1
|
Carter SD, Mageswaran SK, Farino ZJ, Mamede JI, Oikonomou CM, Hope TJ, Freyberg Z, Jensen GJ. Distinguishing signal from autofluorescence in cryogenic correlated light and electron microscopy of mammalian cells. J Struct Biol 2017; 201:15-25. [PMID: 29078993 DOI: 10.1016/j.jsb.2017.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/21/2017] [Accepted: 10/23/2017] [Indexed: 01/09/2023]
Abstract
In cryogenic correlated light and electron microscopy (cryo-CLEM), frozen targets of interest are identified and located on EM grids by fluorescence microscopy and then imaged at higher resolution by cryo-EM. Whilst working with these methods, we discovered that a variety of mammalian cells exhibit strong punctate autofluorescence when imaged under cryogenic conditions (80 K). Autofluorescence originated from multilamellar bodies (MLBs) and secretory granules. Here we describe a method to distinguish fluorescent protein tags from these autofluorescent sources based on the narrower emission spectrum of the former. The method is first tested on mitochondria and then applied to examine the ultrastructural variability of secretory granules within insulin-secreting pancreatic beta-cell-derived INS-1E cells.
Collapse
Affiliation(s)
- Stephen D Carter
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Shrawan K Mageswaran
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Zachary J Farino
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - João I Mamede
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA
| | | | - Thomas J Hope
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Cell Biology, University of Pittsburgh, PA 15213, USA.
| | - Grant J Jensen
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute (HHMI), California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
2
|
Dubois L, Stridsberg M, Kharaziha P, Chioureas D, Meersman N, Panaretakis T, Ronquist KG. Malignant cell-derived extracellular vesicles express different chromogranin epitopes compared to prostasomes. Prostate 2015; 75:1063-73. [PMID: 25783430 DOI: 10.1002/pros.22990] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/05/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND Prostasomes are nanosized extracellular vesicles exocytosed by prostate epithelial cells. They have been assigned many roles propitious to sperm in favor of fertilization. Prostatic cancer cells can also produce and secrete extracellular vesicles. METHODS We assessed using ELISA, the surface expression of chromogranin proproteins on prostasomes and malignant extracellular vesicles of four different prostate cancer cell-lines, two hormone sensitive and two hormone refractory. We used a panel of chromogranin A and chromogranin B antibodies against peptides in-between hypothetical cleavage sites along the proproteins. RESULTS A diverging pattern of chromogranin peptides was apparent when comparing prostasomes and malignant extracellular vesicles indicating a phenotypical change. We also compared western blot patterns (prostasomes and malignant extracellular vesicles) for selected antibodies that displayed high absorbances in the ELISA. Western blot analyses revealed various cleavage patterns of those proproteins that were analyzed in prostasomes and extracellular vesicles. CONCLUSION Chromogranins are constituents of not only prostasomes but also of malignant prostate cell-derived extracellular vesicles with different amino acid sequences exposed at the membrane surface giving rise to a mosaic pattern. These findings may be of relevance for designing new assays for detection or even possible treatment of prostate cancers.
Collapse
Affiliation(s)
- Louise Dubois
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Mats Stridsberg
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Pedram Kharaziha
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Dimitris Chioureas
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | | | - K Göran Ronquist
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Herold Z, Nagy P, Patócs A, Somogyi A. [The role of chromogranin-A and its derived peptide, WE-14 in the development of type 1 diabetes mellitus]. Orv Hetil 2015; 156:163-70. [PMID: 25618857 DOI: 10.1556/oh.2015.30087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chromogranin-A is a member of the granine protein family. It is produced in neuroendocrine cells via secretory granules. Many cleavage proteins are formed from chromogranin-A, from which some have well known biological activity, while the function of others is not yet fully known. Serum chromogranin-A levels are used in neuroendocrine tumour diagnostics. Recent studies showed that one of its cleavage protein, WE-14 may also play a role in the development of type 1 diabetes. WE-14 may function as an autoantigen for T-cells involved in the destruction of β-cells. This mechanism was previously observed only in non-obese diabetic mice. Novel results show that WE-14 also serves as a target for autoreactive cells in newly diagnosed type 1 diabetic patients as well, which reaction can be increased with transglutaminase. In this paper the authors summarize the recent knowledge about chromogranin-A and its potential role in the pathomechanism of type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Zoltán Herold
- Szent István Egyetem Állatorvos-tudományi Kar Budapest Semmelweis Egyetem, Általános Orvostudományi Kar II. Belgyógyászati Klinika Budapest Szentkirályi utca 46. 1088
| | - Péter Nagy
- Semmelweis Egyetem, Általános Orvostudományi Kar I. Patológiai és Kísérleti Rákkutató Intézet Budapest
| | - Attila Patócs
- Semmelweis Egyetem, Általános Orvostudományi Kar Laboratóriumi Medicina Intézet Budapest MTA-SE "Lendület" Örökletes Endokrin Daganatok Kutatócsoport Budapest
| | - Anikó Somogyi
- Semmelweis Egyetem, Általános Orvostudományi Kar II. Belgyógyászati Klinika Budapest Szentkirályi utca 46. 1088
| |
Collapse
|
4
|
Briguglio JS, Turkewitz AP. Tetrahymena thermophila: a divergent perspective on membrane traffic. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 322:500-16. [PMID: 24634411 DOI: 10.1002/jez.b.22564] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 01/13/2014] [Accepted: 01/22/2014] [Indexed: 12/12/2022]
Abstract
Tetrahymena thermophila, a member of the Ciliates, represents a class of organisms distantly related from commonly used model organisms in cell biology, and thus offers an opportunity to explore potentially novel mechanisms and their evolution. Ciliates, like all eukaryotes, possess a complex network of organelles that facilitate both macromolecular uptake and secretion. The underlying endocytic and exocytic pathways are key mediators of a cell's interaction with its environment, and may therefore show niche-specific adaptations. Our laboratory has taken a variety of approaches to identify key molecular determinants for membrane trafficking pathways in Tetrahymena. Studies of Rab GTPases, dynamins, and sortilin-family receptors substantiate the widespread conservation of some features but also uncover surprising roles for lineage-restricted innovation.
