1
|
Imierska M, Zabielski P, Roszczyc-Owsiejczuk K, Pogodzińska K, Błachnio-Zabielska A. Impact of reduced hepatic ceramide levels in high-fat diet mice on glucose metabolism. J Nutr Biochem 2024:109785. [PMID: 39427846 DOI: 10.1016/j.jnutbio.2024.109785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/27/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Dysregulation of insulin action in hepatocytes, common in obesity, significantly contributes to insulin resistance, type 2 diabetes, and metabolic syndrome. Previous research highlights ceramides' role in these conditions. This study explores the impact of ceramides by silencing the serine palmitoyltransferase (Sptlc2) gene, crucial for the initial ceramide biosynthesis, using hydrodynamic gene delivery. Male C57BL/6 mice were randomly divided into three groups: one on a low-fat diet (LFD) receiving scrambled shRNA plasmids, another on a high-fat diet (HFD) with scrambled shRNA plasmids, and a third on HFD with a plasmid targeting Sptlc2. Analyses included RT-PCR for gene expression, western blot for protein levels, and UHPLC/MS/MS for lipid profiling. Glucose metabolism was evaluated via oral glucose tolerance tests, homeostatic model assessment of insulin resistance, and glucose-6-phosphate analysis. Results showed that HFD induces insulin resistance by inhibiting insulin signaling and increasing active lipid levels in hepatocytes. Sptlc2 silencing reduced ceramide accumulation, improving insulin signaling and glucose metabolism. Notably, ceramide synthesis inhibition did not significantly affect other lipid levels, highlighting ceramide's critical role in hepatic insulin resistance.
Collapse
Affiliation(s)
- Monika Imierska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Mickiewicza 2c, 15-089 Bialystok, Poland.
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, Mickiewicza 2c, 15-089 Bialystok, Poland.
| | - Kamila Roszczyc-Owsiejczuk
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Mickiewicza 2c, 15-089 Bialystok, Poland.
| | - Karolina Pogodzińska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Mickiewicza 2c, 15-089 Bialystok, Poland.
| | - Agnieszka Błachnio-Zabielska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Mickiewicza 2c, 15-089 Bialystok, Poland.
| |
Collapse
|
2
|
Zabielski P, Roszczyc-Owsiejczuk K, Imierska M, Pogodzińska K, Błachnio-Zabielska AU. Silencing the glycerol-3-phosphate acyltransferase-1 gene in the liver of mice fed a high-fat diet, enhances insulin sensitivity and glucose metabolism by promoting fatty acid beta-oxidation. Biomed Pharmacother 2024; 180:117531. [PMID: 39383732 DOI: 10.1016/j.biopha.2024.117531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Liver plays a central role in systemic glucose and lipid metabolism. High-fat diet (HFD) and obesity are related to hepatic lipid accumulation and insulin resistance (InsR). Diacylglycerols (DAG) play a key role in the induction of InsR, however their involvement in hepatic InsR remains debated. This study aimed to clarify and confirm the role of glycero-3-phosphate acyltransferase 1 (GPAT1), a rate-limiting enzyme in DAG synthesis, in the progression of hepatic InsR in the context of HFD-induced lipid accumulation and insulin resistance in the liver. METHODS Liver-targeted GPAT1 silencing was performed using shRNA-mediated hydrodynamic gene delivery. Lipid species including LCA-CoA, sphingolipids, DAG and acyl-carnitines were quantified using UHPLC/MS/MS while insulin signalling was assessed at protein level by Western Blot. Hepatic glucose metabolism, including glucose-6-pasphate content and gluconeogenesis rate was evaluated using GC/MS. RESULTS HFD-fed animals developed InsR, evidenced by increased HOMA-IR, enhanced gluconeogenesis and reduced glycogen content compared to controls. Hepatic GPAT1 silencing in HFD-fed animals resulted in a significant reduction of DAG and TAG levels, increased acyl-carnitines content and upregulated mitochondrial β-oxidation protein expression. These changes were accompanied by improved insulin signalling, enhanced glycogen storage, and reduced gluconeogenesis. CONCLUSIONS Silencing GPAT1, and thereby reducing glycerolipid synthesis, promotes β-oxidation and ameliorates HFD-induced hepatic insulin resistance, confirming the enzyme's pivotal role in liver metabolic dysfunction associated with increased lipid supply.
Collapse
Affiliation(s)
- Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, Bialystok, Poland
| | - Kamila Roszczyc-Owsiejczuk
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Monika Imierska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Karolina Pogodzińska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | | |
Collapse
|
3
|
Roszczyc-Owsiejczuk K, Zabielski P, Imierska M, Pogodzińska K, Sadowska P, Błachnio-Zabielska A. Downregulation of CerS4 Instead of CerS2 in Liver Effectively Alleviates Hepatic Insulin Resistance in HFD Male Mice. Endocrinology 2024; 165:bqae118. [PMID: 39233348 DOI: 10.1210/endocr/bqae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/27/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
OBJECTIVE Consumption of a high-fat diet (HFD) induces insulin resistance (IRes), significantly affecting the maintenance of normal glucose homeostasis. Nevertheless, despite decades of extensive research, the mechanisms and pathogenesis of IRes remain incomplete. Recent studies have primarily explored lipid intermediates such as diacylglycerol (DAG), given a limited knowledge about the role of ceramide (Cer), which is a potential mediator of the IRes in the liver. METHODS In order to investigate the role of Cer produced by CerS2 and CerS4 for the purpose of inducing the hepatic IRes, we utilized a unique in vivo model employing shRNA-mediated hydrodynamic gene delivery in the liver of HFD-fed C57BL/6J mice. RESULTS Downregulation of CerS4 instead of CerS2 reduced specific liver Cers, notably C18:0-Cer and C24:0-Cer, as well as acylcarnitine levels. It concurrently promoted glycogen accumulation, leading to enhanced insulin sensitivity and glucose homeostasis. CONCLUSION Those findings demonstrate that CerS4 downregulating lowers fasting blood glucose levels and mitigates the HFD-induced hepatic IRes. It suggests that inhibiting the CerS4-mediated C18:0-Cer synthesis holds a promise to effectively address insulin resistance in obesity.
