1
|
Zhang J, Katada K, Mosleh E, Yuhas A, Peng G, Golson ML. The leptin receptor has no role in delta-cell control of beta-cell function in the mouse. Front Endocrinol (Lausanne) 2023; 14:1257671. [PMID: 37850099 PMCID: PMC10577419 DOI: 10.3389/fendo.2023.1257671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/05/2023] [Indexed: 10/19/2023] Open
Abstract
Introduction Leptin inhibits insulin secretion from isolated islets from multiple species, but the cell type that mediates this process remains elusive. Several mouse models have been used to explore this question. Ablation of the leptin receptor (Lepr) throughout the pancreatic epithelium results in altered glucose homeostasis and ex vivo insulin secretion and Ca2+ dynamics. However, Lepr removal from neither alpha nor beta cells mimics this result. Moreover, scRNAseq data has revealed an enrichment of LEPR in human islet delta cells. Methods We confirmed LEPR upregulation in human delta cells by performing RNAseq on fixed, sorted beta and delta cells. We then used a mouse model to test whether delta cells mediate the diminished glucose-stimulated insulin secretion in response to leptin. Results Ablation of Lepr within mouse delta cells did not change glucose homeostasis or insulin secretion, whether mice were fed a chow or high-fat diet. We further show, using a publicly available scRNAseq dataset, that islet cells expressing Lepr lie within endothelial cell clusters. Conclusions In mice, leptin does not influence beta-cell function through delta cells.
Collapse
Affiliation(s)
- Jia Zhang
- Department of Genetics, University of Pennsylvania, Philadephia, PA, United States
| | - Kay Katada
- School of Medicine, University of Pennsylvania, Philadephia, PA, United States
| | - Elham Mosleh
- Department of Genetics, University of Pennsylvania, Philadephia, PA, United States
- School of Medicine, University of Pennsylvania, Philadephia, PA, United States
| | - Andrew Yuhas
- Department of Genetics, University of Pennsylvania, Philadephia, PA, United States
- School of Medicine, University of Pennsylvania, Philadephia, PA, United States
| | - Guihong Peng
- Department of Medicine, Divison of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, MD, United States
| | - Maria L. Golson
- Department of Genetics, University of Pennsylvania, Philadephia, PA, United States
- School of Medicine, University of Pennsylvania, Philadephia, PA, United States
- Department of Medicine, Divison of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
2
|
Honzawa N, Fujimoto K, Kobayashi M, Kohno D, Kikuchi O, Yokota-Hashimoto H, Wada E, Ikeuchi Y, Tabei Y, Dorn GW, Utsunomiya K, Nishimura R, Kitamura T. Protein Kinase C (Pkc)-δ Mediates Arginine-Induced Glucagon Secretion in Pancreatic α-Cells. Int J Mol Sci 2022; 23:4003. [PMID: 35409362 PMCID: PMC8999522 DOI: 10.3390/ijms23074003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
The pathophysiology of type 2 diabetes involves insulin and glucagon. Protein kinase C (Pkc)-δ, a serine-threonine kinase, is ubiquitously expressed and involved in regulating cell death and proliferation. However, the role of Pkcδ in regulating glucagon secretion in pancreatic α-cells remains unclear. Therefore, this study aimed to elucidate the physiological role of Pkcδ in glucagon secretion from pancreatic α-cells. Glucagon secretions were investigated in Pkcδ-knockdown InR1G9 cells and pancreatic α-cell-specific Pkcδ-knockout (αPkcδKO) mice. Knockdown of Pkcδ in the glucagon-secreting cell line InR1G9 cells reduced glucagon secretion. The basic amino acid arginine enhances glucagon secretion via voltage-dependent calcium channels (VDCC). Furthermore, we showed that arginine increased Pkcδ phosphorylation at Thr505, which is critical for Pkcδ activation. Interestingly, the knockdown of Pkcδ in InR1G9 cells reduced arginine-induced glucagon secretion. Moreover, arginine-induced glucagon secretions were decreased in αPkcδKO mice and islets from αPkcδKO mice. Pkcδ is essential for arginine-induced glucagon secretion in pancreatic α-cells. Therefore, this study may contribute to the elucidation of the molecular mechanism of amino acid-induced glucagon secretion and the development of novel antidiabetic drugs targeting Pkcδ and glucagon.
