1
|
Qi J, Gan L, Fang J, Zhang J, Yu X, Guo H, Cai D, Cui H, Gou L, Deng J, Wang Z, Zuo Z. Beta-Hydroxybutyrate: A Dual Function Molecular and Immunological Barrier Function Regulator. Front Immunol 2022; 13:805881. [PMID: 35784364 PMCID: PMC9243231 DOI: 10.3389/fimmu.2022.805881] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 05/09/2022] [Indexed: 12/27/2022] Open
Abstract
Ketone bodies are crucial intermediate metabolites widely associated with treating metabolic diseases. Accumulating evidence suggests that ketone bodies may act as immunoregulators in humans and animals to attenuate pathological inflammation through multiple strategies. Although the clues are scattered and untrimmed, the elevation of these ketone bodies in the circulation system and tissues induced by ketogenic diets was reported to affect the immunological barriers, an important part of innate immunity. Therefore, beta-hydroxybutyrate, a key ketone body, might also play a vital role in regulating the barrier immune systems. In this review, we retrospected the endogenous ketogenesis in animals and the dual roles of ketone bodies as energy carriers and signal molecules focusing on beta-hydroxybutyrate. In addition, the research regarding the effects of beta-hydroxybutyrate on the function of the immunological barrier, mainly on the microbiota, chemical, and physical barriers of the mucosa, were outlined and discussed. As an inducible endogenous metabolic small molecule, beta-hydroxybutyrate deserves delicate investigations focusing on its immunometabolic efficacy. Comprehending the connection between ketone bodies and the barrier immunological function and its underlining mechanisms may help exploit individualised approaches to treat various mucosa or skin-related diseases.
Collapse
Affiliation(s)
- Jiancheng Qi
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Linli Gan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jing Fang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jizong Zhang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xin Yu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hongrui Guo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dongjie Cai
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hengmin Cui
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liping Gou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhisheng Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Zhicai Zuo,
| |
Collapse
|
2
|
Nessler J, Hug P, Mandigers PJJ, Leegwater PAJ, Jagannathan V, Das AM, Rosati M, Matiasek K, Sewell AC, Kornberg M, Hoffmann M, Wolf P, Fischer A, Tipold A, Leeb T. Mitochondrial PCK2 Missense Variant in Shetland Sheepdogs with Paroxysmal Exercise-Induced Dyskinesia (PED). Genes (Basel) 2020; 11:genes11070774. [PMID: 32660061 PMCID: PMC7397061 DOI: 10.3390/genes11070774] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 01/08/2023] Open
Abstract
Four female Shetland Sheepdogs with hypertonic paroxysmal dyskinesia, mainly triggered by exercise and stress, were investigated in a retrospective multi-center investigation aiming to characterize the clinical phenotype and its underlying molecular etiology. Three dogs were closely related and their pedigree suggested autosomal dominant inheritance. Laboratory diagnostic findings included mild lactic acidosis and lactaturia, mild intermittent serum creatine kinase (CK) elevation and hypoglycemia. Electrophysiological tests and magnetic resonance imaging of the brain were unremarkable. A muscle/nerve biopsy revealed a mild type II fiber predominant muscle atrophy. While treatment with phenobarbital, diazepam or levetiracetam did not alter the clinical course, treatment with a gluten-free, home-made fresh meat diet in three dogs or a tryptophan-rich, gluten-free, seafood-based diet, stress-reduction, and acetazolamide or zonisamide in the fourth dog correlated with a partial reduction in, or even a complete absence of, dystonic episodes. The genomes of two cases were sequenced and compared to 654 control genomes. The analysis revealed a case-specific missense variant, c.1658G>A or p.Arg553Gln, in the PCK2 gene encoding the mitochondrial phosphoenolpyruvate carboxykinase 2. Sanger sequencing confirmed that all four cases carried the mutant allele in a heterozygous state. The mutant allele was not found in 117 Shetland Sheepdog controls and more than 500 additionally genotyped dogs from various other breeds. The p.Arg553Gln substitution affects a highly conserved residue in close proximity to the GTP-binding site of PCK2. Taken together, we describe a new form of paroxysmal exercise-induced dyskinesia (PED) in dogs. The genetic findings suggest that PCK2:p.Arg553Gln should be further investigated as putative candidate causal variant.
Collapse
Affiliation(s)
- Jasmin Nessler
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover Foundation, 30559 Hannover, Germany; (J.N.); (A.T.)
| | - Petra Hug
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (P.H.); (V.J.)
| | - Paul J. J. Mandigers
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (P.J.J.M.); (P.A.J.L.)
| | - Peter A. J. Leegwater
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (P.J.J.M.); (P.A.J.L.)
