1
|
Xing YJ, Liu BH, Wan SJ, Cheng Y, Zhou SM, Sun Y, Yao XM, Hua Q, Meng XJ, Cheng JH, Zhong M, Zhang Y, Lv K, Kong X. A SGLT2 Inhibitor Dapagliflozin Alleviates Diabetic Cardiomyopathy by Suppressing High Glucose-Induced Oxidative Stress in vivo and in vitro. Front Pharmacol 2021; 12:708177. [PMID: 34322029 PMCID: PMC8311522 DOI: 10.3389/fphar.2021.708177] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/28/2021] [Indexed: 01/10/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is a serious complication of diabetes mellitus (DM). One of the hallmarks of the DCM is enhanced oxidative stress in myocardium. The aim of this study was to research the underlying mechanisms involved in the effects of dapagliflozin (Dap) on myocardial oxidative stress both in streptozotocin-induced DCM rats and rat embryonic cardiac myoblasts H9C2 cells exposed to high glucose (33.0 mM). In in vivo studies, diabetic rats were given Dap (1 mg/ kg/ day) by gavage for eight weeks. Dap treatment obviously ameliorated cardiac dysfunction, and improved myocardial fibrosis, apoptosis and oxidase stress. In in vitro studies, Dap also attenuated the enhanced levels of reactive oxygen species and cell death in H9C2 cells incubated with high glucose. Mechanically, Dap administration remarkably reduced the expression of membrane-bound nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits gp91phox and p22phox, suppressed the p67phox subunit translocation to membrane, and decreased the compensatory elevated copper, zinc superoxide dismutase (Cu/Zn-SOD) protein expression and total SOD activity both in vivo and in vitro. Collectively, our results indicated that Dap protects cardiac myocytes from damage caused by hyperglycemia through suppressing NADPH oxidase-mediated oxidative stress.
Collapse
Affiliation(s)
- Yu-Jie Xing
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China.,Department of Endocrinology, The First Aflliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Biao-Hu Liu
- Department of Ultrasound Medicine, The First Aflliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Shu-Jun Wan
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China.,Central Laboratory of Yijishan Hospital, Wuhu, China
| | - Yi Cheng
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China.,Department of Endocrinology, The First Aflliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Si-Min Zhou
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China.,Department of Endocrinology, The First Aflliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Yue Sun
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China.,Department of Endocrinology, The First Aflliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Xin-Ming Yao
- Department of Endocrinology, The First Aflliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Qiang Hua
- Department of Endocrinology, The First Aflliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Xiang-Jian Meng
- Department of Endocrinology, The First Aflliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Jin-Han Cheng
- Department of Endocrinology, The First Aflliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Min Zhong
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China.,Central Laboratory of Yijishan Hospital, Wuhu, China
| | - Yan Zhang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Kun Lv
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China.,Central Laboratory of Yijishan Hospital, Wuhu, China
| | - Xiang Kong
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China.,Central Laboratory of Yijishan Hospital, Wuhu, China.,Department of Endocrinology, The First Aflliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| |
Collapse
|
2
|
McNay EC, Pearson-Leary J. GluT4: A central player in hippocampal memory and brain insulin resistance. Exp Neurol 2020; 323:113076. [PMID: 31614121 PMCID: PMC6936336 DOI: 10.1016/j.expneurol.2019.113076] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/19/2019] [Accepted: 10/01/2019] [Indexed: 12/24/2022]
Abstract
Insulin is now well-established as playing multiple roles within the brain, and specifically as regulating hippocampal cognitive processes and metabolism. Impairments to insulin signaling, such as those seen in type 2 diabetes and Alzheimer's disease, are associated with brain hypometabolism and cognitive impairment, but the mechanisms of insulin's central effects are not determined. Several lines of research converge to suggest that the insulin-responsive glucose transporter GluT4 plays a central role in hippocampal memory processes, and that reduced activation of this transporter may underpin the cognitive impairments seen as a consequence of insulin resistance.
