. METHODS AND RESULTS Wild-type and ACE8/8 mice with and without 2 weeks of treatment with L-NIO (NO synthase inhibitor), sepiapterin (precursor of tetrahydrobiopterin), MitoTEMPO (mitochondria-targeted antioxidant), TEMPOL (a general antioxidant), apocynin (nicotinamide adenine dinucleotide phosphate oxidase inhibitor), allopurinol (xanthine oxidase inhibitor), and ACE8/8 crossed with P67 dominant negative mice to inhibit the nicotinamide adenine dinucleotide phosphate oxidase were studied. Western blotting, detection of mitochondrial ROS by MitoSOX Red, electron microscopy, immunohistochemistry, fluorescent dye diffusion technique for functional assessment of connexin43, telemetry monitoring, and in vivo electrophysiology studies were performed. Treatment with MitoTEMPO reduced sudden cardiac death in ACE8/8 mice (from 74% to 18%; P<0.005), decreased spontaneous ventricular premature beats, decreased ventricular tachycardia inducibility (from 90% to 17%; P<0.05), diminished elevated mitochondrial ROS to the control level, prevented structural damage to mitochondria, resulted in 2.6-fold increase in connexin43 level at the gap junctions, and corrected gap junction conduction. None of the other antioxidant therapies prevented ventricular tachycardia and sudden cardiac death in ACE8/8 mice. CONCLUSIONS Mitochondrial oxidative stress plays a central role in angiotensin II-induced gap junction remodeling and arrhythmia. Mitochondria-targeted antioxidants may be effective antiarrhythmic drugs in cases of renin-angiotensin system activation.
Collapse
Affiliation(s)
- Ali A Sovari
- Section of Cardiology and Center for Cardiovascular Research, University of Illinois at Chicago, IL, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhang M, Perino A, Ghigo A, Hirsch E, Shah AM. NADPH oxidases in heart failure: poachers or gamekeepers? Antioxid Redox Signal 2013; 18:1024-41. [PMID: 22747566 PMCID: PMC3567780 DOI: 10.1089/ars.2012.4550] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Oxidative stress is involved in the pathogenesis of heart failure but clinical antioxidant trials have been unsuccessful. This may be because effects of reactive oxygen species (ROS) depend upon their source, location, and concentration. Nicotinamide adenine dinucleotide phosphate oxidase (Nox) proteins generate ROS in a highly regulated fashion and modulate several components of the heart failure phenotype. RECENT ADVANCES Two Nox isoforms, Nox2 and Nox4, are expressed in the heart. Studies using gene-modified mice deficient in Nox2 activity indicate that Nox2 activation contributes to angiotensin II-induced cardiomyocyte hypertrophy, atrial fibrillation, and the development of interstitial fibrosis but may also positively modulate physiological excitation-contraction coupling. Nox2 contributes to myocyte death under stress situations and plays important roles in postmyocardial infarction remodeling, in part by modulating matrix metalloprotease activity. In contrast to Nox2, Nox4 is constitutively active at a low level and induces protective effects in the heart under chronic stress, for example, by maintaining myocardial capillary density. However, high levels of Nox4 could have detrimental effects. CRITICAL ISSUES The effects of Nox proteins during the development of heart failure likely depend upon the isoform, activation level, and cellular distribution, and may include beneficial as well as detrimental effects. More needs to be learnt about the precise regulation of abundance and biochemical activity of these proteins in the heart as well as the downstream signaling pathways that they regulate. FUTURE DIRECTIONS The development of specific approaches to target individual Nox isoforms and/or specific cell types may be important for the achievement of therapeutic efficacy in heart failure.
Collapse
Affiliation(s)
- Min Zhang
- Cardiovascular Division, James Black Centre, King's College London British Heart Foundation Centre of Excellence, London, UK
| | | | | | | | | |
Collapse
|
33
|
Demarco VG, Ford DA, Henriksen EJ, Aroor AR, Johnson MS, Habibi J, Ma L, Yang M, Albert CJ, Lally JW, Ford CA, Prasannarong M, Hayden MR, Whaley-Connell AT, Sowers JR. Obesity-related alterations in cardiac lipid profile and nondipping blood pressure pattern during transition to diastolic dysfunction in male db/db mice. Endocrinology 2013; 154:159-71. [PMID: 23142808 PMCID: PMC3529378 DOI: 10.1210/en.2012-1835] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Obesity and a nondipping circadian blood pressure (BP) pattern are associated with diastolic dysfunction. Ectopic lipid accumulation is increasingly recognized as an important metabolic abnormality contributing to diastolic dysfunction. However, little is known about the contribution of different lipids and the composition of lipid analytes to diastolic dysfunction. We have performed functional and structural studies and analyzed cardiac lipid profile at two time points during progression to diastolic dysfunction in a genetic model of obesity. Serial cardiac magnetic resonance imaging and telemetric measures of BP between 12 and 15 wk of age in obese male db/db mice indicated a nondipping circadian BP pattern and normal diastolic function at 12 wk that progressed to a deteriorating nondipping pattern and onset of diastolic dysfunction at 15 wk of age. Lipidomic analysis demonstrated elevated fatty acids and ceramides in db/db at 12 wk, but their levels were decreased at 15 wk, and this was accompanied by persistent mitochondrial ultrastructural abnormalities in concert with evidence of increased fatty acid oxidation and enhanced production of reactive oxygen species. Triacylglyceride and diacylglyceride levels were elevated at both 12 and 15 wk, but their composition changed to consist of more saturated and less unsaturated fatty acyl at 15 wk. An increase in the lipid droplets was apparent at both time points, and this was associated with increases in phosphatidycholine. In conclusion, a distinct pattern of myocardial lipid remodeling, accompanied by oxidative stress, is associated with the onset of diastolic dysfunction in obese, insulin-resistant db/db mice.