Collapse
Affiliation(s)
- Norikiyo Honzawa
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato-ku, Tokyo 105-8461, Japan; (N.H.); (K.U.); (R.N.)
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan; (M.K.); (D.K.); (O.K.); (H.Y.-H.); (E.W.); (Y.I.); (Y.T.)
| | - Kei Fujimoto
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University Daisan Hospital, 4-11-1, Izumihoncho, Komae-shi, Tokyo 201-8601, Japan
| | - Masaki Kobayashi
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan; (M.K.); (D.K.); (O.K.); (H.Y.-H.); (E.W.); (Y.I.); (Y.T.)
| | - Daisuke Kohno
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan; (M.K.); (D.K.); (O.K.); (H.Y.-H.); (E.W.); (Y.I.); (Y.T.)
| | - Osamu Kikuchi
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan; (M.K.); (D.K.); (O.K.); (H.Y.-H.); (E.W.); (Y.I.); (Y.T.)
| | - Hiromi Yokota-Hashimoto
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan; (M.K.); (D.K.); (O.K.); (H.Y.-H.); (E.W.); (Y.I.); (Y.T.)
| | - Eri Wada
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan; (M.K.); (D.K.); (O.K.); (H.Y.-H.); (E.W.); (Y.I.); (Y.T.)
| | - Yuichi Ikeuchi
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan; (M.K.); (D.K.); (O.K.); (H.Y.-H.); (E.W.); (Y.I.); (Y.T.)
| | - Yoko Tabei
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan; (M.K.); (D.K.); (O.K.); (H.Y.-H.); (E.W.); (Y.I.); (Y.T.)
| | - Gerald W. Dorn
- Center for Pharmacogenomics, Division of Cardiology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Kazunori Utsunomiya
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato-ku, Tokyo 105-8461, Japan; (N.H.); (K.U.); (R.N.)
| | - Rimei Nishimura
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato-ku, Tokyo 105-8461, Japan; (N.H.); (K.U.); (R.N.)
| | - Tadahiro Kitamura
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan; (M.K.); (D.K.); (O.K.); (H.Y.-H.); (E.W.); (Y.I.); (Y.T.)
| |
Collapse
|
3
|
Pereira S, Cline DL, Glavas MM, Covey SD, Kieffer TJ. Tissue-Specific Effects of Leptin on Glucose and Lipid Metabolism. Endocr Rev 2021; 42:1-28. [PMID: 33150398 PMCID: PMC7846142 DOI: 10.1210/endrev/bnaa027] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Indexed: 12/18/2022]
Abstract
The discovery of leptin was intrinsically associated with its ability to regulate body weight. However, the effects of leptin are more far-reaching and include profound glucose-lowering and anti-lipogenic effects, independent of leptin's regulation of body weight. Regulation of glucose metabolism by leptin is mediated both centrally and via peripheral tissues and is influenced by the activation status of insulin signaling pathways. Ectopic fat accumulation is diminished by both central and peripheral leptin, an effect that is beneficial in obesity-associated disorders. The magnitude of leptin action depends upon the tissue, sex, and context being examined. Peripheral tissues that are of particular relevance include the endocrine pancreas, liver, skeletal muscle, adipose tissues, immune cells, and the cardiovascular system. As a result of its potent metabolic activity, leptin is used to control hyperglycemia in patients with lipodystrophy and is being explored as an adjunct to insulin in patients with type 1 diabetes. To fully understand the role of leptin in physiology and to maximize its therapeutic potential, the mechanisms of leptin action in these tissues needs to be further explored.
