1
|
Yang H, Suh DH, Jung ES, Lee Y, Liu KH, Do IG, Lee CH, Park CY. Ezetimibe, Niemann-Pick C1 like 1 inhibitor, modulates hepatic phospholipid metabolism to alleviate fat accumulation. Front Pharmacol 2024; 15:1406493. [PMID: 38953111 PMCID: PMC11215075 DOI: 10.3389/fphar.2024.1406493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/13/2024] [Indexed: 07/03/2024] Open
Abstract
Background Ezetimibe, which lowers cholesterol by blocking the intestinal cholesterol transporter Niemann-Pick C1 like 1, is reported to reduce hepatic steatosis in humans and animals. Here, we demonstrate the changes in hepatic metabolites and lipids and explain the underlying mechanism of ezetimibe in hepatic steatosis. Methods We fed Otsuka Long-Evans Tokushima Fatty (OLETF) rats a high-fat diet (60 kcal % fat) with or vehicle (control) or ezetimibe (10 mg kg-1) via stomach gavage for 12 weeks and performed comprehensive metabolomic and lipidomic profiling of liver tissue. We used rat liver tissues, HepG2 hepatoma cell lines, and siRNA to explore the underlying mechanism. Results In OLETF rats on a high-fat diet, ezetimibe showed improvements in metabolic parameters and reduction in hepatic fat accumulation. The comprehensive metabolomic and lipidomic profiling revealed significant changes in phospholipids, particularly phosphatidylcholines (PC), and alterations in the fatty acyl-chain composition in hepatic PCs. Further analyses involving gene expression and triglyceride assessments in rat liver tissues, HepG2 hepatoma cell lines, and siRNA experiments unveiled that ezetimibe's mechanism involves the upregulation of key phospholipid biosynthesis genes, CTP:phosphocholine cytidylyltransferase alpha and phosphatidylethanolamine N-methyl-transferase, and the phospholipid remodeling gene lysophosphatidylcholine acyltransferase 3. Conclusion This study demonstrate that ezetimibe improves metabolic parameters and reduces hepatic fat accumulation by influencing the composition and levels of phospholipids, specifically phosphatidylcholines, and by upregulating genes related to phospholipid biosynthesis and remodeling. These findings provide valuable insights into the molecular pathways through which ezetimibe mitigates hepatic fat accumulation, emphasizing the role of phospholipid metabolism.
Collapse
Affiliation(s)
- Hyekyung Yang
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dong Ho Suh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Eun Sung Jung
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Yoonjin Lee
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kwang-Hyeon Liu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - In-Gu Do
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Cheol-Young Park
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Jia L. Dietary cholesterol in alcohol-associated liver disease. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00026. [PMID: 37152117 PMCID: PMC10158609 DOI: 10.1097/in9.0000000000000026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023]
Abstract
There is an increasing prevalence of alcohol-associated liver disease (ALD) worldwide. In addition to excessive alcohol consumption, other nutritional factors have been shown to affect the initiation and progression of ALD. The emerging role of cholesterol in exacerbating ALD has been reported recently and the underlying mechanisms are discussed. In addition, the interplay between dietary cholesterol and alcohol on cholesterol metabolism is reviewed. Furthermore, we highlight the therapeutic potential of cholesterol-lowering drugs in managing the onset and severity of ALD. Finally, we suggest the future mechanistic investigation of the effect of cholesterol on insulin resistance and intestinal inflammation in the exacerbation of alcohol-induced cellular and systemic dysfunction.
Collapse
Affiliation(s)
- Lin Jia
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
3
|
Reboul E. Proteins involved in fat-soluble vitamin and carotenoid transport across the intestinal cells: New insights from the past decade. Prog Lipid Res 2023; 89:101208. [PMID: 36493998 DOI: 10.1016/j.plipres.2022.101208] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
It is now well established that vitamins D, E, and K and carotenoids are not absorbed solely through passive diffusion. Broad-specificity membrane transporters such as SR-BI (scavenger receptor class B type I), CD36 (CD36 molecule), NPC1L1 (Niemann Pick C1-like 1) or ABCA1 (ATP-binding cassette A1) are involved in the uptake of these micronutrients from the lumen to the enterocyte cytosol and in their secretion into the bloodstream. Recently, the existence of efflux pathways from the enterocyte back to the lumen or from the bloodstream to the lumen, involving ABCB1 (P-glycoprotein/MDR1) or the ABCG5/ABCG8 complex, has also been evidenced for vitamins D and K. Surprisingly, no membrane proteins have been involved in dietary vitamin A uptake so far. After an overview of the metabolism of fat-soluble vitamins and carotenoids along the gastrointestinal tract (from the mouth to the colon where interactions with microbiota may occur), a focus is placed on the identified and candidate proteins participating in the apical uptake, intracellular transport, basolateral secretion and efflux back to the lumen of fat-soluble vitamins and carotenoids in enterocytes. This review also highlights the mechanisms that remain to be identified to fully unravel the pathways involved in fat-soluble vitamin and carotenoid intestinal absorption.
Collapse
|
4
|
Tian L, Syed-Abdul MM, Stahel P, Lewis GF. Enteral glucose, absorbed and metabolized, potently enhances mesenteric lymph flow in chow- and high-fat-fed rats. Am J Physiol Gastrointest Liver Physiol 2022; 323:G331-G340. [PMID: 35916412 DOI: 10.1152/ajpgi.00095.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A portion of absorbed dietary triglycerides (TG) is retained in the intestine after the postprandial period, within intracellular and extracellular compartments. This pool of TG can be mobilized in response to several stimuli, including oral glucose. The objective of this study was to determine whether oral glucose must be absorbed and metabolized to mobilize TG in rats and whether high-fat feeding, a model of insulin resistance, alters the lipid mobilization response to glucose. Lymph flow, TG concentration, TG output, and apolipoprotein B48 (apoB48) concentration and output were assessed after an intraduodenal lipid bolus in rats exposed to the following intraduodenal administrations 5 h later: saline (placebo), glucose, 2-deoxyglucose (2-DG, absorbed but not metabolized), or glucose + phlorizin (intestinal glucose absorption inhibitor). Glucose alone, but not 2-DG or glucose + phlorizin treatments, stimulated lymph flow, TG output, and apoB48 output compared with placebo. The effects of glucose in high-fat-fed rats were similar to those in chow-fed rats. In conclusion, glucose must be both absorbed and metabolized to enhance lymph flow and intestinal lipid mobilization. This effect is qualitatively and quantitatively similar in high-fat- and chow-fed rats. The precise signaling mechanism whereby enteral glucose enhances lymph flow and mobilizes enteral lipid remains to be determined.NEW & NOTEWORTHY Glucose potently enhances mesenteric lymph flow in chow- and high-fat-fed rats. The magnitude of glucose effect on lymph flow is no different in chow- and high-fat-fed rats. Glucose must be absorbed and metabolized to enhance lymph flow and mobilize intestinal lipid.
Collapse
Affiliation(s)
- Lili Tian
- Division of Endocrinology, Department of Medicine and Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Majid Mufaqam Syed-Abdul
- Division of Endocrinology, Department of Medicine and Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Priska Stahel
- Division of Endocrinology, Department of Medicine and Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Gary F Lewis
- Division of Endocrinology, Department of Medicine and Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Association of Metabolomic Change and Treatment Response in Patients with Non-Alcoholic Fatty Liver Disease. Biomedicines 2022; 10:biomedicines10061216. [PMID: 35740238 PMCID: PMC9220113 DOI: 10.3390/biomedicines10061216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the major cause of chronic liver disease, yet cost-effective and non-invasive diagnostic tools to monitor the severity of the disease are lacking. We aimed to investigate the metabolomic changes in NAFLD associated with therapeutic responses. It was conducted in 63 patients with NAFLD who received either ezetimibe plus rosuvastatin or rosuvastatin monotherapy. The treatment response was determined by MRI performed at baseline and week 24. The metabolites were measured at baseline and week 12. In the combination group, a relative decrease in xanthine was associated with a good response to liver fat decrease, while a relative increase in choline was associated with a good response to liver stiffness. In the monotherapy group, the relative decreases in triglyceride (TG) 20:5_36:2, TG 18:1_38:6, acetylcarnitine (C2), fatty acid (FA) 18:2, FA 18:1, and docosahexaenoic acid were associated with a decrease in liver fat, while hexosylceramide (d18:2/16:0) and hippuric acid were associated with a decrease in liver stiffness. Models using the metabolite changes showed an AUC of >0.75 in receiver operating curve analysis for predicting an improvement in liver fat and stiffness. This approach revealed the physiological impact of drugs, suggesting the mechanism underlying the development of this disease.
Collapse
|
6
|
Yu WQ, Yin F, Shen N, Lin P, Xia B, Li YJ, Guo SD. Polysaccharide CM1 from Cordyceps militaris hinders adipocyte differentiation and alleviates hyperlipidemia in LDLR (+/-) hamsters. Lipids Health Dis 2021; 20:178. [PMID: 34895241 PMCID: PMC8667404 DOI: 10.1186/s12944-021-01606-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Background Cordyceps militaris is cultured widely as an edible mushroom and accumulating evidence in mice have demonstrated that the polysaccharides of Cordyceps species have lipid-lowering effects. However, lipid metabolism in mice is significantly different from that in humans, making a full understanding of the mechanisms at play critical. Methods After 5 months, the hamsters were weighed and sampled under anesthesia after overnight fasting. The lipid-lowering effect and mechanisms of the polysaccharide CM1 was investigated by cellular and molecular technologies. Furthermore, the effect of the polysaccharide CM1 (100 μg/mL) on inhibiting adipocyte differentiation was investigated in vitro. Results CM1, a polysaccharide from C. militaris, significantly decreased plasma total cholesterol, triglyceride and epididymal fat index in LDLR(+/−) hamsters, which have a human-like lipid profile. After 5 months’ administration, CM1 decreased the plasma level of apolipoprotein B48, modulated the expression of key genes and proteins in liver, small intestine, and epididymal fat. CM1 also inhibited preadipocyte differentiation in 3T3-L1 cells by downregulating the key genes involved in lipid droplet formation. Conclusions The polysaccharide CM1 lowers lipid and adipocyte differentiation by several pathways, and it has potential applications for hyperlipidemia prevention. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-021-01606-6.