Collapse
Affiliation(s)
- Kamila Roszczyc-Owsiejczuk
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Monika Imierska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Karolina Pogodzińska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Patrycja Sadowska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Agnieszka Błachnio-Zabielska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 15-222 Bialystok, Poland
| |
Collapse
|
4
|
Zabielski P, Imierska M, Roszczyc-Owsiejczuk K, Kuźmicki M, Rogalski P, Daniluk J, Błachnio-Zabielska AU. The Role of Acyl-CoA Synthetase 1 in Bioactive Lipid Accumulation and the Development of Hepatic Insulin Resistance. Nutrients 2024; 16:1003. [PMID: 38613036 PMCID: PMC11013895 DOI: 10.3390/nu16071003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The liver plays a crucial role in glucose metabolism. Obesity and a diet rich in fats (HFD) contribute to the accumulation of intracellular lipids. The aim of the study was to explore the involvement of acyl-CoA synthetase 1 (ACSL1) in bioactive lipid accumulation and the induction of liver insulin resistance (InsR) in animals fed an HFD. The experiments were performed on male C57BL/6 mice divided into the following experimental groups: 1. Animals fed a control diet; 2. animals fed HFD; and 3. HFD-fed animals with the hepatic ACSL1 gene silenced through a hydrodynamic gene delivery technique. Long-chain acyl-CoAs, sphingolipids, and diacylglycerols were measured by LC/MS/MS. Glycogen was measured by means of a commercially available kit. The protein expression and phosphorylation state of the insulin pathway was estimated by Western blot. HFD-fed mice developed InsR, manifested as an increase in fasting blood glucose levels (202.5 mg/dL vs. 130.5 mg/dL in the control group) and inhibition of the insulin pathway, which resulted in an increase in the rate of gluconeogenesis (0.420 vs. 0.208 in the control group) and a decrease in the hepatic glycogen content (1.17 μg/mg vs. 2.32 μg/mg in the control group). Hepatic ACSL1 silencing resulted in decreased lipid content and improved insulin sensitivity, accounting for the decreased rate of gluconeogenesis (0.348 vs. 0.420 in HFD(+/+)) and the increased glycogen content (4.3 μg/mg vs. 1.17 μg/mg in HFD(+/+)). The elevation of gluconeogenesis and the decrease in glycogenesis in the hepatic tissue of HFD-fed mice resulted from cellular lipid accumulation. Inhibition of lipid synthesis through silencing ACSL1 alleviated HFD-induced hepatic InsR.
Collapse
Affiliation(s)
- Piotr Zabielski
- Medical Biology Department, Medical University of Bialystok, 15-222 Bialystok, Poland;
| | - Monika Imierska
- Hygiene, Epidemiology and Metabolic Disorders Department, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland; (M.I.); (K.R.-O.)
| | - Kamila Roszczyc-Owsiejczuk
- Hygiene, Epidemiology and Metabolic Disorders Department, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland; (M.I.); (K.R.-O.)
| | - Mariusz Kuźmicki
- Gynecology and Gynecological Oncology Department, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | - Paweł Rogalski
- Gastroenterology and Internal Medicine Department, Medical University of Bialystok, 15-276 Bialystok, Poland; (P.R.); (J.D.)
| | - Jarosław Daniluk
- Gastroenterology and Internal Medicine Department, Medical University of Bialystok, 15-276 Bialystok, Poland; (P.R.); (J.D.)
| | - Agnieszka U. Błachnio-Zabielska
- Hygiene, Epidemiology and Metabolic Disorders Department, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland; (M.I.); (K.R.-O.)
| |
Collapse
|
5
|
Ziari N, Hellerstein M. Measurement of gluconeogenesis by 2H 2O labeling and mass isotopomer distribution analysis. J Biol Chem 2023; 299:105206. [PMID: 37660907 PMCID: PMC10539955 DOI: 10.1016/j.jbc.2023.105206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023] Open
Abstract
The gluconeogenesis pathway, which converts nonsugar molecules into glucose, is critical for maintaining glucose homeostasis. Techniques that measure flux through this pathway are invaluable for studying metabolic diseases such as diabetes that are associated with dysregulation of this pathway. We introduce a new method that measures fractional gluconeogenesis by heavy water labeling and gas chromatographic-mass spectrometric analysis. This technique circumvents cumbersome benchwork or inference of positionality from mass spectra. The enrichment and pattern of deuterium label on glucose is quantified by use of mass isotopomer distribution analysis, which informs on how much of glucose-6-phosphate-derived glucose comes from the gluconeogenesis (GNG) pathway. We use an in vivo model of the GNG pathway that is based on previously published models but offers a new approach to calculating GNG pathway and subpathway contributions using combinatorial probabilities. We demonstrated that this method accurately quantifies fractional GNG through experiments that perturb flux through the pathway and by probing analytical sensitivity. While this method was developed in mice, the results suggest that it is translatable to humans in a clinical setting.
Collapse
Affiliation(s)
- Naveed Ziari
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, California, USA
| | - Marc Hellerstein
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, California, USA.
| |
Collapse
|
6
|
Abstract
Gluconeogenesis is a complex metabolic process that involves multiple enzymatic steps regulated by myriad factors, including substrate concentrations, the redox state, activation and inhibition of specific enzyme steps, and hormonal modulation. At present, the most widely accepted technique to determine gluconeogenesis is by measuring the incorporation of deuterium from the body water pool into newly formed glucose. However, several techniques using radioactive and stable-labeled isotopes have been used to quantitate the contribution and regulation of gluconeogenesis in humans. Each method has its advantages, methodological assumptions, and set of propagated errors. In this review, we examine the strengths and weaknesses of the most commonly used stable isotopes methods to measure gluconeogenesis in vivo. We discuss the advantages and limitations of each method and summarize the applicability of these measurements in understanding normal and pathophysiological conditions.