Collapse
Affiliation(s)
- Ewan C McNay
- Behavioral Neuroscience, University at Albany, Albany, NY, USA.
| | - Jiah Pearson-Leary
- Department of Anesthesiology, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
3
|
Novel Roles for the Insulin-Regulated Glucose Transporter-4 in Hippocampally Dependent Memory. J Neurosci 2017; 36:11851-11864. [PMID: 27881773 DOI: 10.1523/jneurosci.1700-16.2016] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/15/2016] [Accepted: 09/20/2016] [Indexed: 11/21/2022] Open
Abstract
The insulin-regulated glucose transporter-4 (GluT4) is critical for insulin- and contractile-mediated glucose uptake in skeletal muscle. GluT4 is also expressed in some hippocampal neurons, but its functional role in the brain is unclear. Several established molecular modulators of memory processing regulate hippocampal GluT4 trafficking and hippocampal memory formation is limited by both glucose metabolism and insulin signaling. Therefore, we hypothesized that hippocampal GluT4 might be involved in memory processes. Here, we show that, in male rats, hippocampal GluT4 translocates to the plasma membrane after memory training and that acute, selective intrahippocampal inhibition of GluT4-mediated glucose transport impaired memory acquisition, but not memory retrieval. Other studies have shown that prolonged systemic GluT4 blockade causes insulin resistance. Unexpectedly, we found that prolonged hippocampal blockade of glucose transport through GluT4-upregulated markers of hippocampal insulin signaling prevented task-associated depletion of hippocampal glucose and enhanced both working and short-term memory while also impairing long-term memory. These effects were accompanied by increased expression of hippocampal AMPA GluR1 subunits and the neuronal GluT3, but decreased expression of hippocampal brain-derived neurotrophic factor, consistent with impaired ability to form long-term memories. Our findings are the first to show the cognitive impact of brain GluT4 modulation. They identify GluT4 as a key regulator of hippocampal memory processing and also suggest differential regulation of GluT4 in the hippocampus from that in peripheral tissues. SIGNIFICANCE STATEMENT The role of insulin-regulated glucose transporter-4 (GluT4) in the brain is unclear. In the current study, we demonstrate that GluT4 is a critical component of hippocampal memory processes. Memory training increased hippocampal GluT4 translocation and memory acquisition was impaired by GluT4 blockade. Unexpectedly, whereas long-term inhibition of GluT4 impaired long-term memory, short-term memory was enhanced. These data further our understanding of the molecular mechanisms of memory and have particular significance for type 2 diabetes (in which GluT4 activity in the periphery is impaired) and Alzheimer's disease (which is linked to impaired brain insulin signaling and for which type 2 diabetes is a key risk factor). Both diseases cause marked impairment of hippocampal memory linked to hippocampal hypometabolism, suggesting the possibility that brain GluT4 dysregulation may be one cause of cognitive impairment in these disease states.
Collapse
|
4
|
Jiang Z, Yu B, Li Y. Effect of Three Statins on Glucose Uptake of Cardiomyocytes and its Mechanism. Med Sci Monit 2016; 22:2825-30. [PMID: 27510725 PMCID: PMC4984921 DOI: 10.12659/msm.897047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background The aim of this study was to investigate the effects of different statins on glucose uptake and to confirm its mechanism in primary cultured rat cardiomyocytes after administration of atorvastatin, pravastatin, and rosuvastatin. Material/Methods Primary cultured rat cardiomyocytes were randomly assigned to 5 groups: normal control group (OB), insulin group (S1), statin 1-μM (S2), 5-μM (S3), and 10-μM (S4) groups for 3 different statins. The 2-[3H]-DG uptake of each group was determined and the mRNA and protein expression levels of glucose transporter type 4 (GLUT4), insulin receptor substrate (IRs), and RhoA were assessed. Results After treatment with different concentrations of statins and insulin, the 2-[3H]-DG uptake showed a significant negative correlation with the concentration of atorvastatin (P<0.05), and no significant correlation with pravastatin and rosuvastatin. The mRNA and protein expression levels of GLUT4 and IRs-1 in primary cultured cardiomyocytes were both significantly reduced by atorvastatin treatment (P<0.05). Pravastatin and rosuvastatin showed no significant effects on GLUT4 and IRs-1 expression. The mRNA and protein expression levels of RhoA both showed no significant difference when treated with the 3 statins. Conclusions These results confirm that atorvastatin can inhibit insulin-induced glucose uptake in primary cultured rat cardiomyocytes by regulating the PI3K/Akt insulin signal transduction pathway.
