1
|
Skerjanz J, Bauernhofer L, Lenk K, Emmerstorfer-Augustin A, Leitinger G, Reichmann F, Stockner T, Groschner K, Tiapko O. TRPC1: The housekeeper of the hippocampus. Cell Calcium 2024; 123:102933. [PMID: 39116710 DOI: 10.1016/j.ceca.2024.102933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
The non-selective cation channel TRPC1 is highly expressed in the brain. Recent research shows that neuronal TRPC1 forms heteromeric complexes with TRPC4 and TRPC5, with a small portion existing as homotetramers, primarily in the ER. Given that most studies have focused on the role of heteromeric TRPC1/4/5 complexes, it is crucial to investigate the specific role of homomeric TRPC1 in maintaining brain homeostasis. This review highlights recent findings on TRPC1 in the brain, with a focus on the hippocampus, and compiles the latest data on modulators and their binding sites within the TRPC1/4/5 subfamily to stimulate new research on more selective TRPC1 ligands.
Collapse
Affiliation(s)
- Julia Skerjanz
- Gottfried Schatz Research Center, Division of Medical Physics and Biophysics, Medical University of Graz, Austria
| | - Lena Bauernhofer
- Biophysics Division, Institute of Molecular Biosciences, NAWI Graz, University of Graz, Austria; BioTechMed-Graz, Austria
| | - Kerstin Lenk
- Institute of Neural Engineering, Graz University of Technology, Austria; BioTechMed-Graz, Austria
| | | | - Gerd Leitinger
- Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Austria; BioTechMed-Graz, Austria; MEFOgraz, Austria
| | - Florian Reichmann
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria; BioTechMed-Graz, Austria
| | - Thomas Stockner
- Department of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Klaus Groschner
- Gottfried Schatz Research Center, Division of Medical Physics and Biophysics, Medical University of Graz, Austria
| | - Oleksandra Tiapko
- Gottfried Schatz Research Center, Division of Medical Physics and Biophysics, Medical University of Graz, Austria; BioTechMed-Graz, Austria; MEFOgraz, Austria.
| |
Collapse
|
2
|
Niu L, Wang J, Shen F, Gao J, Jiang M, Bai G. Magnolol and honokiol target TRPC4 to regulate extracellular calcium influx and relax intestinal smooth muscle. JOURNAL OF ETHNOPHARMACOLOGY 2022; 290:115105. [PMID: 35157953 DOI: 10.1016/j.jep.2022.115105] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Magnolia officinalis Cortex (M. officinalis) is a classical traditional Chinese medicine (TCM) widely used to treat digestive system diseases. It effectively regulates gastrointestinal motility to improve abdominal pain, abdominal distension and other symptoms. Magnolol (MAG) and honokiol (HON) are the main pharmacodynamic components responsible for the gastrointestinal activity of M. officinalis. AIM OF THE STUDY The transient receptor potential (TRP) family is highly expressed in the gastrointestinal tract and participates in the regulation of gastrointestinal motility, visceral hypersensitivity, visceral secretion and other physiological activities. In this study, the calcium-lowering mechanisms of MAG and HON contributing to the smooth muscle relaxation associated with TRP are discussed. MATERIALS AND METHODS The relaxation smooth muscle effects of MAG and HON were tested by the isolated intestine tone tests. A synthetic MAG probe (MAG-P) was used to target fishing for their possible target. The distribution of MAG on the smooth muscle was identified by a molecular tracer based on chemical biology. Ca2+ imaging and dual-luciferase reporter assays were used to determine the effects on the target proteins. Finally, the calcium-mediating effects of MAG and HON on smooth muscle cells and TRPC4-knockdown cells were compared to verify the potential mechanism. RESULTS After confirming the smooth muscle relaxation in the small intestine induced by MAG and HON, the relaxation effect was identified mainly due to the downregulation of intracellular calcium by controlling external calcium influx. Although MAG and HON inhibited both TRPV4 and TRPC4 channels to reduce calcium levels, the inhibitory effect on TRPC4 channels is an important mechanism of their smooth muscle relaxation effect, since TRPC4 is widely expressed in the small intestinal smooth muscle cells. CONCLUSIONS The inhibition of MAG and HON on TRPC4 channels contributes to the relaxation of intestinal smooth muscle.
Collapse
Affiliation(s)
- Lin Niu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, PR China
| | - Jie Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, PR China
| | - Fukui Shen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, PR China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, PR China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, PR China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, PR China.
| |
Collapse
|
3
|
Distribution and Assembly of TRP Ion Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1349:111-138. [PMID: 35138613 DOI: 10.1007/978-981-16-4254-8_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the last several decades, a large family of ion channels have been identified and studied intensively as cellular sensors for diverse physical and/or chemical stimuli. Named transient receptor potential (TRP) channels, they play critical roles in various aspects of cellular physiology. A large number of human hereditary diseases are found to be linked to TRP channel mutations, and their dysregulations lead to acute or chronical health problems. As TRP channels are named and categorized mostly based on sequence homology rather than functional similarities, they exhibit substantial functional diversity. Rapid advances in TRP channel study have been made in recent years and reported in a vast body of literature; a summary of the latest advancements becomes necessary. This chapter offers an overview of current understandings of TRP channel distribution and subunit assembly.
Collapse
|
4
|
Carver CM, DeWitt HR, Stoja AP, Shapiro MS. Blockade of TRPC Channels Limits Cholinergic-Driven Hyperexcitability and Seizure Susceptibility After Traumatic Brain Injury. Front Neurosci 2021; 15:681144. [PMID: 34489621 PMCID: PMC8416999 DOI: 10.3389/fnins.2021.681144] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/28/2021] [Indexed: 12/17/2022] Open
Abstract
We investigated the contribution of excitatory transient receptor potential canonical (TRPC) cation channels to posttraumatic hyperexcitability in the brain 7 days following controlled cortical impact model of traumatic brain injury (TBI) to the parietal cortex in male adult mice. We investigated if TRPC1/TRPC4/TRPC5 channel expression is upregulated in excitatory neurons after TBI in contribution to epileptogenic hyperexcitability in key hippocampal and cortical circuits that have substantial cholinergic innervation. This was tested by measuring TRPC1/TRPC4/TRPC5 protein and messenger RNA (mRNA) expression, assays of cholinergic function, neuronal Ca2+ imaging in brain slices, and seizure susceptibility after TBI. We found region-specific increases in expression of TRPC1, TRPC4, and TRPC5 subunits in the hippocampus and cortex following TBI. The dentate gyrus, CA3 region, and cortex all exhibited robust upregulation of TRPC4 mRNA and protein. TBI increased cFos activity in dentate gyrus granule cells (DGGCs) and layer 5 pyramidal neurons both at the time of TBI and 7 days post-TBI. DGGCs displayed greater magnitude and duration of acetylcholine-induced rises in intracellular Ca2+ in brain slices from mice subjected to TBI. The TBI mice also exhibited greater seizure susceptibility in response to pentylenetetrazol-induced kindling. Blockade of TRPC4/TRPC5 channels with M084 reduced neuronal hyperexcitation and impeded epileptogenic progression of kindling. We observed that the time-dependent upregulation of TRPC4/TRPC5-containing channels alters cholinergic responses and activity of principal neurons acting to increase proexcitatory sensitivity. The underlying mechanism includes acutely decreased acetylcholinesterase function, resulting in greater Gq/11-coupled muscarinic receptor activation of TRPC channels. Overall, our evidence suggests that TBI-induced plasticity of TRPC channels strongly contributes to overt hyperexcitability and primes the hippocampus and cortex for seizures.
Collapse
Affiliation(s)
- Chase M Carver
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Haley R DeWitt
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Aiola P Stoja
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Mark S Shapiro
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
5
|
Sato-Numata K, Numata T, Ueta Y, Okada Y. Expression and functions of N-type Cav2.2 and T-type Cav3.1 channels in rat vasopressin neurons under normotonic conditions. J Physiol Sci 2020; 70:49. [PMID: 33059597 PMCID: PMC10717235 DOI: 10.1186/s12576-020-00775-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/28/2020] [Indexed: 11/10/2022]
Abstract
Arginine vasopressin (AVP) neurons play essential roles in sensing the change in systemic osmolarity and regulating AVP release from their neuronal terminals to maintain the plasma osmolarity. AVP exocytosis depends on the Ca2+ entry via voltage-gated Ca2+ channels (VGCCs) in AVP neurons. In this study, suppression by siRNA-mediated knockdown and pharmacological sensitivity of VGCC currents evidenced molecular and functional expression of N-type Cav2.2 and T-type Cav3.1 in AVP neurons under normotonic conditions. Also, both the Cav2.2 and Cav3.1 currents were found to be sensitive to flufenamic acid (FFA). TTX-insensitive spontaneous action potentials were suppressed by FFA and T-type VGCC blocker Ni2+. However, Cav2.2-selective ω-conotoxin GVIA failed to suppress the firing activity. Taken together, it is concluded that Cav2.2 and Cav3.1 are molecularly and functionally expressed and both are sensitive to FFA in unstimulated rat AVP neurons. Also, it is suggested that Cav3.1 is primarily involved in their action potential generation.
Collapse
Affiliation(s)
- Kaori Sato-Numata
- Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
- Department of Physiology, School of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Tomohiro Numata
- Department of Physiology, School of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu-shi, Fukuoka, 807-8555, Japan
| | - Yasunobu Okada
- National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
6
|
Hahn S, Kim SW, Um KB, Kim HJ, Park MK. N-benzhydryl quinuclidine compounds are a potent and Src kinase-independent inhibitor of NALCN channels. Br J Pharmacol 2020; 177:3795-3810. [PMID: 32436268 DOI: 10.1111/bph.15104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE NALCN is a Na+ leak, GPCR-activated channel that regulates the resting membrane potential and neuronal excitability. Despite numerous possible roles for NALCN in both normal physiology and disease processes, lack of specific blockers hampers further investigation. EXPERIMENTAL APPROACH The effect of N-benzhydryl quinuclidine compounds on NALCN channels was demonstrated using whole-cell patch-clamp recordings in HEK293T cells overexpressing NALCN and acutely isolated nigral dopaminergic neurons that express NALCN endogenously. Src kinase activity was measured using a Src kinase assay kit, and voltage and current-clamp recordings from nigral dopaminergic neurons were used to measure NALCN currents and membrane potentials. KEY RESULTS N-benzhydryl quinuclidine compounds inhibited NALCN channels without affecting TRPC channels, another important route for Na+ leak. In HEK293T cells overexpressing NALCN, N-benzhydryl quinuclidine compounds potently suppressed muscarinic M3 receptor-activated NALCN currents. Structure-function relationship studies suggest that the quinuclidine ring with a benzhydryl group imparts the ability to inhibit NALCN currents regardless of Src family kinases. Moreover, N-benzhydryl quinuclidine compounds inhibited not only GPCR-activated NALCN currents but also background Na+ leak currents and hyperpolarized the membrane potential in native midbrain dopaminergic neurons that express NALCN endogenously. CONCLUSION AND IMPLICATIONS These findings suggest that N-benzhydryl quinuclidine compounds have a pharmacological potential to directly inhibit NALCN channels and could be a useful tool to investigate functions of NALCN channels.