Collapse
Affiliation(s)
- Wen-Qian Yu
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Baotongxi street 7166#, Weifang, Shandong province, China
| | - Fan Yin
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Baotongxi street 7166#, Weifang, Shandong province, China
| | - Nuo Shen
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Baotongxi street 7166#, Weifang, Shandong province, China
| | - Ping Lin
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Baotongxi street 7166#, Weifang, Shandong province, China
| | - Bin Xia
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Baotongxi street 7166#, Weifang, Shandong province, China
| | - Yan-Jie Li
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Baotongxi street 7166#, Weifang, Shandong province, China.
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Baotongxi street 7166#, Weifang, Shandong province, China.
| |
Collapse
|
7
|
Yang JW, Ji HF. Phytosterols as bioactive food components against nonalcoholic fatty liver disease. Crit Rev Food Sci Nutr 2021:1-12. [PMID: 34871105 DOI: 10.1080/10408398.2021.2006137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Phytosterols are bioactive food components widely present in cell membranes of plants, especially in nuts and oilseeds. In recent years, many studies have shown that phytosterols possess therapeutic potentials for nonalcoholic fatty liver disease (NAFLD). This review summarizes the effects of phytosterols from in vitro and in vivo studies to lower the levels of total cholesterol (TC) and triglycerides (TG), and the evidence supporting the potential of phytosterols against NAFLD. The potential mechanisms by which phytosterols improve NAFLD may include (i) competition with cholesterol; (ii) regulation of key factors involved in cholesterol and TG metabolism; and (iii) inhibition of liver inflammation and (iv) regulation of liver fatty acid composition. In summary, phytosterols are potential natural ingredients with good safety profile against NAFLD, which deserve more future studies.
Collapse
Affiliation(s)
- Jing-Wen Yang
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China.,Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative diseases, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People's Republic of China
| | - Hong-Fang Ji
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China.,Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative diseases, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People's Republic of China
| |
Collapse
|
8
|
Inverse correlation between fatty acid transport protein 4 and vision in Leber congenital amaurosis associated with RPE65 mutation. Proc Natl Acad Sci U S A 2020; 117:32114-32123. [PMID: 33257550 DOI: 10.1073/pnas.2012623117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Fatty acid transport protein 4 (FATP4), a transmembrane protein in the endoplasmic reticulum (ER), is a recently identified negative regulator of the ER-associated retinal pigment epithelium (RPE)65 isomerase necessary for recycling 11-cis-retinal, the light-sensitive chromophore of both rod and cone opsin visual pigments. The role of FATP4 in the disease progression of retinal dystrophies associated with RPE65 mutations is completely unknown. Here we show that FATP4-deficiency in the RPE results in 2.8-fold and 1.7-fold increase of 11-cis- and 9-cis-retinals, respectively, improving dark-adaptation rates as well as survival and function of rods in the Rpe65 R91W knockin (KI) mouse model of Leber congenital amaurosis (LCA). Degradation of S-opsin in the proteasomes, but not in the lysosomes, was remarkably reduced in the KI mouse retinas lacking FATP4. FATP4-deficiency also significantly rescued S-opsin trafficking and M-opsin solubility in the KI retinas. The number of S-cones in the inferior retinas of 4- or 6-mo-old KI;Fatp4 -/- mice was 7.6- or 13.5-fold greater than those in age-matched KI mice. Degeneration rates of S- and M-cones are negatively correlated with expression levels of FATP4 in the RPE of the KI, KI;Fatp4 +/- , and KI;Fatp4 -/- mice. Moreover, the visual function of S- and M-cones is markedly preserved in the KI;Fatp4 -/- mice, displaying an inverse correlation with the FATP4 expression levels in the RPE of the three mutant lines. These findings establish FATP4 as a promising therapeutic target to improve the visual cycle, as well as survival and function of cones and rods in patients with RPE65 mutations.
Collapse
|
9
|
Nakano T, Inoue I, Takenaka Y, Ito R, Kotani N, Sato S, Nakano Y, Hirasaki M, Shimada A, Murakoshi T. Ezetimibe impairs transcellular lipid trafficking and induces large lipid droplet formation in intestinal absorptive epithelial cells. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158808. [PMID: 32860884 DOI: 10.1016/j.bbalip.2020.158808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/30/2020] [Accepted: 08/18/2020] [Indexed: 01/26/2023]
Abstract
Ezetimibe inhibits Niemann-Pick C1-like 1 (NPC1L1) protein, which mediates intracellular cholesterol trafficking from the brush border membrane to the endoplasmic reticulum, where chylomicron assembly takes place in enterocytes or in the intestinal absorptive epithelial cells. Cholesterol is a minor lipid constituent of chylomicrons; however, whether or not a shortage of cholesterol attenuates chylomicron assembly is unknown. The aim of this study was to examine the effect of ezetimibe, a potent NPC1L1 inhibitor, on trans-epithelial lipid transport, and chylomicron assembly and secretion in enterocytes. Caco-2 cells, an absorptive epithelial model, grown onto culture inserts were given lipid micelles from the apical side, and chylomicron-like triacylglycerol-rich lipoprotein secreted basolaterally were analyzed after a 24-h incubation period in the presence of ezetimibe up to 50 μM. The secretion of lipoprotein and apolipoprotein B48 were reduced by adding ezetimibe (30% and 34%, respectively). Although ezetimibe allowed the cells to take up cholesterol normally, the esterification was abolished. Meanwhile, oleic acid esterification was unaffected. Moreover, ezetimibe activated sterol regulatory element-binding protein 2 by approximately 1.5-fold. These results suggest that ezetimibe limited cellular cholesterol mobilization required for lipoprotein assembly. In such conditions, large lipid droplet formation in Caco-2 cells and the enterocytes of mice were induced, implying that unprocessed triacylglycerol was sheltered in these compartments. Although ezetimibe did not reduce the post-prandial lipid surge appreciably in triolein-infused mice, the results of the present study indicated that pharmacological actions of ezetimibe may participate in a novel regulatory mechanism for the efficient chylomicron assembly and secretion.
Collapse
Affiliation(s)
- Takanari Nakano
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Saitama, Japan.
| | - Ikuo Inoue
- Department of Diabetes and Endocrinology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Yasuhiro Takenaka
- Department of Diabetes and Endocrinology, Faculty of Medicine, Saitama Medical University, Saitama, Japan; Department of Physiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Rina Ito
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Norihiro Kotani
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Sawako Sato
- Department of Diabetes and Endocrinology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Yuka Nakano
- Department of Diabetes and Endocrinology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Masataka Hirasaki
- Division of Developmental Biology, Research Center for Genomic Medicine, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Akira Shimada
- Department of Diabetes and Endocrinology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Takayuki Murakoshi
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
10
|
Changes in serum levels of angiopoietin-like protein-8 and glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 after ezetimibe therapy in patients with dyslipidemia. Clin Chim Acta 2020; 510:675-680. [PMID: 32858055 DOI: 10.1016/j.cca.2020.08.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/26/2020] [Accepted: 08/21/2020] [Indexed: 01/09/2023]
Abstract
Changes in serum levels of angiopoietin-like protein-8 (ANGPTL8) and glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 (GPIHBP1) in patients with dyslipidemia after ezetimibe therapy remain to be elucidated. Thirty-eight patients who initially received ezetimibe and were followed for 16 weeks were enrolled. Various parameters were investigated before and after 16 weeks of ezetimibe treatment in all patients. In addition, the patients were also divided into metabolic syndrome (MetS) (n = 22) and Non-MetS (n = 16) groups, and various parameters were compared between these groups. ANGPTL8 was significantly positively correlated with triglyceride (TG) and negatively correlated with high-density lipoprotein cholesterol (HDL-C) before treatment in all patients and in the MetS group. After treatment, TC and LDL-C were significantly decreased in all patients, and in both the MetS and Non-MetS groups, whereas there were no changes in TG or HDL-C. Serum levels of remnant-like particle cholesterol (RLP-C) significantly decreased in all patients and in the MetS group. The ANGPTL8 level before treatment was significantly positively associated with TG and negatively correlated with HDL-C in all patients and in the MetS group. ANGPTL8 and GPIHBP1were significantly decreased after treatment in all patients. GPIHBP1 was also significantly decreased after treatment in both groups. In conclusion, this is the first report to support the possibility of a new effect of ezetimibe therapy. Ezetimibe significantly decreased the serum level of LDL-C, but not TG or HDL-C, while reducing ANGPTL8 and GPIHBP1 in all patients with dyslipidemia. In addition, ezetimibe significantly decreased RLP-C levels in the MetS group.