Collapse
Affiliation(s)
- Joseph S Briguglio
- The Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois
| | | |
Collapse
|
5
|
Hosaka M, Watanabe T. Secretogranin III: a bridge between core hormone aggregates and the secretory granule membrane. Endocr J 2010; 57:275-86. [PMID: 20203425 DOI: 10.1507/endocrj.k10e-038] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Secretory granules in endocrine cells selectively store bioactive peptide hormones and amines, which are secreted in a regulated manner upon appropriate stimulation. In addition to bioactive substances, various proteins and lipids characteristic of secretory granules are likely recruited to a restricted space at the trans-Golgi Network (TGN), and the space then matures to the secretory granule. Although experimental findings so far have strongly suggested that aggregation- and receptor-mediated processes are essential for the formation of secretory granules, the putative link between these two processes remains to be clarified. Recently, secretogranin III (SgIII) has been identified as a specific binding protein for chromogranin A (CgA), a representative constituent of the core aggregate within secretory granules, and it was later revealed that SgIII can also bind to the cholesterol-rich membrane domain at the TGN. Based on its multifaceted binding properties, SgIII may act as a central player in the formation of cholesterol-rich membrane platforms. Upon these platforms, essential processes for secretory granule biogenesis coordinately occur; that is, selective recruitment of prohormones, processing and modifying of prohormones, and condensation of mature hormones as an aggregate. This review summarizes the findings and theoretical concepts on the issue to date and then focuses on the putative role of SgIII in secretory granule biogenesis in endocrine cells.
Collapse
Affiliation(s)
- Masahiro Hosaka
- Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan.
| | | |
Collapse
|
6
|
Fasciotto BH, Kühn U, Cohn DV, Gorr SU. Secretory cargo composition affects polarized secretion in MDCK epithelial cells. Mol Cell Biochem 2007; 310:67-75. [PMID: 18049865 DOI: 10.1007/s11010-007-9666-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 11/14/2007] [Indexed: 10/22/2022]
Abstract
Polarized epithelial cells secrete proteins at either the apical or basolateral cell surface. A number of non-epithelial secretory proteins also exhibit polarized secretion when they are expressed in polarized epithelial cells but it is difficult to predict where foreign proteins will be secreted in epithelial cells. The question is of interest since secretory epithelia are considered as target tissues for gene therapy protocols that aim to express therapeutic secretory proteins. In the parathyroid gland, parathyroid hormone is processed by furin and co-stored with chromogranin A in secretory granules. To test the secretion of these proteins in epithelial cells, they were expressed in MDCK cells. Chromogranin A and a secreted form of furin were secreted apically while parathyroid hormone was secreted 60% basolaterally. However, in the presence of chromogranin A, the secretion of parathyroid hormone was 65% apical, suggesting that chromogranin can act as a "sorting escort" (sorting chaperone) for parathyroid hormone. Conversely, apically secreted furin did not affect the sorting of parathyroid hormone. The apical secretion of chromogranin A was dependent on cholesterol, suggesting that this protein uses an established cellular sorting mechanism for apical secretion. However, this sorting does not involve the N-terminal membrane-binding domain of chromogranin A. These results suggest that foreign secretory proteins can be used as "sorting escorts" to direct secretory proteins to the apical secretory pathway without altering the primary structure of the secreted protein. Such a system may be of use in the targeted expression of secretory proteins from epithelial cells.
