1
|
Mishra G, Townsend KL. Sensory nerve and neuropeptide diversity in adipose tissues. Mol Cells 2024; 47:100030. [PMID: 38364960 PMCID: PMC10960112 DOI: 10.1016/j.mocell.2024.100030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
Both brown and white adipose tissues (BAT/WAT) are innervated by the peripheral nervous system, including efferent sympathetic nerves that communicate from the brain/central nervous system out to the tissue, and afferent sensory nerves that communicate from the tissue back to the brain and locally release neuropeptides to the tissue upon stimulation. This bidirectional neural communication is important for energy balance and metabolic control, as well as maintaining adipose tissue health through processes like browning (development of metabolically healthy brown adipocytes in WAT), thermogenesis, lipolysis, and adipogenesis. Decades of sensory nerve denervation studies have demonstrated the particular importance of adipose sensory nerves for brown adipose tissue and WAT functions, but far less is known about the tissue's sensory innervation compared to the better-studied sympathetic nerves and their neurotransmitter norepinephrine. In this review, we cover what is known and not yet known about sensory nerve activities in adipose, focusing on their effector neuropeptide actions in the tissue.
Collapse
Affiliation(s)
- Gargi Mishra
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Kokabi F, Ebrahimi S, Mirzavi F, Ghiasi Nooghabi N, Hashemi SF, Hashemy SI. The neuropeptide substance P/neurokinin-1 receptor system and diabetes: From mechanism to therapy. Biofactors 2023. [PMID: 36651605 DOI: 10.1002/biof.1935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023]
Abstract
Diabetes is a significant public health issue known as the world's fastest-growing disease condition. It is characterized by persistent hyperglycemia and subsequent chronic complications leading to organ dysfunction and, ultimately, the failure of target organs. Substance P (SP) is an undecapeptide that belongs to the family of tachykinin (TK) peptides. The SP-mediated activation of the neurokinin 1 receptor (NK1R) regulates many pathophysiological processes in the body. There is also a relation between the SP/NK1R system and diabetic processes. Importantly, deregulated expression of SP has been reported in diabetes and diabetes-associated chronic complications. SP can induce both diabetogenic and antidiabetogenic effects and thus affect the pathology of diabetes destructively or protectively. Here, we review the current knowledge of the functional relevance of the SP/NK1R system in diabetes pathogenesis and its exploitation for diabetes therapy. A comprehensive understanding of the role of the SP/NK1R system in diabetes is expected to shed further light on developing new therapeutic possibilities for diabetes and its associated chronic conditions.
Collapse
Affiliation(s)
- Fariba Kokabi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Safieh Ebrahimi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | | | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Widiapradja A, Kasparian AO, McCaffrey SL, Kolb LL, Imig JD, Lacey JL, Melendez GC, Levick SP. Replacement of Lost Substance P Reduces Fibrosis in the Diabetic Heart by Preventing Adverse Fibroblast and Macrophage Phenotype Changes. Cells 2021; 10:2659. [PMID: 34685639 PMCID: PMC8534147 DOI: 10.3390/cells10102659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 01/05/2023] Open
Abstract
Reduced levels of the sensory nerve neuropeptide substance P (SP) have been reported in the diabetic rat heart, the consequence being a loss of cardioprotection in response to ischemic post-conditioning. We considered whether this loss of SP also predisposes the heart to non-ischemic diabetic cardiomyopathy in the form of fibrosis and hypertrophy. We report that diabetic Leprdb/db mice have reduced serum SP and that administration of exogenous replacement SP ameliorated cardiac fibrosis. Cardiac hypertrophy did not occur in Leprdb/db mice. Cardiac fibroblasts exposed to high glucose converted to a myofibroblast phenotype and produced excess extracellular matrix proteins; this was prevented by the presence of SP in the culture media. Cardiac fibroblasts exposed to high glucose produced increased amounts of the receptor for advanced glycation end products, reactive oxygen species and inflammatory cytokines, all of which were prevented by SP. Cultured macrophages assumed an M1 pro-inflammatory phenotype in response to high glucose as indicated by increased TNF-α, CCL2, and IL-6. SP promoted a shift to the reparative M2 macrophage phenotype characterized by arginase-1 and IL-10. Leprdb/db mice showed increased left ventricular M1 phenotype macrophages and an increase in the M1/M2 ratio. Replacement SP in Leprdb/db mice restored a favorable M1 to M2 balance. Together these findings indicate that a loss of SP predisposes the diabetic heart to developing fibrosis. The anti-fibrotic actions of replacement SP involve direct effects on cardiac fibroblasts and macrophages to oppose adverse phenotype changes. This study identifies the potential of replacement SP to treat diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Alexander Widiapradja
- Kolling Institute, St Leonards, NSW 2065, Australia; (A.W.); (A.O.K.); (S.L.M.)
