1
|
Alenchery RG, Ajalik RE, Jerreld K, Midekksa F, Zhong S, Alkatib B, Awad HA. PAI-1 mediates TGF-β1-induced myofibroblast activation in tenocytes via mTOR signaling. J Orthop Res 2023; 41:2163-2174. [PMID: 37143206 PMCID: PMC10524825 DOI: 10.1002/jor.25594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/04/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
Transforming growth factor-beta (TGF-β1) induces plasminogen activator inhibitor 1 (PAI-1) to effect fibrotic pathologies in several organs including tendon. Recent data implicated PAI-1 with inhibition of phosphatase and tensin homolog (PTEN) suggesting that PAI-1-induced adhesions involves phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (mTOR) signaling. Ergo, we investigated effects of TGF-β1, PAI-1, and mTOR signaling crosstalk on myofibroblast activation, senescence, and proliferation in primary flexor tenocytes from wild-type (WT) and PAI-1 knockout (KO) mice. PAI-1 deletion blunted TGF-β1-induced myofibroblast activation in murine flexor tenocytes and increased the gene expression of Mmp-2 to confer protective effects against fibrosis. While TGF-β1 significantly reduced phosphorylation of PTEN in WT cells, PAI-1 deletion rescued the activation of PTEN. Despite that, there were no differences in TGF-β1-induced activation of mTOR signaling (AKT, 4EBP1, and P70S6K) in WT or KO tenocytes. Phenotypic changes in distinct populations of WT or KO tenocytes exhibiting high or low mTOR activity were then examined. TGF-β1 increased alpha-smooth muscle actin abundance in WT cells exhibiting high mTOR activity, but this increase was blunted in KO cells exhibiting high 4EBP1 activity but not in cells exhibiting high S6 activity. DNA damage (γH2AX) was increased with TGF-β1 treatment in WT tenocytes but was blunted in KO cells exhibiting high mTOR activity. Increased mTOR activity enhanced proliferation (Ki67) in both WT and KO tenocytes. These findings point to a complex nexus of TGF-β1, PAI-1, and mTOR signaling in regulating proliferation, myofibroblast differentiation, and senescence in tenocytes, which could define therapeutic targets for chronic tendon adhesions and other fibrotic pathologies.
Collapse
Affiliation(s)
- Rahul G Alenchery
- Center for Musculoskeletal Research, University of Rochester Medical Center, NY, United States
- Department of Biomedical Engineering, University of Rochester Rochester, NY, United States
| | - Raquel E Ajalik
- Center for Musculoskeletal Research, University of Rochester Medical Center, NY, United States
- Department of Biomedical Engineering, University of Rochester Rochester, NY, United States
| | - Kyle Jerreld
- Center for Musculoskeletal Research, University of Rochester Medical Center, NY, United States
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, NY, United States
| | - Firaol Midekksa
- Center for Musculoskeletal Research, University of Rochester Medical Center, NY, United States
- Department of Biomedical Engineering, University of Rochester Rochester, NY, United States
| | - Sylvia Zhong
- Center for Musculoskeletal Research, University of Rochester Medical Center, NY, United States
- Department of Biomedical Engineering, University of Rochester Rochester, NY, United States
| | - Bashar Alkatib
- Center for Musculoskeletal Research, University of Rochester Medical Center, NY, United States
| | - Hani A. Awad
- Center for Musculoskeletal Research, University of Rochester Medical Center, NY, United States
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, NY, United States
- Department of Biomedical Engineering, University of Rochester Rochester, NY, United States
| |
Collapse
|
2
|
Liu J, Pan Y, Liu Y, Wei W, Hu X, Xin W, Chen N. The regulation of PTEN: Novel insights into functions as cancer biomarkers and therapeutic targets. J Cell Physiol 2023; 238:1693-1715. [PMID: 37334436 DOI: 10.1002/jcp.31053] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023]
Abstract
This review summarizes the implications of the primary tumor suppressor protein phosphatase and tensin homolog (PTEN) in aggressive cancer development. PTEN interacts with other cellular proteins or factors suggesting the existence of an intricate molecular network that regulates their oncogenic function. Accumulating evidence has shown that PTEN exists and plays a role in the cytoplasmic organelles and in the nucleus. PTEN blocks phosphoinositide 3-kinases (PI3K)-protein kinase B-mammalian target of rapamycin signaling pathway by dephosphorylating phosphatidylinositol (PI)-3,4,5-triphosphate to PI-4,5-bisphosphate thus counteracting PI3K function. Studies have shown that PTEN expression is tightly regulated at transcriptional, posttranscriptional, and posttranslational levels (including protein-protein interactions and posttranslational modifications). Despite recent advances in PTEN research, the regulation and function of the PTEN gene remain largely unknown. How mutation or loss of specific exons in the PTEN gene occurs and involves in cancer development is not clear. This review illustrates the regulatory mechanisms of PTEN expression and discusses how PTEN participates in tumor development and/or suppression. Future prospects for the clinical applications are also highlighted.