Collapse
|
7
|
Sobota JA, Ferraro F, Bäck N, Eipper BA, Mains RE. Not all secretory granules are created equal: Partitioning of soluble content proteins. Mol Biol Cell 2006; 17:5038-52. [PMID: 17005911 PMCID: PMC1761688 DOI: 10.1091/mbc.e06-07-0626] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Secretory granules carrying fluorescent cargo proteins are widely used to study granule biogenesis, maturation, and regulated exocytosis. We fused the soluble secretory protein peptidylglycine alpha-hydroxylating monooxygenase (PHM) to green fluorescent protein (GFP) to study granule formation. When expressed in AtT-20 or GH3 cells, the PHM-GFP fusion protein partitioned from endogenous hormone (adrenocorticotropic hormone, growth hormone) into separate secretory granule pools. Both exogenous and endogenous granule proteins were stored and released in response to secretagogue. Importantly, we found that segregation of content proteins is not an artifact of overexpression nor peculiar to GFP-tagged proteins. Neither luminal acidification nor cholesterol-rich membrane microdomains play essential roles in soluble content protein segregation. Our data suggest that intrinsic biophysical properties of cargo proteins govern their differential sorting, with segregation occurring during the process of granule maturation. Proteins that can self-aggregate are likely to partition into separate granules, which can accommodate only a few thousand copies of any content protein; proteins that lack tertiary structure are more likely to distribute homogeneously into secretory granules. Therefore, a simple "self-aggregation default" theory may explain the little acknowledged, but commonly observed, tendency for both naturally occurring and exogenous content proteins to segregate from each other into distinct secretory granules.
Collapse
Affiliation(s)
- Jacqueline A. Sobota
- *Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401; and
| | - Francesco Ferraro
- *Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401; and
| | - Nils Bäck
- Department of Anatomy, Institute of Biomedicine, University of Helsinki, FIN-00014, Helsinki, Finland
| | - Betty A. Eipper
- *Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401; and
| | - Richard E. Mains
- *Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401; and
| |
Collapse
|
8
|
Greenwood TA, Rao F, Stridsberg M, Mahapatra NR, Mahata M, Lillie EO, Mahata SK, Taupenot L, Schork NJ, O'Connor DT. Pleiotropic effects of novel trans-acting loci influencing human sympathochromaffin secretion. Physiol Genomics 2006; 25:470-9. [PMID: 16554546 DOI: 10.1152/physiolgenomics.00295.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Family studies have suggested a genetic contribution to variation in blood pressure, but the genes responsible have thus far eluded identification. The use of intermediate phenotypes associated with hypertension, such as chromogranin plasma concentrations, may assist the discovery of hypertension-predisposing loci. We measured the concentrations of four chromogranin A (CHGA) and B (CHGB) peptides in 742 individuals from 235 nuclear families. The CHGA- and CHGB-derived peptides displayed significant heritability and revealed significant genetic correlations, most strikingly observed between CHGA(361-372) (catestatin) and CHGB(439-451). A 5-cM microsatellite genome scan revealed significant and suggestive evidence for linkage on several chromosomes for three of the peptides. Subsequent bivariate linkage analysis for peptides CHGA(361-372) and CHGB(439-451), which showed evidence for convergent linkage peaks on chromosomes 2, 7, and 13, resulted in increased evidence for linkage to these regions, suggesting pleiotropic effects of these three loci on multiple chromogranin traits. Because CHGA itself is on chromosome 14q32, and CHGB itself is on chromosome 20pter-p12, the pleiotropic regions on chromosomes 2, 7, and 13 must represent trans-acting quantitative trait loci coordinately affecting CHGA/CHGB biosynthesis and/or exocytotic secretion, likely by regulating efferent sympathetic outflow, a conclusion consistent with the in vitro studies presented here of the dual control of both exocytosis and transcription of these peptides by secretory stimuli in chromaffin cells. The results suggest a new approach to heritable autonomic control of circulation and the genetic basis of cardiovascular diseases such as systemic hypertension.
Collapse
|
9
|
Abstract
The pituitary is the central endocrine gland that regulates the functions of various target organs in the human body. Because of the pivotal regulatory role of the pituitary, it is essential to define on a global scale the components of the pituitary protein machinery, including a comprehensive characterization of the post-translational modifications of the pituitary proteins. Of particular interest is the examination of the phosphorylation status of the pituitary in health and disease. Towards the goal of global profiling of pituitary protein phosphorylation, we report here the application of the in-gel IEF-LC-MS/MS approach to the study of the pituitary phosphoproteome. The analytical strategy combined isoelectric focusing in immobilized pH gradient strips with immobilized metal ion affinity chromatography and mass spectrometry. With this method, a total of 50 phosphorylation sites were characterized in 26 proteins. Because the investigation involved primary tissue, the findings provide a direct glimpse into the phosphoprotein machinery operating within the human pituitary tissue microenvironment.