Collapse
Affiliation(s)
- Vincent G Demarco
- Departments of Internal Medicine, University of Missouri-Columbia School of Medicine, One Hospital Drive, Columbia, MO 65212, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Marshall KD, Muller BN, Krenz M, Hanft LM, McDonald KS, Dellsperger KC, Emter CA. Heart failure with preserved ejection fraction: chronic low-intensity interval exercise training preserves myocardial O2 balance and diastolic function. J Appl Physiol (1985) 2013; 114:131-47. [PMID: 23104696 PMCID: PMC3544520 DOI: 10.1152/japplphysiol.01059.2012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 10/23/2012] [Indexed: 12/17/2022] Open
Abstract
We have previously reported chronic low-intensity interval exercise training attenuates fibrosis, impaired cardiac mitochondrial function, and coronary vascular dysfunction in miniature swine with left ventricular (LV) hypertrophy (Emter CA, Baines CP. Am J Physiol Heart Circ Physiol 299: H1348-H1356, 2010; Emter CA, et al. Am J Physiol Heart Circ Physiol 301: H1687-H1694, 2011). The purpose of this study was to test two hypotheses: 1) chronic low-intensity interval training preserves normal myocardial oxygen supply/demand balance; and 2) training-dependent attenuation of LV fibrotic remodeling improves diastolic function in aortic-banded sedentary, exercise-trained (HF-TR), and control sedentary male Yucatan miniature swine displaying symptoms of heart failure with preserved ejection fraction. Pressure-volume loops, coronary blood flow, and two-dimensional speckle tracking ultrasound were utilized in vivo under conditions of increasing peripheral mean arterial pressure and β-adrenergic stimulation 6 mo postsurgery to evaluate cardiac function. Normal diastolic function in HF-TR animals was characterized by prevention of increased time constant of isovolumic relaxation, normal LV untwisting rate, and enhanced apical circumferential and radial strain rate. Reduced fibrosis, normal matrix metalloproteinase-2 and tissue inhibitors of metalloproteinase-4 mRNA expression, and increased collagen III isoform mRNA levels (P < 0.05) accompanied improved diastolic function following chronic training. Exercise-dependent improvements in coronary blood flow for a given myocardial oxygen consumption (P < 0.05) and cardiac efficiency (stroke work to myocardial oxygen consumption, P < 0.05) were associated with preserved contractile reserve. LV hypertrophy in HF-TR animals was associated with increased activation of Akt and preservation of activated JNK/SAPK. In conclusion, chronic low-intensity interval exercise training attenuates diastolic impairment by promoting compliant extracellular matrix fibrotic components and preserving extracellular matrix regulatory mechanisms, preserves myocardial oxygen balance, and promotes a physiological molecular hypertrophic signaling phenotype in a large animal model resembling heart failure with preserved ejection fraction.
Collapse
Affiliation(s)
- Kurt D Marshall
- Department of Biomedical Science, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Nautiyal M, Shaltout HA, de Lima DC, do Nascimento K, Chappell MC, Diz DI. Central angiotensin-(1-7) improves vagal function independent of blood pressure in hypertensive (mRen2)27 rats. Hypertension 2012; 60:1257-65. [PMID: 23045456 DOI: 10.1161/hypertensionaha.112.196782] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypertensive transgenic (mRen2)27 rats with overexpression of the mRen2 gene have impaired baroreflex sensitivity for heart rate control and high nicotinamide adenine dinucleotide phosphate oxidase and kinase-to-phosphatase signaling activity in medullary tissue compared with normotensive Hannover Sprague-Dawley control rats. They also exhibit insulin resistance at a young age. To determine whether blocking angiotensin II actions, supplementing angiotensin-(1-7), or scavenging reactive oxygen species in brain differentially alters mean arterial pressure, baroreflex sensitivity, or metabolic function, while altering medullary signaling pathways in these animals, we compared intracerebroventricular infusions of the angiotensin II type 1 receptor antagonist candesartan (4 μg/5 μL/h), angiotensin-(1-7) (0.1 μg/5 μL/h), a reactive oxygen species scavenger tempol (25 μg/5 μL/h), or artificial cerebrospinal fluid (5 μL/h) for 2 weeks. Mean arterial pressure was reduced in candesartan-treated rats without significantly improving the vagal components of baroreflex function or heart rate variability. In contrast, angiotensin-(1-7) treatment significantly improved the vagal components of baroreflex function and heart rate variability at a dose that did not significantly lower mean arterial pressure. Tempol significantly reduced nicotinamide adenine dinucleotide phosphate oxidase activity in brain dorsal medullary tissue but had no effect on mean arterial pressure or autonomic function. Candesartan tended to reduce fat mass, but none of the treatments significantly altered indices of metabolic function or mitogen-activated protein kinase signaling pathways in dorsal medulla. Although additional dose response studies are necessary to determine the potential maximal effectiveness of each treatment, the current findings demonstrate that blood pressure and baroreflex function can be essentially normalized independently of medullary nicotinamide adenine dinucleotide phosphate oxidase or mitogen-activated protein kinase in hypertensive (mRen2)27 rats.