Collapse
Affiliation(s)
- Sandra Pereira
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Daemon L Cline
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Maria M Glavas
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Scott D Covey
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada.,Department of Surgery, University of British Columbia, Vancouver, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| |
Collapse
|
4
|
Chang YH, Katoh MC, Abdellatif AM, Xiafukaiti G, Elzeftawy A, Ojima M, Mizuno S, Kuno A, Takahashi S. Uncovering the role of MAFB in glucagon production and secretion in pancreatic α-cells using a new α-cell-specific Mafb conditional knockout mouse model. Exp Anim 2019; 69:178-188. [PMID: 31787710 PMCID: PMC7220711 DOI: 10.1538/expanim.19-0105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cre/loxP is a site-specific recombination system extensively used to enable the conditional deletion or activation of target genes in a spatial- and/or temporal-specific manner. A number of pancreatic-specific Cre driver mouse lines have been broadly established for studying the development, function and pathology of pancreatic cells. However, only a few models are currently available for glucagon-producing α-cells. Disagreement exists over the role of the MAFB transcription factor in glucagon expression during postnatal life, which might be due to the lack of α-cell-specific Cre driver mice. In the present study, we established a novel Gcg-Cre knock-in mouse line with the Cre transgene expressed under the control of the preproglucagon (Gcg) promoter without disrupting the endogenous Gcg gene expression. Then, we applied this newly developed Gcg-Cre mouse line to generate a new α-cell-specific Mafb conditional knockout mouse model (MafbΔGcg). Not only α-cell number but also glucagon production were significantly decreased in MafbΔGcg mice compared to control littermates, suggesting an indispensable role of MAFB in both α-cell development and function. Taken together, our newly developed Gcg-Cre mouse line, which was successfully utilized to uncover the role of MAFB in α-cells, is a useful tool for genetic manipulation in pancreatic α-cells, providing a new platform for future studies in this field.
Collapse
Affiliation(s)
- Yu-Hsin Chang
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Megumi C Katoh
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Ahmed M Abdellatif
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Mansoura University, 60 Elgomhoria st, Mansoura 35516, Egypt
| | - Guli Xiafukaiti
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,School of Comprehensive Human Sciences, Doctoral Program in Biomedical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Abdelaziz Elzeftawy
- Laboratory Animal Resource Center (LARC), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Masami Ojima
- Laboratory Animal Resource Center (LARC), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center (LARC), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Akihiro Kuno
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Laboratory Animal Resource Center (LARC), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
5
|
Pereira S, O'Dwyer SM, Webber TD, Baker RK, So V, Ellis CE, Yoon JS, Mojibian M, Glavas MM, Karunakaran S, Clee SM, Covey SD, Kieffer TJ. Metabolic effects of leptin receptor knockdown or reconstitution in adipose tissues. Sci Rep 2019; 9:3307. [PMID: 30824713 PMCID: PMC6397253 DOI: 10.1038/s41598-019-39498-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 12/31/2018] [Indexed: 01/26/2023] Open
Abstract
The relative contribution of peripheral and central leptin signalling to the regulation of metabolism and the mechanisms through which leptin affects glucose homeostasis have not been fully elucidated. We generated complementary lines of mice with either leptin receptor (Lepr) knockdown or reconstitution in adipose tissues using Cre-lox methodology. Lepr knockdown mice were modestly lighter and had lower plasma insulin concentrations following an oral glucose challenge compared to controls, despite similar insulin sensitivity. We rendered male mice diabetic using streptozotocin (STZ) and found that upon prolonged leptin therapy, Lepr knockdown mice had an accelerated decrease in blood glucose compared to controls that was associated with higher plasma concentrations of leptin and leptin receptor. Mice with transcriptional blockade of Lepr (LeprloxTB/loxTB) were obese and hyperglycemic and reconstitution of Lepr in adipose tissues of LeprloxTB/loxTB mice resulted in males reaching a higher maximal body weight. Although mice with adipose tissue Lepr reconstitution had lower blood glucose levels at several ages, their plasma insulin concentrations during an oral glucose test were elevated. Thus, attenuation or restoration of Lepr in adipocytes alters the plasma insulin profile following glucose ingestion, modifies the glucose-lowering effect of prolonged leptin therapy in insulin-deficient diabetes, and may modulate weight gain.