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Ainsley O. Kasparian
- Kolling Institute, St Leonards, NSW 2065, Australia; (A.W.); (A.O.K.); (S.L.M.)
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Samuel L. McCaffrey
- Kolling Institute, St Leonards, NSW 2065, Australia; (A.W.); (A.O.K.); (S.L.M.)
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Lauren L. Kolb
- Drug Discovery Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (L.L.K.); (J.D.I.)
| | - John D. Imig
- Drug Discovery Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (L.L.K.); (J.D.I.)
| | - Jessica L. Lacey
- Section on Cardiology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (J.L.L.); (G.C.M.)
- Section on Comparative Medicine, Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Giselle C. Melendez
- Section on Cardiology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (J.L.L.); (G.C.M.)
- Section on Comparative Medicine, Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Scott P. Levick
- Kolling Institute, St Leonards, NSW 2065, Australia; (A.W.); (A.O.K.); (S.L.M.)
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
4
|
Atas U, Erin N, Tazegul G, Elpek GO, Yildirim B. Changes in ghrelin, substance P and vasoactive intestinal peptide levels in the gastroduodenal mucosa of patients with morbid obesity. Neuropeptides 2021; 89:102164. [PMID: 34146741 DOI: 10.1016/j.npep.2021.102164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 02/08/2023]
Abstract
AIMS The aim of the study was to assess changes in levels of substance P (SP), vasoactive intestinal peptide (VIP) and ghrelin in the gastroduodenal mucosa of obese individuals, which has not been studied before. METHODS Forty-six patients with a body mass index (BMI) of >40 kg/m2 and 20 patients with a BMI of 18-25 kg/m2 were included in the study. VIP and SP levels in the fundus, antrum and duodenal mucosa were measured in freshly frozen tissues using enzyme-linked immunosorbent assay (ELISA). Fasting levels of ghrelin in blood were also measured with ELISA. Tissue levels of ghrelin were assessed by immunohistochemical staining, and immunoreactivity scores were used for ghrelin evaluation in tissues. RESULTS Antrum SP levels were higher in the obese group than in the control group. A significant number of obese patients had low VIP levels in the fundus and antrum. Intense ghrelin staining was observed in a limited number of cells in the mucosal area of the gastric fundus that was similar in the control and patient groups. In the antrum and duodenum, ghrelin staining was low in all the samples examined. CONCLUSION Here, we found that SP levels are increased, while VIP levels are decreased in the antrum of morbidly obese individuals. Previous studies show that SP increases gastroduodenal motility, that VIP slows it down, and that the gastric emptying rate is higher in obese individuals, preventing negative feedback mechanisms upon food intake. Therefore, increases in SP and decreases in VIP levels in the antrum may contribute to obesity by accelerating gastric emptying.
Collapse
Affiliation(s)
- Unal Atas
- Akdeniz University Faculty of Medicine, Department of Internal Medicine, Antalya, Turkey.
| | - Nuray Erin
- Akdeniz University Faculty of Medicine, Department of Medical Pharmacology and Immunopharmacology and Immunooncology Unit, Antalya, Turkey.
| | - Gokhan Tazegul
- Akdeniz University Faculty of Medicine, Department of Internal Medicine, Antalya, Turkey.
| | - Gulsum Ozlem Elpek
- Akdeniz University Faculty of Medicine, Department of Pathology, Antalya, Turkey.
| | - Bulent Yildirim
- Akdeniz University Faculty of Medicine, Department of Gastroenterology, Antalya, Turkey.