Collapse
Affiliation(s)
- Manisha Nautiyal
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1032, USA
| | | | | | | | | | | |
Collapse
|
36
|
Wu CK, Yang CY, Lin JW, Hsieh HJ, Chiu FC, Chen JJ, Lee JK, Huang SW, Li HY, Chiang FT, Chen JJ, Tsai CT. The relationship among central obesity, systemic inflammation, and left ventricular diastolic dysfunction as determined by structural equation modeling. Obesity (Silver Spring) 2012; 20:730-7. [PMID: 21394094 DOI: 10.1038/oby.2011.30] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The purpose of this study was to investigate the associations among central obesity, inflammation, and left ventricular (LV) diastolic dysfunction by structural equation modeling. Echocardiographic parameters were assessed in 102 otherwise-healthy adults over age 30. The participants were classified as having LV diastolic dysfunction by echocardiographic findings including mitral inflow E/A ratio <1, deceleration time >220 cm/s, or decreased peak annular early diastolic velocity in tissue Doppler imaging or otherwise the control group. Serum C-reactive protein (CRP) and lipid profile were also measured. The homeostasis model of insulin resistance (HOMA) was calculated. Central obesity was assessed by computerized tomography (CT) at the L4 level. In a multivariate regression analysis, the relationship between visceral adipose tissue (VAT) and LV diastolic dysfunction became insignificant when CRP was introduced into the model, although CRP itself was significantly associated with LV diastolic dysfunction (odds ratio (OR): 1.32, 95% confidence interval (CI): 1.01-1.72, P = 0.04). A significant correlation was also found between VAT and CRP (r = 0.70; P < 0.001). We then performed path analysis as illustrated by the structural equation model. This proved our hypotheses that VAT might affect LV diastolic dysfunction through the effect of CRP (total fat load with inflammation (B = 1.133, P < 0.001) and that inflammation might affect LV diastolic dysfunction (B = 0.373. P < 0.001)). Using structural equation modeling, we concluded that higher amounts of VAT were associated with low-grade inflammation and this may lead to subclinical LV diastolic dysfunction in otherwise-healthy subjects.
Collapse
MESH Headings
- Adiposity
- Biomarkers/blood
- C-Reactive Protein/metabolism
- Diastole
- Echocardiography, Doppler
- Female
- Humans
- Inflammation/etiology
- Inflammation/physiopathology
- Insulin Resistance
- Intra-Abdominal Fat/diagnostic imaging
- Lipid Metabolism
- Lipids/blood
- Male
- Middle Aged
- Models, Statistical
- Multivariate Analysis
- Obesity, Abdominal/blood
- Obesity, Abdominal/complications
- Obesity, Abdominal/diagnostic imaging
- Obesity, Abdominal/physiopathology
- Odds Ratio
- Physical Examination
- Surveys and Questionnaires
- Taiwan
- Tomography, X-Ray Computed
- Ventricular Dysfunction, Left/blood
- Ventricular Dysfunction, Left/diagnostic imaging
- Ventricular Dysfunction, Left/etiology
- Ventricular Dysfunction, Left/physiopathology
Collapse
Affiliation(s)
- Cho-Kai Wu
- Department of Internal Medicine, National Taiwan University College of Medicine and Hospital Yun-Lin Branch, Yun-Lin, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Whaley-Connell A, Habibi J, Nistala R, Hayden MR, Pulakat L, Sinak C, Locher B, Ferrario CM, Sowers JR. Combination of direct renin inhibition with angiotensin type 1 receptor blockade improves aldosterone but does not improve kidney injury in the transgenic Ren2 rat. ACTA ACUST UNITED AC 2012; 176:36-44. [PMID: 22465166 DOI: 10.1016/j.regpep.2012.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/01/2012] [Accepted: 03/20/2012] [Indexed: 01/09/2023]
Abstract
Enhanced renin-angiotensin-aldosterone system (RAAS) activation contributes to proteinuria and chronic kidney disease by increasing glomerular and tubulointerstitial oxidative stress, promotion of fibrosis. Renin activation is the rate limiting step in angiotensin (Ang II) and aldosterone generation, and recent work suggests direct renin inhibition improves proteinuria comparable to that seen with Ang type 1 receptor (AT(1)R) blockade. This is important as, even with contemporary use of AT(1)R blockade, the burden of kidney disease remains high. Thereby, we sought to determine if combination of direct renin inhibition with AT(1)R blockade in vivo, via greater attenuation of kidney oxidative stress, would attenuate glomerular and proximal tubule injury to a greater extent than either intervention alone. We utilized the transgenic Ren2 rat with increased tissue RAS activity and higher serum levels of aldosterone, which manifests hypertension and proteinuria. Ren2 rats were treated with renin inhibition (aliskiren), AT(1)R blockade (valsartan), the combination (aliskiren+valsartan), or vehicle for 21days. Compared to Sprague-Dawley controls, Ren2 rats displayed increased systolic pressure (SBP), circulating aldosterone, proteinuria and greater urine levels of the proximal tubule protein excretory marker beta-N-acetylglucosaminidase (β-NAG). These functional and biochemical alterations were accompanied by increases in kidney tissue NADPH oxidase subunit Rac1 and 3-nitrotyrosine (3-NT) content as well as fibronectin and collagen type III. These findings occurred in conjunction with reductions in the podocyte-specific protein podocin as well as the proximal tubule-specific megalin. Further, in transgenic animals there was increased tubulointerstitial fibrosis on light microscopy as well as ultrastructural findings of glomerular podocyte foot-process effacement and reduced tubular apical endosomal/lysosomal activity. Combination therapy led to greater reductions in SBP and serum aldosterone, but did not result in greater improvement in markers of glomerular and tubular injury (i.e. β-NAG) compared to either intervention alone. Further, combination therapy did not improve markers of oxidative stress and podocyte and proximal tubule integrity in this transgenic model of RAAS-mediated kidney damage despite greater reductions in serum aldosterone and BP levels.