Collapse
Affiliation(s)
- Suyun Hahn
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - So Woon Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Ki Bum Um
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Hyun Jin Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Myoung Kyu Park
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
7
|
Dattilo M, Penington NJ, Williams K. Regulation of TRPC5 currents by intracellular ATP: Single channel studies. J Cell Physiol 2020; 235:7056-7066. [PMID: 31994734 DOI: 10.1002/jcp.29602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/10/2020] [Indexed: 11/09/2022]
Abstract
TRPC5 channels are nonselective cation channels activated by G-protein-coupled receptors. It was previously found that recombinant TRPC5 currents are inhibited by intracellular ATP, when studied by whole-cell patch-clamp recording. In the present study, we investigated the mechanism of ATP inhibition at the single-channel level using patches from HEK-293 cells transiently transfected with TRPC5 and the M1 muscarinic receptor. In inside-out patches, application of ATP to the intracellular face of the membrane reduced TRPC5 channel activity at both positive and negative potentials without affecting the unitary current amplitude or open dwell time of the channel. The effect of ATP was rapidly reversible. These results suggest that ATP may bind to the channel protein and affect the ability of the channel to open or to remain in an open, nondesensitized state. The activity of TRPC5 channels may be influenced by cellular metabolism via changes in ATP levels.
Collapse
Affiliation(s)
- Michael Dattilo
- Department of Physiology and Pharmacology, State University of New York, Downstate Health Sciences University, Brooklyn, New York.,Program in Neural and Behavioral Science and Robert F. Furchgott, Center for Neural and Behavioral Science, State University of New York, Downstate Health Sciences University, Brooklyn, New York
| | - Nicholas J Penington
- Department of Physiology and Pharmacology, State University of New York, Downstate Health Sciences University, Brooklyn, New York.,Program in Neural and Behavioral Science and Robert F. Furchgott, Center for Neural and Behavioral Science, State University of New York, Downstate Health Sciences University, Brooklyn, New York
| | - Keith Williams
- Department of Physiology and Pharmacology, State University of New York, Downstate Health Sciences University, Brooklyn, New York.,Program in Neural and Behavioral Science and Robert F. Furchgott, Center for Neural and Behavioral Science, State University of New York, Downstate Health Sciences University, Brooklyn, New York
| |
Collapse
|
8
|
Hong C, Choi SH, Kwak M, Jeong B, Ko J, Park HJ, Choi S, Jun JY, So I. TRPC5 channel instability induced by depalmitoylation protects striatal neurons against oxidative stress in Huntington's disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118620. [PMID: 31812495 DOI: 10.1016/j.bbamcr.2019.118620] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/26/2019] [Accepted: 11/30/2019] [Indexed: 12/15/2022]
Abstract
Protein S-palmitoylation, the covalent lipid modification of the side chain of Cys residues with the 16‑carbon fatty acid palmitate, is the most common acylation, and it enhances the membrane stability of ion channels. This post-translational modification (PTM) determines a functional mechanism of ion channel life cycle from maturation and membrane trafficking to localization. Especially, neurodevelopment is regulated by balancing the level of synaptic protein palmitoylation/depalmitoylation. Recently, we revealed the pathological role of the transient receptor potential canonical type 5 (TRPC5) channel in striatal neuronal loss during Huntington's disease (HD), which is abnormally activated by oxidative stress. Here, we report a mechanism of TRPC5 palmitoylation at a conserved cysteine residue, that is critical for intrinsic channel activity. Furthermore, we identified the therapeutic effect of TRPC5 depalmitoylation by enhancing the TRPC5 membrane instability on HD striatal cells in order to lower TRPC5 toxicity. Collectively, these findings suggest that controlling S-palmitoylation of the TRPC5 channel as a potential risk factor can modulate TRPC5 channel expression and activity, providing new insights into a therapeutic strategy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Chansik Hong
- Department of Physiology, Chosun University School of Medicine, Kwangju 61452, South Korea.
| | - Seo Hwa Choi
- Department of Physiology, Chosun University School of Medicine, Kwangju 61452, South Korea
| | - Misun Kwak
- Department of Physiology and Institute of Dermatological Science, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Byeongseok Jeong
- Department of Physiology, Chosun University School of Medicine, Kwangju 61452, South Korea
| | - Juyeon Ko
- Department of Physiology and Institute of Dermatological Science, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Hyung Joon Park
- Department of Physiology, Chosun University School of Medicine, Kwangju 61452, South Korea
| | - Seok Choi
- Department of Physiology, Chosun University School of Medicine, Kwangju 61452, South Korea
| | - Jae Yeoul Jun
- Department of Physiology, Chosun University School of Medicine, Kwangju 61452, South Korea
| | - Insuk So
- Department of Physiology and Institute of Dermatological Science, Seoul National University College of Medicine, Seoul 03080, South Korea.
| |
Collapse
|
9
|
Rubaiy HN. Treasure troves of pharmacological tools to study transient receptor potential canonical 1/4/5 channels. Br J Pharmacol 2019; 176:832-846. [PMID: 30656647 PMCID: PMC6433652 DOI: 10.1111/bph.14578] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/25/2018] [Accepted: 12/18/2018] [Indexed: 12/13/2022] Open
Abstract
Canonical or classical transient receptor potential 4 and 5 proteins (TRPC4 and TRPC5) assemble as homomers or heteromerize with TRPC1 protein to form functional nonselective cationic channels with high calcium permeability. These channel complexes, TRPC1/4/5, are widely expressed in nervous and cardiovascular systems, also in other human tissues and cell types. It is debatable that TRPC1 protein is able to form a functional ion channel on its own. A recent explosion of molecular information about TRPC1/4/5 has emerged including knowledge of their distribution, function, and regulation suggesting these three members of the TRPC subfamily of TRP channels play crucial roles in human physiology and pathology. Therefore, these ion channels represent potential drug targets for cancer, epilepsy, anxiety, pain, and cardiac remodelling. In recent years, a number of highly selective small-molecule modulators of TRPC1/4/5 channels have been identified as being potent with improved pharmacological properties. This review will focus on recent remarkable small-molecule agonists: (-)-englerin A and tonantzitlolone and antagonists: Pico145 and HC7090, of TPRC1/4/5 channels. In addition, this work highlights other recently identified modulators of these channels such as the benzothiadiazine derivative, riluzole, ML204, clemizole, and AC1903. Together, these treasure troves of agonists and antagonists of TRPC1/4/5 channels provide valuable hints to comprehend the functional importance of these ion channels in native cells and in vivo animal models. Importantly, human diseases and disorders mediated by these proteins can be studied using these compounds to perhaps initiate drug discovery efforts to develop novel therapeutic agents.
Collapse
Affiliation(s)
- Hussein N. Rubaiy
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical SchoolUniversity of HullHullUK
| |
Collapse
|
10
|
Emerging Roles of Diacylglycerol-Sensitive TRPC4/5 Channels. Cells 2018; 7:cells7110218. [PMID: 30463370 PMCID: PMC6262340 DOI: 10.3390/cells7110218] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/31/2022] Open
Abstract
Transient receptor potential classical or canonical 4 (TRPC4) and TRPC5 channels are members of the classical or canonical transient receptor potential (TRPC) channel family of non-selective cation channels. TRPC4 and TRPC5 channels are widely accepted as receptor-operated cation channels that are activated in a phospholipase C-dependent manner, following the Gq/11 protein-coupled receptor activation. However, their precise activation mechanism has remained largely elusive for a long time, as the TRPC4 and TRPC5 channels were considered as being insensitive to the second messenger diacylglycerol (DAG) in contrast to the other TRPC channels. Recent findings indicate that the C-terminal interactions with the scaffolding proteins Na+/H+ exchanger regulatory factor 1 and 2 (NHERF1 and NHERF2) dynamically regulate the DAG sensitivity of the TRPC4 and TRPC5 channels. Interestingly, the C-terminal NHERF binding suppresses, while the dissociation of NHERF enables, the DAG sensitivity of the TRPC4 and TRPC5 channels. This leads to the assumption that all of the TRPC channels are DAG sensitive. The identification of the regulatory function of the NHERF proteins in the TRPC4/5-NHERF protein complex offers a new starting point to get deeper insights into the molecular basis of TRPC channel activation. Future studies will have to unravel the physiological and pathophysiological functions of this multi-protein channel complex.
Collapse
|
11
|
Alonso-Carbajo L, Kecskes M, Jacobs G, Pironet A, Syam N, Talavera K, Vennekens R. Muscling in on TRP channels in vascular smooth muscle cells and cardiomyocytes. Cell Calcium 2017; 66:48-61. [PMID: 28807149 DOI: 10.1016/j.ceca.2017.06.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 02/07/2023]
Abstract
The human TRP protein family comprises a family of 27 cation channels with diverse permeation and gating properties. The common theme is that they are very important regulators of intracellular Ca2+ signaling in diverse cell types, either by providing a Ca2+ influx pathway, or by depolarising the membrane potential, which on one hand triggers the activation of voltage-gated Ca2+ channels, and on the other limits the driving force for Ca2+ entry. Here we focus on the role of these TRP channels in vascular smooth muscle and cardiac striated muscle. We give an overview of highlights from the recent literature, and highlight the important and diverse roles of TRP channels in the pathophysiology of the cardiovascular system. The discovery of the superfamily of Transient Receptor Potential (TRP) channels has significantly enhanced our knowledge of multiple signal transduction mechanisms in cardiac muscle and vascular smooth muscle cells (VSMC). In recent years, multiple studies have provided evidence for the involvement of these channels, not only in the regulation of contraction, but also in cell proliferation and remodeling in pathological conditions. The mammalian family of TRP cation channels is composed by 28 genes which can be divided into 6 subfamilies groups based on sequence similarity: TRPC (Canonical), TRPM (Melastatin), TRPML (Mucolipins), TRPV (Vanilloid), TRPP (Policystin) and TRPA (Ankyrin-rich protein). Functional TRP channels are believed to form four-unit complexes in the plasma, each of them expressed with six transmembrane domain and intracellular N and C termini. Here we review the current knowledge on the expression of TRP channels in both muscle types, and discuss their functional properties and role in physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Lucía Alonso-Carbajo
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Miklos Kecskes
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Griet Jacobs
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Andy Pironet
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Ninda Syam
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Karel Talavera
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium.
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
12
|
The regulation of transient receptor potential canonical 4 (TRPC4) channel by phosphodiesterase 5 inhibitor via the cyclic guanosine 3'5'-monophosphate. Pflugers Arch 2017; 469:693-702. [PMID: 28124739 DOI: 10.1007/s00424-017-1937-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/28/2016] [Accepted: 01/16/2017] [Indexed: 02/07/2023]
Abstract
The transient receptor potential (TRP) protein superfamily consists of a diverse group of cation channels that bear structural similarities to the fruit fly Drosophila TRP. The TRP superfamily is distinct from other groups of ion channels in displaying a large diversity in ion selectivity, modes of activation, and physiological functions. Classical TRP (transient receptor potential canonical (TRPC)) channels are activated by stimulation of Gq-PLC-coupled receptors and modulated by phosphorylation. The cyclic guanosine monophosphate (cGMP)-PKG pathway is involved in the regulation of TRPC3 and TRPC6 channels. Phosphodiesterase (PDE) 5 inhibitor induced muscle relaxation in corporal smooth muscle cells and was used to treat erectile dysfunction by inhibiting cGMP degradation. Here, we report the functional relationship between TRPC4 and cGMP. In human embryonic kidney (HEK) 293 cells overexpressing TRPC4, cGMP selectively activated TRPC4 channels and increased cytosolic calcium level through TRPC4 channel. We investigated phosphorylation sites in TRPC4 channels and identified S688 as an important phosphorylation site for the cGMP-PKG pathway. Cyclic GMP also activated TRPC4-like current with doubly rectifying current-voltage relationship in prostate smooth muscle cell lines. Taken together, these results show that TRPC4 is phosphorylated by the cGMP-PKG pathway and might be an important target for modulating prostate function by PDE5 inhibitors.