Collapse
Affiliation(s)
- Zhenhuan Jiang
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Bo Yu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Yang Li
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
5
|
Zhi L, Yuzhang Z, Tianliang H, Hisatome I, Yamamoto T, Jidong C. High Uric Acid Induces Insulin Resistance in Cardiomyocytes In Vitro and In Vivo. PLoS One 2016; 11:e0147737. [PMID: 26836389 PMCID: PMC4737875 DOI: 10.1371/journal.pone.0147737] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 01/07/2016] [Indexed: 02/05/2023] Open
Abstract
Clinical studies have shown hyperuricemia strongly associated with insulin resistance as well as cardiovascular disease. Direct evidence of how high uric acid (HUA) affects insulin resistance in cardiomyocytes, but the pathological mechanism of HUA associated with cardiovascular disease remains to be clarified. We aimed to examine the effect of HUA on insulin sensitivity in cardiomyocytes and on insulin resistance in hyperuricemic mouse model. We exposed primary cardiomyocytes and a rat cardiomyocyte cell line, H9c2 cardiomyocytes, to HUA, then quantified glucose uptake with a fluorescent glucose analog, 2-NBDG, after insulin challenge and detected reactive oxygen species (ROS) production. Western blot analysis was used to examine the levels of insulin receptor (IR), phosphorylated insulin receptor substrate 1 (IRS1, Ser307) and phospho-Akt (Ser473). We monitored the impact of HUA on insulin resistance, insulin signaling and IR, phospho-IRS1 (Ser307) and phospho-Akt levels in myocardial tissue of an acute hyperuricemia mouse model established by potassium oxonate treatment. HUA inhibited insulin-induced glucose uptake in H9c2 and primary cardiomyocytes. It increased ROS production; pretreatment with N-acetyl-L-cysteine (NAC), a ROS scavenger, reversed HUA-inhibited glucose uptake induced by insulin. HUA exposure directly increased the phospho-IRS1 (Ser307) response to insulin and inhibited that of phospho-Akt in H9C2 cardiomyocytes, which was blocked by NAC. Furthermore, the acute hyperuricemic mice model showed impaired glucose tolerance and insulin tolerance accompanied by increased phospho-IRS1 (Ser307) and inhibited phospho-Akt response to insulin in myocardial tissues. HUA inhibited insulin signaling and induced insulin resistance in cardiomyocytes in vitro and in vivo, which is a novel potential mechanism of hyperuricemic-related cardiovascular disease.
Collapse
Affiliation(s)
- Li Zhi
- Department of Internal Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Department of Internal Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Department of Internal Medicine, Chaozhou People’s Hospital, Chaozhou, Guangdong, China
| | - Zhu Yuzhang
- Department of Internal Medicine, The Second Hospital of Jiaxing City, Jiaxing, Zhejiang, China
| | - Huang Tianliang
- Department of Internal Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Ichiro Hisatome
- Division of Regenerative Medicine and Therapeutics, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Sciences, Tottori University, Yonago, Japan
| | - Tetsuya Yamamoto
- Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Cheng Jidong
- Department of Internal Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- * E-mail:
| |
Collapse
|
6
|
Della Porta G, Falco N, Giordano E, Reverchon E. PLGA microspheres by Supercritical Emulsion Extraction: a study on insulin release in myoblast culture. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2013; 24:1831-47. [PMID: 23786568 DOI: 10.1080/09205063.2013.807457] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Supercritical Emulsion Extraction in a Continuous operation layout is proposed for the production of poly-lactic-co-glycolic acid (PLGA) microspheres loaded with insulin, selected as a model of bioactive signal. Microspheres with different mean sizes of 2 μm (±0.9 μm) and 3 μm (±2.2 μm) and insulin loadings of 3 and 6 mg/g were obtained by processing different water-oil-water emulsions; an encapsulation efficiency of about 60% w/w was measured in all cases. Insulin release profiles from PLGA microspheres were also characterized in two different media (Phosphate-Buffered Saline and Dulbecco's Modified Eagle Medium) and kinetic constants were estimated by using a model proposed in literature. The produced microspheres were, then, used for the cultivation of rat embryonic ventricular myoblasts in a serum-free medium to monitor the biological effect of the released insulin. The best cell viability and proliferation, supported by released insulin, was monitored when microspheres with mean size of 3 μm loaded with 3 mg/g of insulin were added.