Collapse
Affiliation(s)
- Adam Whaley-Connell
- Harry S. Truman VA Medical Center, University of Missouri-Columbia School of Medicine, Columbia, MO 65211, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ma L, Gul R, Habibi J, Yang M, Pulakat L, Whaley-Connell A, Ferrario CM, Sowers JR. Nebivolol improves diastolic dysfunction and myocardial remodeling through reductions in oxidative stress in the transgenic (mRen2) rat. Am J Physiol Heart Circ Physiol 2012; 302:H2341-51. [PMID: 22447938 DOI: 10.1152/ajpheart.01126.2011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Angiotensin II contributes to myocardial tissue remodeling and interstitial fibrosis through NADPH oxidase-mediated generation of oxidative stress in the progression of heart failure. Recent data have suggested that nebivolol, a third-generation β-blocker, improves diastolic dysfunction by targeting nitric oxide (NO) and metabolic pathways that decrease interstitial fibrosis. We sought to determine if targeting NO would improve diastolic function in a model of tissue renin-angiotensin system overactivation. We used the transgenic (TG) (mRen2)27 rat, which overexpresses the murine renin transgene and manifests insulin resistance and left ventricular dysfunction. We treated 6- to 7-wk-old TG (mRen2)27 rats and age-matched Sprague-Dawley control rats with nebivolol (10 mg·kg(-1)·day(-1)) or placebo via osmotic minipumps for a period of 21 days. Compared with Sprague-Dawley control rats, TG (mRen2)27 rats displayed a prolonged diastolic relaxation time and reduced initial filling rate associated with increased interstitial fibrosis and left ventricular hypertrophy. These findings were temporally related to increased NADPH oxidase activity and subunits p47(phox) and Rac1 and increased total ROS and peroxynitrite formation in parallel with reductions in the antioxidant heme oxygenase as well as the phosphorylation/activation of endothelial NO synthase and PKB/Akt. Treatment with nebivolol restored diastolic function and interstitial fibrosis through increases in the phosphorylation of 5'-AMP-activated protein kinase, Akt, and endothelial NO synthase and reductions in oxidant stress. These results support that targeting NO with nebivolol treatment improves diastolic dysfunction through reducing myocardial oxidative stress by enhancing 5'-AMP-activated protein kinase and Akt activation of NO biosynthesis.
Collapse
Affiliation(s)
- Lixin Ma
- Department of Radiology, University of Missouri School of Medicine, Columbia, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
DeMarco VG, Johnson MS, Ma L, Pulakat L, Mugerfeld I, Hayden MR, Garro M, Knight W, Britton SL, Koch LG, Sowers JR. Overweight female rats selectively breed for low aerobic capacity exhibit increased myocardial fibrosis and diastolic dysfunction. Am J Physiol Heart Circ Physiol 2012; 302:H1667-82. [PMID: 22345570 DOI: 10.1152/ajpheart.01027.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The statistical association between endurance exercise capacity and cardiovascular disease suggests that impaired aerobic metabolism underlies the cardiovascular disease risk in men and women. To explore this connection, we applied divergent artificial selection in rats to develop low-capacity runner (LCR) and high-capacity runner (HCR) rats and found that disease risks segregated strongly with low running capacity. Here, we tested if inborn low aerobic capacity promotes differential sex-related cardiovascular effects. Compared with HCR males (HCR-M), LCR males (LCR-M) were overweight by 34% and had heavier retroperitoneal, epididymal, and omental fat pads; LCR females (LCR-F) were 20% heavier than HCR females (HCR-F), and their retroperitoneal, but not perireproductive or omental, fat pads were heavier as well. Unlike HCR-M, blood pressure was elevated in LCR-M, and this was accompanied by left ventricular (LV) hypertrophy. Like HCR-F, LCR-F exhibited normal blood pressure and LV weight as well as increased spontaneous cage activity compared with males. Despite normal blood pressures, LCR-F exhibited increased myocardial interstitial fibrosis and diastolic dysfunction, as indicated by increased LV stiffness, a decrease in the initial filling rate, and an increase in diastolic relaxation time. Although females exhibited increased arterial stiffness, ejection fraction was normal. Increased interstitial fibrosis and diastolic dysfunction in LCR-F was accompanied by the lowest protein levels of phosphorylated AMP-actived protein kinase [phospho-AMPK (Thr(172))] and silent information regulator 1. Thus, the combination of risk factors, including female sex, intrinsic low aerobic capacity, and overweightness, promote myocardial stiffness/fibrosis sufficient to induce diastolic dysfunction in the absence of hypertension and LV hypertrophy.