Collapse
Affiliation(s)
- Stephanie T Chung
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Shaji K Chacko
- U.S. Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Agneta L Sunehag
- U.S. Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Morey W Haymond
- U.S. Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
7
|
Mohammad MA, Maningat P, Sunehag AL, Haymond MW. Precursors of hexoneogenesis within the human mammary gland. Am J Physiol Endocrinol Metab 2015; 308:E680-7. [PMID: 25670824 PMCID: PMC4398832 DOI: 10.1152/ajpendo.00356.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 02/06/2015] [Indexed: 11/22/2022]
Abstract
The human mammary gland is capable of de novo synthesis of glucose and galactose (hexoneogenesis); however, the carbon source is incompletely understood. In this study, we investigated the role of acetate, glutamine, lactate and glycerol as potential carbon sources for hexoneogenesis. Healthy breastfeeding women were studied following a 24-h fast on two occasions separated by 1-3 wk. Five women were infused with [U-¹³C]lactate or [1,2-¹³C₂]glutamine and five women with [U-¹³C]glycerol or [1,2-¹³C₂]acetate. Enrichments of ¹³C in plasma and milk substrates were analyzed using GC-MS. Infusion of labeled lactate, glycerol, glutamine, and acetate resulted in plasma glucose being 22.0±3.7, 11.2±1.0, 2.5±0.5, and 1.3±0.2% labeled, respectively. Lactate, glutamine, or acetate did not contribute to milk glucose or galactose (0-2%). In milk, ¹³C-free glycerol enrichment was one-fourth that in plasma but free glycerol concentration in milk was fourfold higher than in plasma. Using [U-¹³C]glycerol and by accounting for tracer dilution, glycerol alone contributed to 10±2 and 69±11% of the hexoneogenesis of milk glucose and galactose, respectively. During [U-¹³C]glycerol infusion, the ratio of M₃ enrichment on 4-6 carbons/M₃ on 1-3 carbons of galactose was higher (P<0.05, 1.22±0.05) than those of glucose in plasma (1.05±0.03) and milk (1.07±0.02). Reanalysis of samples from a previous study involving [U-¹³C]glucose infusion alone suggested labeling a portion of galactose consistent with pentose phosphate pathway (PPP) activity. We conclude that, although lactate contributed significantly to gluconeogenesis, glycerol alone provides the vast majority of substrate for hexoneogenesis. The relative contribution of the PPP vs. the reversal Embden-Meyerhof pathway to hexoneogenesis within the human mammary gland remains to be determined.
Collapse
Affiliation(s)
- Mahmoud A Mohammad
- Department of Pediatrics, Children's Nutrition Research Center, US Department of Agriculture/Agricultural Research Service, Baylor College of Medicine, Houston, Texas
| | - Patricia Maningat
- Department of Pediatrics, Children's Nutrition Research Center, US Department of Agriculture/Agricultural Research Service, Baylor College of Medicine, Houston, Texas
| | - Agneta L Sunehag
- Department of Pediatrics, Children's Nutrition Research Center, US Department of Agriculture/Agricultural Research Service, Baylor College of Medicine, Houston, Texas
| | - Morey W Haymond
- Department of Pediatrics, Children's Nutrition Research Center, US Department of Agriculture/Agricultural Research Service, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
8
|
Chung ST, Hsia DS, Chacko SK, Rodriguez LM, Haymond MW. Increased gluconeogenesis in youth with newly diagnosed type 2 diabetes. Diabetologia 2015; 58:596-603. [PMID: 25447079 PMCID: PMC4323952 DOI: 10.1007/s00125-014-3455-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/03/2014] [Indexed: 12/21/2022]
Abstract
AIMS/HYPOTHESIS The role of increased gluconeogenesis as an important contributor to fasting hyperglycaemia at diabetes onset is not known. We evaluated the contribution of gluconeogenesis and glycogenolysis to fasting hyperglycaemia in newly diagnosed youths with type 2 diabetes following an overnight fast. METHODS Basal rates (μmol kg(FFM) (-1) min(-1)) of gluconeogenesis ((2)H2O), glycogenolysis and glycerol production ([(2)H5] glycerol) were measured in 18 adolescents (nine treatment naive diabetic and nine normal-glucose-tolerant obese adolescents). RESULTS Type 2 diabetes was associated with higher gluconeogenesis (9.2 ± 0.6 vs 7.0 ± 0.3 μmol kg(FFM) (-1) min(-1), p < 0.01), plasma fasting glucose (7.0 ± 0.6 vs 5.0 ± 0.2 mmol/l, p = 0.004) and insulin (300 ± 30 vs 126 ± 31 pmol/l, p = 0.001). Glucose production and glycogenolysis were similar between the groups (15.4 ± 0.3 vs 12.4 ± 1.4 μmol kg(FFM) (-1) min(-1), p = 0.06; and 6.2 ± 0.8 vs 5.3 ± 0.7 μmol kg(FFM) (-1) min(-1), p = 0.5, respectively). After controlling for differences in adiposity, gluconeogenesis, glycogenolysis and glucose production were higher in diabetic youth (p ≤ 0.02). Glycerol concentration (84 ± 6 vs 57 ± 6 μmol/l, p = 0.01) and glycerol production (5.0 ± 0.3 vs 3.6 ± 0.5 μmol kg(FFM) (-1) min(-1), p = 0.03) were 40% higher in youth with diabetes. The increased glycerol production could account for only ~1/3 of substrate needed for the increased gluconeogenesis in diabetic youth. CONCLUSION/INTERPRETATIONS Increased gluconeogenesis was a major contributor to fasting hyperglycaemia and hepatic insulin resistance in newly diagnosed untreated adolescents and was an early pathological feature of type 2 diabetes. Increased glycerol availability may represent a significant source of new carbon substrates for increased gluconeogenesis but would not account for all the carbons required to sustain the increased rates.