Collapse
Affiliation(s)
- Giovanna Della Porta
- a Dipartimento di Ingegneria Industriale , Università di Salerno , via Ponte don Melillo 1 , 84084 , Fisciano , SA , Italy
| | | | | | | |
Collapse
|
7
|
Ikemoto T, Hosoya T, Takata K, Aoyama H, Hiramatsu T, Onoe H, Suzuki M, Endo M. Functional role of neuroendocrine-specific protein-like 1 in membrane translocation of GLUT4. Diabetes 2009; 58:2802-12. [PMID: 19720795 PMCID: PMC2780876 DOI: 10.2337/db09-0756] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE In skeletal muscles, dantrolene inhibits the exercise-induced membrane translocation of GLUT4. It has been postulated that the inhibitory action of dantrolene on Ca(2+) release from the sarcoplasmic reticulum (SR) causes inhibition of exercise-induced glucose uptake; however, the precise mechanism has not been adequately studied. RESEARCH DESIGN AND METHODS We discovered that dantrolene can bind to skeletal-type neuroendocrine-specific protein-like 1 (sk-NSPl1) with photoreactive dantrolene derivatives. In sk-NSPl1-deficient muscles, we examined the change in glucose uptake and the membrane translocation of GLUT4. In addition, we examined the change in blood glucose and also measured the glycogen level in both isolated and in situ skeletal muscles after electrical stimulation using our mutant mouse. RESULTS In sk-NSPl1-deficient muscles, exercise-induced glucose uptake was totally abolished with no change in insulin-induced glucose uptake. The Ca(2+) release mechanism and its inhibition by dantrolene were completely preserved in these muscles. The expression of GLUT4 in the mutant muscles also appeared unchanged. Confocal imaging and results using the membrane isolation method showed that exercise/contraction did not enhance GLUT4 translocation in these sk-NSPl1-deficient muscles under conditions of adequate muscle glycogen consumption. The blood glucose level in normal mice was reduced by electrical stimulation of the hind limbs, but that in mutant mice was unchanged. CONCLUSIONS sk-NSPl1 is a novel dantrolene receptor that plays an important role in membrane translocation of GLUT4 induced by contraction/exercise. The 23-kDa sk-NSPl1 may also be involved in the regulation of glucose levels in the whole body.
Collapse
Affiliation(s)
- Takaaki Ikemoto
- Functional Probe Research Laboratory, RIKEN Center for Molecular Imaging Science, Kobe, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Jeong K, Kwon H, Min C, Pak Y. Modulation of the caveolin-3 localization to caveolae and STAT3 to mitochondria by catecholamine-induced cardiac hypertrophy in H9c2 cardiomyoblasts. Exp Mol Med 2009; 41:226-35. [PMID: 19299911 DOI: 10.3858/emm.2009.41.4.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
We investigated the effect of phenylephrine (PE)- and isoproterenol (ISO)-induced cardiac hypertrophy on subcellular localization and expression of caveolin-3 and STAT3 in H9c2 cardiomyoblast cells. Caveolin-3 localization to plasma membrane was attenuated and localization of caveolin-3 to caveolae in the plasma membrane was 24.3% reduced by the catecholamine- induced hypertrophy. STAT3 and phospho-STAT3 were up-regulated but verapamil and cyclosporin A synergistically decreased the STAT3 and phospho- STAT3 levels in PE- and ISO-induced hypertrophic cells. Both expression and activation of STAT3 were increased in the nucleus by the hypertrophy. Immunofluorescence analysis revealed that the catecholamine- induced hypertrophy promoted nuclear localization of pY705-STAT3. Of interest, phosphorylation of pS727- STAT3 in mitochondria was significantly reduced by catecholamine-induced hypertrophy. In addition, mitochondrial complexes II and III were greatly down- regulated in the hypertrophic cells. Our data suggest that the alterations in nuclear and mitochondrial activation of STAT3 and caveolae localization of caveolin-3 are related to the development of the catecholamine-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Kyuho Jeong