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (P.H.); (V.J.)
| | - Anibh M. Das
- Department of Pediatrics, Hannover Medical School, 30625 Hannover, Germany;
| | - Marco Rosati
- Section of Clinical and Comparative Neuropathology, Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität, 80539 Munich, Germany; (M.R.); (K.M.)
| | - Kaspar Matiasek
- Section of Clinical and Comparative Neuropathology, Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität, 80539 Munich, Germany; (M.R.); (K.M.)
| | - Adrian C. Sewell
- Biocontrol, Labor für Veterinärmedizinische Diagnostik, 55218 Ingelheim, Germany;
| | | | | | - Petra Wolf
- Nutritional Physiology and Animal Nutrition, University of Rostock, 18059 Rostock, Germany;
| | - Andrea Fischer
- Section of Neurology, Clinic of Small Animal Medicine, Ludwig-Maximilians-Universität, 80539 Munich, Germany;
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover Foundation, 30559 Hannover, Germany; (J.N.); (A.T.)
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (P.H.); (V.J.)
- Correspondence: ; Tel.: +41-316-312-326
| |
Collapse
|
3
|
Leung YB, Cave NJ, Heiser A, Edwards PJB, Godfrey AJR, Wester T. Metabolic and Immunological Effects of Intermittent Fasting on a Ketogenic Diet Containing Medium-Chain Triglycerides in Healthy Dogs. Front Vet Sci 2020; 6:480. [PMID: 31998762 PMCID: PMC6961514 DOI: 10.3389/fvets.2019.00480] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/06/2019] [Indexed: 12/17/2022] Open
Abstract
In several species, intermittent fasting (IF) has been shown to have beneficial effects, including delayed aging, increased lifespan, increased insulin sensitivity, reduced ischemic tissue damage, delayed onset of neurodegenerative disease and improved neuronal repair following injury. However, the metabolic and immunological effects of IF have not been well-established in dogs. The aim of this study was to examine the effects of a 48 h IF regimen using a low fat and a high fat diet in healthy dogs by quantifying the metabolic, hormonal, and immunological changes. We hypothesized that IF dogs would have higher blood ketone and ghrelin concentrations, lower blood leptin, insulin and glucose concentrations, and signs of immunosuppression compared to dogs eating daily. Ten healthy adult dogs were randomized into three group and underwent three feeding regimes in a 3 × 3 Latin square design: twice a day feeding on a low fat (23% energy from fat; LF) diet, 48 h fasting on a low fat diet, and 48 h fasting on a high fat enriched with medium-chain triglycerides (68% energy from fat; HF) diet. Body weight, food intake, activity, blood glucose, β-hydroxybutyrate, leptin, ghrelin, and insulin were measured. Lymphocyte proliferation and neutrophil/macrophage phagocytosis and respiratory burst were measured as markers of immune function. Nuclear magnetic resonance spectroscopy was used to relatively quantify plasma metabolites. When the dogs were IF on a HF diet, they had the highest concentration of blood ketones (mean 0.061 mmol/L, SD 0.024), whereas they had the lowest concentration (mean 0.018 mmol/L, SD 0.004) when fed daily. Blood glucose and insulin concentrations were lower in IF dogs on a HF diet compared to daily feeding or IF on a LF diet. There was an increase in plasma β-hydroxybutyrate concentrations, and a reduction in glucose and insulin concentrations when dogs were IF on a HF diet. There was only a decline in the immune parameters studied when the dogs were IF on a LF diet, which was not seen when on the HF diet. The results of this study indicate the potential of IF to be further investigated as a potential beneficial feeding regime for dogs.
Collapse
Affiliation(s)
- Y. Becca Leung
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Nick J. Cave
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Axel Heiser
- AgResearch, Grasslands Research Centre, Hopkirk Research Institute, Palmerston North, New Zealand
| | | | | | - Tim Wester
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| |
Collapse
|
4
|
Kleinert M, Clemmensen C, Hofmann SM, Moore MC, Renner S, Woods SC, Huypens P, Beckers J, de Angelis MH, Schürmann A, Bakhti M, Klingenspor M, Heiman M, Cherrington AD, Ristow M, Lickert H, Wolf E, Havel PJ, Müller TD, Tschöp MH. Animal models of obesity and diabetes mellitus. Nat Rev Endocrinol 2018; 14:140-162. [PMID: 29348476 DOI: 10.1038/nrendo.2017.161] [Citation(s) in RCA: 536] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
More than one-third of the worldwide population is overweight or obese and therefore at risk of developing type 2 diabetes mellitus. In order to mitigate this pandemic, safer and more potent therapeutics are urgently required. This necessitates the continued use of animal models to discover, validate and optimize novel therapeutics for their safe use in humans. In order to improve the transition from bench to bedside, researchers must not only carefully select the appropriate model but also draw the right conclusions. In this Review, we consolidate the key information on the currently available animal models of obesity and diabetes and highlight the advantages, limitations and important caveats of each of these models.