Collapse
Affiliation(s)
- Sarka Beranova-Giorgianni
- Charles B. Stout Neuroscience Mass Spectrometry Laboratory, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | |
Collapse
|
10
|
Gorr SU, Venkatesh S, Darling D. Parotid secretory granules: crossroads of secretory pathways and protein storage. J Dent Res 2005; 84:500-9. [PMID: 15914585 PMCID: PMC1939692 DOI: 10.1177/154405910508400604] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Saliva plays an important role in digestion, host defense, and lubrication. The parotid gland contributes a variety of secretory proteins-including amylase, proline-rich proteins, and parotid secretory protein (PSP)-to these functions. The regulated secretion of salivary proteins ensures the availability of the correct mix of salivary proteins when needed. In addition, the major salivary glands are targets for gene therapy protocols aimed at targeting therapeutic proteins either to the oral cavity or to circulation. To be successful, such protocols must be based on a solid understanding of protein trafficking in salivary gland cells. In this paper, model systems available to study the secretion of salivary proteins are reviewed. Parotid secretory proteins are stored in large dense-core secretory granules that undergo stimulated secretion in response to extracellular stimulation. Secretory proteins that are not stored in large secretory granules are secreted by either the minor regulated secretory pathway, constitutive secretory pathways (apical or basolateral), or the constitutive-like secretory pathway. It is proposed that the maturing secretory granules act as a distribution center for secretory proteins in salivary acinar cells. Protein distribution or sorting is thought to involve their selective retention during secretory granule maturation. Unlike regulated secretory proteins in other cell types, salivary proteins do not exhibit calcium-induced aggregation. Instead, sulfated proteoglycans play a role in the storage of secretory proteins in parotid acinar cells. This work suggests that unique sorting and retention mechanisms are responsible for the distribution of secretory proteins to different secretory pathways from the maturing secretory granules in parotid acinar cells.
Collapse
Affiliation(s)
- S.-U. Gorr
- Department of Periodontics, Endodontics and Dental Hygiene and Center for Oral Health and Systemic Disease, University of Louisville School of Dentistry, Louisville, KY 40292, USA
| | - S.G. Venkatesh
- Department of Periodontics, Endodontics and Dental Hygiene and Center for Oral Health and Systemic Disease, University of Louisville School of Dentistry, Louisville, KY 40292, USA
| | - D.S. Darling
- Department of Periodontics, Endodontics and Dental Hygiene and Center for Oral Health and Systemic Disease, University of Louisville School of Dentistry, Louisville, KY 40292, USA
| |
Collapse
|
11
|
Malosio ML, Giordano T, Laslop A, Meldolesi J. Dense-core granules: a specific hallmark of the neuronal/neurosecretory cell phenotype. J Cell Sci 2004; 117:743-9. [PMID: 14734658 DOI: 10.1242/jcs.00934] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of dense-core granules, a typical exocytic organelle, is widely believed to be controlled by coordinate gene expression mechanisms specific to neurones and neurosecretory cells. Recent studies in PC12 cells, however, have suggested the number of granules/cells depends on the levels of only one of their cargo proteins, chromogranin A, regulating the metabolism of the other proteins, and thus the composition of the organelles, by an on/off switch mechanism. In addition, transfection of chromogranin A was reported to induce appearance of dense-core granules in the non-neurosecretory fibroblasts of the CV-1 line. Here the role of chromogranin A has been reinvestigated using not the heterogeneous PC12 line but several clones isolated therefrom. In these clones, investigated as such or after transfection with chromogranin A antisense sequences, the ratio between chromogranin A and its secretory protein mate, chromogranin B, was not constant but highly and apparently randomly variable. Variability of the chromogranin A/chromogranin B ratio was seen by confocal immunofluorescence also among the cells of single clones and subclones and among the granules of single cells. Moreover, stable and transient transfections of chromogranin A in a PC12 clone characterised by a low number of dense-core granules (one fifth of the reference clone) failed to modify significantly the number of the organelles, despite the several-fold increase of the granin. Finally, in three types of non-neurosecretory cells (CV-1, adenocarcinoma TS/A and a clone of PC12 incompetent for secretion) the transfected chromogranin A accumulated mostly in the Golgi/transGolgi area and was released rapidly from resting cells (constitutive secretion) as revealed by both immunofluorescence during cycloheximide treatment and pulse-chase experiments. Only a minor fraction was sorted to discrete organelles that were not dense-core granules, but primarily lysosomes because they contained no chromogranin B, and were largely positive for the late endosomal-lysosomal markers, lamp1 and lamp3. Dense-core granules are therefore true hallmarks of neurones and neurosecretory cells. Their number/cell appears independent of chromogranin A and their composition does not appear to be constant; in particular, they exhibit considerable, and so far unexplained variability in the chromogranin A/chromogranin B ratio.