Collapse
|
13
|
Dynamic NHERF interaction with TRPC4/5 proteins is required for channel gating by diacylglycerol. Proc Natl Acad Sci U S A 2016; 114:E37-E46. [PMID: 27994151 DOI: 10.1073/pnas.1612263114] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The activation mechanism of the classical transient receptor potential channels TRPC4 and -5 via the Gq/11 protein-phospholipase C (PLC) signaling pathway has remained elusive so far. In contrast to all other TRPC channels, the PLC product diacylglycerol (DAG) is not sufficient for channel activation, whereas TRPC4/5 channel activity is potentiated by phosphatidylinositol 4,5-bisphosphate (PIP2) depletion. As a characteristic structural feature, TRPC4/5 channels contain a C-terminal PDZ-binding motif allowing for binding of the scaffolding proteins Na+/H+ exchanger regulatory factor (NHERF) 1 and 2. PKC inhibition or the exchange of threonine for alanine in the C-terminal PDZ-binding motif conferred DAG sensitivity to the channel. Altogether, we present a DAG-mediated activation mechanism for TRPC4/5 channels tightly regulated by NHERF1/2 interaction. PIP2 depletion evokes a C-terminal conformational change of TRPC5 proteins leading to dynamic dissociation of NHERF1/2 from the C terminus of TRPC5 as a prerequisite for DAG sensitivity. We show that NHERF proteins are direct regulators of ion channel activity and that DAG sensitivity is a distinctive hallmark of TRPC channels.
Collapse
|
14
|
Suzuki H, Sasaki E, Nakagawa A, Muraki Y, Hatano N, Muraki K. Diclofenac, a nonsteroidal anti-inflammatory drug, is an antagonist of human TRPM3 isoforms. Pharmacol Res Perspect 2016; 4:e00232. [PMID: 27433342 PMCID: PMC4876142 DOI: 10.1002/prp2.232] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 11/15/2022] Open
Abstract
The effects of diclofenac (Dic), an acetic acid derivative-type nonsteroidal anti-inflammatory drug, were examined on the function of transient receptor potential (TRP) melastatin (TRPM) 3 (TRPM3) in human embryonic kidney 293 cell-line (HEK293) cells with recombinant human TRPM3 isoforms (TRPM31325, TRPM3-3, TRPM3-9, and TRPM3-S) and in a neuroblastoma cell line human neuroblastoma IMR-32 cells (IMR-32 cells) derived from human peripheral neurons. TRPM3 responses evoked by pregnenolone sulfate (PregS) were effectively inhibited by Dic in a concentration-dependent manner in Ca(2+) measurement and electrophysiological assays. The apparent IC 50 for PregS-induced Ca(2+) response of TRPM31325, TRPM3-3, and TRPM3-9 was calculated to be 18.8, 42.5, and 7.1 μmol/L, respectively. The TRPM3-dependent Ca(2+) responses evoked by nifedipine, another TRPM3 agonist, were also significantly inhibited by Dic. In contrast, aceclofenac, an acetoxymethyl analog of Dic, had no effects on PregS-induced TRPM3 responses. Constitutive channel activity of TRPM3-S without TRPM3 agonists was substantially inhibited by Dic, ruling out the possibility of interaction of Dic against TRPM3 agonists to the channel binding sites. Moreover, Dic reversibly inhibited TRPM3 single-channel activity recorded in excised outside-out patches without affecting the channel conductance. In differentiated neuronal IMR-32 cells with endogenous TRPM3, Dic inhibited PregS-evoked Ca(2+) responses with an apparent IC 50 of 17.1 μmol/L. Taken together, our findings demonstrate that Dic inhibits human TRPM3 without interacting with the channel pore.
Collapse
Affiliation(s)
- Hiroka Suzuki
- Laboratory of Cellular PharmacologySchool of PharmacyAichi‐Gakuin University1‐100 KusumotoChikusa, Nagoya464‐8650Japan
| | - Eiji Sasaki
- Laboratory of Cellular PharmacologySchool of PharmacyAichi‐Gakuin University1‐100 KusumotoChikusa, Nagoya464‐8650Japan
| | - Ayumi Nakagawa
- Laboratory of Cellular PharmacologySchool of PharmacyAichi‐Gakuin University1‐100 KusumotoChikusa, Nagoya464‐8650Japan
| | - Yukiko Muraki
- Laboratory of Cellular PharmacologySchool of PharmacyAichi‐Gakuin University1‐100 KusumotoChikusa, Nagoya464‐8650Japan
| | - Noriyuki Hatano
- Laboratory of Cellular PharmacologySchool of PharmacyAichi‐Gakuin University1‐100 KusumotoChikusa, Nagoya464‐8650Japan
| | - Katsuhiko Muraki
- Laboratory of Cellular PharmacologySchool of PharmacyAichi‐Gakuin University1‐100 KusumotoChikusa, Nagoya464‐8650Japan
| |
Collapse
|
15
|
Lange M, Peiter E. Cytosolic free calcium dynamics as related to hyphal and colony growth in the filamentous fungal pathogen Colletotrichum graminicola. Fungal Genet Biol 2016; 91:55-65. [PMID: 27063059 DOI: 10.1016/j.fgb.2016.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 04/02/2016] [Accepted: 04/04/2016] [Indexed: 01/23/2023]
Abstract
Tip growth of pollen tubes and root hairs of plants is oscillatory and orchestrated by tip-focussed variations of cytosolic free calcium ([Ca(2+)]cyt). Hyphae of filamentous fungi are also tubular tip-growing cells, and components of the Ca(2+) signalling machinery, such as Ca(2+) channels and Ca(2+) sensors, are known to be important for fungal growth. In this study, we addressed the questions if tip-focussed [Ca(2+)]cyt transients govern hyphal and whole-colony growth in the maize pathogen Colletotrichum graminicola, and whether colony-wide [Ca(2+)]cyt dynamics rely on external Ca(2+) or internal Ca(2+) stores. Ratiometric fluorescence microscopy of individual hyphae expressing the Ca(2+) reporter Yellow Cameleon 3.6 revealed that Ca(2+) spikes in hyphal tips precede the re-initiation of growth after wounding. Tip-focussed [Ca(2+)]cyt spikes were also observed in undisturbed growing hyphae. They occurred not regularly and at a higher rate in hyphae growing at a medium-glass interface than in those growing on an agar surface. Hyphal tip growth was non-pulsatile, and growth speed was not correlated with the rate of spike occurrence. A possible relationship of [Ca(2+)]cyt spike generation and growth of whole colonies was assessed by using a codon-optimized version of the luminescent Ca(2+) reporter Aequorin. Depletion of extracellular free Ca(2+) abolished [Ca(2+)]cyt spikes nearly completely, but had only a modest effect on colony growth. In a pharmacological survey, some inhibitors targeting Ca(2+) influx or release from internal stores repressed growth strongly. However, although some of those inhibitors also affected [Ca(2+)]cyt spike generation, the effects on both parameters were not correlated. Collectively, the results indicate that tip growth of C. graminicola is non-pulsatile and not mechanistically linked to tip-focused or global [Ca(2+)]cyt spikes, which are likely a response to micro-environmental parameters, such as the physical properties of the growth surface.
Collapse
Affiliation(s)
- Mario Lange
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Edgar Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany.
| |
Collapse
|
16
|
Wie J, Kim BJ, Myeong J, Ha K, Jeong SJ, Yang D, Kim E, Jeon JH, So I. The Roles of Rasd1 small G proteins and leptin in the activation of TRPC4 transient receptor potential channels. Channels (Austin) 2015; 9:186-95. [PMID: 26083271 PMCID: PMC4594510 DOI: 10.1080/19336950.2015.1058454] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
TRPC4 is important regulators of electrical excitability in gastrointestinal myocytes, pancreatic β-cells and neurons. Much is known regarding the assembly and function of these channels including TRPC1 as a homotetramer or a heteromultimer and the roles that their interacting proteins play in controlling these events. Further, they are one of the best-studied targets of G protein-coupled receptors and growth factors in general and Gαi/o and Gαq protein coupled receptor or epidermal growth factor and leptin in particular. However, our understanding of the roles of small G proteins and leptin on TRPC4 channels is still rudimentary. We discuss potential roles for Rasd1 small G protein and leptin in channel activation in addition to their known role in cellular signaling.
Collapse
Affiliation(s)
- Jinhong Wie
- a Department of Physiology ; Seoul National University College of Medicine ; Seoul , Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wie J, Kim J, Ha K, Zhang YH, Jeon JH, So I. Dexamethasone activates transient receptor potential canonical 4 (TRPC4) channels via Rasd1 small GTPase pathway. Pflugers Arch 2014; 467:2081-91. [PMID: 25502319 DOI: 10.1007/s00424-014-1666-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/24/2014] [Accepted: 12/01/2014] [Indexed: 12/15/2022]
Abstract
Canonical transient receptor potential 4 (TRPC4) channels are calcium-permeable, nonselective cation channels that are widely distributed in mammalian cells. It is generally speculated that TRPC4 channels are activated by Gq/11-PLC pathway or directly activated by Gi/o proteins. Although many mechanistic studies regarding TRPC4 have dealt with heterotrimeric G proteins, here, we first report the functional relationship between TRPC4 and small GTPase, Rasd1. Rasd1 selectively activated TRPC4 channels, and it was the only Ras protein among Ras protein family that can activate TRPC4 channels. For this to occur, it was found that certain population of functional Gαi1 and Gαi3 proteins are essential. Meanwhile, dexamethasone, a synthetic glucocorticoid and anti-inflammatory drug was known to increase messenger RNA (mRNA) level of Rasd1 in pancreatic β-cells. We have found that dexamethasone triggers TRPC4-like cationic current in INS-1 cells via increasing protein expression level of Rasd1. This relationship among dexamethasone, Rasd1, and TRPC4 could suggest a new therapeutic agent for hospitalized diabetes mellitus (DM) patients with prolonged dexamethasone prescription.