Collapse
|
11
|
Discoidin domain receptor 1-deletion ameliorates fibrosis and promotes adipose tissue beiging, brown fat activity, and increased metabolic rate in a mouse model of cardiometabolic disease. Mol Metab 2020; 39:101006. [PMID: 32360427 PMCID: PMC7242876 DOI: 10.1016/j.molmet.2020.101006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
Objective Discoidin domain receptor 1 (DDR1) is a collagen binding receptor tyrosine kinase implicated in atherosclerosis, fibrosis, and cancer. Our previous research showed that DDR1 could regulate smooth muscle cell trans-differentiation, fibrosis and calcification in the vascular system in cardiometabolic disease. This spectrum of activity led us to question whether DDR1 might also regulate adipose tissue fibrosis and remodeling. Methods We have used a diet-induced mouse model of cardiometabolic disease to determine whether DDR1 deletion impacts upon adipose tissue remodeling and metabolic dysfunction. Mice were fed a high fat diet (HFD) for 12 weeks, followed by assessment of glucose and insulin tolerance, respiration via indirect calorimetry, and brown fat activity by FDG-PET. Results Feeding HFD induced DDR1 expression in white adipose tissue, which correlated with adipose tissue expansion and fibrosis. Ddr1−/− mice fed an HFD had improved glucose tolerance, reduced body fat, and increased brown fat activity and energy expenditure compared to Ddr1+/+ littermate controls. HFD-fed DDR1−/− mice also had reduced fibrosis, smaller adipocytes with multilocular lipid droplets, and increased UCP-1 expression characteristic of beige fat formation in subcutaneous adipose tissue. In vitro, studying C3H10T1/2 cells stimulated to differentiate, DDR1 inhibition caused a shift from white to beige adipocyte differentiation, whereas DDR1 expression was increased with TGFβ-mediated pro-fibrotic differentiation. Conclusion This study is the first to identify a role for DDR1 as a driver of adipose tissue fibrosis and suppressor of beneficial beige fat formation. DDR1 deletion results in decreased obesity, and increased energy expenditure and brown fat activity. DDR1 expression was increased in adipose and correlated with obesity and fibrosis. DDR1 deletion increased UCP-1 expression in brown and white fat in vivo, and in mesenchymal cells in vitro. Invitro studies suggest that DDR1 suppresses UCP-1 and drives pro-fibrotic differentiation of mesenchymal cells.
Collapse
|
12
|
Farr S, Stankovic B, Hoffman S, Masoudpoor H, Baker C, Taher J, Dean AE, Anakk S, Adeli K. Bile acid treatment and FXR agonism lower postprandial lipemia in mice. Am J Physiol Gastrointest Liver Physiol 2020; 318:G682-G693. [PMID: 32003602 DOI: 10.1152/ajpgi.00386.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Postprandial dyslipidemia is a common feature of insulin-resistant states and contributes to increased cardiovascular disease risk. Recently, bile acids have been recognized beyond their emulsification properties as important signaling molecules that promote energy expenditure, improve insulin sensitivity, and lower fasting lipemia. Although bile acid receptors have become novel pharmaceutical targets, their effects on postprandial lipid metabolism remain unclear. Here, we investigated the potential role of bile acids in regulation of postprandial chylomicron production and triglyceride excursion. Healthy C57BL/6 mice were given an intraduodenal infusion of taurocholic acid (TA) under fat-loaded conditions, and circulating lipids were measured. Targeting of bile acid receptors was achieved with GW4064, a synthetic agonist to the farnesoid X receptor (FXR), and deoxycholic acid (DCA), an activator of the Takeda G-protein-coupled receptor 5. TA, GW4064, and DCA treatments all lowered postprandial lipemia. FXR agonism also reduced intestinal triglyceride content and activity of microsomal triglyceride transfer protein, involved in chylomicron assembly. Importantly, TA (but not DCA) effects were largely lost in FXR knockout mice. These bile acid effects are reminiscent of the antidiabetic hormone glucagon-like peptide-1 (GLP-1). Although the GLP-1 receptor agonist exendin-4 retained its ability to acutely lower postprandial lipemia during bile acid sequestration and FXR deficiency, it did raise hepatic expression of the rate-limiting enzyme for bile acid synthesis. Bile acid signaling may be an important mechanism of controlling dietary lipid absorption, and bile acid receptors may constitute novel targets for the treatment of postprandial dyslipidemia.NEW & NOTEWORTHY We present new data suggesting potentially important roles for bile acids in regulation of postprandial lipid metabolism. Specific bile acid species, particularly secondary bile acids, were found to markedly inhibit absorption of dietary lipid and reduce postprandial triglyceride excursion. These effects appear to be mediated via bile acid receptors, farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5). Importantly, bile acid signaling may trigger glucagon-like peptide-1 (GLP-1) secretion, which may in turn mediate the marked inhibitory effects on dietary fat absorption.
Collapse
Affiliation(s)
- Sarah Farr
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada.,Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bogdan Stankovic
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada.,Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Simon Hoffman
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada.,Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hassan Masoudpoor
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Chris Baker
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jennifer Taher
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada.,Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Angela E Dean
- Molecular and Cellular Biology, University of Illinois-Urbana-Champaign, Urbana, Illinois
| | | | - Khosrow Adeli
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada.,Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Xia B, Lin P, Ji Y, Yin J, Wang J, Yang X, Li T, Yang Z, Li F, Guo S. Ezetimibe promotes CYP7A1 and modulates PPARs as a compensatory mechanism in LDL receptor-deficient hamsters. Lipids Health Dis 2020; 19:24. [PMID: 32035489 PMCID: PMC7007651 DOI: 10.1186/s12944-020-1202-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/24/2020] [Indexed: 11/10/2022] Open
Abstract
Background The LDL-C lowering effect of ezetimibe has been attributed primarily to increased catabolism of LDL-C via up-regulation of LDL receptor (LDLR) and decreased cholesterol absorption. Recently, ezetimibe has been demonstrated to have reverse cholesterol transport (RCT) promoting effects in mice, hamsters and humans. However, the underlying mechanisms are still not clear. The aim of this study is to investigate whether ezetimibe improves RCT-related protein expression in LDLR−/− hamsters. Methods A high-fat diet was used to induce a human-like hyperlipidemia in LDLR−/− hamsters. Lipid profiles were assayed by commercially available kits, and the effects of ezetimibe on lipid metabolism-related protein expression were carried out via western blot. Results Our data demonstrated that ezetimibe administration significantly reduced plasma total cholesterol (~ 51.6% reduction, P < 0.01) and triglyceride (from ~ 884.1 mg/dL to ~ 277.3 mg/dL) levels in LDLR−/− hamsters fed a high-fat diet. Ezetimibe administration (25 mg/kg/d) significantly promoted the protein expression of cholesterol 7 alpha-hydroxylase A1 (CYP7A1), LXRβ and peroxisome proliferator-activated receptor (PPAR) γ; and down-regulated the protein expression of PPARα and PPARβ. However, it showed no significant effect on sterol regulatory element-binding protein (SREBP)-1c, SREBP-2, proprotein convertase subtilisin/kexin type 9 (PCSK9), Niemann-Pick C1-like 1 (NPC1L1), and ATP-biding cassette (ABC) G5/G8. Conclusion Ezetimibe may accelerate the transformation from cholesterol to bile acid via promoting CYP7A1 and thereby enhance RCT. As a compensatory mechanism of TG lowering, ezetimibe promoted the protein expression of PPARγ and decreased PPARα and β. These results are helpful in explaining the lipid-lowering effects of ezetimibe and the potential compensatory mechanisms.
Collapse
Affiliation(s)
- Bin Xia
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, 7166# Baotongxi Street, Weifang, 261053, Shandong Province, China
| | - Ping Lin
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, 7166# Baotongxi Street, Weifang, 261053, Shandong Province, China
| | - Yubin Ji
- College of Pharmacy Engineering Research Center for Medicine, Harbin University of Commerce, Harbin, 150076, China
| | - Jiayu Yin
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, 7166# Baotongxi Street, Weifang, 261053, Shandong Province, China.,College of Pharmacy Engineering Research Center for Medicine, Harbin University of Commerce, Harbin, 150076, China
| | - Jin Wang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, 7166# Baotongxi Street, Weifang, 261053, Shandong Province, China
| | - Xiaoqian Yang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, 7166# Baotongxi Street, Weifang, 261053, Shandong Province, China.,College of Pharmacy Engineering Research Center for Medicine, Harbin University of Commerce, Harbin, 150076, China
| | - Ting Li
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, 7166# Baotongxi Street, Weifang, 261053, Shandong Province, China.,College of Pharmacy Engineering Research Center for Medicine, Harbin University of Commerce, Harbin, 150076, China
| | - Zixun Yang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, 7166# Baotongxi Street, Weifang, 261053, Shandong Province, China.,College of Pharmacy Engineering Research Center for Medicine, Harbin University of Commerce, Harbin, 150076, China
| | - Fahui Li
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, 7166# Baotongxi Street, Weifang, 261053, Shandong Province, China.
| | - Shoudong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, 7166# Baotongxi Street, Weifang, 261053, Shandong Province, China. .,College of Pharmacy Engineering Research Center for Medicine, Harbin University of Commerce, Harbin, 150076, China.
| |
Collapse
|
14
|
Kolovou GD, Watts GF, Mikhailidis DP, Pérez-Martínez P, Mora S, Bilianou H, Panotopoulos G, Katsiki N, Ooi TC, Lopez-Miranda J, Tybjærg-Hansen A, Tentolouris N, Nordestgaard BG. Postprandial Hypertriglyceridaemia Revisited in the Era of Non-Fasting Lipid Profile Testing: A 2019 Expert Panel Statement, Narrative Review. Curr Vasc Pharmacol 2019; 17:515-537. [DOI: 10.2174/1570161117666190503123911] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/01/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022]
Abstract
Postprandial hypertriglyceridaemia, defined as an increase in plasma triglyceride-containing
lipoproteins following a fat meal, is a potential risk predictor of atherosclerotic cardiovascular disease
and other chronic diseases. Several non-modifiable factors (genetics, age, sex and menopausal status)
and lifestyle factors (diet, physical activity, smoking status, obesity, alcohol and medication use) may
influence postprandial hypertriglyceridaemia. This narrative review considers the studies published over
the last decade that evaluated postprandial hypertriglyceridaemia. Additionally, the genetic determinants
of postprandial plasma triglyceride levels, the types of meals for studying postprandial triglyceride response,
and underlying conditions (e.g. familial dyslipidaemias, diabetes mellitus, metabolic syndrome,
non-alcoholic fatty liver and chronic kidney disease) that are associated with postprandial hypertriglyceridaemia
are reviewed; therapeutic aspects are also considered.