Collapse
Affiliation(s)
- Jie Liu
- Department of Dermatology, Skin Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yongli Pan
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Yuheng Liu
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Wei Wei
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Xiaoping Hu
- Department of Dermatology, Skin Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Wenqiang Xin
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Nan Chen
- Department of Gastroenterology, Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|
3
|
Kim SG, Sung JY, Kang YJ, Choi HC. Fisetin alleviates cellular senescence through PTEN mediated inhibition of PKCδ-NOX1 pathway in vascular smooth muscle cells. Arch Gerontol Geriatr 2023; 108:104927. [PMID: 36645971 DOI: 10.1016/j.archger.2023.104927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/29/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
Reactive oxygen species (ROS) are a key risk factor of cellular senescence and age-related diseases, and protein kinase C (PKC) has been shown to activate NADPH oxidases (NOXs), which generate ROS. Although PKC activation induces oxidative stress, leading to the cellular dysfunction in various cell types, the correlation between PKC and senescence has not been reported in vascular smooth muscle cell (VSMC). Several studies have indicated cellular senescence is accompanied by phosphatase and tensin homolog (PTEN) loss and that an interaction exists between PTEN and PKC. Therefore, we aimed to determine whether PTEN and PKC are associated with VSMC senescence and to investigate the mechanism involved. We found hydrogen peroxide (H2O2) decreased PTEN expression and increased PKCδ phosphorylation. Moreover, H2O2 upregulated the NOX1 subunits, p22phox and p47phox, and induced VSMC senescence via p53-p21 signaling pathway. We identified PKCδ activation contributed to VSMC senescence through activation of NOX1 and ROS production. However, fisetin inhibited cellular senescence induced by the PTEN-PKCδ-NOX1-ROS signaling pathway, and this anti-aging effect was attributed to reduced ROS production caused by suppressing NOX1 activation. These results suggest that the PTEN-PCKδ signaling pathway is directly related to senescence via NOX1 activation and that the downregulation of PKCδ by flavonoids provides a potential means of treating age-associated diseases.
Collapse
Affiliation(s)
- Seul Gi Kim
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea; Senotherapy-based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea
| | - Jin Young Sung
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea; Senotherapy-based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea
| | - Young Jin Kang
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea
| | - Hyoung Chul Choi
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea; Senotherapy-based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea.
| |
Collapse
|
4
|
Kawano T, Inokuchi J, Eto M, Murata M, Kang JH. Protein Kinase C (PKC) Isozymes as Diagnostic and Prognostic Biomarkers and Therapeutic Targets for Cancer. Cancers (Basel) 2022; 14:5425. [PMID: 36358843 PMCID: PMC9658272 DOI: 10.3390/cancers14215425] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 08/05/2023] Open
Abstract
Protein kinase C (PKC) is a large family of calcium- and phospholipid-dependent serine/threonine kinases that consists of at least 11 isozymes. Based on their structural characteristics and mode of activation, the PKC family is classified into three subfamilies: conventional or classic (cPKCs; α, βI, βII, and γ), novel or non-classic (nPKCs; δ, ε, η, and θ), and atypical (aPKCs; ζ, ι, and λ) (PKCλ is the mouse homolog of PKCι) PKC isozymes. PKC isozymes play important roles in proliferation, differentiation, survival, migration, invasion, apoptosis, and anticancer drug resistance in cancer cells. Several studies have shown a positive relationship between PKC isozymes and poor disease-free survival, poor survival following anticancer drug treatment, and increased recurrence. Furthermore, a higher level of PKC activation has been reported in cancer tissues compared to that in normal tissues. These data suggest that PKC isozymes represent potential diagnostic and prognostic biomarkers and therapeutic targets for cancer. This review summarizes the current knowledge and discusses the potential of PKC isozymes as biomarkers in the diagnosis, prognosis, and treatment of cancers.