Collapse
Affiliation(s)
- Stephanie T Chung
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH 10 Center Dr. Bld 10-CRC, RM 5-5740, MSC 1612, Bethesda, MD, 20892-1612, USA,
| | | | | | | | | |
Collapse
|
9
|
El-Hattab AW, Emrick LT, Hsu JW, Chanprasert S, Jahoor F, Scaglia F, Craigen WJ. Glucose metabolism derangements in adults with the MELAS m.3243A>G mutation. Mitochondrion 2014; 18:63-9. [PMID: 25086207 PMCID: PMC4252755 DOI: 10.1016/j.mito.2014.07.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 07/20/2014] [Accepted: 07/21/2014] [Indexed: 02/08/2023]
Abstract
The m.3243A>G mutation in the mitochondrial gene MT-TL1 leads to a wide clinical spectrum ranging from asymptomatic carriers to MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) at the severe end. Diabetes mellitus (DM) occurs in mitochondrial diseases, with the m.3243A>G mutation being the most common mutation associated with mitochondrial DM. The pathogenesis of mitochondrial DM remains largely unknown, with previous studies suggesting that impaired insulin secretion is the major factor. In this study we used stable isotope infusion techniques to assess glucose metabolism in vivo and under physiological conditions in 5 diabetic and 11 non-diabetic adults with the m.3243A>G mutation and 10 healthy adult controls. Our results revealed increased glucose production due to increased gluconeogenesis in both diabetic and non-diabetic subjects with the m.3243A>G mutation. In addition, diabetic subjects demonstrated insulin resistance and relative insulin deficiency, resulting in an inability to increase glucose oxidation which can explain the development of DM in these subjects. Non-diabetic subjects showed normal insulin sensitivity; and therefore, they were able to increase their glucose oxidation rate. The ability to increase glucose utilization can act as a compensatory mechanism that explains why these subjects do not have DM despite the higher rate of glucose production. These results suggest that increased gluconeogenesis is not enough to cause DM and the occurrence of combined insulin resistance and relative insulin deficiency are needed to develop DM in individuals with the m.3243A>G mutation. Therefore, multiple defects in insulin and glucose metabolism are required for DM to occur in individuals with mitochondrial diseases. The results of this study uncover previously undocumented alterations in glucose metabolism in individuals with the m.3243A>G mutation that contribute significantly to our understanding of the pathogenesis of mitochondrial DM and can have significant implications for its management.
Collapse
Affiliation(s)
- Ayman W El-Hattab
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Division of Clinical Genetics and Metabolic Disorders, Department of Pediatrics, Tawam Hospital, Al-Ain, United Arab Emirates
| | - Lisa T Emrick
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Jean W Hsu
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Sirisak Chanprasert
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Farook Jahoor
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA.
| | - William J Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
10
|
Kamolrat T, Gray SR, Thivierge MC. Fish oil positively regulates anabolic signalling alongside an increase in whole-body gluconeogenesis in ageing skeletal muscle. Eur J Nutr 2012; 52:647-57. [PMID: 22581256 DOI: 10.1007/s00394-012-0368-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/24/2012] [Indexed: 10/28/2022]
Abstract
PURPOSE Fish oil, containing mainly long-chain n-3 polyunsaturated fatty acids (LCn-3PUFA), has been found to acutely stimulate protein synthesis and insulin-mediated glucose metabolism. However, the underlying mechanism and more prolonged effect of fish oil during ageing remain to be determined. METHODS Fish oil (EPAX6000; 49.6 % eicosapentaenoic acid, 50.4 % docosahexaenoic acid) or control oil (60 % olive, 40 % soy) supplementation was delivered, via chocolate-derived sweets, to rats for 8 weeks. Throughout the study, food intake and body weight were recorded and body composition was investigated using EchoMRI. During the last 40 min of a 6 h infusion, with labelled dextrose ([U-(13)C]glucose) and amino acids ([1-(13)C]phenylalanine), blood samples were collected to assess glucose and phenylalanine kinetics. Soleus and longissimus dorsi muscles were extracted for protein and mRNA analyses. RESULTS Fish oil had no effect on food intake or body composition. An increased whole-body glucose turnover, mainly accounted for via an increase in endogenous glucose production, was observed with fish oil feeding. No effects on whole-body phenylalanine turnover were observed. In longissimus dorsi, fish oil augmented the phosphorylation of phosphoinositide 3-kinase (PI3K)([Tyr458]) (P = 0.04) and 70 kDa ribosomal protein S6 kinase (p70s6k)([Thr389]) (P = 0.04). There were no differences in protein kinase B (Akt)([Ser473]), mammalian target of rapamycin (mTOR)([Ser2448]), protein phosphatase 2A (PP2A) 56 kDa regulatory B subunit γ (PP2A-B56-γ), forkhead box containing proteins O-subclass 3a (FOX03a)([Ser253]) or inflammatory markers (Interleukin-6, Interleukin-1 β, tumour necrosis factor-α, and cyclooxygenase-2). CONCLUSIONS Our data suggest that the fish oil may stimulate endogenous glucose production and increase anabolic signalling in ageing rats.
Collapse
Affiliation(s)
- Torkamol Kamolrat
- Musculoskeletal Research Programme, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| | | | | |
Collapse
|
11
|
Basu R, Barosa C, Basu A, Pattan V, Saad A, Jones J, Rizza R. Transaldolase exchange and its effects on measurements of gluconeogenesis in humans. Am J Physiol Endocrinol Metab 2011; 300:E296-303. [PMID: 21062960 PMCID: PMC3043622 DOI: 10.1152/ajpendo.00403.2010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The deuterated water method is used extensively to measure gluconeogenesis in humans. This method assumes negligible exchange of the lower three carbons of fructose 6-phsophate via transaldolase exchange since this exchange will result in enrichment of carbon 5 of glucose in the absence of net gluconeogenesis. The present studies tested this assumption. ²H₂O and acetaminophen were ingested and [1-¹³C]acetate infused in 11 nondiabetic subjects after a 16-h fast. Plasma and urinary glucuronide enrichments were measured using nuclear magnetic resonance spectroscopy before and during a 0.35 mU·kg FFM⁻¹·min⁻¹ insulin infusion. Rates of endogenous glucose production measured with [3-³H]- and [6,6-²H₂]glucose did not differ either before (14.0 ± 0.7 vs. 13.8 ± 0.7 μmol·kg⁻¹·min⁻¹) or during the clamp (10.4 ± 0.9 vs. 10.9 ± 0.7 μmol·kg⁻¹·min⁻¹), consistent with equilibration and quantitative removal of tritium during triose isomerase exchange. Plasma [3-¹³C] glucose-to-[4-¹³C]glucose and urinary [3-¹³C] glucuronide-to-[4-¹³C]glucuronide ratios were <1.0 (P < 0.001) in all subjects both before (0.66 ± 0.04 and 0.60 ± 0.04) and during (059 ± 0.05 and 0.56 ± 0.06) the insulin infusion, respectively, indicating that ∼35-45% of the labeling of the 5th carbon of glucose by deuterium was due to transaldolase exchange rather than gluconeogenesis. When corrected for transaldolase exchange, rates of gluconeogenesis were lower (P < 0.001) and glycogenolysis higher (P < 0.001) than uncorrected rates both before and during the insulin infusion. In conclusion, assuming negligible dilution by glycerol and near-complete triose isomerase equilibration, these data provide strong experimental evidence that transaldolase exchange occurs in humans, resulting in an overestimate of gluconeogenesis and an underestimate of glycogenolysis when measured with the ²H₂O method. Use of appropriate ¹³C tracers provides a means of correcting for transaldolase exchange.