Collapse
Affiliation(s)
- Genovefa D. Kolovou
- Cardiology Department and LDL-Apheresis Unit, Onassis Cardiac Surgery Center, Athens, Greece
| | - Gerald F. Watts
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Crawley, Australia
| | - Dimitri P. Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom
| | - Pablo Pérez-Martínez
- Lipid and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, and CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Samia Mora
- Center for Lipid Metabolomics, Divisions of Preventive and Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Helen Bilianou
- Department of Cardiology, Tzanio Hospital, Piraeus, Greece
| | | | - Niki Katsiki
- First Department of Internal Medicine, Division of Endocrinology-Metabolism, Diabetes Center, AHEPA University Hospital, Thessaloniki, Greece
| | - Teik C. Ooi
- Department of Medicine, Division of Endocrinology and Metabolism, University of Ottawa, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - José Lopez-Miranda
- Lipid and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, and CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicholas Tentolouris
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Børge G. Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Nakano T, Inoue I, Murakoshi T. A Newly Integrated Model for Intestinal Cholesterol Absorption and Efflux Reappraises How Plant Sterol Intake Reduces Circulating Cholesterol Levels. Nutrients 2019; 11:nu11020310. [PMID: 30717222 PMCID: PMC6412963 DOI: 10.3390/nu11020310] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/27/2022] Open
Abstract
Cholesterol homeostasis is maintained through a balance of de novo synthesis, intestinal absorption, and excretion from the gut. The small intestine contributes to cholesterol homeostasis by absorbing and excreting it, the latter of which is referred to as trans-intestinal cholesterol efflux (TICE). Because the excretion efficiency of endogenous cholesterol is inversely associated with the development of atherosclerosis, TICE provides an attractive therapeutic target. Thus, elucidation of the mechanism is warranted. We have shown that intestinal cholesterol absorption and TICE are inversely correlated in intestinal perfusion experiments in mice. In this review, we summarized 28 paired data sets for absorption efficiency and fecal neutral sterol excretion, a surrogate marker of TICE, obtained from 13 available publications in a figure, demonstrating the inverse correlation were nearly consistent with the assumption. We then offer a bidirectional flux model that accommodates absorption and TICE occurring in the same segment. In this model, the brush border membrane (BBM) of intestinal epithelial cells stands as the dividing ridge for cholesterol fluxes, making the opposite fluxes competitive and being coordinated by shared BBM-localized transporters, ATP-binding cassette G5/G8 and Niemann-Pick C1-like 1. Furthermore, the idea is applied to address how excess plant sterol/stanol (PS) intake reduces circulating cholesterol level, because the mechanism is still unclear. We propose that unabsorbable PS repeatedly shuttles between the BBM and lumen and promotes concomitant cholesterol efflux. Additionally, PSs, which are chemically analogous to cholesterol, may disturb the trafficking machineries that transport cholesterol to the cell interior.
Collapse
Affiliation(s)
- Takanari Nakano
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan.
| | - Ikuo Inoue
- Department of Diabetes and Endocrinology, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan.
| | - Takayuki Murakoshi
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan.
| |
Collapse
|
16
|
Taher J, Baker C, Alvares D, Ijaz L, Hussain M, Adeli K. GLP-2 Dysregulates Hepatic Lipoprotein Metabolism, Inducing Fatty Liver and VLDL Overproduction in Male Hamsters and Mice. Endocrinology 2018; 159:3340-3350. [PMID: 30052880 DOI: 10.1210/en.2018-00416] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/13/2018] [Indexed: 02/07/2023]
Abstract
Fundamental complications of insulin resistance and type 2 diabetes include the development of nonalcoholic fatty liver disease and an atherogenic fasting dyslipidemic profile, primarily due to increases in hepatic very-low-density lipoprotein (VLDL) production. Recently, central glucagon-like peptide-2 receptor (GLP2R) signaling has been implicated in regulating hepatic insulin sensitivity; however, its role in hepatic lipid and lipoprotein metabolism is unknown. We investigated the role of glucagon-like peptide-2 (GLP-2) in regulating hepatic lipid and lipoprotein metabolism in Syrian golden hamsters, C57BL/6J mice, and Glp2r-/- mice consuming either a normal chow or high-fat diet (HFD). In the chow-fed hamsters, IP GLP-2 administration significantly increased fasting dyslipidemia, hepatic VLDL production, and the expression of key genes involved in hepatic de novo lipogenesis. In HFD-fed hamsters and chow-fed mice, GLP-2 administration exacerbated or induced hepatic lipid accumulation. HFD-fed Glp2r-/- mice displayed reduced glucose tolerance, VLDL secretion, and microsomal transfer protein lipid transfer activity, as well as exacerbated fatty liver. Thus, we conclude that GLP-2 plays a lipogenic role in the liver by increasing lipogenic gene expression and inducing hepatic steatosis, fasting dyslipidemia, and VLDL overproduction. In contrast, the lack of Glp2r appears to interfere with VLDL secretion, resulting in enhanced hepatic lipid accumulation. These studies have uncovered a role for GLP-2 in maintaining hepatic lipid and lipoprotein homeostasis.
Collapse
Affiliation(s)
- Jennifer Taher
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Christopher Baker
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Danielle Alvares
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Laraib Ijaz
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York
- Department of Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York
| | - Mahmood Hussain
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York
- Department of Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York
| | - Khosrow Adeli
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| |
Collapse
|
17
|
Gu YY, Huang P, Li Q, Liu YY, Liu G, Wang YH, Yi M, Yan L, Wei XH, Yang L, Hu BH, Zhao XR, Chang X, Sun K, Pan CS, Cui YC, Chen QF, Wang CS, Fan JY, Ma ZZ, Han JY. YangXue QingNao Wan and Silibinin Capsules, the Two Chinese Medicines, Attenuate Cognitive Impairment in Aged LDLR (+/-) Golden Syrian Hamsters Involving Protection of Blood Brain Barrier. Front Physiol 2018; 9:658. [PMID: 29910744 PMCID: PMC5992341 DOI: 10.3389/fphys.2018.00658] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/14/2018] [Indexed: 11/13/2022] Open
Abstract
The purpose of the study was to explore the effect and the underlying mechanism of YangXue QingNao Wan (YXQNW) and Silibinin Capsules (SC), the two Chinese medicines, on cognitive impairment in older people with familial hyperlipidaemia. Fourteen month-old female LDLR (+/-) golden Syrian hamsters were used with their wild type as control. YXQNW (0.5 g/kg/day), SC (0.1 g/kg/day), or YXQNW (0.5 g/kg/day) + SC (0.1 g/kg/day) were administrated orally for 30 days. To assess the effects of the two drugs on plasma lipid content and cognitive ability, plasma TC, TG, LDL-C, and HDL-C were measured, and Y maze task was carried out both before and after administration. After administering of the drugs for 30 days, to evaluate the effect of the two drugs on disturbed blood flow caused by hyperlipidemia, the cerebral blood flow (CBF) was measured. To assess blood-brain barrier integrity, albumin leakage in middle cerebral artery (MCA) area was determined. To evaluate the effect of the drugs on impaired microvessels, the number and morphology of microvessels were assessed in hippocampus area. To further evaluate the ultrastructure of microvessels in hippocampus, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were carried out. To assess the profiles of claudin-5 and occludin in hippocampus, we performed immunofluorescence. Finally, to assess the expression of claudin-5, JAM-1, occludin and ZO-1 in hippocampus, western blot was carried out. The results showed that YXQNW, SC, and YXQNW + SC improved cognitive impairment of aged LDLR (+/-) golden Syrian hamsters without lowering plasma TC and LDL-C. YXQNW, SC, and YXQNW + SC attenuated albumin leakage in MCA area and neuronal damage in hippocampus, concomitant with an increase in CBF, a decrease of perivascular edema and an up-regulated expression of claudin-5, occludin and ZO-1. In conclusion, YXQNW, SC, and YXQNW + SC are able to improve cognitive ability in aged LDLR (+/-) golden Syrian hamsters via mechanisms involving maintaining blood-brain barrier integrity. These findings provide evidence suggesting YXQNW or SC as a potential regime to counteract the cognitive impairment caused by familial hypercholesterolemia.
Collapse
Affiliation(s)
- You-Yu Gu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
| | - Ping Huang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Yu-Ying Liu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - George Liu
- Key Laboratory of Molecular Cardiovascular Sciences, Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, China
| | - Yu-Hui Wang
- Key Laboratory of Molecular Cardiovascular Sciences, Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, China
| | - Ming Yi
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Xiao-Hong Wei
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Lei Yang
- Department of Anatomy, Peking University Health Science Center, Beijing, China
| | - Bai-He Hu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Xin-Rong Zhao
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Xin Chang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Kai Sun
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Yuan-Chen Cui
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Qing-Fang Chen
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
| | - Chuan-She Wang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Zhi-Zhong Ma
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| |
Collapse
|
18
|
High-Fructose Consumption Impairs the Redox System and Protein Quality Control in the Brain of Syrian Hamsters: Therapeutic Effects of Melatonin. Mol Neurobiol 2018; 55:7973-7986. [DOI: 10.1007/s12035-018-0967-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/16/2018] [Indexed: 02/06/2023]
|
19
|
Social housing and social isolation: Impact on stress indices and energy balance in male and female Syrian hamsters (Mesocricetus auratus). Physiol Behav 2017; 177:264-269. [PMID: 28511867 DOI: 10.1016/j.physbeh.2017.05.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 11/22/2022]
Abstract
Although Syrian hamsters are thought to be naturally solitary, recent evidence from our laboratory demonstrates that hamsters may actually prefer social contact. Hamsters increase their preference for a location associated with an agonistic encounter regardless of whether they have "won" or "lost". It has also been reported that social housing as well as exposure to intermittent social defeat or to a brief footshock stressor increase food intake and body mass in hamsters. By contrast, it has also been suggested that housing hamsters in social isolation causes anxiety-induced anorexia and reductions in body mass selectively in females. The purpose of this study was to determine the physiological consequences of housing hamsters in social isolation versus in social groups. Male and female hamsters were housed singly or in stable groups of 5 for 4weeks after which they were weighed and trunk blood was collected. In addition, fat pads and thymus and adrenal glands were extracted and weighed. Serum and fecal cortisol were measured using an enzyme-linked immunoassay. Housing condition had no effect on serum or fecal cortisol, but socially housed hamsters displayed modest thymus gland involution. Socially housed females weighed more than did any other group, and socially housed females and males had more fat than did socially isolated hamsters. No wounding or tissue damage occurred in grouped hamsters. Overall, these data suggest that Syrian hamsters tolerate both stable social housing and social isolation in the laboratory although social housing is associated with some alteration in stress-related and bioenergetic measures.