Collapse
Affiliation(s)
- Jinhong Wie
- Department of Physiology, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Jinsung Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea.,Catholic University of Korea, College of Medicine, Seoul, 137-701, Republic of Korea
| | - Kotdaji Ha
- Department of Physiology, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Yin Hua Zhang
- Department of Physiology, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Ju-Hong Jeon
- Department of Physiology, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea.
| |
Collapse
|
18
|
Nilius B, Szallasi A. Transient Receptor Potential Channels as Drug Targets: From the Science of Basic Research to the Art of Medicine. Pharmacol Rev 2014; 66:676-814. [DOI: 10.1124/pr.113.008268] [Citation(s) in RCA: 348] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
19
|
Hong C, Kwak M, Myeong J, Ha K, Wie J, Jeon JH, So I. Extracellular disulfide bridges stabilize TRPC5 dimerization, trafficking, and activity. Pflugers Arch 2014; 467:703-12. [PMID: 24859801 DOI: 10.1007/s00424-014-1540-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/04/2014] [Accepted: 05/16/2014] [Indexed: 12/01/2022]
Abstract
Crucial cysteine residues can be involved in the modulation of protein activity via the modification of thiol (-SH) groups. Among these reactions, disulfide bonds (S-S) play a key role in the folding, stability, and activity of membrane proteins. However, the regulation of extracellular cysteines in classical transient receptor potential (TRPC) channels remains controversial. Here, we examine the functional importance of the extracellular disulfide bond in TRPC5 in modulating channel gating and trafficking. Specifically, we investigated TRPC5 activity in transiently transfected HEK293 cells with wild-type (WT) or cysteine (C553 and C558) mutants in the pore loop. Using reducing agents, we determined that a disulfide linkage mediates the tetrameric formation of the TRPC5 channel. By measuring the TRPC5 current, we observed that C553S or C558S mutants completely lose channel activity induced by lanthanides or receptor stimulation. Co-expression of TRPC5 (WT) with mutants demonstrated a dominant-negative function in mutants, which inhibited the activity of TRPC5 (WT). We generated TRPC5-TRPC5 dimers and observed reduced activity of WT-mutant (C553S or C558S) dimers compared to WT-WT dimers. When pretreated with reducing agents for 12 h, the TRPC5 current decreased due to a reduction in membrane TRPC5 distribution. In addition, we identified a reduced expression of C553S mutant in plasma membrane. We analyzed a dimeric interaction of wild-type and mutant TRPC5 using co-immunoprecipitation and FRET method, indicating a weak interaction between dimeric partners. These results indicated that the disulfide bond between conserved extracellular cysteines, especially C553, is essential for functional TRPC5 activity by channel multimerization and trafficking.
Collapse
Affiliation(s)
- Chansik Hong
- Department of Physiology and Institute of Dermatological Science, Seoul National University College of Medicine, 28 Yeongeon-dong, Jongno-gu, Seoul, 110-799, South Korea
| | | | | | | | | | | | | |
Collapse
|
20
|
Osmond JM, Gonzalez Bosc LV, Walker BR, Kanagy NL. Endothelin-1-induced vasoconstriction does not require intracellular Ca²⁺ waves in arteries from rats exposed to intermittent hypoxia. Am J Physiol Heart Circ Physiol 2014; 306:H667-73. [PMID: 24414066 DOI: 10.1152/ajpheart.00643.2013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sleep apnea is associated with cardiovascular disease, and patients with sleep apnea have elevated plasma endothelin (ET)-1 concentrations. Rats exposed to intermittent hypoxia (IH), a model of sleep apnea, also have increased plasma ET-1 concentrations and heightened constriction to ET-1 in mesenteric arteries without an increase in global vascular smooth muscle cell Ca(2+) concentration ([Ca(2+)]). Because ET-1 has been shown to increase the occurrence of propagating Ca(2+) waves, we hypothesized that ET-1 increases Ca(2+) wave activity in mesenteric arteries, rather than global [Ca(2+)], to mediate enhanced vasoconstriction after IH exposure. Male Sprague-Dawley rats were exposed to sham or IH conditions for 7 h/day for 2 wk. Mesenteric arteries from sham- and IH-exposed rats were isolated, cannulated, and pressurized to 75 mmHg to measure ET-1-induced constriction as well as changes in global [Ca(2+)] and Ca(2+) wave activity. A low concentration of ET-1 (1 nM) elicited similar vasoconstriction and global Ca(2+) responses in the two groups. Conversely, ET-1 had no effect on Ca(2+) wave activity in arteries from sham rats but significantly increased wave frequency in arteries from IH-exposed rats. The ET-1-induced increase in Ca(2+) wave frequency in arteries from IH rats was dependent on phospholipase C and inositol 1,4,5-trisphosphate receptor activation, yet inhibition of phospholipase C and the inositol 1,4,5-trisphosphate receptor did not prevent ET-1-mediated vasoconstriction. These results suggest that although ET-1 elevates Ca(2+) wave activity after IH exposure, increases in wave activity are not associated with increased vasoconstriction.
Collapse
Affiliation(s)
- Jessica M Osmond
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | | | | | | |
Collapse
|
21
|
Do canonical transient receptor potential channels mediate cholinergic excitation of cortical pyramidal neurons? Neuroreport 2014; 24:550-4. [PMID: 23652155 DOI: 10.1097/wnr.0b013e3283621344] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Activation of M1-type muscarinic acetylcholine receptors excites neocortical pyramidal neurons, in part by gating a nonselective cation conductance that produces calcium-dependent 'afterdepolarizing potentials' (ADPs) following short trains of action potentials. Although the identity of the cation conductance mediating the ADP is not known, previous work has implicated canonical transient receptor potential (TRPC) channels, specifically the TRPC5 and TRPC6 subtypes. Using pharmacological and genetic approaches, we tested the role of TRPC channels in generating cholinergic ADPs in layer 5 pyramidal neurons in the mouse medial prefrontal cortex (mPFC). A variety of compounds that block TRPC channels, including 2-aminoethoxydiphenyl borate, flufenamic acid, lanthanum, SKF-96365, and Pyr-3, had little, if any, impact on cholinergic ADPs. Similarly, genetic deletion of several TRPC subunits, including TPRC1, TRPC5, and TRPC6 (single knockouts), or both TRPC5 and TRPC6 together (double knockout), failed to reduce the amplitude of cholinergic ADPs. These data suggest that TRPC5 and TRPC6 subunits are not required for cholinergic excitation of layer 5 pyramidal neurons in the mouse mPFC and that the focus of future work should be expanded to test the involvement of other potential ionic effectors.
Collapse
|
22
|
Abstract
Drug-like compounds that exert biological activity towards TRP channels are either being used as cell biological tools or further developed into pharmacological lead structures aiming at therapeutic use in diseased states. Although drug-likeliness is not easy to predict, common rules include a relatively low molecular weight, physicochemical constraints, and the absence of known reactive or otherwise toxic groups. Small molecules that exert a biological activity to block, activate, or modulate TRP channels are intensely sought. Such tool compounds may be useful to assign native currents to a certain TRP channel and to validate the channel as a candidate target for future pharmacological intervention. Depending on the TRP channel isotype, these activities have reached different levels, with only few TRP channels modulators already being clinically tested in humans, whereas other compounds only underwent a preliminary validation. For some TRP channels, reliable low molecular weight inhibitors are not yet available. Hence, further efforts need to be undertaken in order to explore the physiological impact and possible therapeutic potential of TRP channel targeting with drug-like compounds.
Collapse
Affiliation(s)
- Michael Schaefer
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Härtelstraße 16-18, 04107, Leipzig, Germany,
| |
Collapse
|
23
|
Abstract
TRPC4 proteins comprise six transmembrane domains, a putative pore-forming region, and an intracellularly located amino- and carboxy-terminus. Among eleven splice variants identified so far, TRPC4α and TRPC4β are the most abundantly expressed and functionally characterized. TRPC4 is expressed in various organs and cell types including the soma and dendrites of numerous types of neurons; the cardiovascular system including endothelial, smooth muscle, and cardiac cells; myometrial and skeletal muscle cells; kidney; and immune cells such as mast cells. Both recombinant and native TRPC4-containing channels differ tremendously in their permeability and other biophysical properties, pharmacological modulation, and mode of activation depending on the cellular environment. They vary from inwardly rectifying store-operated channels with a high Ca(2+) selectivity to non-store-operated channels predominantly carrying Na(+) and activated by Gαq- and/or Gαi-coupled receptors with a complex U-shaped current-voltage relationship. Thus, individual TRPC4-containing channels contribute to agonist-induced Ca(2+) entry directly or indirectly via depolarization and activation of voltage-gated Ca(2+) channels. The differences in channel properties may arise from variations in the composition of the channel complexes, in the specific regulatory pathways in the corresponding cell system, and/or in the expression pattern of interaction partners which comprise other TRPC proteins to form heteromultimeric channels. Additional interaction partners of TRPC4 that can mediate the activity of TRPC4-containing channels include (1) scaffolding proteins (e.g., NHERF) that may mediate interactions with signaling molecules in or in close vicinity to the plasma membrane such as Gα proteins or phospholipase C and with the cytoskeleton, (2) proteins in specific membrane microdomains (e.g., caveolin-1), or (3) proteins on cellular organelles (e.g., Stim1). The diversity of TRPC4-containing channels hampers the development of specific agonists or antagonists, but recently, ML204 was identified as a blocker of both recombinant and endogenous TRPC4-containing channels with an IC50 in the lower micromolar range that lacks activity on most voltage-gated channels and other TRPs except TRPC5 and TRPC3. Lanthanides are specific activators of heterologously expressed TRPC4- and TRPC5-containing channels but can block individual native TRPC4-containing channels. The biological relevance of TRPC4-containing channels was demonstrated by knockdown of TRPC4 expression in numerous native systems including gene expression, cell differentiation and proliferation, formation of myotubes, and axonal regeneration. Studies of TRPC4 single and TRPC compound knockout mice uncovered their role for the regulation of vascular tone, endothelial permeability, gastrointestinal contractility and motility, neurotransmitter release, and social exploratory behavior as well as for excitotoxicity and epileptogenesis. Recently, a single-nucleotide polymorphism (SNP) in the Trpc4 gene was associated with a reduced risk for experience of myocardial infarction.
Collapse
Affiliation(s)
- Marc Freichel
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany,
| | | | | |
Collapse
|
24
|
Abstract
TRP channels constitute a large superfamily of cation channel forming proteins, all related to the gene product of the transient receptor potential (trp) locus in Drosophila. In mammals, 28 different TRP channel genes have been identified, which exhibit a large variety of functional properties and play diverse cellular and physiological roles. In this article, we provide a brief and systematic summary of expression, function, and (patho)physiological role of the mammalian TRP channels.
Collapse
Affiliation(s)
- Maarten Gees
- Laboratory Ion Channel Research and TRP Research Platform Leuven (TRPLe), KU Leuven, Campus Gasthuisberg, Leuven, Belgium
| | | | | | | |
Collapse
|
25
|
Koh SD, Rhee PL. Ionic Conductance(s) in Response to Post-junctional Potentials. J Neurogastroenterol Motil 2013; 19:426-32. [PMID: 24199003 PMCID: PMC3816177 DOI: 10.5056/jnm.2013.19.4.426] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 08/28/2013] [Accepted: 08/30/2013] [Indexed: 01/29/2023] Open
Abstract
The gastrointestinal motility is regulated by extrinsic and intrinsic neural regulation. Intrinsic neural pathways are controlled by sensory input, inter-neuronal relay and motor output. Enteric motor neurons release many transmitters which affect post-junctional responses. Post-junctional responses can be excitatory and inhibitory depending on neurotransmitters. Excitatory neurotransmitters induce depolarization and contraction. In contrast, inhibitory neurotransmitters hyperpolarize and relaxe the gastrointestinal smooth muscle. Smooth muscle syncytium is composed of smooth muscle cells, interstitial cells of Cajal and platelet-derived growth factor receptor α-positive (PDGFRα(+)) cells (SIP syncytium). Specific expression of receptors and ion channels in these cells can be affected by neurotransmitters. In recent years, molecular reporter expression techniques are able to study the properties of ion channels and receptors in isolated specialized cells. In this review, we will discuss the mechanisms of ion channels to interpret the post-junctional responses in the gastrointestinal smooth muscles.