Collapse
Affiliation(s)
- Sandra Pereira
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Shannon M O'Dwyer
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Travis D Webber
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Robert K Baker
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Victor So
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Cara E Ellis
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ji Soo Yoon
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Majid Mojibian
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Maria M Glavas
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Subashini Karunakaran
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Susanne M Clee
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Scott D Covey
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada. .,Department of Surgery, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
6
|
Shiota C, Prasadan K, Guo P, Fusco J, Xiao X, Gittes GK. Gcg CreERT2 knockin mice as a tool for genetic manipulation in pancreatic alpha cells. Diabetologia 2017; 60:2399-2408. [PMID: 28884202 PMCID: PMC5671347 DOI: 10.1007/s00125-017-4425-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/19/2017] [Indexed: 01/05/2023]
Abstract
AIMS/HYPOTHESIS The Cre/loxP system, which enables tissue-specific manipulation of genes, is widely used in mice for diabetes research. Our aim was to develop a new Cre-driver mouse line for the specific and efficient manipulation of genes in pancreatic alpha cells. METHODS A Gcg CreERT2 knockin mouse, which expresses a tamoxifen-inducible form of Cre from the endogenous preproglucagon (Gcg) gene locus, was generated by homologous recombination. The new Gcg CreERT2 mouse line was crossed to the Rosa26 tdTomato (R26 tdTomato ) Cre reporter mouse line in order to evaluate the tissue specificity, efficiency and tamoxifen dependency of Gcg CreERT2 -mediated recombination. Cell types of pancreatic islets were identified using immunohistochemistry. Biochemical and physiological data, including blood glucose levels, plasma glucagon and glucagon-like peptide (GLP)-1 levels, and pancreatic glucagon content, were collected and used to assess the overall effect of Gcg gene targeting on Gcg CreERT2/w heterozygous mice. RESULTS Tamoxifen-treated Gcg CreERT2/w ;R26 tdTomato/w mice displayed Cre reporter activity, i.e. expression of tdTomato red fluorescent protein (RFP) in all known cells that produce proglucagon-derived peptides. In the adult pancreas, RFP was detected in 94-97% of alpha cells, whereas it was detected in a negligible (~ 0.2%) proportion of beta cells. While more than 98% of cells labelled with tamoxifen-induced RFP were glucagon-positive cells, 14-25% of pancreatic polypeptide (PP)-positive cells were also positive for RFP, indicating the presence of glucagon/PP bihormonal cell population. Tamoxifen-independent expression of RFP occurred in approximately 6% of alpha cells. In contrast to alpha cells and GLP-1-producing neurons, in which RFP expression persisted for at least 5 months after tamoxifen administration (presumably due to rare neogenesis in these cell types in adulthood), nearly half of RFP-positive intestinal L cells were replaced with RFP-negative L cells over the first 2 weeks after tamoxifen administration. Heterozygous Gcg CreERT2/w mice showed reduced Gcg mRNA levels in islets, but maintained normal levels of pancreatic and plasma glucagon. The mice did not exhibit any detectable baseline physiological abnormalities, at least in young adulthood. CONCLUSIONS/INTERPRETATION The newly developed Gcg CreERT2 knockin mouse shows faithful expression of CreERT2 in pancreatic alpha cells, intestinal L cells and GLP-1-producing neurons. This mouse line will be particularly useful for manipulating genes in alpha cells, due to highly specific and efficient CreERT2-mediated recombination in this cell type in the pancreas.
Collapse
Affiliation(s)
- Chiyo Shiota
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA, 15224, USA.