Collapse
Affiliation(s)
- Vincent G DeMarco
- Diabetes and Cardiovascular Center, University of Missouri, Columbia, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hayden MR, Habibi J, Joginpally T, Karuparthi PR, Sowers JR. Ultrastructure Study of Transgenic Ren2 Rat Aorta - Part 1: Endothelium and Intima. Cardiorenal Med 2012; 2:66-82. [PMID: 22493605 PMCID: PMC3318941 DOI: 10.1159/000335565] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 12/05/2011] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND: The renin-angiotensin-aldosterone system plays an important role in the development and progression of hypertension and accelerated atherosclerosis (atheroscleropathy) associated with the cardiorenal metabolic syndrome and type 2 diabetes mellitus. Additionally, the renin-angiotensin-aldosterone system plays an important role in vascular-endothelial-intimal cellular and extracellular remodeling. METHODS: Thoracic aortas of young male transgenic heterozygous (mRen2)27 (Ren2) rats were utilized for this ultrastructural study. This lean model of hypertension, insulin resistance and oxidative stress harbors the mouse renin gene with increased local tissue (aortic) levels of angiotensin II and angiotensin type 1 receptors and elevated plasma aldosterone levels. RESULTS: The ultrastructural observations included marked endothelial cell retraction, separation, terminal nuclear lifting, adjacent duplication, apoptosis and a suggestion of endothelial progenitor cell attachment. The endothelium demonstrated increased caveolae, microparticles, depletion of Weibel-Palade bodies, loss of cell-cell and basal adhesion hemidesmosome-like structures, platelet adhesion and genesis of subendothelial neointima. CONCLUSION: These observational ultrastructural studies of the transgenic Ren2 vasculature provide an in-depth evaluation of early abnormal remodeling changes within conduit-elastic arteries under conditions of increased local levels of angiotensin II, oxidative stress, insulin resistance and hypertension.
Collapse
Affiliation(s)
- Melvin R. Hayden
- Department of Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
- Department of Endocrinology Diabetes and Metabolism, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
- Diabetes and Cardiovascular Disease Center, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
| | - Javad Habibi
- Department of Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
- Department of Endocrinology Diabetes and Metabolism, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
- Diabetes and Cardiovascular Disease Center, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
- Harry S. Truman VA Medical Center, Columbia, Mo., USA
| | - Tejaswini Joginpally
- Diabetes and Cardiovascular Disease Center, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
| | - Poorna R. Karuparthi
- Department of Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
- Department of Cardiovascular Disease, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
| | - James R. Sowers
- Department of Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
- Department of Endocrinology Diabetes and Metabolism, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
- Department of Medical Physiology and Pharmacology, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
- Diabetes and Cardiovascular Disease Center, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
- Harry S. Truman VA Medical Center, Columbia, Mo., USA
| |
Collapse
|
41
|
Kim JA, Jang HJ, Martinez-Lemus LA, Sowers JR. Activation of mTOR/p70S6 kinase by ANG II inhibits insulin-stimulated endothelial nitric oxide synthase and vasodilation. Am J Physiol Endocrinol Metab 2012; 302:E201-8. [PMID: 22028412 PMCID: PMC3340897 DOI: 10.1152/ajpendo.00497.2011] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Elevated tissue levels of angiotensin II (ANG II) are associated with impairment of insulin actions in metabolic and cardiovascular tissues. ANG II-stimulated activation of mammalian target of rapamycin (mTOR)/p70 S6 kinase (p70S6K) in cardiovascular tissues is implicated in cardiac hypertrophy and vascular remodeling. However, the role of ANG II-stimulated mTOR/p70S6K in vascular endothelium is poorly understood. In the present study, we observed that ANG II stimulated p70S6K in bovine aortic endothelial cells. ANG II increased phosphorylation of insulin receptor substrate-1 (IRS-1) at Ser(636/639) and inhibited the insulin-stimulated phosphorylation of endothelial nitric oxide synthase (eNOS). An inhibitor of mTOR, rapamycin, attenuated the ANG II-stimulated phosphorylation of p70S6K and phosphorylation of IRS-1 (Ser(636/639)) and blocked the ability of ANG II to impair insulin-stimulated phosphorylation of eNOS, nitric oxide production, and mesenteric-arteriole vasodilation. Moreover, point mutations of IRS-1 at Ser(636/639) to Ala prevented the ANG II-mediated inhibition of insulin signaling. From these results, we conclude that activation of mTOR/p70S6K by ANG II in vascular endothelium may contribute to impairment of insulin-stimulated vasodilation through phosphorylation of IRS-1 at Ser(636/639). This ANG II-mediated impairment of vascular actions of insulin may help explain the role of ANG II as a link between insulin resistance and hypertension.
