1
|
Spencer NJ, Keating DJ. Role of 5-HT in the enteric nervous system and enteroendocrine cells. Br J Pharmacol 2025; 182:471-483. [PMID: 35861711 DOI: 10.1111/bph.15930] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
Since the 1950s, considerable circumstantial evidence had been presented that endogenous 5-HT (serotonin) synthesized from within the wall of the gastrointestinal (GI) tract played an important role in GI motility and transit. However, identifying the precise functional role of gut-derived 5-HT has been difficult to ascertain, for a number of reasons. Over the past decade, as recording techniques have advanced significantly and access to new genetically modified animals improved, there have been major new insights and major changes in our understanding of the functional role of endogenous 5-HT in the GI tract. Data from many different laboratories have shown that major patterns of GI motility and transit still occur with minor or no, change when all endogenous 5-HT is pharmacologically or genetically ablated from the gut. Furthermore, antagonists of 5-HT3 receptors are equally, or more potent at inhibiting GI motility in segments of intestine that are completely depleted of endogenous 5-HT. Here, the most recent findings are discussed with regard to the functional role of endogenous 5-HT in enterochromaffin cells and enteric neurons in gut motility and more broadly in some major homeostatic pathways.
Collapse
Affiliation(s)
- Nick J Spencer
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia
| | - Damien J Keating
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia
| |
Collapse
|
2
|
Liu J, Zhang S, Emadi S, Guo T, Chen L, Feng B. Morphological, molecular, and functional characterization of mouse glutamatergic myenteric neurons. Am J Physiol Gastrointest Liver Physiol 2024; 326:G279-G290. [PMID: 38193160 PMCID: PMC11211033 DOI: 10.1152/ajpgi.00200.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
The enteric nervous system (ENS) functions largely independently of the central nervous system (CNS). Glutamate, the dominant neurotransmitter in the CNS and sensory afferents, is not a primary neurotransmitter in the ENS. Only a fraction (∼2%) of myenteric neurons in the mouse distal colon and rectum (colorectum) are positive for vesicular glutamate transporter type 2 (VGLUT2), the structure and function of which remain undetermined. Here, we systematically characterized VGLUT2-positive enteric neurons (VGLUT2-ENs) through sparse labeling with adeno-associated virus, single-cell mRNA sequencing (scRNA-seq), and GCaMP6f calcium imaging. Our results reveal that the majority of VGLUT2-ENs (29 of 31, 93.5%) exhibited Dogiel type I morphology with a single aborally projecting axon; most axons (26 of 29, 89.7%) are between 4 and 10 mm long, each traversing 19 to 34 myenteric ganglia. These anatomical features exclude the VGLUT2-ENs from being intrinsic primary afferent or motor neurons. The scRNA-seq conducted on 52 VGLUT2-ENs suggests different expression profiles from conventional descending interneurons. Ex vivo GCaMP6f recordings from flattened colorectum indicate that almost all VGLUT2-EN (181 of 215, 84.2%) are indirectly activated by colorectal stretch via nicotinic cholinergic neural transmission. In conclusion, VGLUT2-ENs are a functionally unique group of enteric neurons with single aborally projecting long axons that traverse multiple myenteric ganglia and are activated indirectly by colorectal mechanical stretch. This knowledge will provide a solid foundation for subsequent studies on the potential interactions of VGLUT2-EN with extrinsic colorectal afferents via glutamatergic neurotransmission.NEW & NOTEWORTHY We reveal that VGLUT2-positive enteric neurons (EN), although constituting a small fraction of total EN, are homogeneously expressed in the myenteric ganglia, with a slight concentration at the intermediate region between the colon and rectum. Through anatomic, molecular, and functional analyses, we demonstrated that VGLUT2-ENs are activated indirectly by noxious circumferential colorectal stretch via nicotinic cholinergic transmission, suggesting their participation in mechanical visceral nociception.
Collapse
Affiliation(s)
- Jia Liu
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States
| | - Shaopeng Zhang
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States
| | - Sharareh Emadi
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States
| | - Tiantian Guo
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States
| | - Longtu Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States
| | - Bin Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States
| |
Collapse
|
3
|
Radocchia G, Marazzato M, Harbi KB, Capuzzo E, Pantanella F, De Giorgio R, Guarino M, Costanzini A, Zenzeri L, Parisi P, Ferretti A, Felici E, Palamara AT, Di Nardo G, Schippa S. Chronic intestinal pseudo-obstruction: associations with gut microbiota and genes expression of intestinal serotonergic pathway. BMC Microbiol 2024; 24:48. [PMID: 38302874 PMCID: PMC10835911 DOI: 10.1186/s12866-024-03200-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Pediatric chronic intestinal pseudo-obstruction (PIPO) is a rare disease characterized by symptoms and radiological signs suggestive of intestinal obstruction, in the absence of lumen-occluding lesions. It results from an extremely severe impairment of propulsive motility. The intestinal endocrine system (IES) jointly with the enteric nervous system (ENS) regulates secreto-motor functions via different hormones and bioactive messengers/neurotransmitters. The neurotransmitter 5-hydroxytryptamine (5-HT) (or serotonin) is linked to intestinal peristalsis and secretory reflexes. Gut microbiota and its interplay with ENS affect 5-HT synthesis, release, and the subsequent serotonin receptor activation. To date, the interplay between 5-HT and gut microbiota in PIPO remains largely unclear. This study aimed to assess correlations between mucosa associated microbiota (MAM), intestinal serotonin-related genes expression in PIPO. To this purpose, biopsies of the colon, ileum and duodenum have been collected from 7 PIPO patients, and 7 age-/sex-matched healthy controls. After DNA extraction, the MAM was assessed by next generation sequencing (NGS) of the V3-V4 region of the bacterial RNA 16 S, on an Illumina Miseq platform. The expression of genes implicated in serotoninergic pathway (TPH1, SLC6A4, 5-HTR3 and 5-HTR4) was established by qPCR, and correlations with MAM and clinical parameters of PIPO have been evaluated. RESULTS Our results revealed that PIPO patients exhibit a MAM with a different composition and with dysbiosis, i.e. with a lower biodiversity and fewer less connected species with a greater number of non-synergistic relationships, compared to controls. qPCR results revealed modifications in the expression of serotonin-related intestinal genes in PIPO patients, when compared to controls. Correlation analysis do not reveal any kind of connection. CONCLUSIONS For the first time, we report in PIPO patients a specific MAM associated to underlying pathology and an altered intestinal serotonin pathway. A possible dysfunction of the serotonin pathway, possibly related to or triggered by an altered microbiota, may contribute to dysmotility in PIPO patients. The results of our pilot study provide the basis for new biomarkers and innovative therapies targeting the microbiota or serotonin pathways in PIPO patients.
Collapse
Affiliation(s)
- Giulia Radocchia
- Department of Public Health and Infectious Diseases, Microbiology section, Sapienza University of Rome, Rome, Italy
| | - Massimiliano Marazzato
- Department of Public Health and Infectious Diseases, Microbiology section, Sapienza University of Rome, Rome, Italy
| | - Karim Ben Harbi
- Department of Public Health and Infectious Diseases, Microbiology section, Sapienza University of Rome, Rome, Italy
| | - Elena Capuzzo
- Department of Public Health and Infectious Diseases, Microbiology section, Sapienza University of Rome, Rome, Italy
| | - Fabrizio Pantanella
- Department of Public Health and Infectious Diseases, Microbiology section, Sapienza University of Rome, Rome, Italy
| | - Roberto De Giorgio
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Matteo Guarino
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Anna Costanzini
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Letizia Zenzeri
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Pediatric Unit, Sapienza University of Rome, Sant'Andrea University Hospital, Rome, Italy
- Paediatric Emergency Department, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Pasquale Parisi
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Pediatric Unit, Sapienza University of Rome, Sant'Andrea University Hospital, Rome, Italy
| | - Alessandro Ferretti
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Pediatric Unit, Sapienza University of Rome, Sant'Andrea University Hospital, Rome, Italy
| | - Enrico Felici
- Unit of Pediatrics, The Children Hospital, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Microbiology section, Sapienza University of Rome, Rome, Italy
- Department of Infectious Diseases, National Institute of Health, Rome, Italy
| | - Giovanni Di Nardo
- Department of Public Health and Infectious Diseases, Microbiology section, Sapienza University of Rome, Rome, Italy.
| | - Serena Schippa
- Department of Public Health and Infectious Diseases, Microbiology section, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
4
|
Zhao C, Zhou X, Shi X. The influence of Nav1.9 channels on intestinal hyperpathia and dysmotility. Channels (Austin) 2023; 17:2212350. [PMID: 37186898 DOI: 10.1080/19336950.2023.2212350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
The Nav1.9 channel is a voltage-gated sodium channel. It plays a vital role in the generation of pain and the formation of neuronal hyperexcitability after inflammation. It is highly expressed in small diameter neurons of dorsal root ganglions and Dogiel II neurons in enteric nervous system. The small diameter neurons in dorsal root ganglions are the primary sensory neurons of pain conduction. Nav1.9 channels also participate in regulating intestinal motility. Functional enhancements of Nav1.9 channels to a certain extent lead to hyperexcitability of small diameter dorsal root ganglion neurons. The hyperexcitability of the neurons can cause visceral hyperalgesia. Intestinofugal afferent neurons and intrinsic primary afferent neurons in enteric nervous system belong to Dogiel type II neurons. Their excitability can also be regulated by Nav1.9 channels. The hyperexcitability of intestinofugal afferent neurons abnormally activate entero-enteric inhibitory reflexes. The hyperexcitability of intrinsic primary afferent neurons disturb peristaltic waves by abnormally activating peristaltic reflexes. This review discusses the role of Nav1.9 channels in intestinal hyperpathia and dysmotility.
Collapse
Affiliation(s)
- Chenyu Zhao
- Department of Gastroenterology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xi Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xiaoliu Shi
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Liu J, Zhang S, Emadi S, Guo T, Chen L, Feng B. Morphological, molecular, and functional characterization of mouse glutamatergic myenteric neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558146. [PMID: 37781576 PMCID: PMC10541117 DOI: 10.1101/2023.09.18.558146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The enteric nervous system (ENS) functions largely independently of the central nervous system (CNS). Correspondingly, glutamate, the dominant neurotransmitter in the CNS and sensory afferents, is not a primary neurotransmitter in the ENS. Only a fraction (approximately 2%) of myenteric neurons in the mouse distal colon and rectum (colorectum) are positive for vesicular glutamate transporter type 2 (VGLUT2), the structure and function of which remain undetermined. Here, we systematically characterized VGLUT2-positive enteric neurons (VGLUT2-ENs) through sparse labeling with adeno-associated virus, single-cell mRNA sequencing (scRNA-seq), and GCaMP6f calcium imaging. Our results reveal that the majority of VGLUT2-ENs (29 out of 31, 93.5%) exhibited Dogiel type I morphology with a single aborally projecting axon; most axons (26 out of 29, 89.7%) are between 4 and 10 mm long, each traversing 19 to 34 myenteric ganglia. These anatomical features exclude the VGLUT2-ENs from being intrinsic primary afferent or motor neurons. The scRNA-seq conducted on 52 VGLUT2-ENs suggests different expression profiles from conventional descending interneurons. Ex vivo GCaMP6f recordings from flattened colorectum indicate that almost all VGLUT2-EN (181 out of 215, 84.2%) are indirectly activated by colorectal stretch via nicotinic cholinergic neural transmission. In conclusion, VGLUT2-ENs are a functionally unique group of enteric neurons with single aborally projecting long axons that traverse multiple myenteric ganglia and are activated indirectly by colorectal mechanical stretch. This knowledge will provide a solid foundation for subsequent studies on the potential interactions of VGLUT2-EN with extrinsic colorectal afferents via glutamatergic neurotransmission. New & Noteworthy We reveal that VGLUT2-positive enteric neurons (EN), although constituting a small fraction of total EN, are homogeneously expressed in the myenteric ganglia, with a slight concentration at the intermediate region between the colon and rectum. This concentration coincides with the entry zone of extrinsic afferents into the colorectum. Given that VGLUT2-ENs are indirectly activated by colorectal mechanical stretch, they are likely to participate in visceral nociception through glutamatergic neural transmission with extrinsic afferents.
Collapse
|
6
|
Zhao Y, Jin KQ, Li JD, Sheng KK, Huang WH, Liu YL. Flexible and Stretchable Electrochemical Sensors for Biological Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305917. [PMID: 37639636 DOI: 10.1002/adma.202305917] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/23/2023] [Indexed: 08/31/2023]
Abstract
The rise of flexible and stretchable electronics has revolutionized biosensor techniques for probing biological systems. Particularly, flexible and stretchable electrochemical sensors (FSECSs) enable the in situ quantification of numerous biochemical molecules in different biological entities owing to their exceptional sensitivity, fast response, and easy miniaturization. Over the past decade, the fabrication and application of FSECSs have significantly progressed. This review highlights key developments in electrode fabrication and FSECSs functionalization. It delves into the electrochemical sensing of various biomarkers, including metabolites, electrolytes, signaling molecules, and neurotransmitters from biological systems, encompassing the outer epidermis, tissues/organs in vitro and in vivo, and living cells. Finally, considering electrode preparation and biological applications, current challenges and future opportunities for FSECSs are discussed.