Collapse
|
20
|
Mehrabani D, Booyash N, Aqababa H, Tamadon A, Zare S, Dianatpour M. Growth kinetics, plasticity and characterization of hamster embryonic fibroblast cells. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/11250003.2016.1194487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- D. Mehrabani
- Stem Cell and Transgenic Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - N. Booyash
- Stem Cell and Transgenic Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - H. Aqababa
- Department of Biology, Islamic Azad University, Arsanjan, Iran
| | - A. Tamadon
- Stem Cell and Transgenic Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - S. Zare
- Stem Cell and Transgenic Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M. Dianatpour
- Stem Cell and Transgenic Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
21
|
Experimental Models in Syrian Golden Hamster Replicate Human Acute Pancreatitis. Sci Rep 2016; 6:28014. [PMID: 27302647 PMCID: PMC4908588 DOI: 10.1038/srep28014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/27/2016] [Indexed: 01/26/2023] Open
Abstract
The hamster has been shown to share a variety of metabolic similarities with humans. To replicate human acute pancreatitis with hamsters, we comparatively studied the efficacy of common methods, such as the peritoneal injections of caerulein, L-arginine, the retrograde infusion of sodium taurocholate, and another novel model with concomitant administration of ethanol and fatty acid. The severity of pancreatitis was evaluated by serum amylase activity, pathological scores, myeloperoxidase activity, and the expression of inflammation factors in pancreas. The results support that the severity of pathological injury is consistent with the pancreatitis induced in mice and rat using the same methods. Specifically, caerulein induced mild edematous pancreatitis accompanied by minimal lung injury, while L-arginine induced extremely severe pancreatic injury including necrosis and neutrophil infiltration. Infusion of Na-taurocholate into the pancreatic duct induced necrotizing pancreatitis in the head of pancreas and lighter inflammation in the distal region. The severity of acute pancreatitis induced by combination of ethanol and fatty acids was between the extent of caerulein and L-arginine induction, with obvious inflammatory cells infiltration. In view of the advantages in lipid metabolism features, hamster models are ideally suited for the studies of pancreatitis associated with altered metabolism in humans.
Collapse
|
22
|
Sané A, Seidman E, Spahis S, Lamantia V, Garofalo C, Montoudis A, Marcil V, Levy E. New Insights In Intestinal Sar1B GTPase Regulation and Role in Cholesterol Homeostasis. J Cell Biochem 2016; 116:2270-82. [PMID: 25826777 DOI: 10.1002/jcb.25177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 03/25/2015] [Indexed: 12/12/2022]
Abstract
Sar1B GTPase is a key component of Coat protein complex II (COPII)-coated vesicles that bud from the endoplasmic reticulum to export newly synthesized proteins. The aims of this study were to determine whether Sar1B responds to lipid regulation and to evaluate its role in cholesterol (CHOL) homeostasis. The influence of lipids on Sar1B protein expression was analyzed in Caco-2/15 cells by Western blot. Our results showed that the presence of CHOL (200 μM) and oleic acid (0.5 mM), bound to albumin, increases Sar1B protein expression. Similarly, supplementation of the medium with micelles composed of taurocholate with monooleylglycerol or oleic acid also stimulated Sar1B expression, but the addition of CHOL (200 μM) to micelle content did not modify its regulation. On the other hand, overexpression of Sar1B impacted on CHOL transport and metabolism in view of the reduced cellular CHOL content along with elevated secretion when incubated with oleic acid-containing micelles for 24 h, thereby disclosing induced CHOL transport. This was accompanied with higher secretion of free- and esterified-CHOL within chylomicrons, which was not the case when oleic acid was replaced with monooleylglycerol or when albumin-bound CHOL was given alone. The aforementioned cellular CHOL depletion was accompanied with a low phosphorylated/non phosphorylated HMG-CoA reductase ratio, indicating elevated enzymatic activity. Combination of Sar1B overexpression with micelle incubation led to reduction in intestinal CHOL transporters (NPC1L1, SR-BI) and metabolic regulators (PCSK9 and LDLR). The present work showed that Sar1B is regulated in a time- and concentration-dependent manner by dietary lipids, suggesting an adaptation to alimentary lipid flux. Our data also suggest that Sar1B overexpression contributes to regulation of CHOL transport and metabolism by facilitating rapid uptake and transport of CHOL.
Collapse
Affiliation(s)
- Alain Sané
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5
| | - Ernest Seidman
- Research Institute, McGill University, Campus MGH, C10.148.6, Montreal, Quebec, Canada, H3G 1A4
| | - Schohraya Spahis
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5.,Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada, H3T 1A8
| | - Valérie Lamantia
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5
| | - Carole Garofalo
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5
| | - Alain Montoudis
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5
| | - Valérie Marcil
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5.,Research Institute, McGill University, Campus MGH, C10.148.6, Montreal, Quebec, Canada, H3G 1A4
| | - Emile Levy
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5.,Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada, H3T 1A8
| |
Collapse
|
23
|
Xiao C, Dash S, Morgantini C, Lewis GF. Intravenous Glucose Acutely Stimulates Intestinal Lipoprotein Secretion in Healthy Humans. Arterioscler Thromb Vasc Biol 2016; 36:1457-63. [PMID: 27150393 DOI: 10.1161/atvbaha.115.307044] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/20/2016] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Increased production of intestinal triglyceride-rich lipoproteins (TRLs) contributes to dyslipidemia and increased risk of atherosclerotic cardiovascular disease in insulin resistance and type 2 diabetes. We have previously demonstrated that enteral glucose enhances lipid-stimulated intestinal lipoprotein particle secretion. Here, we assessed whether glucose delivered systemically by intravenous infusion also enhances intestinal lipoprotein particle secretion in humans. APPROACH AND RESULTS On 2 occasions, 4 to 6 weeks apart and in random order, 10 healthy men received a constant 15-hour intravenous infusion of either 20% glucose to induce hyperglycemia or normal saline as control. Production of TRL-apolipoprotein B48 (apoB48, primary outcomes) and apoB100 (secondary outcomes) was assessed during hourly liquid-mixed macronutrient formula ingestion with stable isotope enrichment and multicompartmental modeling, under pancreatic clamp conditions to limit perturbations in pancreatic hormones (insulin and glucagon) and growth hormone. Compared with saline infusion, glucose infusion induced both hyperglycemia and hyperinsulinemia, increased plasma triglyceride levels, and increased TRL-apoB48 concentration and production rate (P<0.05), without affecting TRL-apoB48 fractional catabolic rate. No significant effect of hyperglycemia on TRL-apoB100 concentration and kinetic parameters was observed. CONCLUSIONS Short-term intravenous infusion of glucose stimulates intestinal lipoprotein production. Hyperglycemia may contribute to intestinal lipoprotein overproduction in type 2 diabetes. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT02607839.
Collapse
Affiliation(s)
- Changting Xiao
- From the Division of Endocrinology and Metabolism, Department of Medicine and Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Satya Dash
- From the Division of Endocrinology and Metabolism, Department of Medicine and Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Cecilia Morgantini
- From the Division of Endocrinology and Metabolism, Department of Medicine and Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Gary F Lewis
- From the Division of Endocrinology and Metabolism, Department of Medicine and Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
24
|
Pillarisetti S. Potential Drug Combinations to Reduce Cardiovascular Disease Burden in Diabetes. Trends Pharmacol Sci 2015; 37:207-219. [PMID: 26719218 DOI: 10.1016/j.tips.2015.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 12/16/2022]
Abstract
The major cause of death and complications in patients with type 2 diabetes (T2DM) is cardiovascular disease (CVD). More than 60% of all patients with T2DM die of CVD, and an even greater percentage have serious complications. The impact of glucose lowering on cardiovascular complications is a hotly debated issue and recent large clinical trials reported no significant decrease in cardiovascular events with intensive glucose control. Risk remains high even after correcting diabetes-associated dyslipidemia with drugs such as fibrates and niacin. Data from several clinical studies show that postprandial glucose and lipids have a strong predictive value on myocardial infarction (MI) and mortality. However, strategies to reduce postprandial hyperglycemia and/or lipemia through increased utilization of glucose and/or triglycerides (TG) have been shown to not be effective in reducing the CVD burden. In this review, I discus the preferred ways to reduce postprandial glucose and TG with combinations of currently marketed drugs with potential benefit in CVD.
Collapse
Affiliation(s)
- Sivaram Pillarisetti
- Kareus Therapeutics SA, La Chaux-de-Fonds, Switzerland; NeuroPn Therapeutics, GA, Alpharetta, USA.
| |
Collapse
|
25
|
VRABLÍK M, ČEŠKA R. Treatment of Hypertriglyceridemia: a Review of Current Options. Physiol Res 2015; 64:S331-40. [DOI: 10.33549/physiolres.933199] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypertriglyceridemia is an important marker of increased levels of highly atherogenic remnant-like particles. The importance of lowering plasma levels of triglycerides (TG) has been called into question many times, but currently it is considered an integral part of residual cardiovascular risk reduction strategies. Lifestyle changes (improved diet and increased physical activity) are effective TG lowering measures. Pharmacological treatment usually starts with statins, although associated TG reductions are typically modest. Fibrates are currently the drugs of choice for hyperTG, frequently in combination with statins. Niacin and omega-3 fatty acids improve control of triglyceride levels when the above measures are inadequately effective. Some novel therapies including anti-sense oligonucleotides and inhibitors of microsomal triglyceride transfer protein have shown significant TG lowering efficacy. The current approach to the management of hypertriglyceridemia is based on lifestyle changes and, usually, drug combinations (statin and fibrate and/or omega-3 fatty acids or niacin).