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA.
| | - Krishna Prasadan
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Ping Guo
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Joseph Fusco
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Xiangwei Xiao
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - George K Gittes
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
7
|
D'souza AM, Neumann UH, Glavas MM, Kieffer TJ. The glucoregulatory actions of leptin. Mol Metab 2017; 6:1052-1065. [PMID: 28951828 PMCID: PMC5605734 DOI: 10.1016/j.molmet.2017.04.011] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/18/2017] [Accepted: 04/24/2017] [Indexed: 12/28/2022] Open
Abstract
Background The hormone leptin is an important regulator of metabolic homeostasis, able to inhibit food intake and increase energy expenditure. Leptin can also independently lower blood glucose levels, particularly in hyperglycemic models of leptin or insulin deficiency. Despite significant efforts and relevance to diabetes, the mechanisms by which leptin acts to regulate blood glucose levels are not fully understood. Scope of review Here we assess literature relevant to the glucose lowering effects of leptin. Leptin receptors are widely expressed in multiple cell types, and we describe both peripheral and central effects of leptin that may be involved in lowering blood glucose. In addition, we summarize the potential clinical application of leptin in regulating glucose homeostasis. Major conclusions Leptin exerts a plethora of metabolic effects on various tissues including suppressing production of glucagon and corticosterone, increasing glucose uptake, and inhibiting hepatic glucose output. A more in-depth understanding of the mechanisms of the glucose-lowering actions of leptin may reveal new strategies to treat metabolic disorders.
Collapse
Affiliation(s)
- Anna M D'souza
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Ursula H Neumann
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Maria M Glavas
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada.,Department of Surgery, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
8
|
Ackermann AM, Zhang J, Heller A, Briker A, Kaestner KH. High-fidelity Glucagon-CreER mouse line generated by CRISPR-Cas9 assisted gene targeting. Mol Metab 2017; 6:236-244. [PMID: 28271030 PMCID: PMC5323890 DOI: 10.1016/j.molmet.2017.01.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 01/05/2017] [Accepted: 01/09/2017] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE α-cells are the second most prominent cell type in pancreatic islets and are responsible for producing glucagon to increase plasma glucose levels in times of fasting. α-cell dysfunction and inappropriate glucagon secretion occur in both type 1 and type 2 diabetes. Thus, there is growing interest in studying both normal function and pathophysiology of α-cells. However, tools to target gene ablation or activation specifically of α-cells have been limited, compared to those available for β-cells. Previous Glucagon-Cre and Glucagon-CreER transgenic mouse lines have suffered from transgene silencing, and the only available Glucagon-CreER "knock-in" mouse line results in glucagon haploinsufficiency, which can confound the interpretation of gene deletion analyses. Therefore, we sought to develop a Glucagon-CreERT2 mouse line that would maintain normal glucagon expression and would be less susceptible to transgene silencing. METHODS We utilized CRISPR-Cas9 technology to insert an IRES-CreERT2 sequence into the 3' UTR of the Glucagon (Gcg) locus in mouse embryonic stem cells (ESCs). Targeted ESC clones were then injected into mouse blastocysts to obtain Gcg-CreERT2 mice. Recombination efficiency in GCG+ pancreatic α-cells and glucagon-like peptide 1 positive (GLP1+) enteroendocrine L-cells was measured in Gcg-CreERT2 ;Rosa26-LSL-YFP mice injected with tamoxifen during fetal development and adulthood. RESULTS Tamoxifen injection of Gcg-CreERT2 ;Rosa26-LSL-YFP mice induced high recombination efficiency of the Rosa26-LSL-YFP locus in perinatal and adult α-cells (88% and 95%, respectively), as well as in first-wave fetal α-cells (36%) and adult enteroendocrine L-cells (33%). Mice homozygous for the Gcg-CreERT2 allele were phenotypically normal. CONCLUSIONS We successfully derived a Gcg-CreERT2 mouse line that expresses CreERT2 in pancreatic α-cells and enteroendocrine L-cells without disrupting preproglucagon gene expression. These mice will be a useful tool for performing temporally controlled genetic manipulation specifically in these cell types.