Collapse
Affiliation(s)
- Yi Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Kai-Qi Jin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Jing-Du Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Kai-Kai Sheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan-Ling Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
7
|
Kola JB, Docsa T, Uray K. Mechanosensing in the Physiology and Pathology of the Gastrointestinal Tract. Int J Mol Sci 2022; 24:ijms24010177. [PMID: 36613619 PMCID: PMC9820522 DOI: 10.3390/ijms24010177] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/10/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Normal gastrointestinal function relies on sensing and transducing mechanical signals into changes in intracellular signaling pathways. Both specialized mechanosensing cells, such as certain enterochromaffin cells and enteric neurons, and non-specialized cells, such as smooth muscle cells, interstitial cells of Cajal, and resident macrophages, participate in physiological and pathological responses to mechanical signals in the gastrointestinal tract. We review the role of mechanosensors in the different cell types of the gastrointestinal tract. Then, we provide several examples of the role of mechanotransduction in normal physiology. These examples highlight the fact that, although these responses to mechanical signals have been known for decades, the mechanosensors involved in these responses to mechanical signals are largely unknown. Finally, we discuss several diseases involving the overstimulation or dysregulation of mechanotransductive pathways. Understanding these pathways and identifying the mechanosensors involved in these diseases may facilitate the identification of new drug targets to effectively treat these diseases.
Collapse
Affiliation(s)
- Job Baffin Kola
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Center of Excellence, The Hungarian Academy of Sciences, 4032 Debrecen, Hungary
| | - Tibor Docsa
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Center of Excellence, The Hungarian Academy of Sciences, 4032 Debrecen, Hungary
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Center of Excellence, The Hungarian Academy of Sciences, 4032 Debrecen, Hungary
- Correspondence:
| |
Collapse
|
8
|
Martin AM, Jones LA, Wei L, Spencer NJ, Sanders KM, Ro S, Keating DJ. Distinguishing the contributions of neuronal and mucosal serotonin in the regulation of colonic motility. Neurogastroenterol Motil 2022; 34:e14361. [PMID: 35313053 DOI: 10.1111/nmo.14361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/24/2022] [Accepted: 03/07/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Specialized enterochromaffin (EC) cells within the mucosal lining of the gut synthesize and secrete almost all serotonin (5-hydroxytryptamine, 5-HT) in the body. Significantly lower amounts of 5-HT are made by other peripheral tissues and serotonergic neurons within the enteric nervous system (ENS). EC cells are in close proximity to 5-HT receptors in the ENS, and the role of 5-HT as a modulator of gut motility, particularly colonic motor complexes, has been well defined. However, the relative contribution of neuronal 5-HT to this process under resting and stimulus-evoked conditions is unclear. METHODS In this study, we combined the use of the selective serotonin transporter (SERT) inhibitor, fluoxetine, with two models of mucosal 5-HT depletion-surgical removal of the mucosa and our Tph1Cre/ERT2 ; Rosa26DTA mouse line-to determine the relative contribution of neuronal and mucosal 5-HT to resting and distension-evoked colonic motility. KEY RESULTS Fluoxetine significantly reduced the frequency of colonic migrating complexes (CMCs) in flat-sheet preparations with the mucosa present and in intact control Tph1-DTA colons in which EC cells were present. No such effect was observed in mucosa-free preparations or in intact Tph1-DTA preparations lacking EC cell 5-HT. CONCLUSIONS AND INFERENCES We demonstrate that mucosal 5-HT release plays an important role in distension-evoked colonic motility, and that SERT inhibition no longer alters gut motility when EC cells are absent, thus demonstrating that ENS 5-HT does not play a role in regulating gut motility.
Collapse
Affiliation(s)
- Alyce M Martin
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Lauren A Jones
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Lai Wei
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Nick J Spencer
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Seungil Ro
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Damien J Keating
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
9
|
Immunohistochemical visualisation of the enteric nervous system architecture in the germ-free piglets. J Mol Histol 2022; 53:773-780. [PMID: 35689149 DOI: 10.1007/s10735-022-10079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
The enteric nervous system (ENS), considered as separate branch of the autonomic nervous system, is located throughout the length of the gastrointestinal tract as a series of interconnected ganglionic plexuses. Recently, the ENS is getting more in the focus of gastrointestinal research. For years, the main interest and research was aimed to the enteric neurons and their functional properties in normal conditions, less attention has been paid to the germ-free animals. Germ-free (GF) piglets have clear microbiological background and are reared in sterile environment. GF piglets are regarded as clinically relevant models for studying of human diseases, as these piglets' manifest similar clinical symptoms to humans. In this study we briefly summarised the main characteristics in immunohistochemical distribution of ENS elements in the wall of jejunum and colon of germ-free piglets.
Collapse
|
10
|
Chiocchetti R, Galiazzo G, Giancola F, Tagliavia C, Bernardini C, Forni M, Pietra M. Localization of the Serotonin Transporter in the Dog Intestine and Comparison to the Rat and Human Intestines. Front Vet Sci 2022; 8:802479. [PMID: 35071391 PMCID: PMC8766808 DOI: 10.3389/fvets.2021.802479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/10/2021] [Indexed: 12/23/2022] Open
Abstract
Serotonin is crucial in gastrointestinal functions, including motility, sensitivity, secretion, and the inflammatory response. The serotonin transporter (SERT), responsible for serotonin reuptake and signaling termination, plays a prominent role in gastrointestinal physiology, representing a promising therapeutic target in digestive disorders. Serotonin transporter expression has been poorly investigated in veterinary medicine, under both healthy and pathological conditions, including canine chronic enteropathy, in which the serotonin metabolism seems to be altered. The aim of the present study was to determine the distribution of SERT immunoreactivity (SERT-IR) in the dog intestine and to compare the findings with those obtained in the rat and human intestines. Serotonin transporter-IR was observed in canine enterocytes, enteric neurons, lamina propria cells and the tunica muscularis. Data obtained in dogs were consistent with those obtained in rats and humans. Since the majority of the serotonin produced by the body is synthesized in the gastrointestinal tract, SERT-expressing cells may exert a role in the mechanism of serotonin reuptake.
Collapse
Affiliation(s)
- Roberto Chiocchetti
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Ozzano dell'Emilia, Italy
| | - Giorgia Galiazzo
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Ozzano dell'Emilia, Italy
| | - Fiorella Giancola
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Ozzano dell'Emilia, Italy
| | - Claudio Tagliavia
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Ozzano dell'Emilia, Italy
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Ozzano dell'Emilia, Italy
| | - Monica Forni
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Ozzano dell'Emilia, Italy
| | - Marco Pietra
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Ozzano dell'Emilia, Italy
| |
Collapse
|
11
|
The Shaggy Dog Story of Enteric Signaling: Serotonin, a Molecular Megillah. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:307-318. [PMID: 36587168 DOI: 10.1007/978-3-031-05843-1_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Historically and quantitatively, the enteric site of serotonin (5-HT) storage has primacy over those of any other organ. 5-HT, by the name of "enteramine", was first discovered in the bowel, and the gut produces most of the body's 5-HT. Not only does the bowel secrete 5-HT prodigiously but it also expresses a kaleidoscopic abundance of 5-HT receptors. The larger of two enteric 5-HT stores is mucosal, biosynthetically dependent upon tryptophan hydroxylase1 (TPH1), and located in EC cells. Mechanical stimuli, nutrients, luminal bacteria, and neurotransmitters such as acetylcholine and norepinephrine are all able to stimulate EC cells. Paracrine actions of 5-HT allow the mucosa to signal to neurons to initiate peristaltic and secretory reflexes as well as to inflammatory cells to promote intestinal inflammation. Endocrine effects of 5-HT allow EC cells to influence distant organs, including bone, liver, and endocrine pancreas. The smaller enteric 5-HT store is biosynthetically dependent upon TPH2 and is located within a small subset of myenteric neurons. 5-HT is responsible for slow excitatory neurotransmission manifested primarily in type II/AH neurons. Importantly, neuronal 5-HT also promotes enteric nervous system (ENS) neurogenesis, both pre- and postnatally, through 5-HT2B and especially 5-HT4 receptors. The early birth of serotonergic neurons allows these cells to function as sculptors of the mature ENS. The inactivation of secreted 5-HT depends on transmembrane transport mediated by a serotonin transporter (SERT; SLC6A4). The importance of SERT in control of 5-HT's function means that pharmacological inhibition of SERT, as well as gain- or loss-of-function mutations in SLC6A4, can exert profound effects on development and function of the ENS. Extra-enteric, TPH1-derived 5-HT from yolk sac and placenta promotes neurogenesis before enteric neurons synthesize 5-HT and contribute to ENS patterning. The impressive multi-functional nature of enteric 5-HT has made the precise identification of individual physiological roles difficult and sometimes controversial.
Collapse
|
12
|
Chronic Intestinal Pseudo-Obstruction: Is There a Connection with Gut Microbiota? Microorganisms 2021; 9:microorganisms9122549. [PMID: 34946150 PMCID: PMC8703706 DOI: 10.3390/microorganisms9122549] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/23/2022] Open
Abstract
Chronic intestinal pseudo-obstruction (CIPO) is a rare clinical syndrome characterized by severe impairment of gastrointestinal (GI) motility, and its symptoms are suggestive of partial or complete intestinal obstruction in the absence of any lesion restricting the intestinal lumen. Diagnosis and therapy of CIPO patients still represent a significant challenge for clinicians, despite their efforts to improve diagnostic workup and treatment strategies for this disease. The purpose of this review is to better understand what is currently known about the relationship between CIPO patients and intestinal microbiota, with a focus on the role of the enteric nervous system (ENS) and the intestinal endocrine system (IES) in intestinal motility, underling the importance of further studies to deeply understand the causes of gut motility dysfunction in these patients.
Collapse
|
13
|
Effect of partial substitution of fishmeal with insect meal (Hermetia illucens) on gut neuromuscular function in Gilthead sea bream (Sparus aurata). Sci Rep 2021; 11:21788. [PMID: 34750477 PMCID: PMC8575790 DOI: 10.1038/s41598-021-01242-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/20/2021] [Indexed: 01/26/2023] Open
Abstract
Alternative nutrient sources to fishmeal for fish feed, such as insect meals, represent a promising sustainable supply. However, the consequences for fish digestive function have not been exhaustively investigated. In the present study we evaluated the effect of partial fishmeal substitution with 10% Hermetia illucens (Hi10) larvae meal on the neuromuscular function of proximal and distal intestine in gilthead sea bream. In animals fed with insect meal, weight and growth parameters were similar to controls fed with conventional fishmeal. In addition, no anomalies in intestinal gross morphology and no overt signs of inflammation were observed. The gastrointestinal transit was significantly reduced in Hi10 fed animals. In the proximal and distal intestine longitudinal muscle, Hi10 feeding downregulated the excitatory cholinergic and serotoninergic transmission. Sodium nitroprusside-induced inhibitory relaxations increased in the proximal intestine and decreased in the distal intestine after Hi10 meal. Changes in the excitatory and inhibitory components of peristalsis were associated with adaptive changes in the chemical coding of both proximal and distal intestine myenteric plexus. However, these neuromuscular function alterations were not associated with considerable variations in morphometric growth parameters, suggesting that 10% Hi meal may represent a tolerable alternative protein source for gilthead sea bream diets.
Collapse
|
14
|
Aikiyo S, Kishi K, Kaji N, Mikawa S, Kondo M, Shimada S, Hori M. Contribution of Serotonin 3A Receptor to Motor Function and Its Expression in the Gastrointestinal Tract. Digestion 2021; 102:516-526. [PMID: 32726781 DOI: 10.1159/000509209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/31/2020] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The serotonin 3A receptor (5-HT3AR) is involved in vomiting and gastrointestinal motility. However, it is not well understood the expression pattern of 5-HT3AR in the gut immunohistochemically and how much contribution of 5-HT3AR to upper or lower intestinal motility. OBJECTIVES We investigated the contribution of 5-HT3AR to gastrointestinal motor function by using 5-HT3AR KO mice and sought to identify 5-HT3AR-expressing cells via immunohistochemical staining using 5-HT3AR-GFP reporter mice. METHODS The expression of 5-HT3AR was measured in each section of the gut through real-time PCR. The motor function of the stomach and colon was assessed via the 13C-octanoic acid breath test and colonic bead expulsion test, respectively, using 5-HT3AR KO mice. 5-HT3AR-expressing cells in the muscle layer of the gut were identified by immunohistochemical staining using 5-HT3AR-GFP reporter mice. RESULTS 5-HT3AR was expressed throughout the digestive tract, and 5-HT3AR expression in the stomach and lower digestive tract was higher than that in the other sections. Motor function in the stomach and colon was lower in 5-HT3AR KO mice than in WT mice. As a result of immunohistochemical staining using GFP reporter mice, cholinergic neurons and PDGFRα+ cells were shown to express 5-HT3AR. In contrast, 5-HT3AR indicated by GFP fluorescence was rarely detected in ICC and smooth muscle cells. CONCLUSIONS These results show that 5-HT3AR is highly expressed in the stomach and large intestine and that the activation of 5-HT3AR accelerates gastric emptying and large intestine transit. Additionally, 5-HT3AR is highly expressed in cholinergic neurons and some interstitial cells, such as PDGFRα+ cells.