Collapse
Affiliation(s)
- Maximilian Kleinert
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, D-80333 Munich, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Christoffer Clemmensen
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, D-80333 Munich, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Susanna M Hofmann
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute for Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Ziemssenstr. 1, D-80336 Munich, Germany
| | - Mary C Moore
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37212, USA
| | - Simone Renner
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilan University München, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Stephen C Woods
- University of Cincinnati College of Medicine, Department of Psychiatry and Behavioral Neuroscience, Metabolic Diseases Institute, 2170 East Galbraith Road, Cincinnati, Ohio 45237, USA
| | - Peter Huypens
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Johannes Beckers
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Technische Universität München, Chair of Experimental Genetics, D-85354 Freising, Germany
| | - Martin Hrabe de Angelis
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Technische Universität München, Chair of Experimental Genetics, D-85354 Freising, Germany
| | - Annette Schürmann
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany
| | - Mostafa Bakhti
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute for Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, Technische Universität München, TUM School of Life Sciences Weihenstephan, Gregor-Mendel-Str. 2, D-85354 Freising, Germany
- Else Kröner-Fresenius Center for Nutritional Medicine, Technische Universität München, D-85354 Freising, Germany
- Institute for Food & Health, Technische Universität München, D-85354 Freising, Germany
| | - Mark Heiman
- MicroBiome Therapeutics, 1316 Jefferson Ave, New Orleans, Louisiana 70115, USA
| | - Alan D Cherrington
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37212, USA
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH) Zurich, CH-8603 Zurich-Schwerzenbach, Switzerland
| | - Heiko Lickert
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute for Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Eckhard Wolf
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilan University München, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, 3135 Meyer Hall, University of California, Davis, California 95616-5270, USA
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, D-80333 Munich, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, D-80333 Munich, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| |
Collapse
|
5
|
Abstract
Ketone body metabolism is a central node in physiological homeostasis. In this review, we discuss how ketones serve discrete fine-tuning metabolic roles that optimize organ and organism performance in varying nutrient states and protect from inflammation and injury in multiple organ systems. Traditionally viewed as metabolic substrates enlisted only in carbohydrate restriction, observations underscore the importance of ketone bodies as vital metabolic and signaling mediators when carbohydrates are abundant. Complementing a repertoire of known therapeutic options for diseases of the nervous system, prospective roles for ketone bodies in cancer have arisen, as have intriguing protective roles in heart and liver, opening therapeutic options in obesity-related and cardiovascular disease. Controversies in ketone metabolism and signaling are discussed to reconcile classical dogma with contemporary observations.
Collapse
Affiliation(s)
- Patrycja Puchalska
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA
| | - Peter A Crawford
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA.
| |
Collapse
|
6
|
Sunny NE, Satapati S, Fu X, He T, Mehdibeigi R, Spring-Robinson C, Duarte J, Potthoff MJ, Browning JD, Burgess SC. Progressive adaptation of hepatic ketogenesis in mice fed a high-fat diet. Am J Physiol Endocrinol Metab 2010; 298:E1226-35. [PMID: 20233938 PMCID: PMC2886525 DOI: 10.1152/ajpendo.00033.2010] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hepatic ketogenesis provides a vital systemic fuel during fasting because ketone bodies are oxidized by most peripheral tissues and, unlike glucose, can be synthesized from fatty acids via mitochondrial beta-oxidation. Since dysfunctional mitochondrial fat oxidation may be a cofactor in insulin-resistant tissue, the objective of this study was to determine whether diet-induced insulin resistance in mice results in impaired in vivo hepatic fat oxidation secondary to defects in ketogenesis. Ketone turnover (micromol/min) in the conscious and unrestrained mouse was responsive to induction and diminution of hepatic fat oxidation, as indicated by an eightfold rise during the fed (0.50+/-0.1)-to-fasted (3.8+/-0.2) transition and a dramatic blunting of fasting ketone turnover in PPARalpha(-/-) mice (1.0+/-0.1). C57BL/6 mice made obese and insulin resistant by high-fat feeding for 8 wk had normal expression of genes that regulate hepatic fat oxidation, whereas 16 wk on the diet induced expression of these genes and stimulated the function of hepatic mitochondrial fat oxidation, as indicated by a 40% induction of fasting ketogenesis and a twofold rise in short-chain acylcarnitines. Together, these findings indicate a progressive adaptation of hepatic ketogenesis during high-fat feeding, resulting in increased hepatic fat oxidation after 16 wk of a high-fat diet. We conclude that mitochondrial fat oxidation is stimulated rather than impaired during the initiation of hepatic insulin resistance in mice.