- Department of Biochemistry, Gyeongsang National University, Jinju 660-701, Korea
| | | | | | | |
Collapse
|
9
|
Liu IM, Chang CK, Juang SW, Kou DH, Tong YC, Cheng KC, Cheng JT. Role of hyperglycaemia in the pathogenesis of hypotension observed in type-1 diabetic rats. Int J Exp Pathol 2008; 89:292-300. [PMID: 18715473 DOI: 10.1111/j.1365-2613.2008.00595.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The role of hyperglycaemia in the pathogenesis of hypotension in diabetic disorders was investigated using the changes in cardiac M(2)-muscarinic receptor (M(2)-mAChR) gene expression in type-1-like diabetic rats and cultured cardiomyocytes. Blood pressure was markedly decreased in diabetic rats following the intravenous injection of streptozotocin (STZ) for 8 weeks. Also, the baroreflex sensitivity (Delta HR/Delta BP), as measured by the changes in heart rate (Delta HR) and mean blood pressure (Delta BP) 1 min after the intravenous injection of phenylephrine (10 microg/kg), was significantly increased. Arecaidine propargyl ester (APE), a M(2)-mAChR agonist produced a marked reduction in heart rate in these diabetic rats. Normalization of plasma glucose in diabetic rats using insulin (0.5 IU) or phlorizin (1 mg/kg) injection attenuated the blood pressure reduction and reversed the mRNA and protein levels of cardiac M(2)-mAChR. A high concentration of glucose (20 mmol/l) directly influenced the increase in gene expression of M(2)-mAChR in the H9c2 cardiac cell line. Hyperglycaemia induced an increase in cardiac M(2)-mAChR gene expression, suggesting a role in the pathogenesis of hypotension in diabetic disorders.
Collapse
Affiliation(s)
- I-Min Liu
- Department of Pharmacy, Tajen University, Yen-Pou, Ping Tung Shien, Taiwan
| | | | | | | | | | | | | |
Collapse
|
10
|
Guan F, Yu B, Qi GX, Hu J, Zeng DY, Luo J. Chemical hypoxia-induced glucose transporter-4 translocation in neonatal rat cardiomyocytes. Arch Med Res 2007; 39:52-60. [PMID: 18067996 DOI: 10.1016/j.arcmed.2007.06.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 06/25/2007] [Indexed: 11/18/2022]
Abstract
BACKGROUND AMP-activated protein kinase (AMPK) activation plays an essential role in glucose metabolism of the heart. This study aimed at investigating whether AMPK was involved in glucose transporter-4 (GLUT-4) translocation induced by azide-induced chemical hypoxia in primary cultured neonatal rat cardiomyocytes. METHODS With or without adenine 9-beta-D-arabinofuranoside (ara A, AMPK inhibitor) preincubation, primary cultured rat cardiomyocytes were randomized to several groups as incubated with azide (the respiratory chain inhibitor), insulin, or 5-aminoimidazole-4-carboxyamide-1-beta-D-ribofuranoside (AICAR, an AMPK activator). Glucose uptake was measured through gamma-scintillation and GLUT-4 protein was detected by Western blot for each group. RESULTS Azide-induced chemical hypoxia and AICAR both increased glucose uptake and GLUT-4 translocation in cardiomyocytes, and AICAR had an additive effect on insulin action. Ara A decreased AICAR- and azide-induced glucose uptake and GLUT-4 translocation but did not affect basal or insulin-stimulated glucose uptake. CONCLUSIONS Azide-induced chemical hypoxia increased glucose uptake and GLUT-4 translocation in neonatal rat cardiomyocytes through a mechanism that at least was partially mediated by AMPK activation.