Collapse
Affiliation(s)
- Satoshi Aikiyo
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Kazuhisa Kishi
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Noriyuki Kaji
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, University of Tokyo, Tokyo, Japan.,Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Shoma Mikawa
- Laboratory of Veterinary Clinical Pathology, Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Makoto Kondo
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masatoshi Hori
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, University of Tokyo, Tokyo, Japan,
| |
Collapse
|
15
|
Li ZS, Hung LY, Margolis KG, Ambron RT, Sung YJ, Gershon MD. The α isoform of cGMP-dependent protein kinase 1 (PKG1α) is expressed and functionally important in intrinsic primary afferent neurons of the guinea pig enteric nervous system. Neurogastroenterol Motil 2021; 33:e14100. [PMID: 33655600 PMCID: PMC8681866 DOI: 10.1111/nmo.14100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Intrinsic primary afferent neurons (IPANs) enable the gut to manifest reflexes in the absence of CNS input. PKG1α is selectively expressed in a subset of neurons in dorsal root ganglia (DRG) and has been linked to nociception and long-term hyperexcitability. METHODS We used immunoblotting, immunocytochemistry, and in vitro assays of IPAN-dependent enteric functions to test hypotheses that subsets of primary neurons of the ENS and DRG share a reliance on PKG1α expression. KEY RESULTS PKG1α immunoreactivity was demonstrated in immunoblots from isolated myenteric ganglia. PKG1α, but not PKG1β, immunoreactivity, was coincident with that of neuronal markers (HuC/D; β3-tubulin) in both enteric plexuses. PKG1α immunoreactivity also co-localized with the immunoreactivities of the IPAN markers, calbindin (100%; myenteric plexus) and cytoplasmic NeuN (98 ± 1% submucosal plexus). CGRP-immunoreactive DRG neurons, identified as visceral afferents by retrograde transport, were PKG1α-immunoreactive. We used intraluminal cholera toxin to determine whether PKG1α was necessary to enable stimulation of the mucosa to activate Fos in enteric neurons. Tetrodotoxin (1.0 µM), low Ca2+ /high Mg2+ media, and the PKG inhibitor, N46 (100 µM), all inhibited Fos activation in myenteric neurons. N46 also concentration dependently inhibited peristaltic reflexes in isolated preparations of distal colon (IC50 = 83.3 ± 1.3 µM). CONCLUSIONS & INFERENCES These data suggest that PKG1α is present and functionally important in IPANs and visceral afferent nociceptive neurons.
Collapse
Affiliation(s)
- Zhi S. Li
- Departments of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | - Lin Y. Hung
- Departments of Pediatrics, Columbia University, New York, NY, USA
| | - Kara G. Margolis
- Departments of Pediatrics, Columbia University, New York, NY, USA
| | - Richard T. Ambron
- Departments of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | - Ying J. Sung
- Departments of Basic Science, The Commonwealth Medical College, Scranton, PA, USA
| | - Michael D. Gershon
- Departments of Pathology & Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
16
|
Galligan JJ. Colonic 5-HT 4 receptors are targets for novel prokinetic drugs. Neurogastroenterol Motil 2021; 33:e14125. [PMID: 33749067 DOI: 10.1111/nmo.14125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 02/22/2021] [Indexed: 12/17/2022]
Abstract
5-HT4 receptors are G protein-coupled receptors that link to the stimulatory protein Gs which activates adenylate cyclase to increase intracellular cyclic AMP which then activates protein kinase A (PKA). 5-HT4 receptors are expressed by neurons in the central and peripheral nervous systems especially the enteric nervous system (ENS). In general, 5-HT4 receptors are stimulatory and their activation in the ENS enhances neurotransmitter release and propulsive motility patterns. 5-HT4 receptors are expressed by enterochromaffin (EC) cells, Goblet cells, and most enteric neurons. The study by Konen and colleagues in this issue of Neurogastroenterology and Motility features two novel 5-HT4 receptor agonists (5-HT4 -LA1 and 5-HT4 -LA-2) that are not absorbed from the gastrointestinal tract of mice and act locally in the colonic mucosa to stimulate propulsive motility. The authors show that 5-HT4 -LA1 and 5-HT4 -LA2 were not absorbed from the colon and that both drugs stimulated colonic transit when administered by gavage. Both agonists stimulated colonic glass bead expulsion, and 5-HT4 LA1 activation stimulated fecal output and increased fecal water content. These effects were detected in young and aged mice. 5-HT4 receptors were also localized to the epithelium of the human duodenum, ileum, and colon. These studies highlight novel 5-HT4 receptor agonists that have prokinetic actions on the GI tract. These drugs are not absorbed and act locally in the gut mucosa to stimulate propulsive motility while minimizing access to systemic 5-HT4 receptors and avoiding potential unwanted side effects.
Collapse
Affiliation(s)
- James J Galligan
- Department of Pharmacology & Toxicology and the Neuroscience Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
17
|
Wang D, Zhang H, Vu T, Zhan Y, Malhotra A, Wang P, Chitgupi U, Rai A, Zhang S, Wang L, Huizinga JD, Lovell JF, Xia J. Trans-illumination intestine projection imaging of intestinal motility in mice. Nat Commun 2021; 12:1682. [PMID: 33727562 PMCID: PMC7966380 DOI: 10.1038/s41467-021-21930-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
Functional intestinal imaging holds importance for the diagnosis and evaluation of treatment of gastrointestinal diseases. Currently, preclinical imaging of intestinal motility in animal models is performed either invasively with excised intestines or noninvasively under anesthesia, and cannot reveal intestinal dynamics in the awake condition. Capitalizing on near-infrared optics and a high-absorbing contrast agent, we report the Trans-illumination Intestine Projection (TIP) imaging system for free-moving mice. After a complete system evaluation, we performed in vivo studies, and obtained peristalsis and segmentation motor patterns of free-moving mice. We show the in vivo typical segmentation motor pattern, that was previously shown in ex vivo studies to be controlled by intestinal pacemaker cells. We also show the effects of anesthesia on motor patterns, highlighting the possibility to study the role of the extrinsic nervous system in controlling motor patterns, which requires unanesthetized live animals. Combining with light-field technologies, we further demonstrated 3D imaging of intestine in vivo (3D-TIP). Importantly, the added depth information allows us to extract intestines located away from the abdominal wall, and to quantify intestinal motor patterns along different directions. The TIP system should open up avenues for functional imaging of the GI tract in conscious animals in natural physiological states.
Collapse
Affiliation(s)
- Depeng Wang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Huijuan Zhang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Tri Vu
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Ye Zhan
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Akash Malhotra
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Pei Wang
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Upendra Chitgupi
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Aliza Rai
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Sizhe Zhang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Lidai Wang
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Jan D Huizinga
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Ontario, Canada
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jun Xia
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
18
|
Singh R, Zogg H, Wei L, Bartlett A, Ghoshal UC, Rajender S, Ro S. Gut Microbial Dysbiosis in the Pathogenesis of Gastrointestinal Dysmotility and Metabolic Disorders. J Neurogastroenterol Motil 2021; 27:19-34. [PMID: 33166939 PMCID: PMC7786094 DOI: 10.5056/jnm20149] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/26/2020] [Accepted: 10/03/2020] [Indexed: 12/11/2022] Open
Abstract
Of all microorganisms in the human body, the largest and most complex population resides in the gastrointestinal (GI) tract. The gut microbiota continuously adapts to the host environment and serves multiple critical functions for their hosts, including regulating host immunity, procuring energy from food, and preventing the colonization of pathogens. Mounting evidence has suggested gut microbial imbalance (dysbiosis) as a core pathophysiology in the development of GI motility and metabolic disorders, such as irritable bowel syndrome and diabetes. Current research has focused on discovering associations between these disorders and gut microbial dysbiosis; however, whether these associations are a consequence or cause is still mostly unexplored. State-of-the-art studies have investigated how gut microbes communicate with our body systems through microbiota-derived metabolites and how they are able to modulate host physiology. There is now mounting evidence that alterations in the composition of small intestinal microbes have an association with GI dysmotility and metabolic disorders. Although treatment options for gut microbial dysbiosis are currently limited, antibiotics, fecal microbiota transplantation, probiotics, and dietary interventions are currently the best options. However, treatment with broad-spectrum antibiotics has been viewed with skepticism due to the risk of developing antibiotic resistant bacteria. Studies are warranted to elucidate the cellular and molecular pathways underlying gut microbiota-host crosstalk and for the development of a powerful platform for future therapeutic approaches. Here, we review recent literature on gut microbial alterations and/or interactions involved in the pathophysiology of GI dysmotility and metabolic disorders.
Collapse
Affiliation(s)
- Rajan Singh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Hannah Zogg
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Lai Wei
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Allison Bartlett
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Uday C Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Singh Rajender
- Department of Endocrinology, Central Drug Research Institute, Lucknow, India
| | - Seungil Ro
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| |
Collapse
|
19
|
Abstract
The release from cells of signaling molecules through the controlled process of exocytosis involves multiple coordinated steps and is essential for the proper control of a multitude of biological pathways across the endocrine and nervous systems. However, these events are minute both temporally and in terms of the minute amounts of neurotransmitters, hormones, growth factors, and peptides released from single vesicles during exocytosis. It is therefore difficult to measure the kinetics of single exocytosis events in real time. One noninvasive method of measuring the release of molecules from cells is carbon-fiber amperometry. In this chapter, we will describe how we undertake such measurements from both single cells and in live tissue, how the subsequent data are analyzed, and how we interpret these results in terms of their relevant physiology.
Collapse
|
20
|
Lee HA, Ju Moon S, Yoo H, Kyung Kim M, Bok Jang S, Lee S, Kim S, Lee H. YH12852, a Potent and Selective Receptor Agonist of 5-hydroxytryptamine, Increased Gastrointestinal Motility in Healthy Volunteers and Patients With Functional Constipation. Clin Transl Sci 2020; 14:625-634. [PMID: 33202093 PMCID: PMC7993265 DOI: 10.1111/cts.12924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/07/2020] [Indexed: 12/23/2022] Open
Abstract
Gastrointestinal (GI) motility disorders are common, decreases quality of life, and imposes a substantial economic burden. YH12852 is a novel agonist of 5‐hydroxytryptamine for the treatment of GI motility disorders. This phase I/IIa study assessed the tolerability, pharmacodynamic (PD) and pharmacokinetic (PK) profiles of YH12852. In the multiple dose (MD) cohort, healthy subjects and patients with functional constipation were randomized and received orally YH12852 at 0.3, 0.5, 1, 2, or 3 mg or prucalopride 2 mg or their matching placebo, once daily for 14 days after breakfast. In the multiple low‐dose cohort (MLD), healthy subjects randomly received once‐daily oral doses of YH12852 at 0.05 or 0.1 mg for 14 days after breakfast. Questionnaires, gastric emptying breath test for PDs, and plasma samples for PKs were collected. In the MD cohort, a total of 56 subjects (29 healthy volunteers and 27 patients with functional constipation) were randomized, of whom 48 completed the study. In the MLD cohort, a total of 16 healthy subjects were randomized, and 15 subjects completed the study. YH12852 increased the average weekly frequency of spontaneous bowel movements and loosened the stool. In addition, YH12852 increased quality of life satisfaction, and decreased severity of constipation symptom and GI symptoms. YH12852 was safe and well‐tolerated up to 3 mg and showed nearly dose proportional PKs. In conclusion, YH12852 was safe and enhanced GI motility. YH12852 can be developed as an effective treatment option for GI motility disorders, including functional constipation. Further studies are warranted to confirm this possibility.