Collapse
Affiliation(s)
- Nishanth E Sunny
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390-8568, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Satapati S, He T, Inagaki T, Potthoff M, Merritt ME, Esser V, Mangelsdorf DJ, Kliewer SA, Browning JD, Burgess SC. Partial resistance to peroxisome proliferator-activated receptor-alpha agonists in ZDF rats is associated with defective hepatic mitochondrial metabolism. Diabetes 2008; 57:2012-21. [PMID: 18469201 PMCID: PMC2494699 DOI: 10.2337/db08-0226] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Fluxes through mitochondrial pathways are defective in insulin-resistant skeletal muscle, but it is unclear whether similar mitochondrial defects play a role in the liver during insulin resistance and/or diabetes. The purpose of this study is to determine whether abnormal mitochondrial metabolism plays a role in the dysregulation of both hepatic fat and glucose metabolism during diabetes. RESEARCH DESIGN AND METHODS Mitochondrial fluxes were measured using (2)H/(13)C tracers and nuclear magnetic resonance spectroscopy in ZDF rats during early and advanced diabetes. To determine whether defects in hepatic fat oxidation can be corrected by peroxisome proliferator-activated receptor (PPAR-)-alpha activation, rats were treated with WY14,643 for 3 weeks before tracer administration. RESULTS Hepatic mitochondrial fat oxidation in the diabetic liver was impaired twofold secondary to decreased ketogenesis, but tricarboxylic acid (TCA) cycle activity and pyruvate carboxylase flux were normal in newly diabetic rats and elevated in older rats. Treatment of diabetic rats with a PPAR-alpha agonist induced hepatic fat oxidation via ketogenesis and hepatic TCA cycle activity but failed to lower fasting glycemia or endogenous glucose production. In fact, PPAR-alpha agonism overstimulated mitochondrial TCA cycle flux and induced pyruvate carboxylase flux and gluconeogenesis in lean rats. CONCLUSIONS The impairment of certain mitochondrial fluxes, but preservation or induction of others, suggests a complex defect in mitochondrial metabolism in the diabetic liver. These data indicate an important codependence between hepatic fat oxidation and gluconeogenesis in the normal and diabetic state and potentially explain the sometimes equivocal effect of PPAR-alpha agonists on glycemia.
Collapse
Affiliation(s)
- Santhosh Satapati
- The Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Roth E, Valentini L, Hölzenbein T, Winkler S, Sautner T, Hörtnagl H, Karner J. Acute effects of insulin-like growth factor I on inter-organ amino acid flux in protein-catabolic dogs. Biochem J 1993; 296 ( Pt 3):765-9. [PMID: 8280075 PMCID: PMC1137761 DOI: 10.1042/bj2960765] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The effects of acute administration of human recombinant insulin-like growth factor-I (rhIGF-I) on amino acid (AA) flux between hindlimbs, liver and gut were investigated in anaesthetized post-operative dogs. rhIGF-I produced about a 10-fold increase in plasma IGF-I concentrations above baseline values (P < 0.001), increased the plasma levels of glucagon and adrenaline (P < 0.05), and evoked a fall in plasma glucose (-55 +/- 8%; (P < 0.001) and plasma total AA levels (-23 +/- 8%; P < 0.05). AA flux in post-absorptive dogs under NaCl infusions was characterized by an efflux of AA from the hindlimbs (as a result of the protein-catabolic situation), an equal AA balance across the gut and an AA uptake by the liver. The administration of rhIGF-I increased hepatic AA uptake in the NaCl group from 3.51 +/- 0.8 to 7.5 +/- 0.4 mumol/min per kg (P < 0.01) and in the AA-infused group from 16.8 +/- 0.6 to 22.4 +/- 1.5 mumol/min per kg (P < 0.05), but did not influence the AA balance across hindlimbs and gut. Glucose infusions normalized the plasma concentrations of counter-regulatory hormones without influencing the inter-organ AA balances. We conclude that hypoaminoacidaemia caused by rhIGF-I infusions is the result of a stimulated AA uptake by the liver, but is unrelated to alterations of AA exchange across the hindlimbs.