Collapse
Affiliation(s)
- Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada, School of Medicine, Reno, NV, USA
| | | |
Collapse
|
26
|
Leptin promotes K(ATP) channel trafficking by AMPK signaling in pancreatic β-cells. Proc Natl Acad Sci U S A 2013; 110:12673-8. [PMID: 23858470 DOI: 10.1073/pnas.1216351110] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leptin is a pivotal regulator of energy and glucose homeostasis, and defects in leptin signaling result in obesity and diabetes. The ATP-sensitive potassium (K(ATP)) channels couple glucose metabolism to insulin secretion in pancreatic β-cells. In this study, we provide evidence that leptin modulates pancreatic β-cell functions by promoting K(ATP) channel translocation to the plasma membrane via AMP-activated protein kinase (AMPK) signaling. K(ATP) channels were localized mostly to intracellular compartments of pancreatic β-cells in the fed state and translocated to the plasma membrane in the fasted state. This process was defective in leptin-deficient ob/ob mice, but restored by leptin treatment. We discovered that the molecular mechanism of leptin-induced AMPK activation involves canonical transient receptor potential 4 and calcium/calmodulin-dependent protein kinase kinase β. AMPK activation was dependent on both leptin and glucose concentrations, so at optimal concentrations of leptin, AMPK was activated sufficiently to induce K(ATP) channel trafficking and hyperpolarization of pancreatic β-cells in a physiological range of fasting glucose levels. There was a close correlation between phospho-AMPK levels and β-cell membrane potentials, suggesting that AMPK-dependent K(ATP) channel trafficking is a key mechanism for regulating β-cell membrane potentials. Our results present a signaling pathway whereby leptin regulates glucose homeostasis by modulating β-cell excitability.
Collapse
|
27
|
Kim BJ, Kwon YK, Kim E, So I. Effects of histamine on cultured interstitial cells of cajal in murine small intestine. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2013; 17:149-56. [PMID: 23626477 PMCID: PMC3634092 DOI: 10.4196/kjpp.2013.17.2.149] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/06/2013] [Accepted: 03/06/2013] [Indexed: 01/11/2023]
Abstract
Interstitial cells of Cajal (ICCs) are the pacemaker cells in the gastrointestinal tract, and histamine is known to regulate neuronal activity, control vascular tone, alter endothelial permeability, and modulate gastric acid secretion. However, the action mechanisms of histamine in mouse small intestinal ICCs have not been previously investigated, and thus, in the present study, we investigated the effects of histamine on mouse small intestinal ICCs, and sought to identify the receptors involved. Enzymatic digestions were used to dissociate ICCs from small intestines, and the whole-cell patch-clamp configuration was used to record potentials (in current clamp mode) from cultured ICCs. Histamine was found to depolarize resting membrane potentials concentration dependently, and whereas 2-PEA (a selective H1 receptor agonist) induced membrane depolarizations, Dimaprit (a selective H2-agonist), R-alpha-methylhistamine (R-alpha-MeHa; a selective H3-agonist), and 4-methylhistamine (4-MH; a selective H4-agonist) did not. Pretreatment with Ca2+-free solution or thapsigargin (a Ca2+-ATPase inhibitor in endoplasmic reticulum) abolished the generation of pacemaker potentials and suppressed histamine-induced membrane depolarization. Furthermore, treatments with U-73122 (a phospholipase C inhibitor) or 5-fluoro-2-indolyl des-chlorohalopemide (FIPI; a phospholipase D inhibitor) blocked histamine-induced membrane depolarizations in ICCs. On the other hand, KT5720 (a protein kinase A inhibitor) did not block histamine-induced membrane depolarization. These results suggest that histamine modulates pacemaker potentials through H1 receptor-mediated pathways via external Ca2+ influx and Ca2+ release from internal stores in a PLC and PLD dependent manner.
Collapse
Affiliation(s)
- Byung Joo Kim
- School of Korean Medicine, Pusan National University, Yangsan 626-770, Korea
| | | | | | | |
Collapse
|
28
|
Chen GL, Zeng B, Eastmond S, Elsenussi SE, Boa AN, Xu SZ. Pharmacological comparison of novel synthetic fenamate analogues with econazole and 2-APB on the inhibition of TRPM2 channels. Br J Pharmacol 2013; 167:1232-43. [PMID: 22646516 DOI: 10.1111/j.1476-5381.2012.02058.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Fenamate analogues, econazole and 2-aminoethoxydiphenyl borate (2-APB) are inhibitors of transient receptor potential melastatin 2 (TRPM2) channels and are used as research tools. However, these compounds have different chemical structures and therapeutic applications. Here we have investigated the pharmacological profile of TRPM2 channels by application of newly synthesized fenamate analogues and the existing channel blockers. EXPERIMENTAL APPROACH Human TRPM2 channels in tetracycline-regulated pcDNA4/TO vectors were transfected into HEK293 T-REx cells and the expression was induced by tetracycline. Whole cell currents were recorded by patch-clamp techniques. Ca(2+) influx or release was monitored by fluorometry. KEY RESULTS Flufenamic acid (FFA), mefenamic acid (MFA) and niflumic acid (NFA) concentration-dependently inhibited TRPM2 current with potency order FFA > MFA = NFA. Modification of the 2-phenylamino ring by substitution of the trifluoromethyl group in FFA with -CH(3), -F, -CF(3), -OCH(3), -OCH(2)CH(3), -COOH, and -NO(2) at various positions, reduced channel blocking potency. The conservative substitution of 3-CF(3) in FFA by -CH(3) (3-MFA), however, gave the most potent fenamate analogue with an IC(50) of 76 µM, comparable to that of FFA, but unlike FFA, had no effect on Ca(2+) release. 3-MFA and FFA inhibited the channel intracellularly. Econazole and 2-APB showed non-selectivity by altering cytosolic Ca(2+) movement. Econazole also evoked a non-selective current. CONCLUSION AND IMPLICATIONS The fenamate analogue 3-MFA was more selective than other TRPM2 channel blockers. FFA, 2-APB and econazole should be used with caution as TRPM2 channel blockers, as these compounds can interfere with intracellular Ca(2+) movement.
Collapse
Affiliation(s)
- Gui-Lan Chen
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, UK
| | | | | | | | | | | |
Collapse
|
29
|
Guinamard R, Simard C, Del Negro C. Flufenamic acid as an ion channel modulator. Pharmacol Ther 2013; 138:272-84. [PMID: 23356979 DOI: 10.1016/j.pharmthera.2013.01.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 12/26/2012] [Indexed: 12/29/2022]
Abstract
Flufenamic acid has been known since the 1960s to have anti-inflammatory properties attributable to the reduction of prostaglandin synthesis. Thirty years later, flufenamic acid appeared to be an ion channel modulator. Thus, while its use in medicine diminished, its use in ionic channel research expanded. Flufenamic acid commonly not only affects non-selective cation channels and chloride channels, but also modulates potassium, calcium and sodium channels with effective concentrations ranging from 10(-6)M in TRPM4 channel inhibition to 10(-3)M in two-pore outwardly rectifying potassium channel activation. Because flufenamic acid effects develop and reverse rapidly, it is a convenient and widely used tool. However, given the broad spectrum of its targets, experimental results have to be interpreted cautiously. Here we provide an overview of ion channels targeted by flufenamic acid to aid in interpreting its effects at the molecular, cellular, and system levels. If it is used with good practices, flufenamic acid remains a useful tool for ion channel research. Understanding the targets of FFA may help reevaluate its physiological impacts and revive interest in its therapeutic potential.
Collapse
|
30
|
Kim H, Kim J, Jeon JP, Myeong J, Wie J, Hong C, Kim HJ, Jeon JH, So I. The roles of G proteins in the activation of TRPC4 and TRPC5 transient receptor potential channels. Channels (Austin) 2012; 6:333-43. [PMID: 22878724 PMCID: PMC3508772 DOI: 10.4161/chan.21198] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
TRPC4 and TRPC5 channels are important regulators of electrical excitability in both gastrointestinal myocytes and neurons. Much is known regarding the assembly and function of these channels including TRPC1 as a homotetramer or a heteromultimer and the roles that their interacting proteins play in controlling these events. Further, they are one of the best-studied targets of G protein-coupled receptors and growth factors in general and Gαq protein coupled receptor or epidermal growth factor in particular. However, our understanding of the roles of Gαi/o proteins on TRPC4/5 channels is still rudimentary. We discuss potential roles for Gαi/o proteins in channel activation in addition to their known role in cellular signaling.
Collapse
Affiliation(s)
- Hana Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Muscarinic agonists and antagonists are used to treat a handful of gastrointestinal (GI) conditions associated with impaired salivary secretion or altered motility of GI smooth muscle. With regard to exocrine secretion, the major muscarinic receptor expressed in salivary, gastric, and pancreatic glands is the M₃ with a small contribution of the M₁ receptor. In GI smooth muscle, the major muscarinic receptors expressed are the M₂ and M₃ with the M₂ outnumbering the M₃ by a ratio of at least four to one. The antagonism of both smooth muscle contraction and exocrine secretion is usually consistent with an M₃ receptor mechanism despite the major presence of the M₂ receptor in smooth muscle. These results are consistent with the conditional role of the M₂ receptor in smooth muscle. That is, the contractile role of the M₂ receptor depends on that of the M₃ so that antagonism of the M₃ receptor eliminates the response of the M₂. The physiological roles of muscarinic receptors in the GI tract are consistent with their known signaling mechanisms. Some so-called tissue-selective M₃ antagonists may owe their selectivity to a highly potent interaction with a nonmuscarinic receptor target.
Collapse
|
32
|
Hong C, Kim J, Jeon JP, Wie J, Kwak M, Ha K, Kim H, Myeong J, Kim SY, Jeon JH, So I. Gs cascade regulates canonical transient receptor potential 5 (TRPC5) through cAMP mediated intracellular Ca2+ release and ion channel trafficking. Biochem Biophys Res Commun 2012; 421:105-11. [PMID: 22490661 DOI: 10.1016/j.bbrc.2012.03.123] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 03/27/2012] [Indexed: 11/26/2022]
Abstract
Canonical transient receptor potential (TRPC) channels are Ca(2+)-permeable, non-selective cation channels those are widely expressed in mammalian cells. Various molecules have been found to regulate TRPC both in vivo and in vitro, but it is unclear how heterotrimeric G proteins transmit external stimuli to regulate the activity of TRPC5. Here, we demonstrated that TRPC5 was potentiated by the Gα(s) regulatory pathway. Whole-cell TRPC5 current was significantly increased by β-adrenergic receptor agonist, isoproterenol (ISO, 246±36%, n=6), an activator of the adenylate cyclase, forskolin (FSK, 273±6%, n=5), or a membrane permeable cAMP analogue, 8-Br-cAMP (251±63%, n=7). In addition, robust Ca(2+) transient induced by isoproterenol was observed utilizing a Ca(2+) imaging technique. When intracellular [Ca(2+)](i) was buffered to 50nM, cAMP-induced potentiation was attenuated. We also found that the Ca(2+) release is mediated by IP(3) since intracellular IP(3) infusion attenuated the potentiation of TRPC5 by Gα(s) cascade. Finally, we identified that the membrane localization of TRPC5 was significantly increased by ISO (155±17%, n=3), FSK (172±39%, n=3) or 8-Br-cAMP (216±59%, n=3). In conclusion, these results suggest that the Gα(s)-cAMP pathway potentiates the activity of TRPC5 via facilitating intracellular Ca(2+) dynamics and increasing channel trafficking to the plasma membrane.