Collapse
Affiliation(s)
- Hyun A Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea.,Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Seol Ju Moon
- Center for Clinical Pharmacology, Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, Korea
| | - Hyounggyoon Yoo
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - Mi Kyung Kim
- Yuhan Research & Development Institute, Yuhan Corporation, Seoul, Korea
| | - Seong Bok Jang
- Yuhan Research & Development Institute, Yuhan Corporation, Seoul, Korea
| | - Seoungoh Lee
- Yuhan Research & Development Institute, Yuhan Corporation, Seoul, Korea
| | - Sohee Kim
- Yuhan Research & Development Institute, Yuhan Corporation, Seoul, Korea
| | - Howard Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea.,Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| |
Collapse
|
21
|
Fung C, Vanden Berghe P. Functional circuits and signal processing in the enteric nervous system. Cell Mol Life Sci 2020; 77:4505-4522. [PMID: 32424438 PMCID: PMC7599184 DOI: 10.1007/s00018-020-03543-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/13/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023]
Abstract
The enteric nervous system (ENS) is an extensive network comprising millions of neurons and glial cells contained within the wall of the gastrointestinal tract. The major functions of the ENS that have been most studied include the regulation of local gut motility, secretion, and blood flow. Other areas that have been gaining increased attention include its interaction with the immune system, with the gut microbiota and its involvement in the gut-brain axis, and neuro-epithelial interactions. Thus, the enteric circuitry plays a central role in intestinal homeostasis, and this becomes particularly evident when there are faults in its wiring such as in neurodevelopmental or neurodegenerative disorders. In this review, we first focus on the current knowledge on the cellular composition of enteric circuits. We then further discuss how enteric circuits detect and process external information, how these signals may be modulated by physiological and pathophysiological factors, and finally, how outputs are generated for integrated gut function.
Collapse
Affiliation(s)
- Candice Fung
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium.
| |
Collapse
|
22
|
Engevik MA, Luck B, Visuthranukul C, Ihekweazu FD, Engevik AC, Shi Z, Danhof HA, Chang-Graham AL, Hall A, Endres BT, Haidacher SJ, Horvath TD, Haag AM, Devaraj S, Garey KW, Britton RA, Hyser JM, Shroyer NF, Versalovic J. Human-Derived Bifidobacterium dentium Modulates the Mammalian Serotonergic System and Gut-Brain Axis. Cell Mol Gastroenterol Hepatol 2020; 11:221-248. [PMID: 32795610 PMCID: PMC7683275 DOI: 10.1016/j.jcmgh.2020.08.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS The human gut microbiota can regulate production of serotonin (5-hydroxytryptamine [5-HT]) from enterochromaffin cells. However, the mechanisms underlying microbial-induced serotonin signaling are not well understood. METHODS Adult germ-free mice were treated with sterile media, live Bifidobacterium dentium, heat-killed B dentium, or live Bacteroides ovatus. Mouse and human enteroids were used to assess the effects of B dentium metabolites on 5-HT release from enterochromaffin cells. In vitro and in vivo short-chain fatty acids and 5-HT levels were assessed by mass spectrometry. Expression of tryptophan hydroxylase, short-chain fatty acid receptor free fatty acid receptor 2, 5-HT receptors, and the 5-HT re-uptake transporter (serotonin transporter) were assessed by quantitative polymerase chain reaction and immunostaining. RNA in situ hybridization assessed 5-HT-receptor expression in the brain, and 5-HT-receptor-dependent behavior was evaluated using the marble burying test. RESULTS B dentium mono-associated mice showed increased fecal acetate. This finding corresponded with increased intestinal 5-HT concentrations and increased expression of 5-HT receptors 2a, 4, and serotonin transporter. These effects were absent in B ovatus-treated mice. Application of acetate and B dentium-secreted products stimulated 5-HT release in mouse and human enteroids. In situ hybridization of brain tissue also showed significantly increased hippocampal expression of 5-HT-receptor 2a in B dentium-treated mice relative to germ-free controls. Functionally, B dentium colonization normalized species-typical repetitive and anxiety-like behaviors previously shown to be linked to 5-HT-receptor 2a. CONCLUSIONS These data suggest that B dentium, and the bacterial metabolite acetate, are capable of regulating key components of the serotonergic system in multiple host tissues, and are associated with a functional change in adult behavior.
Collapse
Affiliation(s)
- Melinda A Engevik
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Berkley Luck
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Chonnikant Visuthranukul
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas; Department of Pediatrics, Pediatric Nutrition Special Task Force for Activating Research (STAR), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Faith D Ihekweazu
- Pediatric Gastroenterology, Hepatology and Nutrition, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Amy C Engevik
- Department of Surgical Sciences, Vanderbilt University Medical Center, Nashville Tennessee
| | - Zhongcheng Shi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Heather A Danhof
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | | | - Anne Hall
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas; Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Bradley T Endres
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas
| | - Sigmund J Haidacher
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Thomas D Horvath
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Anthony M Haag
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Sridevi Devaraj
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Kevin W Garey
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas
| | - Robert A Britton
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Joseph M Hyser
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Noah F Shroyer
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - James Versalovic
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas.
| |
Collapse
|
23
|
Spencer NJ, Hu H. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat Rev Gastroenterol Hepatol 2020; 17:338-351. [PMID: 32152479 PMCID: PMC7474470 DOI: 10.1038/s41575-020-0271-2] [Citation(s) in RCA: 322] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2020] [Indexed: 02/07/2023]
Abstract
The gastrointestinal tract is the only internal organ to have evolved with its own independent nervous system, known as the enteric nervous system (ENS). This Review provides an update on advances that have been made in our understanding of how neurons within the ENS coordinate sensory and motor functions. Understanding this function is critical for determining how deficits in neurogenic motor patterns arise. Knowledge of how distension or chemical stimulation of the bowel evokes sensory responses in the ENS and central nervous system have progressed, including critical elements that underlie the mechanotransduction of distension-evoked colonic peristalsis. Contrary to original thought, evidence suggests that mucosal serotonin is not required for peristalsis or colonic migrating motor complexes, although it can modulate their characteristics. Chemosensory stimuli applied to the lumen can release substances from enteroendocrine cells, which could subsequently modulate ENS activity. Advances have been made in optogenetic technologies, such that specific neurochemical classes of enteric neurons can be stimulated. A major focus of this Review will be the latest advances in our understanding of how intrinsic sensory neurons in the ENS detect and respond to sensory stimuli and how these mechanisms differ from extrinsic sensory nerve endings in the gut that underlie the gut-brain axis.
Collapse
Affiliation(s)
- Nick J Spencer
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, Australia.
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
24
|
The ever-changing roles of serotonin. Int J Biochem Cell Biol 2020; 125:105776. [PMID: 32479926 DOI: 10.1016/j.biocel.2020.105776] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
Abstract
Serotonin (5-HT) has traditional roles as a key neurotransmitter in the central nervous system and as a regulatory hormone controlling a broad range of physiological functions. Perhaps the most classically-defined functions of 5-HT are centrally in the control of mood, sleep and anxiety and peripherally in the modulation of gastrointestinal motility. A more recently appreciated role for 5-HT has emerged, however, as an important metabolic hormone contributing to glucose homeostasis and adiposity, with a causal relationship existing between circulating 5-HT levels and metabolic diseases. Almost all peripheral 5-HT is derived from specialised enteroendocrine cells, called enterochromaffin (EC) cells, located throughout the length of the lining of the gastrointestinal tract. EC cells are important luminal sensory cells that can detect and respond to an array of ingested nutrients, as well as luminal gut microbiota and their associated metabolites. Intriguingly, the interaction between gut microbiota and EC cells is dynamic in nature and has strong implications for host physiology. In this review, we discuss the traditional and modern functions of 5-HT and highlight an emerging pathway by which gut microbiota influences host health. Serotonin, also known as 5-hydroxytryptamine (5-HT), is an important neurotransmitter, growth factor and hormone that mediates a range of physiological functions. In mammals, serotonin is synthesized from the essential amino acid tryptophan by the rate-limiting enzyme tryptophan hydroxylase (TPH), for which there are two isoforms expressed in distinct cell types throughout the body. Tph1 is mainly expressed by specialized gut endocrine cells known as enterochromaffin (EC) cells and by other non-neuronal cell types such as adipocytes (Walther et al., 2003). Tph2 is primarily expressed in neurons of the raphe nuclei of the brain stem and a subset of neurons in the enteric nervous system (ENS) (Yabut et al., 2019). As 5-HT cannot readily cross the blood-brain barrier, the central and peripheral pools of 5-HT are anatomically separated and as such, act in their own distinct manners (Martin et al., 2017c). In this review we discuss the peripheral roles of serotonin, with particular focus on the interaction of gut-derived serotonin with the gut microbiota, and address emerging evidence linking this relationship with host homeostasis.
Collapse
|
25
|
Liu YL, Chen Y, Fan WT, Cao P, Yan J, Zhao XZ, Dong WG, Huang WH. Mechanical Distension Induces Serotonin Release from Intestine as Revealed by Stretchable Electrochemical Sensing. Angew Chem Int Ed Engl 2020; 59:4075-4081. [PMID: 31829491 DOI: 10.1002/anie.201913953] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/04/2019] [Indexed: 12/17/2022]
Abstract
The role of endogenous serotonin (5-HT) in gastrointestinal motility is still highly controversial. Although electrochemical techniques allow for direct and real-time recording of biomolecules, the dynamic monitoring of 5-HT release from elastic and tubular intestine during motor reflexes remains a great challenge because of the specific peristalsis patterns and inevitable passivation of the sensing interface. A stretchable sensor with antifouling and decontamination properties was assembled from gold nanotubes, titanium dioxide nanoparticles, and carbon nanotubes. The sandwich-like structure endowed the sensor with satisfying mechanical stability and electrochemical performance, high resistance against physical adsorption, and superior efficiency in the photodegradation of biofouling molecules. Insertion of the sensor into the lumen of rat ileum (the last section of the small intestine) successfully mimics intestinal peristalsis, and simultaneous real-time monitoring of distension-evoked 5-HT release was possible for the first time. Our results unambiguously reveal that mechanical distension of the intestine induces endogenous 5-HT overflow, and 5-HT level is closely associated with the physiological or pathological states of the intestine.
Collapse
Affiliation(s)
- Yan-Ling Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan Chen
- Key Laboratory of Hubei Province for Digestive System Disease, Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wen-Ting Fan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Pan Cao
- Key Laboratory of Hubei Province for Digestive System Disease, Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jing Yan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xing-Zhong Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Wei-Guo Dong
- Key Laboratory of Hubei Province for Digestive System Disease, Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wei-Hua Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
26
|
Liu Y, Chen Y, Fan W, Cao P, Yan J, Zhao X, Dong W, Huang W. Mechanical Distension Induces Serotonin Release from Intestine as Revealed by Stretchable Electrochemical Sensing. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yan‐Ling Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Yan Chen
- Key Laboratory of Hubei Province for Digestive System Disease Department of Gastroenterology Renmin Hospital of Wuhan University Wuhan 430060 China
| | - Wen‐Ting Fan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Pan Cao
- Key Laboratory of Hubei Province for Digestive System Disease Department of Gastroenterology Renmin Hospital of Wuhan University Wuhan 430060 China
| | - Jing Yan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Xing‐Zhong Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Wei‐Guo Dong
- Key Laboratory of Hubei Province for Digestive System Disease Department of Gastroenterology Renmin Hospital of Wuhan University Wuhan 430060 China
| | - Wei‐Hua Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| |
Collapse
|
27
|
Del Colle A, Israelyan N, Gross Margolis K. Novel aspects of enteric serotonergic signaling in health and brain-gut disease. Am J Physiol Gastrointest Liver Physiol 2020; 318:G130-G143. [PMID: 31682158 PMCID: PMC6985840 DOI: 10.1152/ajpgi.00173.2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 02/08/2023]
Abstract
Gastrointestinal (GI) comorbidities are common in individuals with mood and behavioral dysfunction. Similarly, patients with GI problems more commonly suffer from co-morbid psychiatric diagnoses. Although the central and enteric nervous systems (CNS and ENS, respectively) have largely been studied separately, there is emerging interest in factors that may contribute to disease states involving both systems. There is strong evidence to suggest that serotonin may be an important contributor to these brain-gut conditions. Serotonin has long been recognized for its critical functions in CNS development and function. The majority of the body's serotonin, however, is produced in the GI tract, where it plays key roles in ENS development and function. Further understanding of the specific impact that enteric serotonin has on brain-gut disease may lay the foundation for the creation of novel therapeutic targets. This review summarizes the current data focusing on the important roles that serotonin plays in ENS development and motility, with a focus on novel aspects of serotonergic signaling in medical conditions in which CNS and ENS co-morbidities are common, including autism spectrum disorders and depression.