| |
Collapse
|
5
|
Abstract
Bone marrow adipose tissue (BMAT) is an important cellular component of the skeleton. Understanding how it is regulated by the nervous system is crucial to the study of bone and bone marrow related diseases. BMAT is innervated by sympathetic and sensory axons in bone and fluctuations in local nerve density and function may contribute to its distinct physiologic adaptations at various skeletal sites. BMAT is directly responsive to adrenergic signals. In addition, neural regulation of surrounding cells may modify BMAT-specific responses, providing many potential avenues for both direct and indirect neural regulation of BMAT metabolism. Lastly, BMAT and peripheral adipose tissues share the same autonomic pathways across the central neuraxis and regulation of BMAT may occur in diverse clinical settings of neurologic and metabolic disease. This review will highlight what is known and unknown about the neural regulation of BMAT and discuss opportunities for future research in the field.
Collapse
Affiliation(s)
- Xiao Zhang
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Mohamed G Hassan
- Department of Orthodontics, Faculty of Oral and Dental Medicine, South Valley University, Qena, Egypt; Department of Orthodontics, Faculty of Dentistry, October 6 University, Giza, Egypt
| | - Erica L Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA.
| |
Collapse
|
6
|
Mafra FFP, Macedo MM, Orphão JDNP, Lopes AV, Teixeira CDB, Gattai PP, Torres-Silva R, Nascimento FD, Lopes-Martins RÁB. Laser Photobiomodulation 904 nm Promotes Inhibition of Hormone-Sensitive Lipase Activity in 3T3-L1 Adipocytes Differentiated Cells. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 37:66-69. [PMID: 31050926 DOI: 10.1089/photob.2018.4515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background: The lipid metabolism is essential for maintaining the body's energy responses. Laser photobiomodulation triggers many important cellular effects, but these effects on lipid metabolism are not well described. In this study, we analyzed the laser photobiomodulation in the hormone-sensitive lipase (HSL) activity, a key enzyme in the triglycerides (TAG) hydrolysis in adipose tissue 3T3-L1. Methods: Cells were submitted to the differentiation protocol in adipose cells, irradiated with 1, 2, and 3J with laser (904 nm-60 mw-laser diode) and incubated for 4 h after irradiation. Results: The response of laser photobiomodulation was able to trigger an inhibition of HSL activity (control = 0.057 ± 0.0008; 1J = 0.050 ± 0.0003; 2J = 0.0477 ± 0.002; 3J = 0.051 ± 0.002; p = 0.0003 against the control), but no modulation was observed in TAG levels into the medium (control = 26.5856 ± 0.52; 1J = 26.5856 ± 0.52; 2J = 27.2372 ± 1.41; 3J = 25.9991 ± 0.1303; p = 0.18). Conclusions: This is the first study of HSL activity modulation with laser radiation, suggesting that photobiomodulation can influence adipose tissue metabolism and open a new field of study.
Collapse
Affiliation(s)
- Fernando F P Mafra
- 1 Technology Research Center, University of Mogi das Cruzes-UMC , Mogi das Cruzes, Brazil
| | - Michel M Macedo
- 1 Technology Research Center, University of Mogi das Cruzes-UMC , Mogi das Cruzes, Brazil
| | - Juliana do N P Orphão
- 1 Technology Research Center, University of Mogi das Cruzes-UMC , Mogi das Cruzes, Brazil
| | - Arthur Vecchi Lopes
- 1 Technology Research Center, University of Mogi das Cruzes-UMC , Mogi das Cruzes, Brazil
| | | | - Pedro P Gattai
- 2 Molecular Biology Laboratory, Renal Division, Medicine Department, Federal University of São Paulo-UNIFESP , São Paulo, Brazil
| | - Romildo Torres-Silva
- 1 Technology Research Center, University of Mogi das Cruzes-UMC , Mogi das Cruzes, Brazil
| | | | | |
Collapse
|
7
|
Auclair N, Melbouci L, St-Pierre D, Levy E. Gastrointestinal factors regulating lipid droplet formation in the intestine. Exp Cell Res 2018; 363:1-14. [PMID: 29305172 DOI: 10.1016/j.yexcr.2017.12.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 12/22/2022]
Abstract
Cytoplasmic lipid droplets (CLD) are considered as neutral lipid reservoirs, which protect cells from lipotoxicity. It became clear that these fascinating dynamic organelles play a role not only in energy storage and metabolism, but also in cellular lipid and protein handling, inter-organelle communication, and signaling among diverse functions. Their dysregulation is associated with multiple disorders, including obesity, liver steatosis and cardiovascular diseases. The central aim of this review is to highlight the link between intra-enterocyte CLD dynamics and the formation of chylomicrons, the main intestinal dietary lipid vehicle, after overviewing the morphology, molecular composition, biogenesis and functions of CLD.