Collapse
Affiliation(s)
- Maria Luisa Malosio
- Department of Neuroscience, DIBIT, Vita-Salute San Raffaele University, Via Olgettina, 58, 20132 Milan, Italy.
| | | | | | | |
Collapse
|
12
|
Venkatesh SG, Cowley DJ, Gorr SU. Differential aggregation properties of secretory proteins that are stored in exocrine secretory granules of the pancreas and parotid glands. Am J Physiol Cell Physiol 2003; 286:C365-71. [PMID: 14576088 DOI: 10.1152/ajpcell.00338.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Low-pH- and calcium-induced aggregation of regulated secretory proteins has been proposed to play a role in their retention and storage in secretory granules. However, this has not been tested for secretory proteins that are stored in the exocrine parotid secretory granules. Parotid granule matrix proteins were analyzed for aggregation in the presence or absence of calcium and in the pH range of 5.5 to 7.5. Amylase did not aggregate under these conditions, although <10% of parotid secretory protein (PSP) aggregated below pH 6.0. To test aggregation directly in isolated granules, rat parotid secretory granules were permeabilized with 0.1% saponin in the presence or absence of calcium and in the pH range of 5.0 to 8.4. In contrast to the low-pH-dependent retention of amylase in exocrine pancreatic granules, amylase was quantitatively released and most PSP was released from parotid granules under all conditions. Both proteins were completely released upon granule membrane solubilization. Thus neither amylase nor PSP show low-pH- or calcium-induced aggregation under physiological conditions in the exocrine parotid secretory granules.
Collapse
Affiliation(s)
- S G Venkatesh
- Department of Periodontics, Endodontics, and Dental Hygiene, University of Louisville Health Sciences Center, Louisville, KY 40292, USA
| | | | | |
Collapse
|
13
|
Taupenot L, Harper KL, Mahapatra NR, Parmer RJ, Mahata SK, O'Connor DT. Identification of a novel sorting determinant for the regulated pathway in the secretory protein chromogranin A. J Cell Sci 2002; 115:4827-41. [PMID: 12432071 DOI: 10.1242/jcs.00140] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromogranin A (CgA) is the index member of the chromogranin/secretogranin (or 'granin') family of regulated secretory proteins that are ubiquitously distributed in amine- and peptide-containing secretory granules of endocrine, neuroendocrine and neuronal cells. Because of their abundance and such widespread occurrence, granins have often been used as prototype proteins to elucidate mechanisms of protein targeting into dense-core secretory granules. In this study, we used a series of full-length, point mutant or truncated CgA-green fluorescent protein (GFP) chimeras to explore routing of CgA in neuroendocrine PC12 cells. Using sucrose gradient fractionation and 3D deconvolution microscopy to determine the subcellular localization of the GFP chimeras, as well as secretagogue-stimulated release, the present study establishes that a CgA-GFP fusion protein expressed in neuroendocrine PC12 cells is trafficked to the dense core secretory granule and thereby sorted to the regulated pathway for exocytosis. We show that information necessary for such trafficking is contained within the N-terminal but not the C-terminal region of CgA. We find that CgA's conserved N-terminal hydrophobic Cys(17)-Cys(38) loop structure may not be sufficient for sorting of CgA into dense-core secretory granules, nor is its stabilization by a disulfide bond necessary for such sorting. Moreover, our data reveal for the first time that the CgA(77-115) domain of the mature protein may be necessary (though perhaps not sufficient) for trafficking CgA into the regulated pathway of secretion.
Collapse
Affiliation(s)
- Laurent Taupenot
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Jain RK, Chang WT, Geetha C, Joyce PBM, Gorr SU. In vitro aggregation of the regulated secretory protein chromogranin A. Biochem J 2002; 368:605-10. [PMID: 12175332 PMCID: PMC1222998 DOI: 10.1042/bj20021195] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2002] [Revised: 08/08/2002] [Accepted: 08/13/2002] [Indexed: 11/17/2022]
Abstract
Aggregation chaperones, consisting of secretory proteins that contain a hexa-histidine epitope tag, enhance the calcium-induced aggregation of regulated secretory proteins and their sorting to secretory granules. The goal of this study was to gain a better understanding of this unusual aggregation mechanism. Hexa-histidine-epitope-tagged secreted alkaline phosphatase, an aggregation chaperone, enhanced the in vitro aggregation of chromogranin A in the presence of calcium, but not in the presence of magnesium or other divalent cations. As an exception, chromogranin was completely aggregated by zinc, even in the absence of the aggregation chaperone. In addition, fluorescence spectroscopy of the aggregation reaction mixture showed an increase in fluorescence intensity consistent with the formation of protein aggregates. The calcium-induced aggregation of chromogranin A was completely inhibited by 0.2% Triton X-100, suggesting that it involves hydrophobic interactions. In contrast, the detergent did not affect chaperone-enhanced aggregation, suggesting that this aggregation does not depend on hydrophobic interactions. EDTA-treated chaperone did not enhance chromogranin A aggregation, indicating that divalent cations are necessary for chaperone action. Although the structure of the aggregation chaperone was not important, the size of the chaperone was. Thus the free His-hexapeptide could not substitute for the aggregation chaperone. Based on these results, we propose that the hexa-histidine tag, in the context of a polypeptide, acts as a divalent cation-dependent nucleation site for chromogranin A aggregation.