Collapse
Affiliation(s)
- Jeong-A Kim
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Universityof Alabama at Birmingham Comprehensive Diabetes Center, AL 35294, USA.
| | | | | | | |
Collapse
|
42
|
Role of angiotensin-converting enzyme 2 in cardiac hypertrophy induced by nitric oxide synthase inhibition. J Hypertens 2011; 29:2236-45. [DOI: 10.1097/hjh.0b013e32834bbb4d] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
43
|
Lu J, Mitra S, Wang X, Khaidakov M, Mehta JL. Oxidative stress and lectin-like ox-LDL-receptor LOX-1 in atherogenesis and tumorigenesis. Antioxid Redox Signal 2011; 15:2301-33. [PMID: 21338316 DOI: 10.1089/ars.2010.3792] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) has been identified as a major receptor for oxidized low-density lipoprotein (ox-LDL) in endothelial cells, monocytes, platelets, cardiomyocytes, and vascular smooth muscle cells. Its expression is minimal under physiological conditions but can be induced under pathological conditions. The upregulation of LOX-1 by ox-LDL appears to be important for physiologic processes, such as endothelial cell proliferation, apoptosis, and endothelium remodeling. Pathophysiologic effects of ox-LDL in atherogenesis have also been firmly established, including endothelial cell dysfunction, smooth muscle cell growth and migration, monocyte transformation into macrophages, and finally platelet aggregation-seen in atherogenesis. Recent studies show a positive correlation between increased serum ox-LDL levels and an increased risk of colon, breast, and ovarian cancer. As in atherosclerosis, ox-LDL and its receptor LOX-1 activate the inflammatory pathway through nuclear factor-kappa B, leading to cell transformation. LOX-1 is important for maintaining the transformed state in developmentally diverse cancer cell lines and for tumor growth, suggesting a molecular connection between atherogenesis and tumorigenesis.
Collapse
Affiliation(s)
- Jingjun Lu
- Cardiovascular Division, VA Medical Center, University of Arkansas for Medical Sciences, Little Rock, AR 72212, USA
| | | | | | | | | |
Collapse
|
44
|
Johnson MS, DeMarco VG, Heesch CM, Whaley-Connell AT, Schneider RI, Rehmer NT, Tilmon RD, Ferrario CM, Sowers JR. Sex differences in baroreflex sensitivity, heart rate variability, and end organ damage in the TGR(mRen2)27 rat. Am J Physiol Heart Circ Physiol 2011; 301:H1540-50. [PMID: 21821781 DOI: 10.1152/ajpheart.00593.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this investigation was to evaluate sex differences in baroreflex and heart rate variability (HRV) dysfunction and indexes of end-organ damage in the TG(mRen2)27 (Ren2) rat, a model of renin overexpression and tissue renin-angiotensin-aldosterone system overactivation. Blood pressure (via telemetric monitoring), blood pressure variability [BPV; SD of systolic blood pressure (SBP)], spontaneous baroreflex sensitivity, HRV [HRV Triangular Index (HRV-TI), standard deviation of the average NN interval (SDNN), low and high frequency power (LF and HF, respectively), and Poincaré plot analysis (SD1, SD2)], and cardiovascular function (pressure-volume loop analysis and proteinuria) were evaluated in male and female 10-wk-old Ren2 and Sprague Dawley rats. The severity of hypertension was greater in Ren2 males (R2-M) than in Ren2 females (R2-F). Increased BPV, suppression of baroreflex gain, decreased HRV, and associated end-organ damage manifested as cardiac dysfunction, myocardial remodeling, elevated proteinuria, and tissue oxidative stress were more pronounced in R2-M compared with R2-F. During the dark cycle, HRV-TI and SDNN were negatively correlated with SBP within R2-M and positively correlated within R2-F; within R2-M, these indexes were also negatively correlated with end-organ damage [left ventricular hypertrophy (LVH)]. Furthermore, within R2-M only, LVH was strongly correlated with indexes of HRV representing predominantly vagal (HF, SD1), but not sympathetic (LF, SD2), variability. These data demonstrated relative protection in females from autonomic dysfunction and end-organ damage associated with elevated blood pressure in the Ren2 model of hypertension.