Collapse
Affiliation(s)
- N Auclair
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Nutrition, Université de Montréal, Montreal, Quebec, Canada H3T 1C5
| | - L Melbouci
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Department of Sciences and Physical Activities, UQAM, Quebec, Canada H2X 1Y4
| | - D St-Pierre
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Department of Sciences and Physical Activities, UQAM, Quebec, Canada H2X 1Y4
| | - E Levy
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Nutrition, Université de Montréal, Montreal, Quebec, Canada H3T 1C5; Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada G1V 0A6.
| |
Collapse
|
8
|
Cueno ME, Imai K. Various cellular stress components change as the rat ages: An insight into the putative overall age-related cellular stress network. Exp Gerontol 2017; 102:36-42. [PMID: 29197562 DOI: 10.1016/j.exger.2017.11.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/24/2017] [Accepted: 11/27/2017] [Indexed: 12/15/2022]
Abstract
Cellular stress is mainly comprised of oxidative, nitrosative, and endoplasmic reticulum stresses and has long been correlated to the ageing process. Surprisingly, the age-related difference among the various components in each independent stress pathway and the possible significance of these components in relation to the overall cellular stress network remain to be clearly elucidated. In this study, we obtained blood from ageing rats upon reaching 20-, 40-, and 72-wk.-old. Subsequently, we measured representative cellular stress-linked biomolecules (H2O2, glutathione reductase, heme, NADPH, NADP, nitric oxide, GADD153) and cell signals [substance P (SP), free fatty acid, calcium, NF-κB] in either or both blood serum and cytosol. Subsequently, network analysis of the overall cellular stress network was performed. Our results show that there are changes affecting stress-linked biomolecules and cell signals as the rat ages. Additionally, based on our network analysis data, we postulate that NADPH, H2O2, GADD153, and SP are the key components and the interactions between these components are central to the overall age-related cellular stress network in the rat blood. Thus, we propose that the main pathway affecting the overall age-related cellular stress network in the rat blood would entail NADPH-related oxidative stress (involving H2O2) triggering GADD153 activation leading to SP induction which in-turn affects other cell signals.
Collapse
Affiliation(s)
- Marni E Cueno
- Department of Microbiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan.
| | - Kenichi Imai
- Department of Microbiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| |
Collapse
|
9
|
Craft CS, Scheller EL. Evolution of the Marrow Adipose Tissue Microenvironment. Calcif Tissue Int 2017; 100:461-475. [PMID: 27364342 PMCID: PMC5618436 DOI: 10.1007/s00223-016-0168-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/21/2016] [Indexed: 12/29/2022]
Abstract
Adipocytes of the marrow adipose tissue (MAT) are distributed throughout the skeleton, are embedded in extracellular matrix, and are surrounded by cells of the hematopoietic and osteogenic lineages. MAT is a persistent component of the skeletal microenvironment and has the potential to impact local processes including bone accrual and hematopoietic function. In this review, we discuss the initial evolution of MAT in vertebrate lineages while emphasizing comparisons to the development of peripheral adipose, hematopoietic, and skeletal tissues. We then apply these evolutionary clues to define putative functions of MAT. Lastly, we explore the regulation of MAT by two major components of its microenvironment, the extracellular matrix and the nerves embedded within. The extracellular matrix and nerves contribute to both rapid and continuous modification of the MAT niche and may help to explain evolutionary conserved mechanisms underlying the coordinated regulation of blood, bone, and MAT within the skeleton.