Collapse
Affiliation(s)
- Renu K Jain
- Department of Periodontics, Endodontics and Dental Hygiene, Health Sciences Center, University of Louisville, Louisville, KY 40292, U.S.A
| | | | | | | | | |
Collapse
|
15
|
Arvan P, Castle D. Sorting and storage during secretory granule biogenesis: looking backward and looking forward. Biochem J 1998; 332 ( Pt 3):593-610. [PMID: 9620860 PMCID: PMC1219518 DOI: 10.1042/bj3320593] [Citation(s) in RCA: 412] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Secretory granules are specialized intracellular organelles that serve as a storage pool for selected secretory products. The exocytosis of secretory granules is markedly amplified under physiologically stimulated conditions. While granules have been recognized as post-Golgi carriers for almost 40 years, the molecular mechanisms involved in their formation from the trans-Golgi network are only beginning to be defined. This review summarizes and evaluates current information about how secretory proteins are thought to be sorted for the regulated secretory pathway and how these activities are positioned with respect to other post-Golgi sorting events that must occur in parallel. In the first half of the review, the emerging role of immature secretory granules in protein sorting is highlighted. The second half of the review summarizes what is known about the composition of granule membranes. The numerous similarities and relatively limited differences identified between granule membranes and other vesicular carriers that convey products to and from the plasmalemma, serve as a basis for examining how granule membrane composition might be established and how its unique functions interface with general post-Golgi membrane traffic. Studies of granule formation in vitro offer additional new insights, but also important challenges for future efforts to understand how regulated secretory pathways are constructed and maintained.
Collapse
Affiliation(s)
- P Arvan
- Division of Endocrinology and Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
16
|
Krömer A, Glombik MM, Huttner WB, Gerdes HH. Essential role of the disulfide-bonded loop of chromogranin B for sorting to secretory granules is revealed by expression of a deletion mutant in the absence of endogenous granin synthesis. J Biophys Biochem Cytol 1998; 140:1331-46. [PMID: 9508767 PMCID: PMC2132667 DOI: 10.1083/jcb.140.6.1331] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sorting of regulated secretory proteins in the TGN to immature secretory granules (ISG) is thought to involve at least two steps: their selective aggregation and their interaction with membrane components destined to ISG. Here, we have investigated the sorting of chromogranin B (CgB), a member of the granin family present in the secretory granules of many endocrine cells and neurons. Specifically, we have studied the role of a candidate structural motif implicated in the sorting of CgB, the highly conserved NH2-terminal disulfide- bonded loop. Sorting to ISG of full-length human CgB and a deletion mutant of human CgB (Deltacys-hCgB) lacking the 22-amino acid residues comprising the disulfide-bonded loop was compared in the rat neuroendocrine cell line PC12. Upon transfection, i.e., with ongoing synthesis of endogenous granins, the sorting of the deletion mutant was only slightly impaired compared to full-length CgB. To investigate whether this sorting was due to coaggregation of the deletion mutant with endogenous granins, we expressed human CgB using recombinant vaccinia viruses, under conditions in which the synthesis of endogenous granins in the infected PC12 cells was shut off. In these conditions, Deltacys-hCgB, in contrast to full-length hCgB, was no longer sorted to ISG, but exited from the TGN in constitutive secretory vesicles. Coexpression of full-length hCgB together with Deltacys-hCgB by double infection, using the respective recombinant vaccinia viruses, rescued the sorting of the deletion mutant to ISG. In conclusion, our data show that (a) the disulfide-bonded loop is essential for sorting of CgB to ISG and (b) the lack of this structural motif can be compensated by coexpression of loop-bearing CgB. Furthermore, comparison of the two expression systems, transfection and vaccinia virus-mediated expression, reveals that analyses under conditions in which host cell secretory protein synthesis is blocked greatly facilitate the identification of sequence motifs required for sorting of regulated secretory proteins to secretory granules.
Collapse
Affiliation(s)
- A Krömer
- Department of Neurobiology, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
17
|
Chilcoat ND, Melia SM, Haddad A, Turkewitz AP. Granule lattice protein 1 (Grl1p), an acidic, calcium-binding protein in Tetrahymena thermophila dense-core secretory granules, influences granule size, shape, content organization, and release but not protein sorting or condensation. J Cell Biol 1996; 135:1775-87. [PMID: 8991090 PMCID: PMC2133959 DOI: 10.1083/jcb.135.6.1775] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The electron-dense cores of regulated secretory granules in the ciliate Tetrahymena thermophila are crystal lattices composed of multiple proteins. Granule synthesis involves a series of steps beginning with protein sorting, followed by the condensation and precise geometric assembly of the granule cargo. These steps may to various degrees be determined by the cargo proteins themselves. A prominent group of granule proteins, in ciliates as well as in vertebrate neuronal and endocrine cells, are acidic, heat-stable, and bind calcium. We focused on a protein with these characteristics named granule lattice protein 1 (Grl1p), which represents 16% of total granule contents, and we have now cloned the corresponding gene. Mutants in which the macronuclear copies of GRL1 have been disrupted continue to synthesize dense-core granules but are nonetheless defective in regulated protein secretion. To understand the nature of this defect, we characterized mutant and wild-type granules. In the absence of Grl1p, the sorting of the remaining granule proteins appears normal, and they condense to form a well-defined core. However, the condensed cores do not demonstrate a visible crystalline lattice, and are notably different from wild type in size and shape. The cellular secretion defect arises from failure of the aberrant granule cores to undergo rapid expansion and extrusion after exocytic fusion of the granule and plasma membranes. The results suggest that sorting, condensation, and precise granule assembly are distinct in their requirements for Grl1p.