Collapse
Affiliation(s)
- E Roth
- Institute of Biochemical Pharmacology, University of Vienna, Australia
| | | | | | | | | | | | | |
Collapse
|
9
|
Keller U, Lustenberger M, Stauffacher W. Effect of insulin on ketone body clearance studied by a ketone body "clamp" technique in normal man. Diabetologia 1988; 31:24-9. [PMID: 3280366 DOI: 10.1007/bf00279128] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The effect of elevated plasma insulin concentration (55 +/- 2 mU/l) on peripheral clearance and production of total ketone bodies was determined using 3-14C-acetoacetate tracer infusions. Nine normal subjects were studied twice, once during insulin infusion (20 mU.m-2.min-1), once during basal plasma insulin concentrations (controls). Blood total ketone body concentrations (sum of acetone, acetoacetate and beta-hydroxybutyrate) were maintained in both studies at 2 mmol/l by feedback-controlled sodium acetoacetate infusions. The coefficient of variation of total ketone body concentrations during the two clamp studies was 10 and 11% respectively. The sodium acetoacetate infusion rate required during the clamp was 55 +/- 4% higher during hyperinsulinaemia than in controls (p less than 0.005). This was due to increased total ketone body clearance (8.4 +/- 0.7 vs 6.7 +/- 0.4 ml.kg-1.min-1, p less than 0.015), and to enhanced suppression of ketone body production (p less than 0.01). Hyperketonaemia alone decreased ketone body production by 42% and diminished ketone body clearance by 46%, the former being enhanced, the latter being in part antagonised by insulin. Since the plasma insulin concentrations were within those observed in patients treated for diabetic ketoacidosis, the data suggest that the antiketotic effect of insulin therapy results in part from an increase in peripheral ketone body disposal.
Collapse
Affiliation(s)
- U Keller
- Department of Medicine, University of Basel, Switzerland
| | | | | |
Collapse
|
10
|
Schofield PS, McLees DJ, Myles DD, Sugden MC. Ketone-body metabolism after partial hepatectomy in the rat. Biochem J 1985; 231:225-8. [PMID: 4062887 PMCID: PMC1152730 DOI: 10.1042/bj2310225] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fed or 24 h-starved rats were subjected to two-thirds partial hepatectomy or sham-operation and subsequently starved for 4, 14 or 24 h. Despite high plasma fatty acid concentrations, the partially hepatectomized rats failed to respond to post-operative starvation with increased blood and liver ketone-body concentrations or to maintain the high ketone-body concentrations associated with pre-operative starvation. Hypoglycaemia and hyperlactaemia were observed within 30 min of functional hepatectomy, but not partial hepatectomy, of 24 h-starved rats, and, even after a further 24 h starvation of partially hepatectomized rats, blood glucose concentrations were only slightly decreased. The results are discussed with reference to fat oxidation and gluconeogenesis in the liver remaining after partial hepatectomy.
Collapse
|
11
|
Reed WD, Baab PJ, Hawkins RL, Ozand PT. A double-isotope method for the measurement of ketone-body turnover in the rat. Effect of L-alanine. Biochem J 1984; 219:15-24. [PMID: 6721850 PMCID: PMC1153443 DOI: 10.1042/bj2190015] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The synthesis of 4-3H-labelled ketone bodies, and their use along with 14C-labelled ketone-body precursors, is employed using an 'in vivo' rat infusion model to measure ketone-body turnover. The use of two isotopes is necessary to measure ketone-body turnover when ketogenesis may occur from more than one precursor such as glucose and fatty or amino acids. Requirements of isotopic equivalence in terms of metabolic similarity, valid stoichiometry and the lack of differences in the kinetics of relevant enzymes is demonstrated for the 4-3H- and 14C-labelled ketone bodies. The hypoketonaemic effect of L-alanine is shown by two distinct phases after the administration of L-alanine. During the first 12 min after alanine administration ther was a 50% decrease in acetoacetate and a 30% decrease in 3-hydroxybutyrate production, with no significant change in the utilization of either compound. The hypoketonaemic action of alanine during the following 16 min was primarily associated with an uptake of 3-hydroxybutyrate that was somewhat greater than the increase in its production. There were essentially equivalent decreases in production and utilization of acetoacetate, resulting in no significant net change in the level of this ketone body in the blood.