Collapse
Affiliation(s)
- Andrew Del Colle
- Morgan Stanley Children's Hospital, Department of Pediatrics, Columbia University Medical Center, New York, New York
| | - Narek Israelyan
- Morgan Stanley Children's Hospital, Department of Pediatrics, Columbia University Medical Center, New York, New York
- Vagelos College of Physicians and Surgeons, Columbia University Medical Center, New York, New York
| | - Kara Gross Margolis
- Morgan Stanley Children's Hospital, Department of Pediatrics, Columbia University Medical Center, New York, New York
| |
Collapse
|
28
|
Hao MM, Fung C, Boesmans W, Lowette K, Tack J, Vanden Berghe P. Development of the intrinsic innervation of the small bowel mucosa and villi. Am J Physiol Gastrointest Liver Physiol 2020; 318:G53-G65. [PMID: 31682159 DOI: 10.1152/ajpgi.00264.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Detection of nutritional and noxious food components in the gut is a crucial component of gastrointestinal function. Contents in the gut lumen interact with enteroendocrine cells dispersed throughout the gut epithelium. Enteroendocrine cells release many different hormones, neuropeptides, and neurotransmitters that communicate either directly or indirectly with the central nervous system and the enteric nervous system, a network of neurons and glia located within the gut wall. Several populations of enteric neurons extend processes that innervate the gastrointestinal lamina propria; however, how these processes develop and begin to transmit information from the mucosa is not fully understood. In this study, we found that Tuj1-immunoreactive neurites begin to project out of the myenteric plexus at embryonic day (E)13.5 in the mouse small intestine, even before the formation of villi. Using live calcium imaging, we discovered that neurites were capable of transmitting electrical information from stimulated villi to the plexus by E15.5. In unpeeled gut preparations where all layers were left intact, we also mimicked the basolateral release of 5-HT from enteroendocrine cells, which triggered responses in myenteric cell bodies at postnatal day (P)0. Altogether, our results show that enteric neurons extend neurites out of the myenteric plexus early during mouse enteric nervous system development, innervating the gastrointestinal mucosa, even before villus formation in mice of either sex. Neurites are already able to conduct electrical information at E15.5, and responses to 5-HT develop postnatally.NEW & NOTEWORTHY How enteric neurons project into the gut mucosa and begin to communicate with the epithelium during development is not known. Our study shows that enteric neurites project into the lamina propria as early as E13.5 in the mouse, before development of the submucous plexus and before formation of intestinal villi. These neurites are capable of transmitting electrical signals back to their cell bodies by E15.5 and respond to serotonin applied to neurite terminals by birth.
Collapse
Affiliation(s)
- Marlene M Hao
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium.,Department of Anatomy and Neuroscience, the University of Melbourne, Australia
| | - Candice Fung
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium
| | - Werend Boesmans
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium.,Department of Pathology, GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center, The Netherlands.,Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Katrien Lowette
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium
| | - Jan Tack
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium
| |
Collapse
|
29
|
Gwynne RM, Bornstein JC. Luminal 5-HT 4 receptors-A successful target for prokinetic actions. Neurogastroenterol Motil 2019; 31:e13708. [PMID: 31524331 DOI: 10.1111/nmo.13708] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 02/08/2023]
Abstract
The prokinetic effects of 5-HT4 receptor (5-HT4 R) agonists have been utilized clinically for almost three decades to relieve symptoms of constipation. Surprisingly, the mechanism(s) of action of these compounds is still being debated. Recent studies highlight luminal 5-HT4 Rs as an alternative and effective target for these prokinetic agents. These include the study by Shokrollahi et al (2019, Neurogastroenterol Motil, e13598) published in the current issue of Neurogastroenterology and Motility, who found that activation of mucosal 5-HT4 Rs by intraluminal prucalopride, significantly enhanced propulsive motor patterns in rabbit colon. The authors highlight the idea that development of agonists targeting luminal 5-HT4 Rs in the colonic mucosa might be more effective and safer in achieving prokinetic effects on intestinal motility. The purpose of this mini-review is to discuss the evidence for luminal 5-HT4 Rs as an emerging target for prokinetic agents in facilitating propulsive motor patterns in the colon.
Collapse
Affiliation(s)
- Rachel M Gwynne
- Department of Physiology, University of Melbourne, Parkville, Vic., Australia
| | - Joel C Bornstein
- Department of Physiology, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
30
|
Shokrollahi M, Chen JH, Huizinga JD. Intraluminal prucalopride increases propulsive motor activities via luminal 5-HT 4 receptors in the rabbit colon. Neurogastroenterol Motil 2019; 31:e13598. [PMID: 31012538 DOI: 10.1111/nmo.13598] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/13/2019] [Accepted: 03/28/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Activating luminal 5-HT4 receptors results in the release of 5-HT from enterochromaffin cells into the lamina propria to modulate colonic motility. Our aim was to evaluate characteristics of colonic motor patterns involved in the prokinetic effects of intraluminal prucalopride in the rabbit colon. METHODS Colonic motor patterns were studied ex vivo using simultaneous spatiotemporal diameter mapping and pressure sensing. KEY RESULTS Intraluminal prucalopride and intraluminal exogenous 5-HT strongly evoked or enhanced the colonic motor complex at all levels of excitation beginning with generation of clusters of fast propagating contractions (FPCs), then development of long-distance contractions (LDCs) within the clusters, and finally forceful LDCs as the highest level of excitation. Intraluminal prucalopride and intraluminal exogenous 5-HT stimulated propulsive motor activity in a dose-dependent and antagonist-sensitive manner by increasing the contraction amplitude, intraluminal pressure, frequency, velocity, and degree of propagation of the colonic motor complex. CONCLUSIONS AND INFERENCES Activating mucosal 5-HT4 receptors via intraluminal prucalopride or 5-HT increases propulsive motor activity in a graded manner; that is, depending on starting conditions, amplitudes or frequencies of an activity may increase or a new pattern may be initiated. Our data support further studies into delivering 5-HT4 receptor agonists via colon-targeted drug delivery systems and studies into the role of luminal 5-HT as an essential requirement for normal colon motor pattern generation.
Collapse
Affiliation(s)
- Mitra Shokrollahi
- Division of Gastroenterology, Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Ji-Hong Chen
- Division of Gastroenterology, Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Jan D Huizinga
- Division of Gastroenterology, Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
31
|
Billing LJ, Larraufie P, Lewis J, Leiter A, Li J, Lam B, Yeo GS, Goldspink DA, Kay RG, Gribble FM, Reimann F. Single cell transcriptomic profiling of large intestinal enteroendocrine cells in mice - Identification of selective stimuli for insulin-like peptide-5 and glucagon-like peptide-1 co-expressing cells. Mol Metab 2019; 29:158-169. [PMID: 31668387 PMCID: PMC6812004 DOI: 10.1016/j.molmet.2019.09.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022] Open
Abstract
Objective Enteroendocrine cells (EECs) of the large intestine, found scattered in the epithelial layer, are known to express different hormones, with at least partial co-expression of different hormones in the same cell. Here we aimed to categorize colonic EECs and to identify possible targets for selective recruitment of hormones. Methods Single cell RNA-sequencing of sorted enteroendocrine cells, using NeuroD1-Cre x Rosa26-EYFP mice, was used to cluster EECs from the colon and rectum according to their transcriptome. G-protein coupled receptors differentially expressed across clusters were identified, and, as a proof of principle, agonists of Agtr1a and Avpr1b were tested as candidate EEC secretagogues in vitro and in vivo. Results EECs from the large intestine separated into 7 clear clusters, 4 expressing higher levels of Tph1 (enzyme required for serotonin (5-HT) synthesis; enterochromaffin cells), 2 enriched for Gcg (encoding glucagon-like peptide-1, GLP-1, L-cells), and the 7th expressing somatostatin (D-cells). Restricted analysis of L-cells identified 4 L-cell sub-clusters, exhibiting differential expression of Gcg, Pyy (Peptide YY), Nts (neurotensin), Insl5 (insulin-like peptide 5), Cck (cholecystokinin), and Sct (secretin). Expression profiles of L- and enterochromaffin cells revealed the clustering to represent gradients along the crypt-surface (cell maturation) and proximal-distal gut axes. Distal colonic/rectal L-cells differentially expressed Agtr1a and the ligand angiotensin II was shown to selectively increase GLP-1 and PYY release in vitro and GLP-1 in vivo. Conclusion EECs in the large intestine exhibit differential expression gradients along the crypt-surface and proximal-distal axes. Distal L-cells can be differentially stimulated by targeting receptors such as Agtr1a. Large intestinal enteroendocrine cells group into subclusters by single cell RNAseq. Enteroendocrine-cell subclusters differ along crypt-surface and longitudinal axes. L-cells differ longitudinally by production of NTS (proximal colon) or INSL5 (rectum). INSL5-positive cells express distinct GPCRs enabling cluster-specific stimulation. Targeted stimulation of INSL5-producing L-cells elevates plasma GLP-1 and PYY in vivo.
Collapse
Affiliation(s)
- Lawrence J Billing
- University of Cambridge, Wellcome Trust/MRC Institute of Metabolic Science (IMS) & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Pierre Larraufie
- University of Cambridge, Wellcome Trust/MRC Institute of Metabolic Science (IMS) & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Jo Lewis
- University of Cambridge, Wellcome Trust/MRC Institute of Metabolic Science (IMS) & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Andrew Leiter
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Joyce Li
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Brian Lam
- University of Cambridge, Wellcome Trust/MRC Institute of Metabolic Science (IMS) & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Giles Sh Yeo
- University of Cambridge, Wellcome Trust/MRC Institute of Metabolic Science (IMS) & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Deborah A Goldspink
- University of Cambridge, Wellcome Trust/MRC Institute of Metabolic Science (IMS) & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Richard G Kay
- University of Cambridge, Wellcome Trust/MRC Institute of Metabolic Science (IMS) & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Fiona M Gribble
- University of Cambridge, Wellcome Trust/MRC Institute of Metabolic Science (IMS) & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom.
| | - Frank Reimann
- University of Cambridge, Wellcome Trust/MRC Institute of Metabolic Science (IMS) & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom.
| |
Collapse
|
32
|
Corsetti M, Costa M, Bassotti G, Bharucha AE, Borrelli O, Dinning P, Di Lorenzo C, Huizinga JD, Jimenez M, Rao S, Spiller R, Spencer NJ, Lentle R, Pannemans J, Thys A, Benninga M, Tack J. First translational consensus on terminology and definitions of colonic motility in animals and humans studied by manometric and other techniques. Nat Rev Gastroenterol Hepatol 2019; 16:559-579. [PMID: 31296967 PMCID: PMC7136172 DOI: 10.1038/s41575-019-0167-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/30/2019] [Indexed: 12/19/2022]
Abstract
Alterations in colonic motility are implicated in the pathophysiology of bowel disorders, but high-resolution manometry of human colonic motor function has revealed that our knowledge of normal motor patterns is limited. Furthermore, various terminologies and definitions have been used to describe colonic motor patterns in children, adults and animals. An example is the distinction between the high-amplitude propagating contractions in humans and giant contractions in animals. Harmonized terminology and definitions are required that are applicable to the study of colonic motility performed by basic scientists and clinicians, as well as adult and paediatric gastroenterologists. As clinical studies increasingly require adequate animal models to develop and test new therapies, there is a need for rational use of terminology to describe those motor patterns that are equivalent between animals and humans. This Consensus Statement provides the first harmonized interpretation of commonly used terminology to describe colonic motor function and delineates possible similarities between motor patterns observed in animal models and humans in vitro (ex vivo) and in vivo. The consolidated terminology can be an impetus for new research that will considerably improve our understanding of colonic motor function and will facilitate the development and testing of new therapies for colonic motility disorders.