Collapse
Affiliation(s)
- Chansik Hong
- Department of Physiology and Institute of Dermatological Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Narayanan D, Adebiyi A, Jaggar JH. Inositol trisphosphate receptors in smooth muscle cells. Am J Physiol Heart Circ Physiol 2012; 302:H2190-210. [PMID: 22447942 DOI: 10.1152/ajpheart.01146.2011] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP(3)Rs) are a family of tetrameric intracellular calcium (Ca(2+)) release channels that are located on the sarcoplasmic reticulum (SR) membrane of virtually all mammalian cell types, including smooth muscle cells (SMC). Here, we have reviewed literature investigating IP(3)R expression, cellular localization, tissue distribution, activity regulation, communication with ion channels and organelles, generation of Ca(2+) signals, modulation of physiological functions, and alterations in pathologies in SMCs. Three IP(3)R isoforms have been identified, with relative expression and cellular localization of each contributing to signaling differences in diverse SMC types. Several endogenous ligands, kinases, proteins, and other modulators control SMC IP(3)R channel activity. SMC IP(3)Rs communicate with nearby ryanodine-sensitive Ca(2+) channels and mitochondria to influence SR Ca(2+) release and reactive oxygen species generation. IP(3)R-mediated Ca(2+) release can stimulate plasma membrane-localized channels, including transient receptor potential (TRP) channels and store-operated Ca(2+) channels. SMC IP(3)Rs also signal to other proteins via SR Ca(2+) release-independent mechanisms through physical coupling to TRP channels and local communication with large-conductance Ca(2+)-activated potassium channels. IP(3)R-mediated Ca(2+) release generates a wide variety of intracellular Ca(2+) signals, which vary with respect to frequency, amplitude, spatial, and temporal properties. IP(3)R signaling controls multiple SMC functions, including contraction, gene expression, migration, and proliferation. IP(3)R expression and cellular signaling are altered in several SMC diseases, notably asthma, atherosclerosis, diabetes, and hypertension. In summary, IP(3)R-mediated pathways control diverse SMC physiological functions, with pathological alterations in IP(3)R signaling contributing to disease.
Collapse
Affiliation(s)
- Damodaran Narayanan
- Department of Physiology, University of Tennessee Health Science Center, Memphis, 38163, USA
| | | | | |
Collapse
|
34
|
Jiang H, Zeng B, Chen GL, Bot D, Eastmond S, Elsenussi SE, Atkin SL, Boa AN, Xu SZ. Effect of non-steroidal anti-inflammatory drugs and new fenamate analogues on TRPC4 and TRPC5 channels. Biochem Pharmacol 2012; 83:923-31. [PMID: 22285229 DOI: 10.1016/j.bcp.2012.01.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/04/2012] [Accepted: 01/12/2012] [Indexed: 01/13/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used anti-inflammatory therapeutic agents, among which the fenamate analogues play important roles in regulating intracellular Ca²⁺ transient and ion channels. However, the effect of NSAIDs on TRPC4 and TRPC5 is still unknown. To understand the structure-activity of fenamate analogues on TRPC channels, we have synthesized a series of fenamate analogues and investigated their effects on TRPC4 and TRPC5 channels. Human TRPC4 and TRPC5 cDNAs in tetracycline-regulated vectors were transfected into HEK293 T-REx cells. The whole cell current and Ca²⁺ movement were recorded by patch clamp and calcium imaging, respectively. Flufenamic acid (FFA), mefenamic acid (MFA), niflumic acid (NFA) and diclofenac sodium (DFS) showed inhibition on TRPC4 and TRPC5 channels in a concentration-dependent manner. The potency was FFA>MFA>NFA>DFS. Modification of 2-phenylamino ring by substitution of the trifluoromethyl group in FFA with F, CH₃, OCH₃, OCH₂CH₃, COOH, and NO₂ led to the changes in their channel blocking activity. However, 2-(2'-methoxy-5'-methylphenyl)aminobenzoic acid stimulated TRPC4 and TRPC5 channels. Selective COX1-3 inhibitors (aspirin, celecoxib, acetaminophen, and indomethacin) had no effect on the channels. Longer perfusion (> 5 min) with FFA (100 μM) and MFA (100 μM) caused a potentiation of TRPC4 and TRPC5 currents after their initial blocking effects that appeared to be partially mediated by the mitochondrial Ca²⁺ release. Our results suggest that fenamate analogues are direct modulators of TRPC4 and TRPC5 channels. The substitution pattern and conformation of the 2-phenylamino ring could alter their blocking activity, which is important for understanding fenamate pharmacology and new drug development targeting the TRPC channels.
Collapse
Affiliation(s)
- Hongni Jiang
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Jiang LH, Gamper N, Beech DJ. Properties and therapeutic potential of transient receptor potential channels with putative roles in adversity: focus on TRPC5, TRPM2 and TRPA1. Curr Drug Targets 2011; 12:724-36. [PMID: 21291387 PMCID: PMC3267159 DOI: 10.2174/138945011795378568] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 06/28/2010] [Indexed: 01/13/2023]
Abstract
Mammals contain 28 genes encoding Transient Receptor Potential (TRP) proteins. The proteins assemble into cationic channels, often with calcium permeability. Important roles in physiology and disease have emerged and so there is interest in whether the channels might be suitable therapeutic drug targets. Here we review selected members of three subfamilies of mammalian TRP channel (TRPC5, TRPM2 and TRPA1) that show relevance to sensing of adversity by cells and biological systems. Summarized are the cellular and tissue distributions, general properties, endogenous modulators, protein partners, cellular and tissue functions, therapeutic potential, and pharmacology. TRPC5 is stimulated by receptor agonists and other factors that include lipids and metal ions; it heteromultimerises with other TRPC proteins and is involved in cell movement and anxiety control. TRPM2 is activated by hydrogen peroxide; it is implicated in stress-related inflammatory, vascular and neurodegenerative conditions. TRPA1 is stimulated by a wide range of irritants including mustard oil and nicotine but also, controversially, noxious cold and mechanical pressure; it is implicated in pain and inflammatory responses, including in the airways. The channels have in common that they show polymodal stimulation, have activities that are enhanced by redox factors, are permeable to calcium, and are facilitated by elevations of intracellular calcium. Developing inhibitors of the channels could lead to new agents for a variety of conditions: for example, suppressing unwanted tissue remodeling, inflammation, pain and anxiety, and addressing problems relating to asthma and stroke.
Collapse
Affiliation(s)
- L H Jiang
- Institute of Membrane & Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | | | | |
Collapse
|
36
|
Zhang Z, Reboreda A, Alonso A, Barker PA, Séguéla P. TRPC channels underlie cholinergic plateau potentials and persistent activity in entorhinal cortex. Hippocampus 2011; 21:386-97. [PMID: 20082292 DOI: 10.1002/hipo.20755] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Persistent neuronal activity lasting seconds to minutes has been proposed to allow for the transient storage of memory traces in entorhinal cortex and thus could play a major role in working memory. Nonsynaptic plateau potentials induced by acetylcholine account for persistent firing in many cortical and subcortical structures. The expression of these intrinsic properties in cortical neurons involves the recruitment of a non-selective cation conductance. Despite its functional importance, the identity of the cation channels remains unknown. Here we show that, in layer V of rat medial entorhinal cortex, muscarinic receptor-evoked plateau potentials and persistent firing induced by carbachol require phospholipase C activation, decrease of PIP(2) levels, and permissive intracellular Ca(2+) concentrations. Plateau potentials and persistent activity were suppressed by the generic nonselective cation channel blockers FFA (100 μM) and 2-APB (100 μM), as well as by the TRPC channel blocker SKF-96365 (50 μM). However, plateau potentials were not affected by the TRPV channel blocker ruthenium red (40 μM). The TRPC3/6/7 activator OAG did not induce or enhance persistent firing evoked by carbachol. Voltage clamp recordings revealed a carbachol-activated, nonselective cationic current with a heteromeric TRPC-like phenotype. Moreover, plateau potentials and persistent firing were inhibited by intracellular application of the peptide EQVTTRL that disrupts interactions between the C-terminal domain of TRPC4/5 subunits and associated PDZ proteins. Altogether, our data suggest that TRPC cation channels mediating persistent muscarinic currents significantly contribute to the firing and mnemonic properties of projection neurons in the entorhinal cortex.
Collapse
Affiliation(s)
- Zizhen Zhang
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4 Canada
| | | | | | | | | |
Collapse
|
37
|
Holzer P. TRP channels in the digestive system. Curr Pharm Biotechnol 2011; 12:24-34. [PMID: 20932260 DOI: 10.2174/138920111793937862] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 05/09/2010] [Indexed: 12/26/2022]
Abstract
Several of the 28 mammalian transient receptor potential (TRP) channel subunits are expressed throughout the alimentary canal where they play important roles in taste, chemo- and mechanosensation, thermoregulation, pain and hyperalgesia, mucosal function and homeostasis, control of motility by neurons, interstitial cells of Cajal and muscle cells, and vascular function. While the implications of some TRP channels, notably TRPA1, TRPC4, TRPM5, TRPM6, TRPM7, TRPV1, TRPV4, and TRPV6, have been investigated in much detail, the understanding of other TRP channels in their relevance to digestive function lags behind. The polymodal chemo- and mechanosensory function of TRPA1, TRPM5, TRPV1 and TRPV4 is particularly relevant to the alimentary canal whose digestive and absorptive function depends on the surveillance and integration of many chemical and physical stimuli. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 appear to be essential for the absorption of Ca(2+) and Mg(2+), respectively, while TRPM7 appears to contribute to the pacemaker activity of the interstitial cells of Cajal, and TRPC4 transduces smooth muscle contraction evoked by muscarinic acetylcholine receptor activation. The implication of some TRP channels in pathological processes has raised enormous interest in exploiting them as a therapeutic target. This is particularly true for TRPV1, TRPV4 and TRPA1, which may be targeted for the treatment of several conditions of chronic abdominal pain. Consequently, blockers of these TRP channels have been developed, and their clinical usefulness has yet to be established.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitátsplatz 4, A-8010 Graz, Austria.