Collapse
Affiliation(s)
- Rita Basu
- Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Coss-Bu JA, Sunehag AL, Haymond MW. Contribution of galactose and fructose to glucose homeostasis. Metabolism 2009; 58:1050-8. [PMID: 19481772 PMCID: PMC2730655 DOI: 10.1016/j.metabol.2009.02.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 02/23/2009] [Indexed: 11/26/2022]
Abstract
To determine the contributions of galactose and fructose to glucose formation, 6 subjects (26 +/- 2 years old; body mass index, 22.4 +/- 0.2 kg/m(2)) (mean +/- SE) were studied during fasting conditions. Three subjects received a primed constant intravenous infusion of [6,6-(2)H(2)]glucose for 3 hours followed by oral bolus ingestion of galactose labeled to 2% with [U-(13)C]galactose (0.72 g/kg); the other 3 subjects received a primed constant intravenous infusion of [6,6-(2)H(2)]glucose followed by either a bolus ingestion of fructose alone (0.72 g/kg) (labeled to 2% with [U-(13)C]fructose) or coingestion of fructose (labeled with [U-(13)C]fructose) (0.72 g/kg) and unlabeled glucose (0.72 g/kg). Four hours after ingestion, subjects received 1 mg of glucagon intravenously to stimulate glycogenolysis. When galactose was ingested alone, the area under the curve (AUC) of [(13)C(6)]glucose and [(13)C(3)]glucose was 7.28 +/- 0.39 and 3.52 +/- 0.05 mmol/L per 4 hours, respectively. When [U-(13)C]fructose was ingested with unlabeled fructose or unlabeled fructose plus glucose, no [(13)C(6)]glucose was detected in plasma. The AUC of [(13)C(3)]glucose after fructose and fructose plus glucose ingestion was 20.21 +/- 2.41 and 6.25 +/- 0.34 mmol/L per 4 hours, respectively. Comparing the AUC for the (13)C(3) vs (13)C(6) enrichments, 67% of oral galactose enters the systemic circulation via a direct route and 33% via an indirect route. In contrast, fructose only enters the systemic circulation via the indirect route. Finally, when ingested alone, fructose and galactose contribute little to glycogen synthesis. After the coingestion of fructose and glucose with the resultant insulin response from the glucose, fructose is a significant contributor to glycogen synthesis.
Collapse
Affiliation(s)
- Jorge A Coss-Bu
- Department of Pediatrics, Children's Nutrition Research Center, US Department of Agriculture/Agricultural Research Service, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
13
|
Mohammad MA, Sunehag AL, Haymond MW. Effect of dietary macronutrient composition under moderate hypocaloric intake on maternal adaptation during lactation. Am J Clin Nutr 2009; 89:1821-7. [PMID: 19386740 PMCID: PMC2682997 DOI: 10.3945/ajcn.2008.26877] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND No evidence-based recommendations exist concerning what dietary macronutrient composition optimizes weight loss during lactation while maintaining milk production. OBJECTIVES The study was designed to test the following hypotheses: compared with a reduced-calorie, high-carbohydrate (H-CHO) diet, an isonitrogenous, isocaloric high-fat (H-F) diet will decrease milk production and carbohydrate oxidation, increase gluconeogenesis and hexoneogenesis, and not affect energy balance. DESIGN Seven healthy lactating mothers and their infants were studied on 2 occasions in random order for 8 d separated by 1-2 wk. On one occasion, the subjects received the H-F (30% of energy as carbohydrate and 55% as fat) diet and on the other occasion received the H-CHO (60% of energy as carbohydrate and 25% as fat) diet. Milk production, infant intakes, and substrate and hormone concentrations were measured. Glucose rates of appearance, production, gluconeogenesis, glycogenolysis, and hexoneogenesis were measured by using stable-isotope gas chromatography-mass spectrometric techniques, and energy expenditure and substrate oxidation were measured by using indirect calorimetry. RESULTS Milk volume, lactose, and protein concentrations were unaffected. Milk fat, energy, and infant intakes were higher (P < 0.05) during the H-F diet. Neither gluconeogenesis nor hexoneogenesis was different. During the H-F diet, energy expenditure and fat and protein oxidation rates were higher (P < 0.05), and the daily energy balance deficit was greater (P < 0.01). CONCLUSIONS Milk fat, energy output, and energy expenditure were higher during the H-F diet, which resulted in a greater negative energy balance. The lactating mothers adapted to a low carbohydrate intake by decreasing carbohydrate oxidation. Additional studies are warranted to determine whether a hypocaloric H-F diet might promote weight loss to a greater extent than the H-CHO diet while maintaining milk production.
Collapse
Affiliation(s)
- Mahmoud A Mohammad
- Department of Pediatrics, Children's Nutrition Research Center, US Department of Agriculture, Agricultural Research Service, Baylor College of Medicine, Houston, TX 77030-2600, USA
| | | | | |
Collapse
|
14
|
Hardin DS, Rice J, Rice M, Rosenblatt R. Use of the insulin pump in treat cystic fibrosis related diabetes. J Cyst Fibros 2009; 8:174-8. [DOI: 10.1016/j.jcf.2008.12.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 08/21/2008] [Accepted: 12/07/2008] [Indexed: 11/16/2022]
|
15
|
Preynat A, Lapierre H, Thivierge MC, Palin MF, Matte JJ, Desrochers A, Girard CL. Effects of supplements of folic acid, vitamin B12, and rumen-protected methionine on whole body metabolism of methionine and glucose in lactating dairy cows. J Dairy Sci 2009; 92:677-89. [PMID: 19164680 DOI: 10.3168/jds.2008-1525] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The present experiment was undertaken to determine the effects of dietary supplements of rumen-protected methionine and intramuscular injections of folic acid and vitamin B(12), given 3 wk before to 16 wk after calving, on glucose and methionine metabolism of lactating dairy cows. Twenty-four multiparous Holstein cows were assigned to 6 blocks of 4 cows each according to their previous milk production. Within each block, 2 cows were fed a diet estimated to supply methionine as 1.83% metabolizable protein, equivalent to 76% of methionine requirement, whereas the 2 other cows were fed the same diet supplemented daily with 18 g of rumen-protected methionine. Within each diet, the cows were administrated either no vitamin supplement or weekly intramuscular injections of 160 mg of folic acid plus 10 mg of vitamin B(12.) To investigate metabolic changes at 12 wk of lactation, glucose and methionine kinetics were measured by isotope dilution using infusions of 3[U-(13)C]glucose, [(13)C]NaHCO(3) and 3[1-(13)C,(2)H(3)] methionine. Milk and plasma concentrations of folic acid and vitamin B(12) increased with vitamin injections. Supplementary B-vitamins increased milk production from 34.7 to 38.9 +/- 1.0 kg/d and increased milk lactose, protein, and total solids yields. Whole-body glucose flux tended to increase with vitamin supplementation with a similar quantitative magnitude as the milk lactose yield increase. Vitamin supplementation increased methionine utilization for protein synthesis through increased protein turnover when methionine was deficient and through decreased methionine oxidation when rumen-protected methionine was fed. Vitamin supplementation decreased plasma concentrations of homocysteine independently of rumen-protected methionine feeding, although no effect of vitamin supplementation was measured on methionine remethylation, but this could be due to the limitation of the technique used. Therefore, the effects of these B-vitamins on lactation performance were not mainly explained by methionine economy because of a more efficient methylneogenesis but were rather related to increased glucose availability and changes in methionine metabolism.