Collapse
Key Words
- CRISPR
- CRISPR, clustered regularly interspaced short palindromic repeat
- Cre, Cre recombinase
- CreERT2, tamoxifen-inducible Cre recombinase-estrogen receptor fusion protein
- DAPI, 4′,6-diamidino-2-phenylindole
- ESC, embryonic stem cell
- Enteroendocrine L-cell
- FACS, fluorescence-activated cell sorting
- GCG, glucagon
- GLP1
- GLP1, glucagon-like peptide 1
- Glucagon
- IRES, internal ribosomal entry site
- Islet
- LSL, loxP-stop-loxP
- UTR, untranslated region
- YFP, yellow fluorescent protein
- gRNA, guide RNA
- α-cell
Collapse
Affiliation(s)
- Amanda M Ackermann
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA; Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| | - Jia Zhang
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA; Department of Genetics, Perelman School of Medicine, The University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| | - Aryel Heller
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA; Department of Genetics, Perelman School of Medicine, The University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| | - Anna Briker
- Department of Genetics, Perelman School of Medicine, The University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| | - Klaus H Kaestner
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA; Department of Genetics, Perelman School of Medicine, The University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| |
Collapse
|
9
|
Xu Y, Tong Q. Central leptin action on euglycemia restoration in type 1 diabetes: Restraining responses normally induced by fasting? Int J Biochem Cell Biol 2016; 88:198-203. [PMID: 27702650 DOI: 10.1016/j.biocel.2016.09.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/27/2016] [Accepted: 09/30/2016] [Indexed: 01/29/2023]
Abstract
Leptin monotherapy is sufficient to restore euglycemia in insulinopenic type 1 diabetes (T1D), yet the underlying mechanism remains poorly understood. Accumulating evidence demonstrates that the brain mediates the leptin action on euglycemia restoration. Here, we first review evidence supporting that symptoms in T1D resemble an uncontrolled response to fasting. Then, we discuss recent research progress on brain neurons and their neurotransmitters that potentially mediate the leptin action. Finally, peripheral effective pathways, which are normally involved in fasting responses and associated with leptin action on euglycemia restoration in T1D, will also be discussed. This summary complements several previous excellent reviews on this topic (Meek and Morton, 2016; Perry et al., 2016; Fujikawa and Coppari, 2015). A deep understanding of neurocircuitry and the peripheral effective pathways that mediate the leptin action on euglycemia restoration will likely lead to novel targets for an insulin-independent therapeutics against T1D.
Collapse
Affiliation(s)
- Yuanzhong Xu
- Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, The University of Texas Health Science Center at Houston, United States
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, The University of Texas Health Science Center at Houston, United States.
| |
Collapse
|
10
|
Denroche HC, Kwon MM, Glavas MM, Tudurí E, Philippe M, Quong WL, Kieffer TJ. The role of autonomic efferents and uncoupling protein 1 in the glucose-lowering effect of leptin therapy. Mol Metab 2016; 5:716-724. [PMID: 27656409 PMCID: PMC5021671 DOI: 10.1016/j.molmet.2016.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 06/19/2016] [Indexed: 01/06/2023] Open
Abstract
Objective Leptin reverses hyperglycemia in rodent models of type 1 diabetes (T1D). Direct application of leptin to the brain can lower blood glucose in diabetic rodents, and can activate autonomic efferents and non-shivering thermogenesis in brown adipose tissue (BAT). We investigated whether leptin reverses hyperglycemia through a mechanism that requires autonomic innervation, or uncoupling protein 1 (UCP1)-mediated thermogenesis. Methods To examine the role of parasympathetic and sympathetic efferents in the glucose-lowering action of leptin, mice with a subdiaphragmatic vagotomy or 6-hydroxydopamine induced chemical sympathectomy were injected with streptozotocin (STZ) to induce hyperglycemia, and subsequently leptin treated. To test whether the glucose-lowering action of leptin requires activation of UCP1-mediated thermogenesis in BAT, we administered leptin in STZ-diabetic Ucp1 knockout (Ucp1−/−) mice and wildtype controls. Results Leptin ameliorated STZ-induced hyperglycemia in both intact and vagotomised mice. Similarly, mice with a partial chemical sympathectomy did not have an attenuated response to leptin-mediated glucose lowering relative to sham controls, and showed intact leptin-induced Ucp1 expression in BAT. Although leptin activated BAT thermogenesis in STZ-diabetic mice, the anti-diabetic effect of leptin was not blunted in Ucp1−/− mice. Conclusions These results suggest that leptin lowers blood glucose in insulin-deficient diabetes through a manner that does not require parasympathetic or sympathetic innervation, and thus imply that leptin lowers blood glucose through an alternative CNS-mediated mechanism or redundant target tissues. Furthermore, we conclude that the glucose lowering action of leptin is independent of UCP1-dependent thermogenesis. Leptin does not require vagal innervation to reverse hyperglycemia. Leptin therapy reverses hyperglycemia in mice with a partial chemical sympathectomy. Leptin reverses hyperglycemia independent of uncoupling protein 1.