Collapse
Affiliation(s)
- N D Chilcoat
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
18
|
Linard CG, Tadros H, Sirois F, Mbikay M. Calcium-induced aggregation of neuroendocrine protein 7B2 in vitro and its modulation by ATP. Mol Cell Biochem 1995; 151:39-47. [PMID: 8584012 DOI: 10.1007/bf01076894] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To study the behavior of the neuroendocrine polypeptide 7B2 in the presence of calcium, various fragments of this molecule were produced in Escherichia coli as fusion proteins to glutathione S-transferase (GST). Addition of millimolar concentrations of Ca2+ to purified preparations of hybrid molecules carrying the N-terminal segment of 7B2 induced precipitation in a manner dependent on protein and cation concentrations. This precipitation occurred at pH 7.5 but not at pH 5.2. It was augmented by 4 and 8 mM ATP, and reduced by 12 and 24 mM ATP. ADP had a similar but weaker effect. Calcium failed to cause precipitation of GST alone or of GST fused to the C-terminal peptide 7B2(156-186). However, when the latter protein was mixed with a GST protein carrying a short fragment of the N-terminal region of 7B2, both proteins were precipitated by calcium. Except for the pH dependence, the behavior of 7B2 fusion proteins in the presence of calcium and adenosine nucleotides are reminiscent of those exhibited by chromogranins and secretogranins, which, like 7B2, are acidic proteins found in the secretory granules of a variety of neuroendocrine cells. As suggested for other granins, this property may underlie the segregation of 7B2 fragments into secretory granules.
Collapse
Affiliation(s)
- C G Linard
- Laboratoire de Neuroendocrinologie Moléculaire, Institut de Recherches Cliniques de Montréal, Université de Montréal, Québec, Canada
| | | | | | | |
Collapse
|
19
|
Carnell L, Moore HP. Transport via the regulated secretory pathway in semi-intact PC12 cells: role of intra-cisternal calcium and pH in the transport and sorting of secretogranin II. J Biophys Biochem Cytol 1994; 127:693-705. [PMID: 7962053 PMCID: PMC2120230 DOI: 10.1083/jcb.127.3.693] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
To gain insight into the mechanisms governing protein sorting, we have developed a system that reconstitutes both the formation of immature secretory granules and their fusion with the plasma membrane. Semi-intact PC12 cells were incubated with ATP and cytosol for 15 min to allow immature granules to form, and then in a buffer containing 30 microM [Ca2+]free to induce exocytosis. Transport via the regulated pathway, as assayed by the release of secretogranin II (SgII) labeled in the TGN, was inhibited by depletion of ATP, or by the inclusion of 100 microM GTP gamma S, 50 microM AlF3-5 or 5 micrograms/ml BFA. When added after immature granules had formed, GTP gamma S stimulated rather than inhibited exocytosis. Thus, exocytosis of immature granules in this system resembles the characteristics of fully matured granules. Transport of SgII via the regulated pathway occurred at a fourfold higher efficiency than glycosaminoglycan chains, indicating that SgII is sorted to some extent upon exit from the TGN. Addition of A23187 to release Ca2+ from the TGN had no significant effect on sorting of SgII into immature granules. In contrast, depletion of lumenal calcium inhibited the endoproteolytic cleavage of POMC and proinsulin. These results establish the importance of intra-cisternal Ca2+ in prohormone processing, but raise the question whether lumenal calcium is required for proper sorting of SgII into immature granules. Disruption of organelle pH gradients with an ionophore or a weak base resulted in the inhibition of transport via both the constitutive and the regulated pathways.