| |
Collapse
|
38
|
Klose C, Straub I, Riehle M, Ranta F, Krautwurst D, Ullrich S, Meyerhof W, Harteneck C. Fenamates as TRP channel blockers: mefenamic acid selectively blocks TRPM3. Br J Pharmacol 2011; 162:1757-69. [PMID: 21198543 DOI: 10.1111/j.1476-5381.2010.01186.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Fenamates are N-phenyl-substituted anthranilic acid derivatives clinically used as non-steroid anti-inflammatory drugs in pain treatment. Reports describing fenamates as tools to interfere with cellular volume regulation attracted our attention based on our interest in the role of the volume-modulated transient receptor potential (TRP) channels TRPM3 and TRPV4. EXPERIMENTAL APPROACH Firstly, we measured the blocking potencies and selectivities of fenamates on TRPM3 and TRPV4 as well as TRPC6 and TRPM2 by Ca(2+) imaging in the heterologous HEK293 cell system. Secondly, we further investigated the effects of mefenamic acid on cytosolic Ca(2+) and on the membrane voltage in single HEK293 cells that exogenously express TRPM3. Thirdly, in insulin-secreting INS-1E cells, which endogenously express TRPM3, we validated the effect of mefenamic acid on cytosolic Ca(2+) and insulin secretion. KEY RESULTS We identified and characterized mefenamic acid as a selective and potent TRPM3 blocker, whereas other fenamate structures non-selectively blocked TRPM3, TRPV4, TRPC6 and TRPM2. CONCLUSIONS AND IMPLICATIONS This study reveals that mefenamic acid selectively inhibits TRPM3-mediated calcium entry. This selectivity was further confirmed using insulin-secreting cells. K(ATP) channel-dependent increases in cytosolic Ca(2+) and insulin secretion were not blocked by mefenamic acid, but the selective stimulation of TRPM3-dependent Ca(2+) entry and insulin secretion induced by pregnenolone sulphate were inhibited. However, the physiological regulator of TRPM3 in insulin-secreting cells remains to be elucidated, as well as the conditions under which the inhibition of TRPM3 can impair pancreatic β-cell function. Our results strongly suggest mefenamic acid is the most selective fenamate to interfere with TRPM3 function.
Collapse
Affiliation(s)
- Chihab Klose
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Interfaculty Center of Pharmacogenomics and Pharmaceutical Research (ICePhA), Eberhard-Karls-University, Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
AL-Shawaf E, Tumova S, Naylor J, Majeed Y, Li J, Beech DJ. GVI phospholipase A2 role in the stimulatory effect of sphingosine-1-phosphate on TRPC5 cationic channels. Cell Calcium 2011; 50:343-50. [PMID: 21742378 PMCID: PMC3195672 DOI: 10.1016/j.ceca.2011.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/08/2011] [Accepted: 06/09/2011] [Indexed: 11/16/2022]
Abstract
The Transient Receptor Potential Canonical 5 (TRPC5) protein forms calcium-permeable cationic channels that are stimulated by G protein-coupled receptor agonists. The signaling pathways of such agonist effects are poorly understood. Here we investigated the potential for involvement of lysophosphatidylcholine (LPC) and arachidonic acid generated by group 6 (GVI) phospholipase A2 (PLA2) enzymes, focusing on stimulation of TRPC5 by sphingosine-1-phosphate (S1P) which acts via a pertussis toxin-sensitive (Gi/o protein) pathway without Ca2+-release. Experiments were on HEK 293 cells containing conditional expression of human TRPC5. Channel activity was recorded using an intracellular calcium indicator or whole-cell patch-clamp and PLA2 activity was detected using 3H-arachidonic acid. S1P stimulated PLA2 and TRPC5 activities. Both effects were suppressed by the GVI PLA2 inhibitor bromoenol lactone. Knock-down of GVI PLA2 by RNA interference suppressed channel activity evoked by S1P whereas activity evoked by the direct channel stimulator LPC was unaffected. Arachidonic acid did not stimulate the channels. Prior exposure of channels to LPC but not arachidonic acid suppressed channel activity evoked by S1P but not gadolinium, a putative direct stimulator of the channels. The data suggest roles of LPC and GVI PLA2 in S1P-evoked TRPC5 activity.
Collapse
Affiliation(s)
- Eman AL-Shawaf
- Multidisciplinary Cardiovascular Research Centre and the Institute of Membrane & Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | |
Collapse
|
40
|
Wang S, Zhang AP, Kurada L, Matsui T, Lei S. Cholecystokinin facilitates neuronal excitability in the entorhinal cortex via activation of TRPC-like channels. J Neurophysiol 2011; 106:1515-24. [PMID: 21753024 DOI: 10.1152/jn.00025.2011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cholecystokinin (CCK) is one of the most abundant neuropeptides in the brain, where it interacts with two G protein-coupled receptors (CCK-1 and CCK-2). Activation of both CCK receptors increases the activity of PLC, resulting in increases in intracellular calcium ion (Ca(2+)) release and activation of PKC. Whereas high density of CCK receptors has been detected in the superficial layers of the entorhinal cortex (EC), the functions of CCK in this brain region have not been determined. Here, we studied the effects of CCK on neuronal excitability of layer III pyramidal neurons in the EC. Our results showed that CCK remarkably increased the firing frequency of action potentials (APs). The effects of CCK on neuronal excitability were mediated via activation of CCK-2 receptors and required the functions of G proteins and PLC. However, CCK-mediated facilitation of neuronal excitability was independent of inositol trisphosphate receptors and PKC. CCK facilitated neuronal excitability by activating a cationic channel to generate membrane depolarization. The effects of CCK were suppressed by the generic, nonselective cationic channel blockers, 2-aminoethyldiphenyl borate and flufenamic acid, but potentiated by gadolinium ion and lanthanum ion at 100 μM. Depletion of extracellular Ca(2+) also counteracted CCK-induced increases in AC firing frequency. Moreover, CCK-induced enhancement of neuronal excitability was inhibited significantly by intracellular application of the antibody to transient receptor potential channel 5 (TRPC5), suggesting the involvement of TRPC5 channels. Our results provide a cellular and molecular mechanism to help explain the functions of CCK in vivo.
Collapse
Affiliation(s)
- Shouping Wang
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | | | | | | | | |
Collapse
|
41
|
Sung TS, Jeon JP, Kim BJ, Hong C, Kim SY, Kim J, Jeon JH, Kim HJ, Suh CK, Kim SJ, So I. Molecular determinants of PKA-dependent inhibition of TRPC5 channel. Am J Physiol Cell Physiol 2011; 301:C823-32. [PMID: 21734191 DOI: 10.1152/ajpcell.00351.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Canonical transient receptor potential (TRPC) channels are Ca(2+)-permeable, nonselective cation channels that are widely expressed in numerous cell types. Here, we demonstrate a new mechanism of TPRC isofom 5 (TRPC5) regulation, via cAMP signaling via Gα(s). Monovalent cation currents in human embryonic kidney-293 cells transfected with TRPC5 were induced by G protein activation with intracellular perfusion of GTPγS or by muscarinic stimulation. This current could be inhibited by a membrane-permeable analog of cAMP, 8-bromo-cAMP, by isoproterenol, by a constitutively active form of Gα(s) [Gα(s) (Q227L)], and by forskolin. These inhibitory effects were blocked by the protein kinase A (PKA) inhibitors, KT-5720 and H-89, as well as by two point mutations at consensus PKA phosphorylation sites on TRPC5 (S794A and S796A). Surface expression of several mutated versions of TRPC5, quantified using surface biotinylation, were not affected by Gα(s) (Q227L), suggesting that trafficking of this channel does not underlie the regulation we report. This mechanism of inhibition was also found to be important for the closely related channel, TRPC4, in particular for TRPC4α, although TRPC4β was also affected. However, this form of regulation was not found to be involved in TRPC6 and transient receptor potential vanilloid 6 function. In murine intestinal smooth muscle cells, muscarinic stimulation-induced cation currents were mediated by TRPC4 (>80%) and TRPC6. In murine intestinal smooth muscle cells, 8-bromo-cAMP, adrenaline, and isoproterenol decreased nonselective cation currents activated by muscarinic stimulation or GTPγS. Together, these results suggest that TRPC5 is directly phosphorylated by G(s)/cAMP/PKA at positions S794 and S796. This mechanism may be physiologically important in visceral tissues, where muscarinic receptor and β(2)-adrenergic receptor are involved in the relaxation and contraction of smooth muscles.
Collapse
Affiliation(s)
- Tae Sik Sung
- Department of Physiology, Seoul National University College of Medicine, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
El-Hassar L, Hagenston AM, D'Angelo LB, Yeckel MF. Metabotropic glutamate receptors regulate hippocampal CA1 pyramidal neuron excitability via Ca²⁺ wave-dependent activation of SK and TRPC channels. J Physiol 2011; 589:3211-29. [PMID: 21576272 DOI: 10.1113/jphysiol.2011.209783] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Group I metabotropic glutamate receptors (mGluRs) play an essential role in cognitive function. Their activation results in a wide array of cellular and molecular responses that are mediated by multiple signalling cascades. In this study, we focused on Group I mGluR activation of IP3R-mediated intracellular Ca2+ waves and their role in activating Ca2+-dependent ion channels in CA1 pyramidal neurons. Using whole-cell patch-clamp recordings and high-speed Ca2+ fluorescence imaging in acute hippocampal brain slices, we show that synaptic and pharmacological stimulation of mGluRs triggers intracellular Ca2+ waves and a biphasic electrical response composed of a transient Ca2+-dependent SK channel-mediated hyperpolarization and a TRPC-mediated sustained depolarization. The generation and magnitude of the SK channel-mediated hyperpolarization depended solely on the rise in intracellular Ca2+ concentration ([Ca2+]i), whereas the TRPC channel-mediated depolarization required both a small rise in [Ca2+]i and mGluR activation. Furthermore, the TRPC-mediated current was suppressed by forskolin-induced rises in cAMP. We also show that SK- and TRPC-mediated currents robustly modulate pyramidal neuron excitability by decreasing and increasing their firing frequency, respectively. These findings provide additional evidence that mGluR-mediated synaptic transmission makes an important contribution to regulating the output of hippocampal neurons through intracellular Ca2+ wave activation of SK and TRPC channels. cAMP provides an additional level of regulation by modulating TRPC-mediated sustained depolarization that we propose to be important for stabilizing periods of sustained firing.
Collapse
Affiliation(s)
- Lynda El-Hassar
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | |
Collapse
|
43
|
Infantile hypertrophic pyloric stenosis: evaluation of three positional candidate genes, TRPC1, TRPC5 and TRPC6, by association analysis and re-sequencing. Hum Genet 2011; 126:819-31. [PMID: 19701773 DOI: 10.1007/s00439-009-0735-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 08/13/2009] [Indexed: 01/10/2023]
Abstract
Infantile hypertrophic pyloric stenosis (IHPS) is the most common inherited form of gastrointestinal obstruction in infancy with a striking male preponderance. Infants present with vomiting due to gastric outlet obstruction caused by hypertrophy of the smooth muscle of the pylorus. Two loci specific to extended pedigrees displaying autosomal dominant inheritance have been identified. A genome scan identified loci on chromosomes 11q14-q22 and Xq23-q24 which are predicted to be responsible for a subset of smaller families with IHPS demonstrating non-Mendelian inheritance. The two linked chromosomal regions both harbour functional candidate genes which are members of the canonical transient receptor potential (TRPC) family of ion channels. Both TRPC5 (Xq23-q24) and TRPC6 (11q14-q22) have a potential role in smooth muscle control and hypertrophy. Here, we report suggestive evidence for a third locus on chromosome 3q12-q25 (Zmax = 2.7, p < 0.004), a region which harbours a third TRPC gene, TRPC1. Fine mapping of all three genes using a tagSNP approach and re-sequencing identified a SNP in the promoter region of TRPC6 and a missense variant in exon 4 of TRPC6 which may be putative causal variants.