Collapse
Affiliation(s)
- Maura Corsetti
- NIHR Nottingham Biomedical Research Centre (BRC), Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Marcello Costa
- Human Physiology and Centre of Neuroscience, College of Medicine, Flinders University, Bedford Park, South Australia, Australia
| | - Gabrio Bassotti
- Department of Medicine, University of Perugia Medical School, Perugia, Italy
| | - Adil E Bharucha
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Osvaldo Borrelli
- Department of Paediatric Gastroenterology, Great Ormond Street Hospital for Sick Children, London, UK
| | - Phil Dinning
- Human Physiology and Centre of Neuroscience, College of Medicine, Flinders University, Bedford Park, South Australia, Australia
- Department of Gastroenterology and Surgery, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Carlo Di Lorenzo
- Department of Pediatric Gastroenterology, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Jan D Huizinga
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Marcel Jimenez
- Department of Cell Physiology, Physiology and Immunology and Neuroscience Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Satish Rao
- Division of Gastroenterology/Hepatology, Augusta University, Augusta, GA, USA
| | - Robin Spiller
- NIHR Nottingham Biomedical Research Centre (BRC), Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Nick J Spencer
- Discipline of Human Physiology, School of Medicine, Flinders University, Bedford Park, South Australia, Australia
| | - Roger Lentle
- Digestive Biomechanics Group, College of Health, Massey University, Palmerston North, New Zealand
| | - Jasper Pannemans
- Department of Paediatric Gastroenterology and Nutrition, Emma Children's Hospital/Academic Medical Centre, Amsterdam, Netherlands
| | - Alexander Thys
- Department of Paediatric Gastroenterology and Nutrition, Emma Children's Hospital/Academic Medical Centre, Amsterdam, Netherlands
| | - Marc Benninga
- Translational Research Center for Gastrointestinal disorders (TARGID), Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| | - Jan Tack
- Department of Paediatric Gastroenterology and Nutrition, Emma Children's Hospital/Academic Medical Centre, Amsterdam, Netherlands.
| |
Collapse
|
33
|
Yabut JM, Crane JD, Green AE, Keating DJ, Khan WI, Steinberg GR. Emerging Roles for Serotonin in Regulating Metabolism: New Implications for an Ancient Molecule. Endocr Rev 2019; 40:1092-1107. [PMID: 30901029 PMCID: PMC6624793 DOI: 10.1210/er.2018-00283] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
Abstract
Serotonin is a phylogenetically ancient biogenic amine that has played an integral role in maintaining energy homeostasis for billions of years. In mammals, serotonin produced within the central nervous system regulates behavior, suppresses appetite, and promotes energy expenditure by increasing sympathetic drive to brown adipose tissue. In addition to these central circuits, emerging evidence also suggests an important role for peripheral serotonin as a factor that enhances nutrient absorption and storage. Specifically, glucose and fatty acids stimulate the release of serotonin from the duodenum, promoting gut peristalsis and nutrient absorption. Serotonin also enters the bloodstream and interacts with multiple organs, priming the body for energy storage by promoting insulin secretion and de novo lipogenesis in the liver and white adipose tissue, while reducing lipolysis and the metabolic activity of brown and beige adipose tissue. Collectively, peripheral serotonin acts as an endocrine factor to promote the efficient storage of energy by upregulating lipid anabolism. Pharmacological inhibition of serotonin synthesis or signaling in key metabolic tissues are potential drug targets for obesity, type 2 diabetes, and nonalcoholic fatty liver disease (NAFLD).
Collapse
Affiliation(s)
- Julian M Yabut
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Justin D Crane
- Department of Biology, Northeastern University, Boston, Massachusetts
| | - Alexander E Green
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Damien J Keating
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Waliul I Khan
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada.,Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gregory R Steinberg
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
34
|
Treichel AJ, Farrugia G, Beyder A. The touchy business of gastrointestinal (GI) mechanosensitivity. Brain Res 2019; 1693:197-200. [PMID: 29903622 DOI: 10.1016/j.brainres.2018.02.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/06/2018] [Accepted: 02/24/2018] [Indexed: 12/26/2022]
Abstract
The gastrointestinal (GI) tract's normal function depends on its ability to propel, mix, and store contents in a highly coordinated fashion. An ability to sense mechanical forces is therefore fundamental to normal GI tract operation. There are several mechanosensory circuits distributed throughout the GI tract. These circuits rely on a range of proposed specialized and non-specialized mechanosensory cells that include epithelial enterochromaffin (EC) cells, both intrinsic and extrinsic sensory neurons, glia, interstitial cells of Cajal (ICC), and smooth muscle cells. While the anatomy of these circuits is established, the molecular mechanisms and functions are still poorly understood. In this review, we focus on the neuro-epithelial mechanosensory circuit in the gut, composed of epithelial EC cells and sensory neurons, both intrinsic and extrinsic. Intriguingly, this circuit closely resembles the light touch circuit in the skin that is composed of an epithelial Merkel cell and an afferent sensory neuron, suggesting that the basic building blocks may be retained in diverse mechanosensory systems. We compare the gross and molecular anatomy and physiology of these circuits and dissect the roles of GI neuro-epithelial mechanosensory, or "GI touch", circuitry in GI health and disease.
Collapse
Affiliation(s)
- Anthony J Treichel
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Department of Physiology & Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Gianrico Farrugia
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Department of Physiology & Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Arthur Beyder
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Department of Physiology & Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA.
| |
Collapse
|
35
|
Martin AM, Sun EW, Rogers GB, Keating DJ. The Influence of the Gut Microbiome on Host Metabolism Through the Regulation of Gut Hormone Release. Front Physiol 2019; 10:428. [PMID: 31057420 PMCID: PMC6477058 DOI: 10.3389/fphys.2019.00428] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/27/2019] [Indexed: 12/17/2022] Open
Abstract
The microbial community of the gut conveys significant benefits to host physiology. A clear relationship has now been established between gut bacteria and host metabolism in which microbial-mediated gut hormone release plays an important role. Within the gut lumen, bacteria produce a number of metabolites and contain structural components that act as signaling molecules to a number of cell types within the mucosa. Enteroendocrine cells within the mucosal lining of the gut synthesize and secrete a number of hormones including CCK, PYY, GLP-1, GIP, and 5-HT, which have regulatory roles in key metabolic processes such as insulin sensitivity, glucose tolerance, fat storage, and appetite. Release of these hormones can be influenced by the presence of bacteria and their metabolites within the gut and as such, microbial-mediated gut hormone release is an important component of microbial regulation of host metabolism. Dietary or pharmacological interventions which alter the gut microbiome therefore pose as potential therapeutics for the treatment of human metabolic disorders. This review aims to describe the complex interaction between intestinal microbiota and their metabolites and gut enteroendocrine cells, and highlight how the gut microbiome can influence host metabolism through the regulation of gut hormone release.
Collapse
Affiliation(s)
- Alyce M Martin
- Molecular and Cellular Physiology Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Emily W Sun
- Molecular and Cellular Physiology Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Geraint B Rogers
- Microbiome Research Laboratory, Flinders University, Adelaide, SA, Australia.,Infection and Immunity, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Damien J Keating
- Molecular and Cellular Physiology Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.,Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
36
|
What is the role of endogenous gut serotonin in the control of gastrointestinal motility? Pharmacol Res 2019; 140:50-55. [DOI: 10.1016/j.phrs.2018.06.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/17/2018] [Accepted: 06/18/2018] [Indexed: 12/26/2022]
|
37
|
Serotonin, hematopoiesis and stem cells. Pharmacol Res 2019; 140:67-74. [DOI: 10.1016/j.phrs.2018.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/27/2018] [Accepted: 08/08/2018] [Indexed: 02/08/2023]
|
38
|
Sugar Responses of Human Enterochromaffin Cells Depend on Gut Region, Sex, and Body Mass. Nutrients 2019; 11:nu11020234. [PMID: 30678223 PMCID: PMC6412251 DOI: 10.3390/nu11020234] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/15/2018] [Accepted: 01/14/2019] [Indexed: 12/12/2022] Open
Abstract
Gut-derived serotonin (5-HT) is released from enterochromaffin (EC) cells in response to nutrient cues, and acts to slow gastric emptying and modulate gastric motility. Rodent studies also evidence a role for gut-derived 5-HT in the control of hepatic glucose production, lipolysis and thermogenesis, and in mediating diet-induced obesity. EC cell number and 5-HT content is increased in the small intestine of obese rodents and human, however, it is unknown whether EC cells respond directly to glucose in humans, and whether their capacity to release 5-HT is perturbed in obesity. We therefore investigated 5-HT release from human duodenal and colonic EC cells in response to glucose, sucrose, fructose and α-glucoside (αMG) in relation to body mass index (BMI). EC cells released 5-HT only in response to 100 and 300 mM glucose (duodenum) and 300 mM glucose (colon), independently of osmolarity. Duodenal, but not colonic, EC cells also released 5-HT in response to sucrose and αMG, but did not respond to fructose. 5-HT content was similar in all EC cells in males, and colonic EC cells in females, but 3 to 4-fold higher in duodenal EC cells from overweight females (p < 0.05 compared to lean, obese). Glucose-evoked 5-HT release was 3-fold higher in the duodenum of overweight females (p < 0.05, compared to obese), but absent here in overweight males. Our data demonstrate that primary human EC cells respond directly to dietary glucose cues, with regional differences in selectivity for other sugars. Augmented glucose-evoked 5-HT release from duodenal EC is a feature of overweight females, and may be an early determinant of obesity.
Collapse
|
39
|
Martin AM, Sun EW, Rogers GB, Keating DJ. The Influence of the Gut Microbiome on Host Metabolism Through the Regulation of Gut Hormone Release. Front Physiol 2019. [PMID: 31057420 DOI: 10.3389/fphys.2019.00428/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
The microbial community of the gut conveys significant benefits to host physiology. A clear relationship has now been established between gut bacteria and host metabolism in which microbial-mediated gut hormone release plays an important role. Within the gut lumen, bacteria produce a number of metabolites and contain structural components that act as signaling molecules to a number of cell types within the mucosa. Enteroendocrine cells within the mucosal lining of the gut synthesize and secrete a number of hormones including CCK, PYY, GLP-1, GIP, and 5-HT, which have regulatory roles in key metabolic processes such as insulin sensitivity, glucose tolerance, fat storage, and appetite. Release of these hormones can be influenced by the presence of bacteria and their metabolites within the gut and as such, microbial-mediated gut hormone release is an important component of microbial regulation of host metabolism. Dietary or pharmacological interventions which alter the gut microbiome therefore pose as potential therapeutics for the treatment of human metabolic disorders. This review aims to describe the complex interaction between intestinal microbiota and their metabolites and gut enteroendocrine cells, and highlight how the gut microbiome can influence host metabolism through the regulation of gut hormone release.
Collapse
Affiliation(s)
- Alyce M Martin
- Molecular and Cellular Physiology Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Emily W Sun
- Molecular and Cellular Physiology Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Geraint B Rogers
- Microbiome Research Laboratory, Flinders University, Adelaide, SA, Australia
- Infection and Immunity, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Damien J Keating
- Molecular and Cellular Physiology Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
40
|
Ceccotti C, Giaroni C, Bistoletti M, Viola M, Crema F, Terova G. Neurochemical characterization of myenteric neurons in the juvenile gilthead sea bream (Sparus aurata) intestine. PLoS One 2018; 13:e0201760. [PMID: 30075006 PMCID: PMC6075763 DOI: 10.1371/journal.pone.0201760] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/20/2018] [Indexed: 12/12/2022] Open
Abstract
We evaluated the chemical coding of the myenteric plexus in the proximal and distal intestine of gilthead sea bream (Sparus aurata), which represents one of the most farmed fish in the Mediterranean area. The presence of nitric oxide (NO), acetylcholine (ACh), serotonin (5-HT), calcitonin-gene-related peptide (CGRP), substance P (SP) and vasoactive intestinal peptide (VIP) containing neurons, was investigated in intestinal whole mount preparations of the longitudinal muscle with attached the myenteric plexus (LMMP) by means of immunohistochemical fluorescence staining. The main excitatory and inhibitory neurochemicals identified in intestinal smooth muscle were ACh, SP, 5HT, and NO, VIP, CGRP. Some neurons displayed morphological features of ascending and descending interneurons and of putative sensory neurons. The expression of these pathways in the two intestinal regions is largely superimposable, although some differences emerged, which may be relevant to the morphological properties of each region. The most important variances are the higher neuronal density and soma size in the proximal intestine, which may depend on the volume of the target tissue. Since in the fish gut the submucosal plexus is less developed, myenteric neurons substantially innervate also the submucosal and epithelial layers, which display a major thickness and surface in the proximal intestine. In addition, myenteric neurons containing ACh and SP, which mainly represent excitatory motor neurons and interneurons innervating the smooth muscle were more numerous in the distal intestine, possibly to sustain motility in the thicker smooth muscle coat. Overall, this study expands our knowledge of the intrinsic innervation that regulates intestinal secretion, absorption and motility in gilthead sea bream and provides useful background information for rational design of functional feeds aimed at improving fish gut health.
Collapse
Affiliation(s)
- Chiara Ceccotti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Michela Bistoletti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Manuela Viola
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Francesca Crema
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Inter-University Centre for Research in Protein Biotechnologies "The Protein Factory"- Polytechnic University of Milan and University of Insubria, Varese, Italy
| |
Collapse
|
41
|
Stavely R, Fraser S, Sharma S, Rahman AA, Stojanovska V, Sakkal S, Apostolopoulos V, Bertrand P, Nurgali K. The Onset and Progression of Chronic Colitis Parallels Increased Mucosal Serotonin Release via Enterochromaffin Cell Hyperplasia and Downregulation of the Serotonin Reuptake Transporter. Inflamm Bowel Dis 2018; 24:1021-1034. [PMID: 29668991 DOI: 10.1093/ibd/izy016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Serotonin (5-hydroxytryptamine, 5-HT) has been linked with several inflammation-associated intestinal diseases, including ulcerative colitis (UC). The largest pool of 5-HT in the body is in enterochromaffin (EC) cells located throughout the intestinal tract. EC cells are mechanosensitive and detect noxious stimuli, inducing secretion of 5-HT, which plays an important role in enteric reflexes and immunomodulation. In this study, we evaluated intestinal 5-HT levels in the Winnie mouse model of spontaneous chronic colitis, which closely replicates UC. METHODS Real-time electrochemical recordings of 5-HT oxidation currents were obtained from ex vivo preparations of jejunum, ileum, proximal, and distal colon from Winnie (5-25 weeks old) and age matched C57BL/6 mice. EC cells were examined by immunohistochemistry, and the gene expression of tryptophan hydroxylase 1 (5-HT synthesis) and the serotonin reuptake transporter (SERT) were determined by quantitative Real-Time Polymerase Chain Reaction (RT-qPCR). RESULTS Compression-evoked and basal 5-HT concentrations were elevated in the distal and proximal colon of Winnie mice. EC cell hyperplasia and downregulation of SERT on the transcriptional level were identified as mechanisms underlying increased levels of 5-HT. Increase in mucosal 5-HT release was observed at the onset of disease at 7-14 weeks, confirmed by disease activity scores. Furthermore, increases in 5-HT levels and progression of disease activity correlated linearly with age, but not sex. CONCLUSIONS Our findings in the Winnie mouse model of spontaneous chronic colitis demonstrate for the first time that the onset and progression of chronic UC-like intestinal inflammation is associated with increased 5-HT levels in the colonic mucosa.