Collapse
Affiliation(s)
- A Preynat
- Agriculture et Agroalimentaire Canada, Centre de Recherche sur le Bovin Laitier et le Porc, Sherbrooke, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
16
|
Kaplan W, Sunehag AL, Dao H, Haymond MW. Short-term effects of recombinant human growth hormone and feeding on gluconeogenesis in humans. Metabolism 2008; 57:725-32. [PMID: 18502253 PMCID: PMC2727660 DOI: 10.1016/j.metabol.2008.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 01/07/2008] [Indexed: 12/27/2022]
Abstract
After a short-term fast, lactating women have increased rates of glucose production but not gluconeogenesis (GNG) despite relative hypoinsulinemia. We explored the effects of non-insulin-dependent increase in glucose utilization and recombinant human growth hormone (rhGH) on glucose production, glycogenolysis, and GNG in both the fed and overnight-fasted condition. Six controls and 7 lactating women were studied twice, in random order, after 7 days of saline or rhGH. Glucose kinetics and GNG were measured using [U-(13)C]glucose mass isotopomer distribution analysis. The rhGH increased milk production in the lactating women and insulin-like growth factor (IGF) in both groups. Glycogenolysis and GNG were higher in fasting lactating women than controls after either saline or rhGH (P < .05). After rhGH administration, GNG remained higher (P < .02) in the lactating women than controls. Gluconeogenesis was not suppressed in either group during 5 hours of continuous meal ingestion, despite a 5-fold increase in plasma insulin. Lactating women had similar glucose but lower insulin and C-peptide concentrations than controls after both rhGH and saline treatment (P < .01), although rhGH decreased (P < .01) insulin sensitivity in both groups (P < .05). Gluconeogenesis is not affected by short-term increases in insulin and/or rhGH, which suggests a fundamental rethinking of the role of insulin in acutely regulating GNG.
Collapse
Affiliation(s)
- Walid Kaplan
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030-2600, USA
| | | | | | | |
Collapse
|
17
|
Chacko SK, Sunehag AL, Sharma S, Sauer PJJ, Haymond MW. Measurement of gluconeogenesis using glucose fragments and mass spectrometry after ingestion of deuterium oxide. J Appl Physiol (1985) 2008; 104:944-51. [PMID: 18187615 DOI: 10.1152/japplphysiol.00752.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We report a new method to measure the fraction of glucose derived from gluconeogenesis using gas chromatography-mass spectrometry and positive chemical ionization. After ingestion of deuterium oxide by subjects, glucose derived from gluconeogenesis is labeled with deuterium. Our calculations of gluconeogenesis are based on measurements of the average enrichment of deuterium on carbon 1, 3, 4, 5, and 6 of glucose and the deuterium enrichment in body water. In a sample from an adult volunteer after ingestion of deuterium oxide, fractional gluconeogenesis using the "average deuterium enrichment method" was 48.3 +/- 0.5% (mean +/- SD) and that with the C-5 hexamethylenetetramine (HMT) method by Landau et al. (Landau BR, Wahren J, Chandramouli V, Schumann WC, Ekberg K, Kalhan SC; J Clin Invest 98: 378-385, 1996) was 46.9 +/- 5.4%. The coefficient of variation of 10 replicate analyses using the new method was 1.0% compared with 11.5% for the C-5 HMT method. In samples derived from an infant receiving total parenteral nutrition, fractional gluconeogenesis was 13.3 +/- 0.3% using the new method and 13.7 +/- 0.8% using the C-5 HMT method. Fractional gluconeogenesis measured in six adult volunteers after 66 h of continuous fasting was 83.7 +/- 2.3% using the new method and 84.2 +/- 5.0% using the C-5 HMT method. In conclusion, the average deuterium enrichment method is simple, highly reproducible, and cost effective. Furthermore, it requires only small blood sample volumes. With the use of an additional tracer, glucose rate of appearance can also be measured during the same analysis. Thus the new method makes measurements of gluconeogenesis available and affordable to large numbers of investigators under conditions of low and high fractional gluconeogenesis ( approximately 10 to approximately 90) in all subject populations.