Collapse
Affiliation(s)
- M. VRABLÍK
- Third Department of Internal Medicine, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | | |
Collapse
|
26
|
Abstract
Patients with diabetes represent a population at higher risk for cardiovascular disease. Diabetic dyslipidemia is characterized by the so-called atherogenic lipid triad, consisting of an increase in small dense low density lipoprotein particles and in triglyceride-rich lipoproteins, and a decrease in high-density lipoprotein cholesterol, with an increase in non-HDL cholesterol. Numerous trials have investigated the efficacy of add-on ezetimibe therapy for patients with type 2 diabetes and not controlled by statin therapy. The published data highly suggest that patients with type 2 diabetes may be more likely to benefit from ezetimibe/statin combination therapy. However, evidence specifically addressing hard clinical endpoints and prospective trials addressing differences in response between patients with or without diabetes are still needed.
Collapse
|
27
|
Abstract
Dietary lipids are efficiently absorbed by the small intestine, incorporated into triglyceride-rich lipoproteins (chylomicrons), and transported in the circulation to various tissues. Intestinal lipid absorption and mobilization and chylomicron synthesis and secretion are highly regulated processes. Elevated chylomicron production rate contributes to the dyslipidemia seen in common metabolic disorders such as insulin-resistant states and type 2 diabetes and likely increases the risk for atherosclerosis seen in these conditions. An in-depth understanding of the regulation of chylomicron production may provide leads for the development of drugs that could be of therapeutic utility in the prevention of dyslipidemia and atherosclerosis. Chylomicron secretion is subject to regulation by various factors, including diet, body weight, genetic variants, hormones, nutraceuticals, medications, and emerging interventions such as bariatric surgical procedures. In this review we discuss the regulation of chylomicron production, mechanisms that underlie chylomicron dysregulation, and potential avenues for future research.
Collapse
Affiliation(s)
- Satya Dash
- Departments of Medicine and Physiology and the Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, M5G 2C4 Canada;
| | | | | | | |
Collapse
|
28
|
Fan Z, Meng Q, Bunch TD, White KL, Wang Z. Effective cryopreservation of golden Syrian hamster embryos by open pulled straw vitrification. Lab Anim 2015; 50:45-53. [PMID: 25715282 DOI: 10.1177/0023677215571654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Golden Syrian hamster embryos are difficult to cryopreserve due to their high sensitivity to cryoprotectants and in vitro handling. The objective of this study is to develop a robust open pulled straw (OPS) vitrification technique for cryopreserving hamster embryos at various developmental stages. We first systematically tested the concentrations of cryoprotectants and the exposure times of two-cell embryos to various vitrification solutions. We identified pretreatment of two-cell embryos with 10% (v/v) ethylene glycol (EG) + 10% (v/v) dimethylsulfoxide (DMSO) for 30 s followed by exposure in the vitrification solution, EDFS30 (containing 15% EG + 15% DMSO), for 30 s before plunging into liquid nitrogen (two-step exposure method) as the optimal OPS vitrification protocol. We then investigated the resourcefulness of this protocol for vitrifying hamster embryos at different developmental stages. The results showed that high blastocyst rates from embryos vitrified at two-cell, four-cell, eight-cell, or morula stage (62%, 78%, 80%, or 72%, respectively), but not those verified at pronuclear (0%) or blastocyst stage (24%; P < 0.05), were achieved by this protocol. When embryos vitrified at the two-cell stage were recovered and then directly transferred to recipient females, 29% of them developed to term, a development rate not significantly different (P > 0.05) from the 40% birth rate of the unvitrified controls. In conclusion, we have developed an effective two-step OPS vitrification protocol for hamster embryos.
Collapse
Affiliation(s)
- Z Fan
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - Q Meng
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - T D Bunch
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - K L White
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - Z Wang
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA Auratus Bio, LLC, Canton, South Dakota, USA
| |
Collapse
|
29
|
Lim MK, Ku SK, Choi JS, Kim JW. Effect of polycan, a β-glucan originating from Aureobasidium, on a high-fat diet-induced hyperlipemic hamster model. Exp Ther Med 2015; 9:1369-1378. [PMID: 25780437 PMCID: PMC4353769 DOI: 10.3892/etm.2015.2238] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 12/12/2014] [Indexed: 12/29/2022] Open
Abstract
The aim of the present study was to analyze the effect of polycan, a β-glucan originating from Aureobasidium, on high-fat diet (HFD)-induced hyperlipemia and hepatic damage. A total of 30 hamsters were divided into 6 groups based on their body weight following acclimatization: control, sham, simvastatin (SIMVA) and 3 Polycan groups. In the polycan groups, Polycan, at three concentrations (31.25, 62.5 and 125 mg/kg), was administered orally once a day for 56 days, in addition to the HFD. On the day of sacrifice, changes in the body weight, food consumption, liver weight and serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglyceride and total cholesterol (T-CHOL) were observed, as well as changes to the liver and aorta (thoracic and abdominal) histopathology and histomorphometry. The results from the polycan groups were compared with a SIMVA 10 mg/kg oral treatment group, in addition to the sham and vehicle control groups. After the HFD-induced hyperlipidemic hamsters were administered Polycan, there was no significant change in their body weight and food consumption when compared with the hamsters in the vehicle control group. However, the serum levels of AST, ALT, triglyceride, T-CHOL and LDL were significantly reduced in a dose-dependent manner when compared with the vehicle control group (P<0.05). Furthermore, the levels of liver steatosis and arteriosclerosis in the abdominal and thoracic aorta were significantly decreased in a dose-dependent manner (P<0.01). In the SIMVA-treated group, body weight (P<0.05), the serum level of lipids (triglyceride, T-CHOL and LDL; P<0.01) and the level of arteriosclerosis (P<0.01) were significantly reduced when compared with the vehicle control group. However, liver weight and the serum levels of AST, ALT, and liver steatosis increased when compared with the vehicle control group. Based on these results, it was concluded that polycan exerts a favorable effect in decreasing HFD-induced hyperlipemia and associated atherosclerosis, with relatively good protective effects on liver damage.
Collapse
Affiliation(s)
- Mee-Kyoung Lim
- Department of Food Science and Nutrition, School of Human Ecology, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Oriental Medicine, Daegu Haany University, Gyeongsan 712-715, Republic of Korea
| | - Jae-Suk Choi
- Department of Bio-Food Materials, Silla University, Busan 617-736, Republic of Korea
| | - Joo-Wan Kim
- Glucan Corporation, Marine Bio-Industry Development Center, Busan 619-912, Republic of Korea
| |
Collapse
|
30
|
Hung YH, Linden MA, Gordon A, Rector RS, Buhman KK. Endurance exercise training programs intestinal lipid metabolism in a rat model of obesity and type 2 diabetes. Physiol Rep 2015; 3:3/1/e12232. [PMID: 25602012 PMCID: PMC4387752 DOI: 10.14814/phy2.12232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Endurance exercise has been shown to improve metabolic outcomes in obesity and type 2 diabetes; however, the physiological and molecular mechanisms for these benefits are not completely understood. Although endurance exercise has been shown to decrease lipogenesis, promote fatty acid oxidation (FAO), and increase mitochondrial biosynthesis in adipose tissue, muscle, and liver, its effects on intestinal lipid metabolism remain unknown. The absorptive cells of the small intestine, enterocytes, mediate the highly efficient absorption and processing of nutrients, including dietary fat for delivery throughout the body. We investigated how endurance exercise altered intestinal lipid metabolism in obesity and type 2 diabetes using Otsuka Long‐Evans Tokushima Fatty (OLETF) rats. We assessed mRNA levels of genes associated with intestinal lipid metabolism in nonhyperphagic, sedentary Long‐Evans Tokushima Otsuka (LETO) rats (L‐Sed), hyperphagic, sedentary OLETF rats (O‐Sed), and endurance exercised OLETF rats (O‐EndEx). O‐Sed rats developed hyperphagia‐induced obesity (HIO) and type 2 diabetes compared with L‐Sed rats. O‐EndEx rats gained significantly less weight and fat pad mass, and had improved serum metabolic parameters without change in food consumption compared to O‐Sed rats. Endurance exercise resulted in dramatic up‐regulation of a number of genes in intestinal lipid metabolism and mitochondrial content compared with sedentary rats. Overall, this study provides evidence that endurance exercise programs intestinal lipid metabolism, likely contributing to its role in improving metabolic outcomes in obesity and type 2 diabetes. Endurance exercise has been shown to improve metabolic outcomes in obesity and type 2 diabetes; however, the physiological and molecular mechanisms for these benefits are not completely understood. Although endurance exercise has been shown to decrease lipogenesis, promote fatty acid oxidation (FAO), and increase mitochondrial biosynthesis in adipose tissue, muscle, and liver, its effects on intestinal lipid metabolism remain unknown. Endurance exercise resulted in dramatic up‐regulation of a number of genes in intestinal lipid metabolism and mitochondrial content compared with sedentary rats. Overall, this study provides evidence that endurance exercise programs intestinal lipid metabolism, likely contributing to its role in improving metabolic outcomes in obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Yu-Han Hung
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana
| | - Melissa A Linden
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, Missouri
| | - Alicia Gordon
- Department of Clinical Medicine, University of Dublin, Dublin, Ireland School of Biological Sciences, Dublin Institute of Technology, Dublin, Ireland
| | - R Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, Missouri Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Kimberly K Buhman
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana
| |
Collapse
|
31
|
Sahebkar A, Chew GT, Watts GF. Recent advances in pharmacotherapy for hypertriglyceridemia. Prog Lipid Res 2014; 56:47-66. [PMID: 25083925 DOI: 10.1016/j.plipres.2014.07.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/10/2014] [Accepted: 07/18/2014] [Indexed: 12/20/2022]
Abstract
Elevated plasma triglyceride (TG) concentrations are associated with an increased risk of atherosclerotic cardiovascular disease (CVD), hepatic steatosis and pancreatitis. Existing pharmacotherapies, such as fibrates, n-3 polyunsaturated fatty acids (PUFAs) and niacin, are partially efficacious in correcting elevated plasma TG. However, several new TG-lowering agents are in development that can regulate the transport of triglyceride-rich lipoproteins (TRLs) by modulating key enzymes, receptors or ligands involved in their metabolism. Balanced dual peroxisome proliferator-activated receptor (PPAR) α/γ agonists, inhibitors of microsomal triglyceride transfer protein (MTTP) and acyl-CoA:diacylglycerol acyltransferase-1 (DGAT-1), incretin mimetics, and apolipoprotein (apo) B-targeted antisense oligonucleotides (ASOs) can all decrease the production and secretion of TRLs; inhibitors of cholesteryl ester transfer protein (CETP) and angiopoietin-like proteins (ANGPTLs) 3 and 4, monoclonal antibodies (Mabs) against proprotein convertase subtilisin/kexin type 9 (PCSK9), apoC-III-targeted ASOs, selective peroxisome proliferator-activated receptor modulators (SPPARMs), and lipoprotein lipase (LPL) gene replacement therapy (alipogene tiparvovec) enhance the catabolism and clearance of TRLs; dual PPAR-α/δ agonists and n-3 polyunsaturated fatty acids can lower plasma TG by regulating both TRL secretion and catabolism. Varying degrees of TG reduction have been reported with the use of these therapies, and for some agents such as CETP inhibitors and PCSK9 Mabs findings have not been consistent. Whether they reduce CVD events has not been established. Trials investigating the effect of CETP inhibitors (anacetrapib and evacetrapib) and PCSK9 Mabs (AMG-145 and REGN727/SAR236553) on CVD outcomes are currently in progress, although these agents also regulate LDL metabolism and, in the case of CETP inhibitors, HDL metabolism. Further to CVD risk reduction, these new treatments might also have a potential role in the management of diabetes and non-alcoholic fatty liver disease owing to their insulin-sensitizing action (PPAR-α/γ agonists) and potential capacity to decrease hepatic TG accumulation (PPAR-α/δ agonists and DGAT-1 inhibitors), but this needs to be tested in future trials. We summarize the clinical trial findings regarding the efficacy and safety of these novel therapies for hypertriglyceridemia.