Collapse
Affiliation(s)
- Fu Guan
- Department of Cardiology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | | | | | | | | | | |
Collapse
|
11
|
Gross ER, Hsu AK, Gross GJ. Diabetes abolishes morphine-induced cardioprotection via multiple pathways upstream of glycogen synthase kinase-3beta. Diabetes 2007; 56:127-36. [PMID: 17192474 DOI: 10.2337/db06-0907] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The cardioprotective effect of opioids or glycogen synthase kinase (GSK) inhibitors given at reperfusion has not been investigated in diabetes models. Therefore, nondiabetic (NDBR) or streptozotocin-induced diabetic (DBR) rat hearts were subjected to 30 min of ischemia and 2 h of reperfusion. Groups of NDBR or DBR were administered either vehicle, morphine (0.3 mg/kg), or the GSK inhibitor SB216763 (0.6 mg/kg) 5 min before reperfusion. SB216763 (but not morphine) reduced infarct size in DBRs (44 +/- 1* and 55 +/- 2%, respectively), while both agents reduced infarct size in NDBRs versus untreated NDBRs or DBRs (44 +/- 3*, 42 +/- 3*, 60 +/- 2, and 56 +/- 2%, respectively, *P < 0.001). Morphine-induced phospho- (P-)GSK3beta was reduced 5 min after reperfusion in DBRs compared with NDBRs (0.83 +/- 0.29 and 1.94 +/- 0.12 [P < 0.05] pg/microg tissue, respectively). The GSK3beta mediators, P-Akt, P-extracellular signal-related kinase (ERK)1, and P-signal transducer and activator of transcription (STAT)3, were also significantly reduced in untreated DBR compared with NDBR rats. Morphine-induced elevations of P-Akt, P-ERK1, P-p70s6, P-janus-activated kinase-2, and P-STAT3 in NDBRs were also blunted in DBRs. H9C2 cells raised in 25 mmol/l compared with 5.56 mmol/l glucose media also demonstrated reduced morphine-induced P-GSK3beta, P-Akt, P-STAT3, and P-ERK1 after 15 min. Hence, acute GSK inhibition may provide a novel therapeutic strategy for diabetic patients during an acute myocardial infarction, whereas morphine is less effective due to signaling events that adversely affect GSK3beta.
Collapse
Affiliation(s)
- Eric R Gross
- Medical College of Wisconsin, Department of Pharmacology and Toxicology, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
12
|
Wijesekara N, Tung A, Thong F, Klip A. Muscle cell depolarization induces a gain in surface GLUT4 via reduced endocytosis independently of AMPK. Am J Physiol Endocrinol Metab 2006; 290:E1276-86. [PMID: 16418206 DOI: 10.1152/ajpendo.00573.2005] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Contracting skeletal muscle increases glucose uptake to sustain energy demand. This is achieved through a gain in GLUT4 at the membrane, but the traffic mechanisms and regulatory signals involved are unknown. Muscle contraction is elicited by membrane depolarization followed by a rise in cytosolic Ca2+ and actomyosin activation, drawing on ATP stores. It is unknown whether one or more of these events triggers the rise in surface GLUT4. Here, we investigate the effect of membrane depolarization on GLUT4 cycling using GLUT4myc-expressing L6 myotubes devoid of sarcomeres and thus unable to contract. K+-induced membrane depolarization elevated surface GLUT4myc, and this effect was additive to that of insulin, was not prevented by inhibiting phosphatidylinositol 3-kinase (PI3K) or actin polymerization, and did not involve Akt activation. Instead, depolarization elevated cytosolic Ca2+, and the surface GLUT4myc elevation was prevented by dantrolene (an inhibitor of Ca2+ release from sarcoplasmic reticulum) and by extracellular Ca2+ chelation. Ca2+-calmodulin-dependent protein kinase-II (CaMKII) was not phosphorylated after 10 min of K+ depolarization, and the CaMK inhibitor KN62 did not prevent the gain in surface GLUT4myc. Interestingly, although 5'-AMP-activated protein kinase (AMPK) was phosphorylated upon depolarization, lowering AMPKalpha via siRNA did not alter the surface GLUT4myc gain. Conversely, the latter response was abolished by the PKC inhibitors bisindolylmaleimide I and calphostin C. Unlike insulin, K+ depolarization caused only a small increase in GLUT4myc exocytosis and a major reduction in its endocytosis. We propose that K+ depolarization reduces GLUT4 internalization through signals and mechanisms distinct from those engaged by insulin. Such a pathway(s) is largely independent of PI3K, Akt, AMPK, and CaMKII but may involve PKC.