Collapse
Affiliation(s)
- Shaji K Chacko
- USDA/ARS Children's Nutrition Research Center, 1100 Bates St., Houston, TX 77030-2600, USA.
| | | | | | | | | |
Collapse
|
18
|
Vo TD, Palsson BO. Isotopomer analysis of myocardial substrate metabolism: a systems biology approach. Biotechnol Bioeng 2006; 95:972-83. [PMID: 16878330 DOI: 10.1002/bit.21063] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The increasing accessibility of mass isotopomer data via GC-MS and NMR technology has necessitated the use of a systematic and reliable method to take advantage of such data for flux analysis. Here we applied a nonlinear, optimization-based method to study substrate metabolism in cardiomyocytes using (13)C data from perfused mouse hearts. The myocardial metabolic network used in this study accounts for 257 reactions and 240 metabolites, which are further compartmentalized into extracellular space, cytosol, and mitochondrial matrix. Analysis of the perfused mouse heart showed that the steady-state ATP production rate was 16.6 +/- 2.3 micromol/min . gww, with 30% of the ATP coming from glycolysis. Of the four substrates available in the perfusate (glucose, pyruvate, lactate, and oleate), exogenous glucose forms the majority of cytosolic pyruvate. Pyruvate decaboxylation is significantly higher than carboxylation, suggesting that anaplerosis is low in the perfused heart. Exchange fluxes were predicted to be high for reversible enzymes in the citric acid cycle (CAC), but low in the glycolytic pathway. Pseudoketogenesis amounted to approximately 50% of the net ketone body uptake. Sensitivity analysis showed that the estimated flux distributions were relatively insensitive to experimental errors. The application of isotopomer data drastically improved the estimation of reaction fluxes compared to results computed with respect to reaction stoichiometry alone. Further study of 12 commonly used (13)C glucose mixtures showed that the mixtures of 20% [U-(13)C(6)] glucose, 80% [3 (13)C] glucose and 20% [U-(13)C(6)] glucose, 80% [4 (13)C] were best for resolving fluxes in the current network.
Collapse
Affiliation(s)
- Thuy D Vo
- Department of Bioengineering, University of California, San Diego, California 92093, USA
| | | |
Collapse
|
19
|
Antoniewicz MR, Stephanopoulos G, Kelleher JK. Evaluation of regression models in metabolic physiology: predicting fluxes from isotopic data without knowledge of the pathway. Metabolomics 2006; 2:41-52. [PMID: 17066125 PMCID: PMC1622920 DOI: 10.1007/s11306-006-0018-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 02/06/2006] [Indexed: 10/27/2022]
Abstract
This study explores the ability of regression models, with no knowledge of the underlying physiology, to estimate physiological parameters relevant for metabolism and endocrinology. Four regression models were compared: multiple linear regression (MLR), principal component regression (PCR), partial least-squares regression (PLS) and regression using artificial neural networks (ANN). The pathway of mammalian gluconeogenesis was analyzed using [U-(13)C]glucose as tracer. A set of data was simulated by randomly selecting physiologically appropriate metabolic fluxes for the 9 steps of this pathway as independent variables. The isotope labeling patterns of key intermediates in the pathway were then calculated for each set of fluxes, yielding 29 dependent variables. Two thousand sets were created, allowing independent training and test data. Regression models were asked to predict the nine fluxes, given only the 29 isotopomers. For large training sets (>50) the artificial neural network model was superior, capturing 95% of the variability in the gluconeogenic flux, whereas the three linear models captured only 75%. This reflects the ability of neural networks to capture the inherent non-linearities of the metabolic system. The effect of error in the variables and the addition of random variables to the data set was considered. Model sensitivities were used to find the isotopomers that most influenced the predicted flux values. These studies provide the first test of multivariate regression models for the analysis of isotopomer flux data. They provide insight for metabolomics and the future of isotopic tracers in metabolic research where the underlying physiology is complex or unknown.
Collapse
Affiliation(s)
- Maciek R. Antoniewicz
- Department of Chemical Engineering, Bioinformatics and Metabolic Engineering Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Bioinformatics and Metabolic Engineering Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Joanne K. Kelleher
- Department of Chemical Engineering, Bioinformatics and Metabolic Engineering Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| |
Collapse
|
20
|
Tigas SK, Sunehag AL, Haymond MW. Impact of duration of infusion and choice of isotope label on isotope recycling in glucose homeostasis. Diabetes 2002; 51:3170-5. [PMID: 12401707 DOI: 10.2337/diabetes.51.11.3170] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The purposes of this study were to quantify the impact of the duration of infusion and choice of stable isotope of glucose on measures of glucose rate of appearance (glucose R(a)) and to determine whether the differences observed were due to tracer recycling via the glycogen pool (direct pathway) or gluconeogenesis (indirect pathway). Six healthy adult volunteers were studied on four occasions in the postabsorptive state during infusions of [1-(13)C]glucose and [6,6-(2)H(2)]glucose: 2.5-h infusion of both (A), and 2.5-h infusion of one (B) and 14.5-h infusion of the other isotope (C), and 5-h infusion of [6,6-(2)H(2)]glucose and 2.5-h infusion of [1-(13)C]glucose (D). Infusion of both isotopes for 2.5 h resulted in similar glucose R(a) values. When compared with a 14.5-h infusion, the 2.5-h glucose tracer infusion overestimated glucose R(a) by 26-35%. Glucose (13)C recycled via the Cori cycle, resulting in slower decay from the plasma pool and longer half-life of [1-(13)C]glucose compared with [6,6-(2)H(2)]glucose. There was no detectable release of [(13)C]glucose or [(2)H(2)]glucose tracer into the plasma pool after administration of glucagon. These data demonstrate that glucose R(a) varies not as a result of isotope cycling but as a result of differences in duration of isotope infusion regardless of the isotope used. This is most likely due to incomplete isotope and substrate equilibration with the 2.5-h infusion. The potential error was reduced by nearly 80% using a 5-h infusion of [6,6-(2)H(2)]glucose. These studies demonstrate that the duration of isotope infusion has significantly greater impact on quantitation of glucose R(a) than does the selection of isotope.