Collapse
Affiliation(s)
- Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Research Centre, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - Gerard T Chew
- Metabolic Research Centre, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - Gerald F Watts
- Metabolic Research Centre, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia; Lipid Disorders Clinic, Cardiovascular Medicine, Royal Perth Hospital, Perth, Australia.
| |
Collapse
|
32
|
Gao M, Zhang B, Liu J, Guo X, Li H, Wang T, Zhang Z, Liao J, Cong N, Wang Y, Yu L, Zhao D, Liu G. Generation of transgenic golden Syrian hamsters. Cell Res 2014; 24:380-382. [PMID: 24394888 PMCID: PMC3945892 DOI: 10.1038/cr.2014.2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Mingming Gao
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing 100191, China
| | - Baoyu Zhang
- Department of Endocrinology, Lu He Teaching Hospital of the Capital Medical University, Beijing 101149, China
| | - Jinjiao Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing 100191, China
| | - Xin Guo
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing 100191, China
| | - Haibo Li
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing 100191, China
| | - Tao Wang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing 100191, China
| | - Zifu Zhang
- Center for Molecular Biology Laboratory and Department of Animal Science, Xinyang College of Agriculture and Forestry, Xinyang Yangshan new district 24 new street, Xinyang, Henan 464000, China
| | - Jiawei Liao
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing 100191, China
| | - Nathan Cong
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing 100191, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing 100191, China
| | - Liqing Yu
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Dong Zhao
- Department of Endocrinology, Lu He Teaching Hospital of the Capital Medical University, Beijing 101149, China
| | - George Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing 100191, China
| |
Collapse
|
33
|
Xiao C, Dash S, Morgantini C, Lewis GF. New and emerging regulators of intestinal lipoprotein secretion. Atherosclerosis 2014; 233:608-615. [PMID: 24534456 DOI: 10.1016/j.atherosclerosis.2013.12.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/12/2013] [Accepted: 12/31/2013] [Indexed: 12/25/2022]
Abstract
Overproduction of hepatic apoB100-containing VLDL particles has been well documented in animal models and in humans with insulin resistance such as the metabolic syndrome and type 2 diabetes, and contributes to the typical dyslipidemia of these conditions. In addition, postprandial hyperlipidemia and elevated plasma concentrations of intestinal apoB48-containing chylomicron and chylomicron remnant particles have been demonstrated in insulin resistant states. Intestinal lipoprotein production is primarily determined by the amount of fat ingested and absorbed. Until approximately 10 years ago, however, relatively little attention was paid to the role of the intestine itself in regulating the production of triglyceride-rich lipoproteins (TRL) and its dysregulation in pathological states such as insulin resistance. We and others have shown that insulin resistant animal models and humans are characterized by overproduction of intestinal apoB48-containing lipoproteins. Whereas various factors are known to regulate hepatic lipoprotein particle production, less is known about factors that regulate the production of intestinal lipoprotein particles. Monosacharides, plasma free fatty acids (FFA), resveratrol, intestinal peptides (e.g. GLP-1 and GLP-2), and pancreatic hormones (e.g. insulin) have recently been shown to be important regulators of intestinal lipoprotein secretion. Available evidence in humans and animal models strongly supports the concept that the small intestine is not merely an absorptive organ but rather plays an active role in regulating the rate of production of chylomicrons in fed and fasting states. Metabolic signals in insulin resistance and type 2 diabetes and in some cases an aberrant intestinal response to these factors contribute to the enhanced formation and secretion of TRL. Understanding the regulation of intestinal lipoprotein production is imperative for the development of new therapeutic strategies for the prevention and treatment of dyslipidemia. Here we review recent developments in this field and present evidence that intestinal lipoprotein production is a process with metabolic plasticity and that modulation of intestinal lipoprotein secretion may be a feasible therapeutic strategy in the treatment of dyslipidemia and possibly prevention of atherosclerosis.
Collapse
Affiliation(s)
- Changting Xiao
- Department of Medicine, University of Toronto, Canada; Department of Physiology, University of Toronto, Canada; Banting and Best Diabetes Centre, Toronto General Hospital, 200 Elizabeth Street, EN12-218, Toronto, Ontario M5G 2C4, Canada
| | - Satya Dash
- Department of Medicine, University of Toronto, Canada; Department of Physiology, University of Toronto, Canada; Banting and Best Diabetes Centre, Toronto General Hospital, 200 Elizabeth Street, EN12-218, Toronto, Ontario M5G 2C4, Canada
| | - Cecilia Morgantini
- Department of Medicine, University of Toronto, Canada; Department of Physiology, University of Toronto, Canada; Banting and Best Diabetes Centre, Toronto General Hospital, 200 Elizabeth Street, EN12-218, Toronto, Ontario M5G 2C4, Canada
| | - Gary F Lewis
- Department of Medicine, University of Toronto, Canada; Department of Physiology, University of Toronto, Canada; Banting and Best Diabetes Centre, Toronto General Hospital, 200 Elizabeth Street, EN12-218, Toronto, Ontario M5G 2C4, Canada.
| |
Collapse
|
34
|
Rideout TC, Ramprasath V, Griffin JD, Browne RW, Harding SV, Jones PJH. Phytosterols protect against diet-induced hypertriglyceridemia in Syrian golden hamsters. Lipids Health Dis 2014; 13:5. [PMID: 24393244 PMCID: PMC3896966 DOI: 10.1186/1476-511x-13-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 12/13/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In addition to lowering LDL-C, emerging data suggests that phytosterols (PS) may reduce blood triglycerides (TG), however, the underlying mechanisms are not known. METHODS We examined the TG-lowering mechanisms of dietary PS in Syrian golden hamsters randomly assigned to a high fat (HF) diet or the HF diet supplemented with PS (2%) for 6 weeks (n = 12/group). An additional subset of animals (n = 12) was provided the HF diet supplemented with ezetimibe (EZ, 0.002%) as a positive control as it is a cholesterol-lowering agent with known TG-lowering properties. RESULTS In confirmation of diet formulation and compound delivery, both the PS and EZ treatments lowered (p < 0.05) intestinal cholesterol absorption (24 and 31%, respectively), blood non-HDL cholesterol (61 and 66%, respectively), and hepatic cholesterol (45 and 55%, respectively) compared with the HF-fed animals. Blood TG concentrations were lower (p < 0.05) in the PS (49%) and EZ (68%)-treated animals compared with the HF group. The TG-lowering response in the PS-supplemented group was associated with reduced (p < 0.05) intestinal SREBP1c mRNA (0.45 fold of HF), hepatic PPARα mRNA (0.73 fold of HF), hepatic FAS protein abundance (0.68 fold of HD), and de novo lipogenesis (44%) compared with the HF group. Similarly, lipogenesis was lower in the EZ-treated animals, albeit through a reduction in the hepatic protein abundance of ACC (0.47 fold of HF). CONCLUSIONS Study results suggest that dietary PS are protective against diet-induced hypertriglyceridemia, likely through multiple mechanisms that involve modulation of intestinal fatty acid metabolism and a reduction in hepatic lipogenesis.
Collapse
Affiliation(s)
- Todd C Rideout
- Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Ezetimibe markedly attenuates hepatic cholesterol accumulation and improves liver function in the lysosomal acid lipase-deficient mouse, a model for cholesteryl ester storage disease. Biochem Biophys Res Commun 2013; 443:1073-7. [PMID: 24370824 DOI: 10.1016/j.bbrc.2013.12.096] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 12/18/2013] [Indexed: 01/30/2023]
Abstract
Lysosomal acid lipase (LAL) plays a critical role in the intracellular handling of lipids by hydrolyzing cholesteryl esters (CE) and triacylglycerols (TAG) contained in newly internalized lipoproteins. In humans, mutations in the LAL gene result in cholesteryl ester storage disease (CESD), or in Wolman disease (WD) when the mutations cause complete loss of LAL activity. A rat model for WD and a mouse model for CESD have been described. In these studies we used LAL-deficient mice to investigate how modulating the amount of intestinally-derived cholesterol reaching the liver might impact its mass, cholesterol content, and function in this model. The main experiment tested if ezetimibe, a potent cholesterol absorption inhibitor, had any effect on CE accumulation in mice lacking LAL. In male Lal(-/-) mice given ezetimibe in their diet (20 mg/day/kg bw) for 4 weeks starting at 21 days of age, both liver mass and hepatic cholesterol concentration (mg/g) were reduced to the extent that whole-liver cholesterol content (mg/organ) in the treated mice (74.3±3.4) was only 56% of that in those not given ezetimibe (133.5±6.7). There was also a marked improvement in plasma alanine aminotransferase (ALT) activity. Thus, minimizing cholesterol absorption has a favorable impact on the liver in CESD.