Collapse
Key Words
- 6OHDA, 6-hydroxydopamine
- ANS, autonomic nervous system
- BAT, brown adipose tissue
- Brown adipose tissue
- CCK, cholecystokinin
- CNS, central nervous system
- Glucose
- STZ, streptozotocin
- Streptozotocin
- Sympathectomy
- T1D, type 1 diabetes
- TH, tyrosine hydroxylase
- Type 1 diabetes
- UCP1, uncoupling protein 1
- Vagotomy
- iBAT, interscapular BAT
Collapse
Affiliation(s)
- Heather C Denroche
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michelle M Kwon
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Maria M Glavas
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eva Tudurí
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marion Philippe
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Whitney L Quong
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada; Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
11
|
Tudurí E, Beiroa D, Porteiro B, López M, Diéguez C, Nogueiras R. Acute but not chronic activation of brain glucagon-like peptide-1 receptors enhances glucose-stimulated insulin secretion in mice. Diabetes Obes Metab 2015; 17:789-99. [PMID: 25962313 DOI: 10.1111/dom.12488] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/24/2015] [Accepted: 05/03/2015] [Indexed: 01/15/2023]
Abstract
AIM To investigate the role of brain glucagon-like peptide-1 (GLP-1) in pancreatic β-cell function. METHODS To determine the role of brain GLP-1 receptor (GLP-1R) on β-cell function, we administered intracerebroventricular (i.c.v.) infusions of GLP-1 or the specific GLP-1 antagonist exendin-9 (Ex-9), in both an acute and a chronic setting. RESULTS We observed that acute i.c.v. GLP-1 infusion potentiates glucose-stimulated insulin secretion (GSIS) and improves glucose tolerance, whereas central GLP-1R blockade with Ex-9 impaired glucose excursion after a glucose load. Sustained activation of central nervous system GLP-1R, however, did not produce any effect on either GSIS or glucose tolerance. Similarly, ex vivo GSIS performed in islets from mice chronically infused with i.c.v. GLP-1 resulted in no differences compared with controls. In addition, in mice fed a high-fat diet we observed that acute i.c.v. GLP-1 infusion improved glucose tolerance without changes in GSIS, while chronic GLP-1R activation had no effect on glucose homeostasis. CONCLUSIONS Our results indicate that, under non-clamped conditions, brain GLP-1 plays a functional neuroendocrine role in the acute regulation of glucose homeostasis in both lean and obese rodents.
Collapse
Affiliation(s)
- E Tudurí
- Instituto de Investigaciones Sanitarias, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - D Beiroa
- Instituto de Investigaciones Sanitarias, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - B Porteiro
- Instituto de Investigaciones Sanitarias, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - M López
- Instituto de Investigaciones Sanitarias, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - C Diéguez
- Instituto de Investigaciones Sanitarias, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - R Nogueiras
- Instituto de Investigaciones Sanitarias, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Autoimmune destruction of the β cells is considered the key abnormality in type 1 diabetes mellitus and insulin replacement the primary therapeutic strategy. However, a lack of insulin is accompanied by disturbances in glucagon release, which is excessive postprandially, but insufficient during hypoglycaemia. In addition, replacing insulin alone appears insufficient for adequate glucose control. This review focuses on the growing body of evidence that glucagon abnormalities contribute significantly to the pathophysiology of diabetes and on recent efforts to target the glucagon axis as adjunctive therapy to insulin replacement. RECENT FINDINGS This review discusses recent (since 2013) advances in abnormalities of glucagon regulation and their link to the pathophysiology of diabetes; new mechanisms of glucagon action and regulation; manipulation of glucagon in diabetes treatment; and analytical and systems biology tools to study glucagon regulation. SUMMARY Recent efforts 'resurrected' glucagon as a key hormone in the pathophysiology of diabetes. New studies target its abnormal regulation and action that is key for improving diabetes treatment. The progress is promising, but major questions remain, including unravelling the mechanism of loss of glucagon counterregulation in type 1 diabetes mellitus and how best to manipulate glucagon to achieve more efficient and safer glycaemic control.