Collapse
Affiliation(s)
- Nadeeja Wijesekara
- Programme in Cell Biology, The Hospital for Sick Children, 555 University Ave., Toronto, ON, Canada M5G 1X8
| | | | | | | |
Collapse
|
13
|
Hunt DG, Ding Z, Ivy JL. Propranolol prevents epinephrine from limiting insulin-stimulated muscle glucose uptake during contraction. J Appl Physiol (1985) 2002; 93:697-704. [PMID: 12133881 DOI: 10.1152/japplphysiol.00017.2002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Beta-blockade results in rapid glucose clearance and premature fatigue during exercise. To investigate the cause of this increased glucose clearance, we studied the acute effects of propranolol on insulin-stimulated muscle glucose uptake during contraction in the presence of epinephrine with an isolated rat muscle preparation. Glucose uptake increased in both fast- (epitrochlearis) and slow-twitch (soleus) muscle during insulin or contraction stimulation. In the presence of 24 nM epinephrine, glucose uptake during contraction was completely suppressed when insulin was present. This suppression of glucose uptake by epinephrine was accompanied by a decrease in insulin receptor substrate (IRS)-1-phosphatidylinositol 3 (PI3)-kinase activity. Propranolol had no direct effect on insulin-stimulated glucose uptake during contraction. However, epinephrine was ineffective in attenuating insulin-stimulated glucose uptake during contraction in the presence of propranolol. This ineffectiveness of epinephrine to suppress insulin-stimulated glucose uptake during contraction occurred in conjunction with its inability to completely suppress IRS-1-PI3-kinase activity. Results of this study indicate that the effectiveness of epinephrine to inhibit insulin-stimulated glucose uptake during contraction is severely diminished in muscle exposed to propranolol. Thus the increase in glucose clearance and premature fatigue associated with beta-blockade could result from the inability of epinephrine to attenuate insulin-stimulated muscle glucose uptake.
Collapse
Affiliation(s)
- Desmond G Hunt
- Exercise Physiology and Metabolism Laboratory, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
14
|
Cai L, Li W, Wang G, Guo L, Jiang Y, Kang YJ. Hyperglycemia-induced apoptosis in mouse myocardium: mitochondrial cytochrome C-mediated caspase-3 activation pathway. Diabetes 2002; 51:1938-48. [PMID: 12031984 DOI: 10.2337/diabetes.51.6.1938] [Citation(s) in RCA: 504] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diabetic cardiomyopathy is related directly to hyperglycemia. Cell death such as apoptosis plays a critical role in cardiac pathogenesis. Whether hyperglycemia induces myocardial apoptosis, leading to diabetic cardiomyopathy, remains unclear. We tested the hypothesis that apoptotic cell death occurs in the diabetic myocardium through mitochondrial cytochrome c-mediated caspase-3 activation pathway. Diabetic mice produced by streptozotocin and H9c2 cardiac myoblast cells exposed to high levels of glucose were used. In the hearts of diabetic mice, apoptotic cell death occurred as detected by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. Correspondingly, caspase-3 activation as determined by enzymatic assay and mitochondrial cytochrome c release detected by Western blotting analysis were observed. Supplementation of insulin inhibited diabetes-induced myocardial apoptosis as well as suppressed hyperglycemia. To explore whether apoptosis in diabetic hearts is related directly to hyperglycemia, we exposed cardiac myoblast H9c2 cells to high levels of glucose (22 and 33 mmol/l) in cultures. Apoptotic cell death was detected by TUNEL assay and DAPI nuclear staining. Caspase-3 activation with a concomitant mitochondrial cytochrome c release was also observed. Apoptosis or activation of caspase-3 was not observed in the cultures exposed to the same concentrations of mannitol. Inhibition of caspase-3 with a specific inhibitor, Ac-DEVD-cmk, suppressed apoptosis induced by high levels of glucose. In addition, reactive oxygen species (ROS) generation was detected in the cells exposed to high levels of glucose. These results suggest that hyperglycemia directly induces apoptotic cell death in the myocardium in vivo. Hyperglycemia-induced myocardial apoptosis is mediated, at least in part, by activation of the cytochrome c-activated caspase-3 pathway, which may be triggered by ROS derived from high levels of glucose.