Collapse
Affiliation(s)
- Megan S Johnson
- Department of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sukumaran V, Watanabe K, Veeraveedu PT, Gurusamy N, Ma M, Thandavarayan RA, Lakshmanan AP, Yamaguchi K, Suzuki K, Kodama M. Olmesartan, an AT1 antagonist, attenuates oxidative stress, endoplasmic reticulum stress and cardiac inflammatory mediators in rats with heart failure induced by experimental autoimmune myocarditis. Int J Biol Sci 2011; 7:154-67. [PMID: 21383952 PMCID: PMC3048845 DOI: 10.7150/ijbs.7.154] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 02/07/2011] [Indexed: 02/07/2023] Open
Abstract
Studies have demonstrated that angiotensin II has been involved in immune and inflammatory responses which might contribute to the pathogenesis of immune-mediated diseases. Recent evidence suggests that oxidative stress may play a role in myocarditis. Here, we investigated whether olmesartan, an AT(1)R antagonist protects against experimental autoimmune myocarditis (EAM) by suppression of oxidative stress, endoplasmic reticulum (ER) stress and inflammatory cytokines. EAM was induced in Lewis rats by immunization with porcine cardiac myosin, were divided into two groups and treated with either olmesartan (10 mg/kg/day) or vehicle for a period of 21 days. Myocardial functional parameters measured by hemodynamic and echocardiographic analyses were significantly improved by the treatment with olmesartan compared with those of vehicle-treated rats. Treatment with olmesartan attenuated the myocardial mRNA expressions of proinflammatory cytokines, [Interleukin (IL)-1β, monocyte chemoattractant protein-1, tumor necrosis factor-α and interferon-γ)] and the protein expression of tumor necrosis factor-α compared with that of vehicle-treated rats. Myocardial protein expressions of AT(1)R, NADPH oxidase subunits (p47phox, p67phox, gp91phox) and the expression of markers of oxidative stress (3-nitrotyrosine and 4-hydroxy-2-nonenal), and the cardiac apoptosis were also significantly decreased by the treatment with olmesartan compared with those of vehicle-treated rats. Furthermore, olmesartan treatment down-regulated the myocardial expressions of glucose regulated protein-78, growth arrest and DNA damage-inducible gene, caspase-12, phospho-p38 mitogen-activated protein kinase (MAPK) and phospho-JNK. These findings suggest that olmesartan protects against EAM in rats, at least in part via suppression of oxidative stress, ER stress and inflammatory cytokines.
Collapse
Affiliation(s)
- Vijayakumar Sukumaran
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Whaley-Connell A, Purkayastha D, Yadao A, Sowers JR. Central Pressure and Biomarker Responses to Renin Inhibition with Hydrochlorothiazide and Ramipril in Obese Hypertensives: The ATTAIN Study. Cardiorenal Med 2011; 1:53-66. [PMID: 22258466 DOI: 10.1159/000322864] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/04/2010] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND/AIMS In obese, hypertensive subjects, the renin-angiotensin system (RAS) is enhanced and natriuresis impaired, suggesting a role for combination RAS blockade with diuretics. Data suggest that renin inhibition may attenuate diuretic-induced RAS activation and oxidative stress. METHODS In this 8-week, double-blind study of 386 obese individuals (mean body mass index: 35.3) with stage 2 hypertension (mean age: 54.9 years; mean sitting systolic blood pressure, SBP: ≧160 but <200 mm Hg), we compared the efficacy of aliskiren + hydrochlorothiazide (HCTZ) in reducing blood pressure (BP), plasma renin activity (PRA), and a urinary marker of oxidative stress to ramipril. Subjects were randomized to aliskiren/HCTZ 150/12.5 mg or ramipril 5 mg for 1 week, and after the 1st week force titrated to aliskiren/HCTZ 300/25 mg or ramipril 10 mg for 7 weeks. RESULTS After 8 weeks, aliskiren/HCTZ provided greater reductions in office BP than ramipril (-28.1/-10.1 vs. -16.6/-3.6 mm Hg, p < 0.0001) as well as 24-hour ambulatory and central pressure measures. Aliskiren/HCTZ also lowered PRA (-45 vs. +83%) and the urinary F2-isoprostane/creatinine ratio (-18 vs. +7%) to a greater extent than ramipril. Adverse events (AEs) were similar in the two groups (35.8% with aliskiren/HCTZ vs. 37.3% on ramipril reporting at least one AE). CONCLUSIONS Our findings suggest that the aliskiren/HCTZ combination reduced BP, PRA, and isoprostanes to a greater extent than did ramipril in obese patients with stage 2 hypertension.
Collapse
|
47
|
Sowers JR, Whaley-Connell A, Hayden MR. The Role of Overweight and Obesity in the Cardiorenal Syndrome. Cardiorenal Med 2011; 1:5-12. [PMID: 22258461 DOI: 10.1159/000322822] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The presence of a group of interactive maladaptive factors including hypertension, insulin resistance, metabolic dyslipidemia, obesity, microalbuminuria, and/or reduced renal function constitute the cardiorenal metabolic syndrome (CRS). Overweight, obesity, and chronic kidney disease (CKD) have grown to pandemic proportions in industrialized countries during the past decade. The fact that these interactive factors promote heart and renal disease has been documented in large population-based studies. Obesity seems to be the driving force behind the development of heart disease and CKD and therefore the CRS. The relationship between overweight/obesity and kidney disease begins in early childhood and appears to be related to overconsumption of high-fructose corn syrup and insufficient physical activity. Today, 13 million children are obese, and over 70% of these children are likely to become obese adults. Indeed, approximately 30% of male and 34% of female adults in the United States are obese. This lifestyle-related epidemic will be a major societal medical and economic problem that will accentuate the current epidemic of CKD in the United States and other industrialized and emerging industrialized countries. In this article, we will review the potential mechanisms by which obesity and other metabolic abnormalities interact to promote heart and progressive kidney disease.