Collapse
Affiliation(s)
- Clarissa S Craft
- Department of Cell Biology & Physiology, Washington University, Saint Louis, MO, 63110, USA
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University, Saint Louis, MO, 63110, USA
| | - Erica L Scheller
- Department of Cell Biology & Physiology, Washington University, Saint Louis, MO, 63110, USA.
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University, Saint Louis, MO, 63110, USA.
| |
Collapse
|
10
|
Pillidge K, Heal DJ, Stanford SC. The NK1R-/- mouse phenotype suggests that small body size, with a sex- and diet-dependent excess in body mass and fat, are physical biomarkers for a human endophenotype with vulnerability to attention deficit hyperactivity disorder. J Psychopharmacol 2016; 30:848-55. [PMID: 27462087 PMCID: PMC4994703 DOI: 10.1177/0269881116658992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The abnormal behaviour of NK1R-/- mice (locomotor hyperactivity, inattentiveness and impulsivity in the 5-Choice Serial Reaction-Time Test) is arguably analogous to that of patients with attention deficit hyperactivity disorder (ADHD). Evidence suggests that small body size and increased body weight are risk factors for ADHD. Here, we compared the body size, body mass and body composition of male and female NK1R-/- mice and their wildtypes that had been fed either standard laboratory chow or a high-fat (45%: 'Western') diet. Male NK1R-/- mice from both cohorts were approximately 7% shorter than wildtypes. A similar trend was evident in females. Male NK1R-/- mice fed the normal diet weighed less than wildtypes but the 'body mass index' ('mBMI': weight (mg)/length (cm)(2)) of female NK1R-/- mice was higher than wildtypes. When given the high-fat diet, the mBMI of both male and female NK1R-/- mice was higher than wildtypes. There were no consistent genotype or sex differences in protein, ash or water content of mice from the two cohorts. However, the fat content of male NK1R-/- mice on the Western diet was considerably (35%) higher than wildtypes and resembled that of females from both genotypes. We conclude that a lack of functional NK1R is associated with small body size but increases vulnerability to an increase in mBMI and fat content, especially in males. This phenotype could also be evident in ADHD patients with polymorphism(s) of the TACR1 gene (the human equivalent of Nk1r).
Collapse
Affiliation(s)
- Katharine Pillidge
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | | | - S Clare Stanford
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
11
|
Yamaguchi R, Yamamoto T, Sakamoto A, Ishimaru Y, Narahara S, Sugiuchi H, Yamaguchi Y. Substance P enhances tissue factor release from granulocyte-macrophage colony-stimulating factor-dependent macrophages via the p22phox/β-arrestin 2/Rho A signaling pathway. Blood Cells Mol Dis 2016; 57:85-90. [PMID: 26852662 DOI: 10.1016/j.bcmd.2016.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/18/2016] [Indexed: 12/15/2022]
Abstract
Granulocyte-macrophage colony stimulating factor (GM-CSF) induces procoagulant activity of macrophages. Tissue factor (TF) is a membrane-bound glycoprotein and substance P (SP) is a pro-inflammatory neuropeptide involved in the formation of membrane blebs. This study investigated the role of SP in TF release by GM-CSF-dependent macrophages. SP significantly decreased TF levels in whole-cell lysates of GM-CSF-dependent macrophages. TF was detected in the culture supernatant by enzyme-linked immunosorbent assay after stimulation of macrophages by SP. Aprepitant (an SP/neurokinin 1 receptor antagonist) reduced TF release from macrophages stimulated with SP. Pretreatment of macrophages with a radical scavenger(pyrrolidinedithiocarbamate) also limited the decrease of TF in whole-cell lysates after stimulation with SP. A protein kinase C inhibitor (rottlerin) partially blocked this macrophage response to SP, while it was significantly inhibited by a ROCK inhibitor (Y-27632) or a dynamin inhibitor (dinasore). An Akt inhibitor (perifosine) also partially blocked this response. Furthermore, siRNA targeting p22phox, β-arrestin 2, or Rho A, blunted the release of TF from macrophages stimulated with SP. In other experiments, visceral adipocytes derived from cryopreserved preadipocytes were found to produce SP. In conclusion, SP enhances the release of TF from macrophages via the p22phox/β-arrestin 2/Rho A signaling pathway.