Collapse
Affiliation(s)
- Lu Cai
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Poirier LA, Rachdaoui N, Nagy LE. GLUT4 vesicle trafficking in rat adipocytes after ethanol feeding: regulation by heterotrimeric G-proteins. Biochem J 2001; 354:323-30. [PMID: 11171110 PMCID: PMC1221659 DOI: 10.1042/0264-6021:3540323] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Long-term ethanol consumption decreases insulin-stimulated glucose uptake in isolated rat adipocytes. Here we investigate the mechanisms for this decrease. Male Wistar rats were fed for 4 weeks with a liquid diet containing 35% of the calories from ethanol and compared with pair-fed controls. Stimulation of 3-O-methylglucose transport in isolated adipocytes by insulin was decreased by 70% after ethanol feeding. However, stimulation by insulin of the tyrosine phosphorylation of the p85 subunit of phosphoinositide 3-kinase and the phosphorylation of Akt were not affected by ethanol feeding. GLUT4 was mobilized from intracellular light microsomes in response to insulin in both pair-fed and ethanol-fed rats, resulting in 4.3-fold and 3.3-fold increases in GLUT4 associated with plasma membrane in pair-fed and ethanol-fed rats respectively. Surface-accessible GLUT4, assessed by a trypsin cleavage assay or cell-surface labelling with bis-mannose photolabel, was increased 2.3-fold and 1.6-fold respectively, in pair-fed rats after treatment with insulin. In contrast, insulin did not increase surface-accessible GLUT4 in ethanol-fed rats. Treatment of adipocytes with R-phenylisopropyladenosine, an adenosine A1 receptor agonist, increased the transport of 3-O-methylglucose and trypsin-accessible GLUT4, in adipocytes from both pair-fed and ethanol-fed rats. These results demonstrate that whereas the insulin-mediated signalling and translocation of GLUT4 to the plasma membrane is maintained after ethanol feeding, the final fusion of GLUT4 vesicles to the plasma membrane is disrupted, preventing the stimulation of glucose uptake by insulin. Fusion of GLUT4 with the plasma membrane can be stimulated by the activation of adenosine A1 receptors.
Collapse
Affiliation(s)
- L A Poirier
- Department of Nutrition, Room 201, Case Western Reserve University, 2123 Abington Road, Cleveland, OH 44106-4906, U.S.A
| | | | | |
Collapse
|
16
|
Yu B, Schroeder A, Nagy LE. Ethanol stimulates glucose uptake and translocation of GLUT-4 in H9c2 myotubes via a Ca(2+)-dependent mechanism. Am J Physiol Endocrinol Metab 2000; 279:E1358-65. [PMID: 11093924 DOI: 10.1152/ajpendo.2000.279.6.e1358] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Short-term exposure to ethanol impairs glucose homeostasis, but the effects of ethanol on individual components of the glucose disposal pathway are not known. To understand the mechanisms by which ethanol disrupts glucose homeostasis, we have investigated the direct effects of ethanol on glucose uptake and translocation of GLUT-4 in H9c2 myotubes. Short-term treatment with 12.5-50 mM ethanol increased uptake of 2-deoxyglucose by 1.8-fold in differentiated myotubes. Pretreatment of H9c2 myotubes with 100 nM wortmannin, an inhibitor of phosphatidylinositol 3-kinase, had no effect on ethanol-induced increases in 2-deoxyglucose uptake. In contrast, preincubation with 25 microM dantrolene, an inhibitor of Ca(2+) release from the sarcoplasmic reticulum, blocked the stimulation of 2-deoxyglucose uptake by ethanol. Increased 2-deoxyglucose uptake after ethanol treatment was associated with a decrease in small intracellular GLUT-4 vesicles and an increase in GLUT-4 localized at the cell surface. In contrast, ethanol had no effect on the quantity of GLUT-1 and GLUT-3 at the plasma membrane. These data demonstrate that physiologically relevant concentrations of ethanol disrupt the trafficking of GLUT-4 in H9c2 myotubes resulting in translocation of GLUT-4 to the plasma membrane and increased glucose uptake.
Collapse
Affiliation(s)
- B Yu
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|