Collapse
Affiliation(s)
- L Carnell
- University of California, Department of Molecular and Cell Biology, Berkeley 94720-3200
| | | |
Collapse
|
20
|
Affiliation(s)
- P A Halban
- Laboratoires de Recherche Louis Jeantet, Centre Médical Universitaire, Geneva, Switzerland
| | | |
Collapse
|
21
|
Winkler H, Fischer-Colbrie R. The chromogranins A and B: the first 25 years and future perspectives. Neuroscience 1992; 49:497-528. [PMID: 1501763 PMCID: PMC7131462 DOI: 10.1016/0306-4522(92)90222-n] [Citation(s) in RCA: 528] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/1992] [Indexed: 12/27/2022]
Affiliation(s)
- H Winkler
- Department of Pharmacology, University of Innsbruck, Austria
| | | |
Collapse
|
22
|
Chanat E, Huttner WB. Milieu-induced, selective aggregation of regulated secretory proteins in the trans-Golgi network. J Biophys Biochem Cytol 1991; 115:1505-19. [PMID: 1757460 PMCID: PMC2289203 DOI: 10.1083/jcb.115.6.1505] [Citation(s) in RCA: 362] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Regulated secretory proteins are thought to be sorted in the trans-Golgi network (TGN) via selective aggregation. The factors responsible for this aggregation are unknown. We show here that two widespread regulated secretory proteins, chromogranin B and secretogranin II (granins), remain in an aggregated state when TGN vesicles from neuroendocrine cells (PC12) are permeabilized at pH 6.4 in 1-10 mM calcium, conditions believed to exist in this compartment. Permeabilization of immature secretory granules under these conditions allowed the recovery of electron dense cores. The granin aggregates in the TGN largely excluded glycosaminoglycan chains which served as constitutively secreted bulk flow markers. The low pH, high calcium milieu was sufficient to induce granin aggregation in the RER. In the TGN of pituitary GH4C1 cells, the proportion of granins conserved as aggregates was higher upon hormonal treatment known to increase secretory granule formation. Our data suggest that a decrease in pH and an increase in calcium are sufficient to trigger the selective aggregation of the granins in the TGN, segregating them from constitutive secretory proteins.
Collapse
Affiliation(s)
- E Chanat
- Cell Biology Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
23
|
Watkinson A, Jönsson AC, Davison M, Young J, Lee CM, Moore S, Dockray GJ. Heterogeneity of chromogranin A-derived peptides in bovine gut, pancreas and adrenal medulla. Biochem J 1991; 276 ( Pt 2):471-9. [PMID: 1710890 PMCID: PMC1151115 DOI: 10.1042/bj2760471] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Chromogranin A is produced in many endocrine cell types, and is widely used as a marker in endocrine-cell pathology and secretory-cell biology. There is some evidence that it may be proteolytically processed to yield the putative pancreatic regulatory peptide, pancreastatin, and, in order to characterize the relevant pathways in gastrointestinal and pancreatic endocrine cells, we have used, in radioimmunoassay, site-directed antibodies to pancreastatin itself (L331) and to a sequence of chromogranin A immediately C-terminal to pancreastatin (L300). The latter antibody revealed three major forms of immunoreactivity of 8 kDa and five peptides of approx. 3 kDa in bovine pancreas and gut extracts. The 8 kDa peptides were characterized as chromogranin A-(248-313)-peptides, i.e. C-terminally extended forms of pancreastatin; two of the 8 kDa variants differed in two positions, confirming a polymorphism predicted from cDNA sequencing. One of the 3 kDa peptides was characterized as chromogranin A-(297-313)-peptide, i.e. the C-terminal heptadecapeptide of the 8 kDa peptide that would be liberated after cleavage to yield pancreastatin. On the basis of chromatographic studies, immunohistochemistry and the stoichiometry of different immunoreactive peptides, three different pathways of chromogranin A processing were identified: in adrenal chromaffin cells chromogranin A existed mainly as the unmodified intact protein, in pancreatic islet and gastric antral endocrine cells pancreastatin and the 3 kDa peptides were major products, but in small intestine and gastric corpus endocrine cells there was little nor no pancreastatin and the 8 kDa cleavage product predominated. There are therefore important differences in the distribution of chromogranin A-derived peptides between quite closely related populations of endocrine cells that are attributable not only to variable post-translational cleavage but also to the expression of different primary sequences. It seems possible that in different cell types chromogranin A-derived peptides might subserve a variety of different functions.
Collapse
Affiliation(s)
- A Watkinson
- M.R.C. Secretory Control Group, University of Liverpool, U.K
| | | | | | | | | | | | | |
Collapse
|
24
|
Chanat E, Pimplikar SW, Stinchcombe JC, Huttner WB. What the granins tell us about the formation of secretory granules in neuroendocrine cells. CELL BIOPHYSICS 1991; 19:85-91. [PMID: 1726891 PMCID: PMC7090494 DOI: 10.1007/bf02989882] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The biochemical properties of the granins, studied in vitro and in a perforated TGN system, support the concept that the Sciective aggregation of regulated secretory proteins, promoted by the specific lumenal milieu of the TGN, is a key step in their segregation from constitutive secretory proteins in this compartment. A recently identified membrane-associated form of the granins is likely to also be involved in this aggregation, as well as in the membrane envelopment of the aggregate during the formation of an immature secretory granule.
Collapse
Affiliation(s)
- E Chanat
- Institute for Neurobiology, University of Heidelberg, Germany
| | | | | | | |
Collapse
|