Collapse
Affiliation(s)
- Rui Yamaguchi
- Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan; Graduate School of Medical Science, Kumamoto University Medical School, Kumamoto, Japan
| | - Takatoshi Yamamoto
- Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan
| | - Arisa Sakamoto
- Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan
| | - Yasuji Ishimaru
- Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan
| | - Shinji Narahara
- Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan
| | - Hiroyuki Sugiuchi
- Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan
| | - Yasuo Yamaguchi
- Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan
| |
Collapse
|
12
|
Dubon MJ, Byeon Y, Park KS. Substance P enhances the activation of AMPK and cellular lipid accumulation in 3T3‑L1 cells in response to high levels of glucose. Mol Med Rep 2015; 12:8048-54. [PMID: 26499365 PMCID: PMC4758299 DOI: 10.3892/mmr.2015.4453] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 09/25/2015] [Indexed: 12/25/2022] Open
Abstract
The rescue of glucose tolerance and insulin-sensitivity in peripheral tissues, including adipose tissue, is essential in therapeutic strategies for diabetes. The present study demonstrated that substance P (SP) increases the accumulation of lipids in 3T3-L1 cells during their differentiation into adipocytes in response to a high concentration of glucose. SP reciprocally regulated the activities of AMP-activated protein kinase (AMPK) and Akt: SP enhanced the activation of AMPK, although the activity of Akt was downregulated. Notably, SP induced an increase in the expression level of glucose transporter 4 in the 3T3-L1 adipocytes. Therefore, it is possible that SP leads to an increase in glucose uptake and the accumulation of lipids in adipocytes, and may contribute towards the rescue of insulin-sensitivity in diabetes.
Collapse
Affiliation(s)
- Maria Jose Dubon
- Department of Genetic Engineering, Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi 17104, Republic of Korea
| | - Yeji Byeon
- Department of Genetic Engineering, Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi 17104, Republic of Korea
| | - Ki-Sook Park
- East‑West Medical Research Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
13
|
Amisten S, Neville M, Hawkes R, Persaud SJ, Karpe F, Salehi A. An atlas of G-protein coupled receptor expression and function in human subcutaneous adipose tissue. Pharmacol Ther 2015; 146:61-93. [PMID: 25242198 DOI: 10.1016/j.pharmthera.2014.09.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 09/09/2014] [Indexed: 12/17/2022]
Abstract
G-protein coupled receptors (GPCRs) are involved in the regulation of adipose tissue function, but the total number of GPCRs expressed by human subcutaneous adipose tissue, as well as their function and interactions with drugs, is poorly understood. We have constructed an atlas of all GPCRs expressed by human subcutaneous adipose tissue: the 'adipose tissue GPCRome', to support the exploration of novel control nodes in metabolic and endocrine functions. This atlas describes how adipose tissue GPCRs regulate lipolysis, insulin resistance and adiponectin and leptin secretion. We also discuss how adipose tissue GPCRs interact with their endogenous ligands and with GPCR-targeting drugs, with a focus on how drug/receptor interactions may affect lipolysis, and present a model predicting how GPCRs with unknown effects on lipolysis might modulate cAMP-regulated lipolysis. Subcutaneous adipose tissue expresses 163 GPCRs, a majority of which have unknown effects on lipolysis, insulin resistance and adiponectin and leptin secretion. These GPCRs are activated by 180 different endogenous ligands, and are the targets of a large number of clinically used drugs. We identified 119 drugs, acting on 23 GPCRs, that are predicted to stimulate lipolysis and 173 drugs, acting on 25 GPCRs, that are predicted to inhibit lipolysis. This atlas highlights knowledge gaps in the current understanding of adipose tissue GPCR function, and identifies GPCR/ligand/drug interactions that might affect lipolysis, which is important for understanding and predicting metabolic side effects of drugs. This approach may aid in the design of new, safer therapeutic agents, with fewer undesired effects on lipid homeostasis.