Collapse
Affiliation(s)
- Rhian Stavely
- College of Health and Biomedicine, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia.,Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Western Health
| | - Sarah Fraser
- Centre for Chronic Disease; College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Shilpa Sharma
- Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Western Health
| | - Ahmed A Rahman
- College of Health and Biomedicine, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia.,Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Vanesa Stojanovska
- College of Health and Biomedicine, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia.,Hudson Institute of Medical Research; Monash Health Translation Precinct, Melbourne, Victoria, Australia
| | - Samy Sakkal
- College of Health and Biomedicine, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia
| | - Vasso Apostolopoulos
- Centre for Chronic Disease; College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Paul Bertrand
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Melbourne, Victoria, Australia
| | - Kulmira Nurgali
- College of Health and Biomedicine, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia.,Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Western Health
| |
Collapse
|
42
|
Young RL, Lumsden AL, Martin AM, Schober G, Pezos N, Thazhath SS, Isaacs NJ, Cvijanovic N, Sun EWL, Wu T, Rayner CK, Nguyen NQ, Fontgalland DD, Rabbitt P, Hollington P, Sposato L, Due SL, Wattchow DA, Liou AP, Jackson VM, Keating DJ. Augmented capacity for peripheral serotonin release in human obesity. Int J Obes (Lond) 2018; 42:1880-1889. [PMID: 29568107 DOI: 10.1038/s41366-018-0047-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND/OBJECTIVES Evidence from animal studies highlights an important role for serotonin (5-HT), derived from gut enterochromaffin (EC) cells, in regulating hepatic glucose production, lipolysis and thermogenesis, and promoting obesity and dysglycemia. Evidence in humans is limited, although elevated plasma 5-HT concentrations are linked to obesity. SUBJECTS/METHODS We assessed (i) plasma 5-HT concentrations before and during intraduodenal glucose infusion (4 kcal/min for 30 min) in non-diabetic obese (BMI 44 ± 4 kg/m2, N = 14) and control (BMI 24 ± 1 kg/m2, N = 10) subjects, (ii) functional activation of duodenal EC cells (immunodetection of phospho-extracellular related-kinase, pERK) in response to glucose, and in separate subjects, (iii) expression of tryptophan hydroxylase-1 (TPH1) in duodenum and colon (N = 39), and (iv) 5-HT content in primary EC cells from these regions (N = 85). RESULTS Plasma 5-HT was twofold higher in obese than control responders prior to (P = 0.025), and during (iAUC, P = 0.009), intraduodenal glucose infusion, and related positively to BMI (R2 = 0.334, P = 0.003) and HbA1c (R2 = 0.508, P = 0.009). The density of EC cells in the duodenum was twofold higher at baseline in obese subjects than controls (P = 0.023), with twofold more EC cells activated by glucose infusion in the obese (EC cells co-expressing 5-HT and pERK, P = 0.001), while the 5-HT content of EC cells in duodenum and colon was similar; TPH1 expression was 1.4-fold higher in the duodenum of obese subjects (P = 0.044), and related positively to BMI (R2 = 0.310, P = 0.031). CONCLUSIONS Human obesity is characterized by an increased capacity to produce and release 5-HT from the proximal small intestine, which is strongly linked to higher body mass, and glycemic control. Gut-derived 5-HT is likely to be an important driver of pathogenesis in human obesity and dysglycemia.
Collapse
Affiliation(s)
- Richard L Young
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia.,Nutrition & Metabolism, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Amanda L Lumsden
- Centre for Neuroscience & Department of Human Physiology, Flinders University, Bedford Park, SA, 5042, Australia
| | - Alyce M Martin
- Centre for Neuroscience & Department of Human Physiology, Flinders University, Bedford Park, SA, 5042, Australia
| | - Gudrun Schober
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia.,Nutrition & Metabolism, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Nektaria Pezos
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia.,Nutrition & Metabolism, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Sony S Thazhath
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia.,NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Nicole J Isaacs
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia.,Nutrition & Metabolism, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Nada Cvijanovic
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia.,Nutrition & Metabolism, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Emily W L Sun
- Centre for Neuroscience & Department of Human Physiology, Flinders University, Bedford Park, SA, 5042, Australia
| | - Tongzhi Wu
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia.,NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Christopher K Rayner
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia.,NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Nam Q Nguyen
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia.,NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Dayan de Fontgalland
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, 5042, Australia
| | - Philippa Rabbitt
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, 5042, Australia
| | - Paul Hollington
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, 5042, Australia
| | - Luigi Sposato
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, 5042, Australia
| | - Steven L Due
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, 5042, Australia
| | - David A Wattchow
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, 5042, Australia
| | - Alice P Liou
- Cardiovascular, Metabolic, and Endocrine Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, 02139, USA
| | - V Margaret Jackson
- Cardiovascular, Metabolic, and Endocrine Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, 02139, USA
| | - Damien J Keating
- Nutrition & Metabolism, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia. .,Centre for Neuroscience & Department of Human Physiology, Flinders University, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
43
|
Jeong EJ, Chung SY, Hong HN, Oh SW, Sim JY. The novel, potent and highly selective 5-HT 4 receptor agonist YH12852 significantly improves both upper and lower gastrointestinal motility. Br J Pharmacol 2018; 175:485-500. [PMID: 29139561 DOI: 10.1111/bph.14096] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE 5-HT4 receptor agonists have been shown to be effective at treating various gastrointestinal tract disorders. However, a lack of selectivity against off-targets has been a limiting factor for their clinical use. EXPERIMENTAL APPROACH The binding affinity and selectivity of YH12852 for human 5-HT4(a) receptor in CHO-K1 cells were evaluated using radioligand binding assays, and agonistic activity was assessed using a β-lactamase reporter system. Contractile activity and propulsive motility were measured in the guinea pig isolated distal colon. Its prokinetic effect on the gastrointestinal tract was evaluated in guinea pigs, dogs and monkeys. Its tissue distribution was evaluated in rats. KEY RESULTS YH12852 exhibited high affinity and potency for human recombinant 5-HT4(a) receptor with high selectivity over other 5-HT and non-5-HT receptors, ion channels, enzymes and transporters. YH12852 induced contractions and increased propulsive motility in guinea pig isolated colon. These effects were abolished by the 5-HT4 receptor antagonist GR113808. YH12852 increased defecation more effectively than prucalopride in guinea pigs and dogs and improved gastric emptying more effectively than mosapride in guinea pigs, dogs and monkeys. YH12852 was highly distributed to the gastrointestinal tract as the target organ. CONCLUSION AND IMPLICATIONS The high in vitro potency and selectivity of YH12852 for 5-HT4 receptor translated into potent in vivo efficacy with good tolerability. YH12852 significantly improved both upper and lower bowel motility in the animal models tested and has the potential to address considerable unmet needs in patients with functional constipation, gastroparesis or both.
Collapse
Affiliation(s)
- Eun Jeong Jeong
- Yuhan R&D Institute, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Soo Yong Chung
- Yuhan R&D Institute, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Han Na Hong
- Yuhan R&D Institute, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Se-Woong Oh
- Yuhan R&D Institute, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Jae Young Sim
- Yuhan R&D Institute, Yongin-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
44
|
Kugler EM, Michel K, Kirchenbüchler D, Dreissen G, Csiszár A, Merkel R, Schemann M, Mazzuoli-Weber G. Sensitivity to Strain and Shear Stress of Isolated Mechanosensitive Enteric Neurons. Neuroscience 2018; 372:213-224. [PMID: 29317262 DOI: 10.1016/j.neuroscience.2017.12.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/20/2017] [Accepted: 12/27/2017] [Indexed: 10/18/2022]
Abstract
Within the enteric nervous system, the neurons in charge to control motility of the gastrointestinal tract reside in a particular location nestled between two perpendicular muscle layers which contract and relax. We used primary cultured myenteric neurons of male guinea pigs to study mechanosensitivity of enteric neurons in isolation. Ultrafast Neuroimaging with a voltage-sensitive dye technique was used to record neuronal activity in response to shear stress and strain. Strain was induced by locally deforming the elastic cell culture substrate next to a neuron. Measurements showed that substrate strain was mostly elongating cells. Shear stress was exerted by hydrodynamic forces in a microchannel. Both stimuli induced excitatory responses. Strain activated 14% of the stimulated myenteric neurons that responded with a spike frequency of 1.9 (0.7/3.2) Hz, whereas shear stress excited only a few neurons (5.6%) with a very low spike frequency of 0 (0/0.6) Hz. Thus, shear stress does not seem to be an adequate stimulus for mechanosensitive enteric neurons (MEN) while strain activates enteric neurons in a relevant manner. Analyzing the adaptation behavior of MEN showed that shear stress activated rapidly/slowly/ultraslowly adapting MEN (2/62/36%) whereas strain only slowly (46%) and ultraslowly (54%) MEN. Paired experiments with strain and normal stress revealed three mechanosensitive enteric neuronal populations: one strain-sensitive (37%), one normal stress-sensitive (17%) and one strain- and stress-sensitive (46%). These results indicate that shear stress does not play a role in the neuronal control of motility but normal stress and strain.
Collapse
Affiliation(s)
- Eva Maria Kugler
- Human Biology, Technische Universität München, Freising-Weihenstephan, 85354, Germany.
| | - Klaus Michel
- Human Biology, Technische Universität München, Freising-Weihenstephan, 85354, Germany.
| | - David Kirchenbüchler
- Institute of Complex Systems - Biomechanics, Research Center Jülich, 52425 Jülich, Germany.
| | - Georg Dreissen
- Institute of Complex Systems - Biomechanics, Research Center Jülich, 52425 Jülich, Germany.
| | - Agnes Csiszár
- Institute of Complex Systems - Biomechanics, Research Center Jülich, 52425 Jülich, Germany.
| | - Rudolf Merkel
- Institute of Complex Systems - Biomechanics, Research Center Jülich, 52425 Jülich, Germany.
| | - Michael Schemann
- Human Biology, Technische Universität München, Freising-Weihenstephan, 85354, Germany.
| | - Gemma Mazzuoli-Weber
- Human Biology, Technische Universität München, Freising-Weihenstephan, 85354, Germany.
| |
Collapse
|
45
|
Sun EWL, Martin AM, Young RL, Keating DJ. The Regulation of Peripheral Metabolism by Gut-Derived Hormones. Front Endocrinol (Lausanne) 2018; 9:754. [PMID: 30662430 PMCID: PMC6328484 DOI: 10.3389/fendo.2018.00754] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
Enteroendocrine cells lining the gut epithelium constitute the largest endocrine organ in the body and secrete over 20 different hormones in response to cues from ingested foods and changes in nutritional status. Not only do these hormones convey signals from the gut to the brain via the gut-brain axis, they also act directly on metabolically important peripheral targets in a highly concerted fashion to maintain energy balance and glucose homeostasis. Gut-derived hormones released during fasting tend to be orexigenic and have hyperglycaemic potential. Conversely, gut hormones secreted postprandially generally promote satiety and facilitate glucose clearance. Although some of the metabolic benefits conferred by bariatric surgeries have been ascribed to changes in the secretory profiles of various gut hormones, the therapeutic potential of the enteroendocrine system as a viable target against metabolic diseases remain largely underexploited, except for incretin-mimetics. This review provides a brief overview of the physiological importance and highlights the therapeutic potential of the following gut hormones: serotonin, glucose-dependent insulinotropic peptide, glucagon-like peptide 1, oxyntomodulin, peptide YY, insulin-like peptide 5, and ghrelin.