Collapse
|
48
|
Habibi J, DeMarco VG, Ma L, Pulakat L, Rainey WE, Whaley-Connell AT, Sowers JR. Mineralocorticoid receptor blockade improves diastolic function independent of blood pressure reduction in a transgenic model of RAAS overexpression. Am J Physiol Heart Circ Physiol 2011; 300:H1484-91. [PMID: 21239636 DOI: 10.1152/ajpheart.01000.2010] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is emerging evidence that aldosterone can promote diastolic dysfunction and cardiac fibrosis independent of blood pressure effects, perhaps through increased oxidative stress and inflammation. Accordingly, this investigation was designed to ascertain if mineralocorticoid receptor blockade improves diastolic dysfunction independently of changes in blood pressure through actions on myocardial oxidative stress and fibrosis. We used young transgenic (mRen2)27 [TG(mRen2)27] rats with increases in both tissue ANG II and circulating aldosterone, which manifests age-related increases in hypertension and cardiac dysfunction. Male TG(mRen2)27 and age-matched Sprague-Dawley rats were treated with either a low dose (∼1 mg·kg(-1)·day(-1)) or a vasodilatory, conventional dose (∼30 mg·kg(-1)·day(-1)) of spironolactone or placebo for 3 wk. TG(mRen2)27 rats displayed increases in systolic blood pressure and plasma aldosterone levels as well as impairments in left ventricular diastolic relaxation without changes in systolic function on cine MRI. TG(mRen2)27 hearts also displayed hypertrophy (left ventricular weight, cardiomyoctye hypertrophy, and septal wall thickness) as well as fibrosis (interstitial and perivascular). There were increases in oxidative stress in TG(mRen2)27 hearts, as evidenced by increases in NADPH oxidase activity and subunits as well as ROS formation. Low-dose spironolactone had no effect on systolic blood pressure but improved diastolic dysfunction comparable to a conventional dose. Both doses of spironolactone caused comparable reductions in ROS/3-nitrotryosine immunostaining and perivascular and interstitial fibrosis. These data support the notion mineralocorticoid receptor blockade improves diastolic dysfunction through improvements in oxidative stress and fibrosis independent of changes in systolic blood pressure.
Collapse
Affiliation(s)
- Javad Habibi
- Department of Internal Medicine, University of Missouri, Columbia, 65212, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Novel aspects of angiotensin II action in the heart. Implications to myocardial ischemia and heart failure. ACTA ACUST UNITED AC 2011; 166:9-14. [DOI: 10.1016/j.regpep.2010.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 08/18/2010] [Accepted: 10/04/2010] [Indexed: 02/01/2023]
|
50
|
DeMarco VG, Johnson MS, Habibi J, Pulakat L, Gul R, Hayden MR, Tilmon RD, Dellsperger KC, Winer N, Whaley-Connell AT, Sowers JR. Comparative analysis of telmisartan and olmesartan on cardiac function in the transgenic (mRen2)27 rat. Am J Physiol Heart Circ Physiol 2010; 300:H181-90. [PMID: 21057043 DOI: 10.1152/ajpheart.00883.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Telmisartan, an angiotensin receptor blocker, may have unique benefits as it possesses partial peroxisome proliferator-activated receptor (PPAR)-γ agonist activity in addition to antihypertensive effects. In this study, we test whether treatment with telmisartan ameliorates cardiovascular abnormalities to a greater extent than olmesartan, which has little PPAR-γ activity. The hypertensive rodent model of tissue renin-angiotensin system activation, transgenic (mRen2)27 (Ren2) rats and their littermate Sprague-Dawley controls were used. Rats were treated with telmisartan (2 mg · kg(-1) · day(-1)), olmesartan (2.5 mg · kg(-1) · day(-1)), or vehicle via drinking water for 3 wk; these doses achieved similar blood pressure control, as measured by telemetry. Ren2 rats displayed impaired diastolic and systolic function using left ventricular (LV) pressure-volume (P-V) analysis. Load-independent diastolic indexes, including the time constant of isovolumic relaxation and the slope of the end-diastolic P-V relationship, as well as systolic indexes, including preload recruitable stroke work, the dP/dt(max)-end-diastolic volume (EDV) relationship, and the P-V area-EDV relationship, were elevated in Ren2 rats compared with Sprague-Dawley controls (P < 0.05). The Ren2 myocardium exhibited parallel increases in the oxidant markers NADPH oxidase and 3-nitrotyrosine. The increase in the prohypertrophic protein Jak2 in Ren2 rats was associated with cardiac structural abnormalities using light microscopic and ultrastructural analysis, which included interstitial fibrosis, cardiomyocyte and LV hypertrophy, and mitochondrial derangements. Both angiotensin receptor blockers attenuate these abnormalities to a similar extent. Our data suggest that the beneficial effect of telmisartan and olmesartan on cardiac structure and function may be predominantly pressor-related or angiotensin type 1 receptor dependent in this model of renin-angiotensin system activation.
Collapse
Affiliation(s)
- Vincent G DeMarco
- Department of Internal Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|