Collapse
Affiliation(s)
- Stefan Amisten
- Diabetes Research Group, Division of Diabetes & Nutritional Sciences, King's College London, Faculty of Life Sciences & Medicine, London, UK; Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK.
| | - Matt Neville
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford OX3 7LE, UK
| | - Ross Hawkes
- Diabetes Research Group, Division of Diabetes & Nutritional Sciences, King's College London, Faculty of Life Sciences & Medicine, London, UK
| | - Shanta J Persaud
- Diabetes Research Group, Division of Diabetes & Nutritional Sciences, King's College London, Faculty of Life Sciences & Medicine, London, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford OX3 7LE, UK.
| | - Albert Salehi
- Department of Clinical Science, UMAS, Clinical Research Center, University of Lund, Sweden
| |
Collapse
|
14
|
Thumser AE, Moore JB, Plant NJ. Fatty acid binding proteins: tissue-specific functions in health and disease. Curr Opin Clin Nutr Metab Care 2014; 17:124-9. [PMID: 24500438 DOI: 10.1097/mco.0000000000000031] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The purpose of this study is to review recent evidence for the role of the cytosolic fatty acid binding proteins (FABPs) as central regulators of whole-body metabolic control. RECENT FINDINGS Dysregulated FABPs have been associated with a number of diseases, including obesity and nonalcoholic fatty liver disease (FABP1, FABP2, FABP4), cardiovascular risk (FABP3) and cancer (FABP5, FABP7). As underlying mechanisms become better understood, FABPs may represent novel biomarkers for therapeutic targets. In addition, the role of FABPs as important signalling molecules has also been highlighted in recent years; for example, FABP3 may act as a myokine, matching whole-body metabolism to muscular energy demands and FABP4 functions as an adipokine in regulating macrophage and adipocyte interactions during inflammation. SUMMARY In addition to their traditional role as fatty acid trafficking proteins, increasing evidence supports the role of FABPs as important controllers of global metabolism, with their dysregulation being linked to a host of metabolic diseases.
Collapse
Affiliation(s)
- Alfred E Thumser
- aDepartment of Biochemistry and Physiology bDepartment of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | | | | |
Collapse
|
15
|
Bulloch JM, Daly CJ. Autonomic nerves and perivascular fat: interactive mechanisms. Pharmacol Ther 2014; 143:61-73. [PMID: 24560685 DOI: 10.1016/j.pharmthera.2014.02.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 12/31/2022]
Abstract
The evidence describing the autonomic innervation of body fat is reviewed with a particular focus on the role of the sympathetic neurotransmitters. In compiling the evidence, a strong case emerges for the interaction between autonomic nerves and perivascular adipose tissue (PVAT). Adipocytes have been shown to express receptors for neurotransmitters released from nearby sympathetic varicosities such as adrenoceptors (ARs), purinoceptors and receptors for neuropeptide Y (NPY). Noradrenaline can modulate both lipolysis (via α2- and β3-ARs) and lipogenesis (via α1- and β3-ARs). ATP can inhibit lipolysis (via P1 purinoceptors) or stimulate lipolysis (via P2y purinoceptors). NPY, which can be produced by adipocytes and sympathetic nerves, inhibits lipolysis. Thus the sympathetic triad of transmitters can influence adipocyte free fatty acid (FFA) content. Substance P (SP) released from sensory nerves has also been shown to promote lipolysis. Therefore, we propose a mechanism whereby sympathetic neurotransmission can simultaneously activate smooth muscle cells in the tunica media to cause vasoconstriction and alter FFA content and release from adjacent adipocytes in PVAT. The released FFA can influence endothelial function. Adipocytes also release a range of vasoactive substances, both relaxing and contractile factors, including adiponectin and reactive oxygen species. The action of adipokines (such as adiponectin) and reactive oxygen species (ROS) on cells of the vascular adventitia and nerves has yet to be fully elucidated. We hypothesise a strong link between PVAT and autonomic fibres and suggest that this poorly understood relationship is extremely important for normal vascular function and warrants a detailed study.
Collapse
Affiliation(s)
- Janette M Bulloch
- School of Science, University of the West of Scotland, Hamilton ML3 0JB, Scotland.
| | - Craig J Daly
- School of Life Sciences, University of Glasgow, Glasgow G128QQ, Scotland.
| |
Collapse
|