Collapse
Affiliation(s)
- Emily W. L. Sun
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Alyce M. Martin
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Richard L. Young
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Damien J. Keating
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- *Correspondence: Damien J. Keating
| |
Collapse
|
46
|
Martin AM, Lumsden AL, Young RL, Jessup CF, Spencer NJ, Keating DJ. Regional differences in nutrient-induced secretion of gut serotonin. Physiol Rep 2017; 5:5/6/e13199. [PMID: 28320893 PMCID: PMC5371566 DOI: 10.14814/phy2.13199] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 12/17/2022] Open
Abstract
Enterochromaffin (EC) cells located in the gastrointestinal (GI) tract provide the vast majority of serotonin (5-HT) in the body and constitute half of all enteroendocrine cells. EC cells respond to an array of stimuli, including various ingested nutrients. Ensuing 5-HT release from these cells plays a diverse role in regulating gut motility as well as other important responses to nutrient ingestion such as glucose absorption and fluid balance. Recent data also highlight the role of peripheral 5-HT in various pathways related to metabolic control. Details related to the manner by which EC cells respond to ingested nutrients are scarce and as that the nutrient environment changes along the length of the gut, it is unknown whether the response of EC cells to nutrients is dependent on their GI location. The aim of the present study was to identify whether regional differences in nutrient sensing capability exist in mouse EC cells. We isolated mouse EC cells from duodenum and colon to demonstrate differential responses to sugars depending on location. Measurements of intracellular calcium concentration and 5-HT secretion demonstrated that colonic EC cells are more sensitive to glucose, while duodenal EC cells are more sensitive to fructose and sucrose. Short-chain fatty acids (SCFAs), which are predominantly synthesized by intestinal bacteria, have been previously associated with an increase in circulating 5-HT; however, we find that SCFAs do not acutely stimulate EC cell 5-HT release. Thus, we highlight that EC cell physiology is dictated by regional location within the GI tract, and identify differences in the regional responsiveness of EC cells to dietary sugars.
Collapse
Affiliation(s)
- Alyce M Martin
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Amanda L Lumsden
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Richard L Young
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Claire F Jessup
- Department of Anatomy and Histology and Centre for Neuroscience, Flinders University, Adelaide, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Nick J Spencer
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Damien J Keating
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia .,South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| |
Collapse
|
47
|
Sodium channel Na V1.3 is important for enterochromaffin cell excitability and serotonin release. Sci Rep 2017; 7:15650. [PMID: 29142310 PMCID: PMC5688111 DOI: 10.1038/s41598-017-15834-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/01/2017] [Indexed: 12/28/2022] Open
Abstract
In the gastrointestinal (GI) epithelium, enterochromaffin (EC) cells are enteroendocrine cells responsible for producing >90% of the body's serotonin (5-hydroxytryptamine, 5-HT). However, the molecular mechanisms of EC cell function are poorly understood. Here, we found that EC cells in mouse primary cultures fired spontaneous bursts of action potentials. We examined the repertoire of voltage-gated sodium channels (NaV) in fluorescence-sorted mouse EC cells and found that Scn3a was highly expressed. Scn3a-encoded NaV1.3 was specifically and densely expressed at the basal side of both human and mouse EC cells. Using electrophysiology, we found that EC cells expressed robust NaV1.3 currents, as determined by their biophysical and pharmacologic properties. NaV1.3 was not only critical for generating action potentials in EC cells, but it was also important for regulating 5-HT release by these cells. Therefore, EC cells use Scn3a-encoded voltage-gated sodium channel NaV1.3 for electrical excitability and 5-HT release. NaV1.3-dependent electrical excitability and its contribution to 5-HT release is a novel mechanism of EC cell function.
Collapse
|
48
|
Costa M, Wiklendt L, Keightley L, Brookes SJH, Dinning PG, Spencer NJ. New insights into neurogenic cyclic motor activity in the isolated guinea-pig colon. Neurogastroenterol Motil 2017; 29:1-13. [PMID: 28444866 DOI: 10.1111/nmo.13092] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/21/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND The contents of the guinea pig distal colon consist of multiple pellets that move anally in a coordinated manner. This row of pellets results in continued distention of the colon. In this study, we have investigated quantitatively the features of the neurally dependent colonic motor patterns that are evoked by constant distension of the full length of guinea-pig colon. METHODS Constant distension was applied to the excised guinea-pig by high-resolution manometry catheters or by a series of hooks. KEY RESULTS Constant distension elicited regular Cyclic Motor Complexes (CMCs) that originated at multiple different sites along the colon and propagated in an oral or anal direction extending distances of 18.3±10.3 cm. CMCs were blocked by tetrodotoxin (TTX; 0.6 μ mol L-1 ), hexamethonium (100 μ mol L-1 ) or hyoscine (1 μ mol L-1 ). Application of TTX in a localized compartment or cutting the gut circumferentially disrupted the spatial continuity of CMCs. Localized smooth muscle contraction was not required for CMC propagation. Shortening the length of the preparations or disruption of circumferential pathways reduced the integrity and continuity of CMCs. CONCLUSIONS & INFERENCES CMCs are a distinctive neurally dependent cyclic motor pattern, that emerge with distension over long lengths of the distal colon. They do not require changes in muscle tension or contractility to entrain the neural activity underlying CMC propagation. CMCs are likely to play an important role interacting with the neuromechanical processes that time the propulsion of multiple natural pellets and may be particularly relevant in conditions of impaction or obstruction, where long segments of colon are simultaneously distended.
Collapse
Affiliation(s)
- M Costa
- Discipline of Human Physiology, Flinders University, Adelaide, SA, Australia
| | - L Wiklendt
- Discipline of Human Physiology, Flinders University, Adelaide, SA, Australia
| | - L Keightley
- Discipline of Human Physiology, Flinders University, Adelaide, SA, Australia
| | - S J H Brookes
- Discipline of Human Physiology, Flinders University, Adelaide, SA, Australia
| | - P G Dinning
- Discipline of Human Physiology, Flinders University, Adelaide, SA, Australia.,Departments of Gastroenterology and Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - N J Spencer
- Discipline of Human Physiology, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
49
|
Hussain Z, Lee YJ, Yang H, Jeong EJ, Sim JY, Park H. YH12852, a potent and highly selective 5-HT 4 receptor agonist, significantly improves both upper and lower gastrointestinal motility in a guinea pig model of postoperative ileus. Neurogastroenterol Motil 2017; 29:1-6. [PMID: 28516458 DOI: 10.1111/nmo.13094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/26/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Postoperative ileus (POI) is a transient gastrointestinal (GI) dysmotility that commonly develops after abdominal surgery. YH12852, a novel, potent and highly selective 5-hydroxytryptamine 4 (5-HT4 ) receptor agonist, has been shown to improve both upper and lower GI motility in various animal studies and may have applications for the treatment of POI. Here, we investigated the effects and mechanism of action of YH12852 in a guinea pig model of POI to explore its therapeutic potential. METHODS The guinea pig model of POI was created by laparotomy, evisceration, and gentle manipulation of the cecum for 60 seconds, followed by closure with sutures under anesthesia. Group 1 received an oral administration of vehicle or YH12852 (1, 3, 10 or 30 mg/kg) only, while POI Group 2 was intraperitoneally pretreated with vehicle or 5-HT4 receptor antagonist GR113808 (10 mg/kg) prior to oral dosing of vehicle or YH12852 (3 or 10 mg/kg). Upper GI transit was evaluated by assessing the migration of a charcoal mixture in the small intestine, while lower GI transit was assessed via measurement of fecal pellet output (FPO). KEY RESULTS YH12852 significantly accelerated upper and lower GI transit at the doses of 3, 10, and 30 mg/kg and reached its maximal effect at 10 mg/kg. These effects were significantly blocked by pretreatment of GR113808 10 mg/kg. CONCLUSION AND INFERENCES Oral administration of YH12852 significantly accelerates and restores delayed upper and lower GI transit in a guinea pig model of POI. This drug may serve as a useful candidate for the treatment of postoperative ileus.
Collapse
Affiliation(s)
- Z Hussain
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Y J Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - H Yang
- Washington University, St. Louis, MO, USA
| | - E J Jeong
- Yuhan R&D Institute, Yuhan Corporation, Seoul, Korea
| | - J Y Sim
- Yuhan R&D Institute, Yuhan Corporation, Seoul, Korea
| | - H Park
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
50
|
Liñán-Rico A, Ochoa-Cortes F, Zuleta-Alarcon A, Alhaj M, Tili E, Enneking J, Harzman A, Grants I, Bergese S, Christofi FL. UTP - Gated Signaling Pathways of 5-HT Release from BON Cells as a Model of Human Enterochromaffin Cells. Front Pharmacol 2017; 8:429. [PMID: 28751862 PMCID: PMC5508028 DOI: 10.3389/fphar.2017.00429] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/15/2017] [Indexed: 12/30/2022] Open
Abstract
Background: Enterochromaffin cells (EC) synthesize and release 5-HT and ATP to trigger or modulate gut neural reflexes and transmit information about visceral/pain sensation. Alterations in 5-HT signaling mechanisms may contribute to the pathogenesis of IBD or IBS, but the pharmacologic or molecular mechanisms modulating Ca2+-dependent 5-HT release are not understood. Previous studies indicated that purinergic signaling via ATP and ADP is an important mechanism in modulation of 5-HT release. However, EC cells also respond to UTP and UDP suggesting uridine triphosphate receptor and signaling pathways are involved as well. We tested the hypothesis that UTP is a regulator of 5-HT release in human EC cells. Methods: UTP signaling mechanisms were studied in BON cells, a human EC model, using Fluo-4/Ca2+imaging, patch-clamp, pharmacological analysis, immunohistochemistry, western blots and qPCR. 5-HT release was monitored in BON or EC isolated from human gut surgical specimens (hEC). Results: UTP, UTPγS, UDP or ATP induced Ca2+oscillations in BON. UTP evoked a biphasic concentration-dependent Ca2+response. Cells responded in the order of UTP, ATP > UTPγS > UDP >> MRS2768, BzATP, α,β-MeATP > MRS2365, MRS2690, and NF546. Different proportions of cells activated by UTP and ATP also responded to UTPγS (P2Y4, 50% cells), UDP (P2Y6, 30%), UTPγS and UDP (14%) or MRS2768 (<3%). UTP Ca2+responses were blocked with inhibitors of PLC, IP3R, SERCA Ca2+pump, La3+sensitive Ca2+channels or chelation of intracellular free Ca2+ by BAPTA/AM. Inhibitors of L-type, TRPC, ryanodine-Ca2+pools, PI3-Kinase, PKC or SRC-Kinase had no effect. UTP stimulated voltage-sensitive Ca2+currents (ICa), Vm-depolarization and inhibited IK (not IA) currents. An IKv7.2/7.3 K+ channel blocker XE-991 mimicked UTP-induced Vm-depolarization and blocked UTP-responses. XE-991 blocked IK and UTP caused further reduction. La3+ or PLC inhibitors blocked UTP depolarization; PKC inhibitors, thapsigargin or zero Ca2+buffer did not. UTP stimulated 5-HT release in hEC expressing TPH1, 5-HT, P2Y4/P2Y6R. Zero-Ca2+buffer augmented Ca2+responses and 5-HT release. Conclusion: UTP activates a predominant P2Y4R pathway to trigger Ca2+oscillations via internal Ca2+mobilization through a PLC/IP3/IP3R/SERCA Ca2+signaling pathway to stimulate 5-HT release; Ca2+influx is inhibitory. UTP-induced Vm-depolarization depends on PLC signaling and an unidentified K channel (which appears independent of Ca2+oscillations or Ica/VOCC). UTP-gated signaling pathways triggered by activation of P2Y4R stimulate 5-HT release.
Collapse
Affiliation(s)
- Andromeda Liñán-Rico
- Department of Anesthesiology, The Wexner Medical Center at The Ohio State University, ColumbusOH, United States
| | - Fernando Ochoa-Cortes
- Department of Anesthesiology, The Wexner Medical Center at The Ohio State University, ColumbusOH, United States
| | - Alix Zuleta-Alarcon
- Department of Anesthesiology, The Wexner Medical Center at The Ohio State University, ColumbusOH, United States
| | - Mazin Alhaj
- Department of Anesthesiology, The Wexner Medical Center at The Ohio State University, ColumbusOH, United States
| | - Esmerina Tili
- Department of Anesthesiology, The Wexner Medical Center at The Ohio State University, ColumbusOH, United States
- Molecular Virology, Immunology and Medical Genetics, The Wexner Medical Center at The Ohio State University, ColumbusOH, United States
| | - Josh Enneking
- Department of Anesthesiology, The Wexner Medical Center at The Ohio State University, ColumbusOH, United States
| | - Alan Harzman
- Department of Surgery, The Wexner Medical Center at The Ohio State University, ColumbusOH, United States
| | - Iveta Grants
- Department of Anesthesiology, The Wexner Medical Center at The Ohio State University, ColumbusOH, United States
| | - Sergio Bergese
- Department of Anesthesiology, The Wexner Medical Center at The Ohio State University, ColumbusOH, United States
| | - Fievos L. Christofi
- Department of Anesthesiology, The Wexner Medical Center at The Ohio State University, ColumbusOH, United States
| |
Collapse
|