Collapse
Affiliation(s)
- Stelios K Tigas
- Baylor College of Medicine, Children's Nutrition Research Center, USDA/ARS, Department of Pediatrics-Nutrition, Houston, Texas 77030, USA
| | | | | |
Collapse
|
21
|
Mao CS, Bassilian S, Lim SK, Lee WNP. Underestimation of gluconeogenesis by the [U-(13)C(6)]glucose method: effect of lack of isotope equilibrium. Am J Physiol Endocrinol Metab 2002; 282:E376-85. [PMID: 11788370 DOI: 10.1152/ajpendo.00210.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Among the many tracer methods to indirectly estimate gluconeogenesis in humans, the [U-(13)C(6)]glucose method as proposed by Tayek and Katz (Am J Physiol Endocrinol Metab 270: E709-E717, 1996; Am J Physiol Endocrinol Metab 272: E476-E484, 1997) has the advantage of being able to simultaneously estimate hepatic glucose output and fractional gluconeogenesis. However, Landau et al. (Landau BR, J Wahren, K Ekberg, SF Previs, D Yang, and H Brunengraber. Am J Physiol Endocrinol Metab 274: E954-E961, 1998) have shown that this method underestimates the rate of gluconeogenesis. The underestimation has been attributed to tracer dilution by other three-carbon substrates and the lack of isotopic steady state. Using a computer simulation of [U-(13)C(6)]glucose infusion, we demonstrate that the lack of isotope equilibrium in both the lactate and glucose compartments contributes substantially to the underestimation of gluconeogenesis. [U-(13)C(6)]glucose experiments were performed with the addition of a primed constant infusion of [U-(13)C(3)]lactate and the delay in M3 glucose equilibrium estimated from the isotopic steady-state value determined by modeling M3 glucose to a single-exponential fit. We found that, even with the addition of [U-(13)C(3)]lactate infusion, the M3 glucose enrichment of the last timed sample was approximately 20% less than the isotopic steady-state value. Thus the lack of isotopic equilibrium of the glucose compartment potentially accounts for 20% of the underestimation of gluconeogenesis. The underestimation of gluconeogenesis using [U-(13)C(6)]glucose without the additional infusion of [U-(13)C(3)]lactate in previous publications is expected to be even greater because of the lack of isotope equilibrium in both the lactate and glucose compartments. These findings are consistent with the results from our computer simulation.
Collapse
Affiliation(s)
- Catherine S Mao
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California 90509, USA.
| | | | | | | |
Collapse
|
22
|
Kalhan SC, Parimi P, Van Beek R, Gilfillan C, Saker F, Gruca L, Sauer PJ. Estimation of gluconeogenesis in newborn infants. Am J Physiol Endocrinol Metab 2001; 281:E991-7. [PMID: 11595655 DOI: 10.1152/ajpendo.2001.281.5.e991] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rate of glucose turnover (R(a)) and gluconeogenesis (GNG) via pyruvate were quantified in seven full-term healthy babies between 24 and 48 h after birth and in twelve low-birth-weight infants on days 3 and 4 by use of [(13)C(6)]glucose and (2)H(2)O. The preterm babies were receiving parenteral alimentation of either glucose or glucose plus amino acid with or without lipids. The contribution of GNG to glucose production was measured by the appearance of (2)H on C-6 of glucose. Glucose R(a) in full-term babies was 30 +/- 1.7 (SD) micromol. kg(-1). min(-1). GNG via pyruvate contributed approximately 31% to glucose R(a). In preterm babies, the contribution of GNG to endogenous glucose R(a) was variable (range 6-60%). The highest contribution was in infants receiving low rates of exogenous glucose infusion. In an additional group of infants of normal and diabetic mothers, lactate turnover and its incorporation into glucose were measured within 4-24 h of birth by use of [(13)C(3)]lactate tracer. The rate of lactate turnover was 38 micromol. kg(-1). min(-1), and lactate C, not corrected for loss of tracer in the tricarboxylic acid cycle, contributed approximately 18% to glucose C. Lactate and glucose kinetics were similar in infants that were small for their gestational age and in normal infants or infants of diabetic mothers. These data show that gluconeogenesis is evident soon after birth in the newborn infant and that, even after a brief fast (5 h), GNG via pyruvate makes a significant contribution to glucose production in healthy full-term infants. These data may have important implications for the nutritional support of the healthy and sick newborn infant.
Collapse
Affiliation(s)
- S C Kalhan
- Schwartz Center for Metabolism and Nutrition, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44109, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Gastaldelli A, Toschi E, Pettiti M, Frascerra S, Quiñones-Galvan A, Sironi AM, Natali A, Ferrannini E. Effect of physiological hyperinsulinemia on gluconeogenesis in nondiabetic subjects and in type 2 diabetic patients. Diabetes 2001; 50:1807-12. [PMID: 11473042 DOI: 10.2337/diabetes.50.8.1807] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Gluconeogenesis (GNG) is enhanced in type 2 diabetes. In experimental animals, insulin at high doses decreases the incorporation of labeled GNG precursors into plasma glucose. Whether physiological hyperinsulinemia has any effect on total GNG in humans has not been determined. We combined the insulin clamp with the (2)H(2)O technique to measure total GNG in 33 subjects with type 2 diabetes (BMI 29.0 +/- 0.6 kg/m(2), fasting plasma glucose 8.1 +/- 0.3 mmol/l) and in 9 nondiabetic BMI-matched subjects after 16 h of fasting and after euglycemic hyperinsulinemia. A primed-constant infusion of 6,6-(2)H-glucose was used to monitor endogenous glucose output (EGO); insulin (40 mU. min(-1). m(-2)) was then infused while clamping plasma glucose for 2 h (at 5.8 +/- 0.1 and 4.9 +/- 0.2 mmol/l for diabetic and control subjects, respectively). In the fasting state, EGO averaged 15.2 +/- 0.4 micromol. min(-1). kg(-1)(ffm) (62% from GNG) in diabetic subjects and 12.2 +/- 0.7 micromol. min(-1). kg(-1)(ffm) (55% from GNG) in control subjects (P < 0.05 or less for both fluxes). Glycogenolysis (EGO - GNG) was similar in the two groups (P = NS). During the last 40 min of the clamp, both EGO and GNG were significantly (P < 0.01 or less, compared with fasting) inhibited (EGO 7.1 +/- 0.9 and 3.6 +/- 0.5 and GNG 7.9 +/- 0.5 and 4.5 +/- 1.0 respectively) but remained significantly (P < 0.05) higher in diabetic subjects, whereas glycogenolysis was suppressed completely and equally in both groups. During hyperinsulinemia, GNG micromol. min(-1). kg(-1)(ffm) in diabetic and control subjects, was reciprocally related to plasma glucose clearance. In conclusion, physiological hyperinsulinemia suppresses GNG by approximately 20%, while completely blocking glycogenolysis. Resistance of GNG (to insulin suppression) and resistance of glucose uptake (to insulin stimulation) are coupled phenomena. In type 2 diabetes, the excess GNG of the fasting state is carried over to the insulinized state, thereby contributing to glucose overproduction under both conditions.
Collapse
Affiliation(s)
- A Gastaldelli
- Metabolism Unit of the C.N.R. Institute of Clinical Physiology and the Department of Internal Medicine, University of Pisa School of Medicine, Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|