Collapse
|
12
|
Abumrad NN, Jefferson LS, Rannels SR, Williams PE, Cherrington AD, Lacy WW. Role of insulin in the regulation of leucine kinetics in the conscious dog. J Clin Invest 1982; 70:1031-41. [PMID: 6127347 PMCID: PMC370315 DOI: 10.1172/jci110690] [Citation(s) in RCA: 79] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
To study the effect of insulin on leucine kinetics, three groups of conscious dogs were studied after an overnight fast (16-18 h). One, saline-infused group (n = 5), served as control. The other two groups were infused with somatostatin and constant replacement amount of glucagon; one group (n = 6) received no insulin replacement, to produce acute insulin deficiency, and the other (n = 6) was constantly replaced with 600 muU/kg per min insulin, to produce twice basal hyperinsulinemia. Hepatic and extrahepatic splanchnic (gut) balance of leucine and alpha-ketoisocaproate (KIC) were calculated using the arteriovenous difference technique. l,4,5,[(3)H]Leucine was used to measure the rates (micromoles per kilogram per minute) of appearance (Ra) and disappearance (Rd), and clearance (Cl) of plasma leucine (milliliters per kilogram per minute). Saline infusion for 7 h resulted in isotopic steady state, where Ra and Rd were equal (3.2+/-0.2 mumol/kg per min). Acute insulin withdrawal of 4-h duration caused the plasma leucine to increase by 40% (P < 0.005). This change was caused by a decrease in the outflow of leucine (Cl) from the plasma, since Ra did not change. The net hepatic release of the amino acid (0.24+/-0.03 mumol/kg per min) did not change significantly; the arterio-deep femoral venous differences of leucine (-10+/-1 mumol/liter) and KIC (-12+/-2 mumol/liter) did not change significantly indicating net release of the amino and ketoacids across the hindlimb. Selective twice basal hyperinsulinemia resulted in a 36% drop in plasma leucine (from control levels of 128+/-8 to 82+/-7 mumol/liter, P < 0.005) within 4 h. This was accompanied by a 15% reduction in Ra and a 56% rise in clearance (P < 0.001, both). Net hepatic leucine production and net release of leucine and KIC across the hindlimb fell markedly. These studies indicate that physiologic changes in circulating insulin levels result in a differential dose-dependent effect on total body leucine metabolism in the intact animal. Acute insulin withdrawal exerts no effect on leucine rate of appearance, while at twice basal levels, insulin inhibited leucine rate of appearance and stimulated its rate of disappearance.
Collapse
|
13
|
Shulman GI, Lacy WW, Liljenquist JE, Keller U, Williams PE, Cherrington AD. Effect of glucose, independent of changes in insulin and glucagon secretion, on alanine metabolism in the conscious dog. J Clin Invest 1980; 65:496-505. [PMID: 7356691 PMCID: PMC371388 DOI: 10.1172/jci109693] [Citation(s) in RCA: 81] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
To study the effects of hyperglycemia on the metabolism of alanine and lactate independent of changes in plasma insulin and glucagon, glucose was infused into five 36-h-fasted dogs along with somatostatin and constant replacement amounts of both insulin and glucagon. Hepatic uptakes of alanine and lactate were calculated using the arteriovenous difference technique. [14C]Alanine was infused to measure the conversion of alanine and lactate into glucose. Hyperglycemia (delta 115 mg/dl) of 2 h duration caused the plasma alanine level to increase by over 50%. This change was caused by an increase in the inflow of alanine into plasma since the net hepatic uptake of the amino acid did not change. Taken together, the above findings indicate that glucose per se can significantly impair the fractional extraction of alanine by the liver. Hepatic extraction of lactate was also affected by hyperglycemia and had fallen to zero within 90 min of starting the glucose infusion. This fall was associated with a doubling of arterial lactate level. Conversion of [14C]-alanine and [14C]lactate into [14C]glucose was suppressed by 60 +/- 11% after 2 h of hyperglycemia, and because this fall could not be entirely accounted for by decreased lactate extraction an inhibitory effect of glucose on gluconeogenesis within the liver is suggested. These studies indicate that the plasma glucose level per se can be an important determinant of the level of alanine and lactate in plasma as well as the rate at which they are converted to glucose.
Collapse
|