Collapse
|
36
|
Effects of ezetimibe/simvastatin 10/20 mg vs. atorvastatin 20 mg on apolipoprotein B/apolipoprotein A1 in Korean patients with type 2 diabetes mellitus: results of a randomized controlled trial. Am J Cardiovasc Drugs 2013; 13:343-51. [PMID: 23728830 DOI: 10.1007/s40256-013-0031-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Although the efficacy of ezetimibe/simvastatin and atorvastatin on traditional lipid parameters has been studied extensively, the apolipoprotein B/apolipoprotein A1 (ApoB/ApoA1) ratio, which has a better predictive value for cardiovascular events, has not previously been used as a primary endpoint in these two treatment groups. OBJECTIVE Our objective was to compare the efficacy and safety of ezetimibe/simvastatin 10/20 mg versus atorvastatin 20 mg once daily in Korean patients with type 2 diabetes mellitus. STUDY DESIGN This study was an open-label, randomized, controlled study. Type 2 diabetes patients with high levels of low-density lipoprotein (LDL) cholesterol (>100 mg/dL) were randomized to receive ezetimibe/simvastatin or atorvastatin. MAIN OUTCOME MEASURE The primary endpoint was the difference in the percent change of ApoB/ApoA1 at 12 weeks, and secondary endpoints were changes in lipid profiles, glycosylated hemoglobin (HbA1c), homeostatic model assessment (HOMA) index, and C-reactive protein. RESULTS In total, 132 patients (66 for each group) were enrolled and randomized. After 12 weeks of treatment, the ApoB/ApoA1 ratio was significantly reduced in both groups; however, the difference of changes between the two groups was not statistically significant (ezetimibe/simvastatin -38.6 ± 18.0 % vs. atorvastatin -34.4 ± 15.5 %; p = 0.059). There were no significant differences in changes to total cholesterol, LDL cholesterol, high-density lipoprotein cholesterol, triglycerides, ApoB, and ApoB48 between the two groups. However, the increments of ApoA1 were significantly greater in the ezetimibe/simvastatin group than in the atorvastatin group (2.8 ± 10.0 vs. -1.8 ± 9.8 %; p = 0.002). In the per-protocol analysis, improvement in ApoB/ApoA1 was significantly greater in the ezetimibe/simvastatin group (-42.8 ± 11.8 vs. -36.7 ± 13.2 %; p = 0.019). The changes in HbA1c, HOMA index, and C-reactive protein were comparable between the two groups. The adverse reaction rate was similar between the two groups (24.2 vs. 34.9 %; p = 0.180). CONCLUSION Ezetimibe/simvastatin 10/20 mg is comparable to atorvastatin 20 mg for the management of dyslipidemia, and may have more favorable effects on apolipoprotein profiles than atorvastatin 20 mg in Korean patients with type 2 diabetes mellitus.
Collapse
|
37
|
Ushio M, Nishio Y, Sekine O, Nagai Y, Maeno Y, Ugi S, Yoshizaki T, Morino K, Kume S, Kashiwagi A, Maegawa H. Ezetimibe prevents hepatic steatosis induced by a high-fat but not a high-fructose diet. Am J Physiol Endocrinol Metab 2013; 305:E293-304. [PMID: 23715726 DOI: 10.1152/ajpendo.00442.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease is the most frequent liver disease. Ezetimibe, an inhibitor of intestinal cholesterol absorption, has been reported to ameliorate hepatic steatosis in human and animal models. To explore how ezetimibe reduces hepatic steatosis, we investigated the effects of ezetimibe on the expression of lipogenic enzymes and intestinal lipid metabolism in mice fed a high-fat or a high-fructose diet. CBA/JN mice were fed a high-fat diet or a high-fructose diet for 8 wk with or without ezetimibe. High-fat diet induced hepatic steatosis accompanied by hyperinsulinemia. Treatment with ezetimibe reduced hepatic steatosis, insulin levels, and glucose production from pyruvate in mice fed the high-fat diet, suggesting a reduction of insulin resistance in the liver. In the intestinal analysis, ezetimibe reduced the expression of fatty acid transfer protein-4 and apoB-48 in mice fed the high-fat diet. However, treatment with ezetimibe did not prevent hepatic steatosis, hyperinsulinemia, and intestinal apoB-48 expression in mice fed the high-fructose diet. Ezetimibe decreased liver X receptor-α binding to the sterol regulatory element-binding protein-1c promoter but not expression of carbohydrate response element-binding protein and fatty acid synthase in mice fed the high-fructose diet, suggesting that ezetimibe did not reduce hepatic lipogenesis induced by the high-fructose diet. Elevation of hepatic and intestinal lipogenesis in mice fed a high-fructose diet may partly explain the differences in the effect of ezetimibe.
Collapse
Affiliation(s)
- Masateru Ushio
- Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science, Seta, Otsu, Shiga, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Postprandial hypertriglyceridemia and cardiovascular disease: current and future therapies. Curr Atheroscler Rep 2013; 15:309. [PMID: 23345190 DOI: 10.1007/s11883-013-0309-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Exaggerated postprandial hypertriglyceridemia is a risk factor for cardiovascular disease. This metabolic abnormality is principally due to overproduction and/or decreased catabolism of triglyceride-rich lipoproteins (TRLs) and is a consequence of pathogenic genetic variations and other coexistent medical conditions, particularly obesity and insulin resistance. Accumulation of TRL in the postprandial state promotes the formation of small, dense low-density lipoproteins, as well as oxidative stress, inflammation, and endothelial dysfunction, all of which compound the risk of cardiovascular disease. The cardiovascular benefits of lifestyle modification (weight loss and exercise) and conventional lipid-lowering therapies (statins, fibrates, niacin, ezetimibe, and n-3 fatty acid supplementation) could involve their favorable effects on TRL metabolism. New agents, such as dual peroxisome-proliferator-activated receptor α/δ agonists, diacylglycerol, inhibitors of diacylglycerol acyltransferase 1 and microsomal triglyceride transfer protein, antisense oligonucleotides for apolipoprotein B-100 and apolipoprotein C-III, and incretin-based therapies, may enhance the treatment of postprandial lipemia, but their efficacy needs to be tested in clinical end point trials. Further work is required to develop a simple clinical protocol for investigating postprandial lipemia, as well as internationally agreed management guidelines for this type of dyslipidemia.
Collapse
|
39
|
Zhong Y, Wang J, Gu P, Shao J, Lu B, Jiang S. Effect of ezetimibe on insulin secretion in db/db diabetic mice. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:420854. [PMID: 23118741 PMCID: PMC3483710 DOI: 10.1155/2012/420854] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 09/18/2012] [Accepted: 09/18/2012] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the effect of ezetimibe on the insulin secretion in db/db mice. METHODS The db/db diabetic mice aged 8 weeks were randomly assigned into 2 groups and intragastrically treated with ezetimibe or placebo for 6 weeks. The age matched db/m mice served as controls. At the end of experiment, glucose tolerance test was performed and then the pancreas was collected for immunohistochemistry. In addition, in vitro perfusion of pancreatic islets was employed for the detection of insulin secretion in the first phase. RESULTS In the ezetimibe group, the fasting blood glucose was markedly reduced, and the total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) were significantly lowered when compared with those in the control group (P < 0.05). At 120 min after glucose tolerance test, the area under curve in the ezetimibe group was significantly smaller than that in the control group (P < 0.05), but the AUC(INS0-30) was markedly higher. In vitro perfusion of pancreatic islets revealed the first phase insulin secretion was improved. In addition, the insulin expression in the pancreas in the ezetimibe group was significantly increased as compared to the control group. CONCLUSION Ezetimibe can improve glucose tolerance, recover the first phase insulin secretion, and protect the function of β cells in mice.
Collapse
Affiliation(s)
- Yong Zhong
- Department of Cardiology, School of Medicine, Nanjing University, Jinling Hospital, 305 East Zhongshan Road, Jiangsu Province, Nanjing 210002, China
| | - Jun Wang
- Department of Cardiology, School of Medicine, Nanjing University, Jinling Hospital, 305 East Zhongshan Road, Jiangsu Province, Nanjing 210002, China
| | - Ping Gu
- Department of Endocrinology, School of Medicine, Nanjing University, Jinling Hospital, 305 East Zhongshan Road, Jiangsu Province, Nanjing 210002, China
| | - Jiaqing Shao
- Department of Endocrinology, School of Medicine, Nanjing University, Jinling Hospital, 305 East Zhongshan Road, Jiangsu Province, Nanjing 210002, China
| | - Bin Lu
- Department of Endocrinology, School of Medicine, Nanjing University, Jinling Hospital, 305 East Zhongshan Road, Jiangsu Province, Nanjing 210002, China
| | - Shisen Jiang
- Department of Cardiology, School of Medicine, Nanjing University, Jinling Hospital, 305 East Zhongshan Road, Jiangsu Province, Nanjing 210002, China
| |
Collapse
|
40
|
Gouni-Berthold I, Mikhailidis DP, Rizzo M. Clinical benefits of ezetimibe use: is absence of proof, proof of absence? Expert Opin Pharmacother 2012; 13:1985-8. [DOI: 10.1517/14656566.2012.720974] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|