Collapse
|
44
|
Holzer P. Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system. Pharmacol Ther 2011; 131:142-70. [PMID: 21420431 PMCID: PMC3107431 DOI: 10.1016/j.pharmthera.2011.03.006] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 12/12/2022]
Abstract
Approximately 20 of the 30 mammalian transient receptor potential (TRP) channel subunits are expressed by specific neurons and cells within the alimentary canal. They subserve important roles in taste, chemesthesis, mechanosensation, pain and hyperalgesia and contribute to the regulation of gastrointestinal motility, absorptive and secretory processes, blood flow, and mucosal homeostasis. In a cellular perspective, TRP channels operate either as primary detectors of chemical and physical stimuli, as secondary transducers of ionotropic or metabotropic receptors, or as ion transport channels. The polymodal sensory function of TRPA1, TRPM5, TRPM8, TRPP2, TRPV1, TRPV3 and TRPV4 enables the digestive system to survey its physical and chemical environment, which is relevant to all processes of digestion. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 contribute to the absorption of Ca²⁺ and Mg²⁺, respectively. TRPM7 participates in intestinal pacemaker activity, and TRPC4 transduces muscarinic acetylcholine receptor activation to smooth muscle contraction. Changes in TRP channel expression or function are associated with a variety of diseases/disorders of the digestive system, notably gastro-esophageal reflux disease, inflammatory bowel disease, pain and hyperalgesia in heartburn, functional dyspepsia and irritable bowel syndrome, cholera, hypomagnesemia with secondary hypocalcemia, infantile hypertrophic pyloric stenosis, esophageal, gastrointestinal and pancreatic cancer, and polycystic liver disease. These implications identify TRP channels as promising drug targets for the management of a number of gastrointestinal pathologies. As a result, major efforts are put into the development of selective TRP channel agonists and antagonists and the assessment of their therapeutic potential.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| |
Collapse
|
45
|
Chen X, Yang D, Ma S, He H, Luo Z, Feng X, Cao T, Ma L, Yan Z, Liu D, Tepel M, Zhu Z. Increased rhythmicity in hypertensive arterial smooth muscle is linked to transient receptor potential canonical channels. J Cell Mol Med 2011; 14:2483-94. [PMID: 19725917 PMCID: PMC3823165 DOI: 10.1111/j.1582-4934.2009.00890.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Vasomotion describes oscillations of arterial vascular tone due to synchronized changes of intracellular calcium concentrations. Since increased calcium influx into vascular smooth muscle cells from spontaneously hypertensive rats (SHR) has been associated with variances of transient receptor potential canonical (TRPC) channels, in the present study we tested the hypothesis that increased vasomotion in hypertension is directly linked to increased TRPC expression. Using a small vessel myograph we observed significantly increased norepinephrine-induced vasomotion in mesenteric arterioles from SHR compared to normotensive Wistar–Kyoto (WKY) rats. Using immunoblottings we obtained significantly increased expression of TRPC1, TRPC3 and TRPC5 in mesenteric arterioles from SHR compared to WKY, whereas TRPC4 and TRPC6 showed no differences. Norepinephrine-induced vasomotion from SHR was significantly reduced in the presence of verapamil, SKF96365, 2-aminoethoxydiphenylborane (2-APB) or gadolinium. Pre-incubation of mesenteric arterioles with anti-TRPC1 and anti-TRPC3 antibodies significantly reduced norepinephrine-induced vasomotion and calcium influx. Control experiments with pre-incubation of TRPC antibodies plus their respective antigenic peptide or in the presence of anti-β-actin antibodies or random immunoglobulins not related to TRPC channels showed no inhibitory effects of norepinephrine-induced vasomotion and calcium influx. Administration of candesartan or telmisartan, but not amlodipine to SHR for 16 weeks significantly reduced either the expression of TRPC1, TRPC3 and TRPC5 as well as norepinephrine-induced vasomotion in mesenteric arterioles. In conclusion we gave experimental evidence that the increased TRPC1, TRPC3 and TRPC5 expression in mesenteric arterioles from SHR causes increased vasomotion in hypertension.
Collapse
Affiliation(s)
- Xiaoping Chen
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Guinamard R, Sallé L, Simard C. The non-selective monovalent cationic channels TRPM4 and TRPM5. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:147-71. [PMID: 21290294 DOI: 10.1007/978-94-007-0265-3_8] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Transient Receptor Potential (TRP) proteins are non-selective cationic channels with a consistent Ca(2+)-permeability, except for TRPM4 and TRPM5 that are not permeable to this ion. However, Ca(2+) is a major regulator of their activity since both channels are activated by a rise in internal Ca(2+). Thus TRPM4 and TRPM5 are responsible for most of the Ca(2+)-activated non-selective cationic currents (NSC(Ca)) recorded in a large variety of tissues. Their activation induces cell-membrane depolarization that modifies the driving force for ions as well as activity of voltage gated channels and thereby strongly impacts cell physiology. In the last few years, the ubiquitously expressed TRPM4 channel has been implicated in insulin secretion, the immune response, constriction of cerebral arteries, the activity of inspiratory neurons and cardiac dysfunction. Conversely, TRPM5 whose expression is more restricted, has until now been mainly implicated in taste transduction.
Collapse
Affiliation(s)
- Romain Guinamard
- Groupe Cœur et Ischémie, EA 3212, Université de Caen, Sciences D, F-14032, Caen Cedex, France,
| | | | | |
Collapse
|
47
|
Boesmans W, Owsianik G, Tack J, Voets T, Vanden Berghe P. TRP channels in neurogastroenterology: opportunities for therapeutic intervention. Br J Pharmacol 2011; 162:18-37. [PMID: 20804496 PMCID: PMC3012403 DOI: 10.1111/j.1476-5381.2010.01009.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 07/02/2010] [Accepted: 08/17/2010] [Indexed: 12/14/2022] Open
Abstract
The members of the superfamily of transient receptor potential (TRP) cation channels are involved in a plethora of cellular functions. During the last decade, a vast amount of evidence is accumulating that attributes an important role to these cation channels in different regulatory aspects of the alimentary tract. In this review we discuss the expression patterns and roles of TRP channels in the regulation of gastrointestinal motility, enteric nervous system signalling and visceral sensation, and provide our perspectives on pharmacological targeting of TRPs as a strategy to treat various gastrointestinal disorders. We found that the current knowledge about the role of some members of the TRP superfamily in neurogastroenterology is rather limited, whereas the function of other TRP channels, especially of those implicated in smooth muscle cell contractility (TRPC4, TRPC6), visceral sensitivity and hypersensitivity (TRPV1, TRPV4, TRPA1), tends to be well established. Compared with expression data, mechanistic information about TRP channels in intestinal pacemaking (TRPC4, TRPC6, TRPM7), enteric nervous system signalling (TRPCs) and enteroendocrine cells (TRPM5) is lacking. It is clear that several different TRP channels play important roles in the cellular apparatus that controls gastrointestinal function. They are involved in the regulation of gastrointestinal motility and absorption, visceral sensation and visceral hypersensitivity. TRP channels can be considered as interesting targets to tackle digestive diseases, motility disorders and visceral pain. At present, TRPV1 antagonists are under development for the treatment of heartburn and visceral hypersensitivity, but interference with other TRP channels is also tempting. However, their role in gastrointestinal pathophysiology first needs to be further elucidated.
Collapse
Affiliation(s)
- Werend Boesmans
- TARGID – Translational Research Center for Gastrointestinal DisordersKULeuven, Leuven, Belgium
| | | | - Jan Tack
- TARGID – Translational Research Center for Gastrointestinal DisordersKULeuven, Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel ResearchKULeuven, Leuven, Belgium
| | - Pieter Vanden Berghe
- TARGID – Translational Research Center for Gastrointestinal DisordersKULeuven, Leuven, Belgium
| |
Collapse
|
48
|
Abstract
Leptin can exert its potent appetite-suppressing effects via activation of hypothalamic proopiomelanocortin (POMC) neurons. It depolarizes POMC neurons via activation of a yet unidentified nonselective cation current. Therefore, we sought to identify the conductance activated by leptin using whole-cell recording in EGFP-POMC neurons from transgenic mice. The TRPC channel blockers SKF96365 (1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole hydrochloride), flufenamic acid, and 2-APB (2-aminoethyl diphenylborinate) potently inhibited the leptin-induced current. Also, lanthanum (La(3+)) and intracellular Ca(2+) potentiated the effects of leptin. Moreover, the diacylglycerol-permeable analog OAG (2-acetyl-1-oleoyl-sn-glycerol) failed to activate any TRPC current. Using a Cs(+)-gluconate-based internal solution, the leptin-activated current reversed near -20 mV. After replacement of external Na(+) and K(+) with Cs(+), the reversal shifted to near 0 mV, and the I/V curve exhibited a negative slope conductance at voltages more negative than -40 mV. Based on scRT-PCR, TRPC1 and TRPC4-7 mRNA were expressed in POMC neurons, with TRPC5 being the most prevalent. The leptin-induced current was blocked by the Jak2 inhibitor AG490, the PI3 kinase inhibitor wortmannin, and the phospholipase C inhibitors, U73122 and ET-18-OCH3. Notably, we identified PLCgamma1 transcripts in the majority of POMC neurons. Therefore, leptin through a Jak2-PI3 kinase-PLCgamma pathway activates TRPC channels, and TRPC1, 4, and 5 appear to be the key channels mediating the depolarizing effects of leptin in POMC neurons.
Collapse
|
49
|
Tai C, Hines DJ, Choi HB, MacVicar BA. Plasma membrane insertion of TRPC5 channels contributes to the cholinergic plateau potential in hippocampal CA1 pyramidal neurons. Hippocampus 2010; 21:958-67. [DOI: 10.1002/hipo.20807] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2010] [Indexed: 01/05/2023]
|
50
|
Gonzalez-Cobos JC, Trebak M. TRPC channels in smooth muscle cells. Front Biosci (Landmark Ed) 2010; 15:1023-39. [PMID: 20515740 DOI: 10.2741/3660] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transient receptor potential canonical (TRPC) proteins constitute a family of seven (TRPC1-7) nonselective cation channels within the wider TRP superfamily. TRPC1, TRPC3, TRPC4, TRPC5 and TRPC6 channels are expressed in vascular smooth muscle cells from human vessels of all calibers and in smooth muscle from organs such as the uterus and the gastrointestinal tract. TRPC channels have recently emerged as important players in the control of smooth muscle function. This review will focus on the retrospective analysis of studies proposing contributions of TRPC channels to native calcium entry pathways in smooth muscle and to physiological and pathophysiological responses with emphasis on the vascular system.
Collapse
|