Collapse
Affiliation(s)
- Leon S Farhy
- Division of Endocrinology and Metabolism, Department of Medicine and Center for Diabetes Technology, University of Virginia, Charlottesville, Virginia, USA
| | | |
Collapse
|
13
|
Soedling H, Hodson DJ, Adrianssens AE, Gribble FM, Reimann F, Trapp S, Rutter GA. Limited impact on glucose homeostasis of leptin receptor deletion from insulin- or proglucagon-expressing cells. Mol Metab 2015; 4:619-30. [PMID: 26413468 PMCID: PMC4563029 DOI: 10.1016/j.molmet.2015.06.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/12/2015] [Indexed: 01/07/2023] Open
Abstract
AIMS/HYPOTHESIS The adipose tissue-derived hormone leptin plays an important role in the maintenance of body weight and glucose homeostasis. Leptin mediates its effects by interaction with leptin receptors (LepRb), which are highly expressed in the hypothalamus and other brain centres, and at lower levels in the periphery. Previous studies have used relatively promiscuous or inefficient Cre deleter strains, respectively, to explore the roles of LepR in pancreatic β and α cells. Here, we use two newly-developed Cre lines to explore the role of leptin signalling in insulin and proglucagon-expressing cells. METHODS Leptin receptor expression was measured in isolated mouse islets and highly-purified islet cells by RNASeq and quantitative RT-PCR. Mice lacking leptin signalling in pancreatic β, or in α and other proglucagon-expressing cells, were generated using Ins1Cre- or iGluCre-mediated recombination respectively of flox'd leptin receptor alleles. In vivo glucose homeostasis, changes in body weight, pancreatic histology and hormone secretion from isolated islets were assessed using standard techniques. RESULTS Leptin receptor mRNA levels were at or below the level of detection in wild-type adult mouse isolated islets and purified cells, and leptin signalling to Stat3 phosphorylation was undetectable. Whereas male mice further deleted for leptin receptors in β cells exhibited no abnormalities in glucose tolerance up to 16 weeks of age, females transiently displayed improved glucose tolerance at 8 weeks (11.2 ± 3.2% decrease in area under curve; p < 0.05), and improved (39.0 ± 13.0%, P < 0.05) glucose-stimulated insulin secretion in vitro. No differences were seen between genotypes in body weight, fasting glucose or β/α cell ratio. Deletion of LepR from α-cells, a minority of β cells, and a subset of proglucagon-expressing cells in the brain, exerted no effects on body weight, glucose or insulin tolerance, nor on pancreatic hormone secretion assessed in vivo and in vitro. CONCLUSIONS/INTERPRETATION The use here of a highly selective Cre recombinase indicates that leptin signalling plays a relatively minor, age- and sex-dependent role in the control of β cell function in the mouse. No in vivo role for leptin receptors on α cells, nor in other proglucagon-expressing cells, was detected in this study.
Collapse
Affiliation(s)
- Helen Soedling
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, du Cane Road, London W12 0NN, UK
| | - David J Hodson
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, du Cane Road, London W12 0NN, UK
| | | | - Fiona M Gribble
- University of Cambridge Metabolic Research Laboratories, Cambridge, UK
| | - Frank Reimann
- University of Cambridge Metabolic Research Laboratories, Cambridge, UK
| | - Stefan Trapp
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, du Cane Road, London W12 0NN, UK
| |
Collapse
|