Collapse
Affiliation(s)
- Takahito Kawano
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Junichi Inokuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masatoshi Eto
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaharu Murata
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jeong-Hun Kang
- Division of Biopharmaceutics and Pharmacokinetics, National Cerebral and Cardiovascular Center Research Institute, 6-1 Shinmachi, Kishibe, Suita, Osaka 564-8565, Japan
| |
Collapse
|
5
|
Wang K, Kong X, Du M, Yu W, Wang Z, Xu B, Yang J, Xu J, Liu Z, Cheng Y, Gan J. Novel Soy Peptide CBP: Stimulation of Osteoblast Differentiation via TβRI-p38-MAPK-Depending RUNX2 Activation. Nutrients 2022; 14:1940. [PMID: 35565907 PMCID: PMC9105634 DOI: 10.3390/nu14091940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 01/06/2023] Open
Abstract
DEDEQIPSHPPR, the calcium-binding peptide (CBP) identified in soy yogurt, was proven to be a potential cofactor in osteoporosis prevention in our previous study, but the mechanism was unknown. In this study, the activity of alkaline phosphatase (ALP) and osteocalcin (OCN), the regulation of RUNX2, and the expression of TβRI were investigated to elucidate the underlying mechanism. The results show that CBP upregulated ALP activity and OCN concentration and increased the expression of RUNX2 and the activation of the MAPK signaling pathway. Similarly, the expression of osteogenesis-related genes in osteoblasts also increased upon CBP treatment. Moreover, the CBP-induced enhancement of ALP activity and phosphorylation levels in the p38 pathway was inhibited by treatment with a p38 inhibitor (SB203538) and TβRI inhibitor (SB431542), respectively, suggesting that p38 and TβRI were involved in the osteogenic action. Based on the signaling pathways, the intracellular calcium concentration was significantly elevated by CBP, which was correlated with the increased behavioral functions and the relative fluorescence intensity of the bone mass. These findings suggest that CBP stimulates osteoblast differentiation and bone mineralization through the activation of RUNX2 via mechanisms related to the TβRI-p38-MAPK signaling pathways, further highlighting CBP's important potential for treating osteoporosis.
Collapse
Affiliation(s)
- Kuaitian Wang
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| | - Xiao Kong
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| | - Mengdi Du
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| | - Wei Yu
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhenhua Wang
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| | - Bo Xu
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| | - Jianrong Yang
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| | - Jingru Xu
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| | - Zhili Liu
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| | - Yongqiang Cheng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jing Gan
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| |
Collapse
|
6
|
Orai1 Channel Regulates Human-Activated Pancreatic Stellate Cell Proliferation and TGF β1 Secretion through the AKT Signaling Pathway. Cancers (Basel) 2021; 13:cancers13102395. [PMID: 34063470 PMCID: PMC8156432 DOI: 10.3390/cancers13102395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Activated pancreatic stellate cells (aPSCs), the main source of cancer-associated fibroblasts in pancreatic ductal adenocarcinoma (PDAC), are well known as the key actor of the abundant fibrotic stroma development surrounding the tumor cells. In permanent communication with the tumor cells, they enhance PDAC early spreading and limit the drug delivery. However, the understanding of PSC activation mechanisms and the associated signaling pathways is still incomplete. In this study, we aimed to evaluate the role of Ca2+, and Orai1 Ca2+ channels, in two main PSC activation processes: cell proliferation and cytokine secretion. Indeed, Ca2+ is a versatile second messenger implicated in the regulation of numerous biological processes. We believe that a better comprehension of PSC Ca2+ -dependent activation mechanisms will bring up new crucial PDAC early prognostic markers or new targeting approaches in PDAC treatment. Abstract Activated pancreatic stellate cells (aPSCs), the crucial mediator of pancreatic desmoplasia, are characterized, among others, by high proliferative potential and abundant transforming growth factor β1 (TGFβ1) secretion. Over the past years, the involvement of Ca2+ channels in PSC pathophysiology has attracted great interest in pancreatic cancer research. We, thus, aimed to investigate the role of the Orai1 Ca2+ channel in these two PSC activation processes. Using the siRNA approach, we invalided Orai1 expression and assessed the channel functionality by Ca2+ imaging, the effect on aPSC proliferation, and TGFβ1 secretion. We demonstrated the functional expression of the Orai1 channel in human aPSCs and its implication in the store-operated Ca2+ entry (SOCE). Orai1 silencing led to a decrease in aPSC proliferation, TGFβ1 secretion, and AKT activation. Interestingly, TGFβ1 induced a higher SOCE response by increasing Orai1 mRNAs and proteins and promoted both AKT phosphorylation and cell proliferation, abolished by Orai1 silencing. Together, our results highlight the role of Orai1-mediated Ca2+ entry in human aPSC pathophysiology by controlling cell proliferation and TGFβ1 secretion through the AKT signaling pathway. Moreover, we showed a TGFβ1-induced autocrine positive feedback loop by promoting the Orai1/AKT-dependent proliferation via the stimulation of Orai1 expression and function.
Collapse
|
7
|
Mesquita G, Prevarskaya N, Schwab A, Lehen’kyi V. Role of the TRP Channels in Pancreatic Ductal Adenocarcinoma Development and Progression. Cells 2021; 10:cells10051021. [PMID: 33925979 PMCID: PMC8145744 DOI: 10.3390/cells10051021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 12/28/2022] Open
Abstract
The transient receptor potential channels (TRPs) have been related to several different physiologies that range from a role in sensory physiology (including thermo- and osmosensation) to a role in some pathologies like cancer. The great diversity of functions performed by these channels is represented by nine sub-families that constitute the TRP channel superfamily. From the mid-2000s, several reports have shown the potential role of the TRP channels in cancers of multiple origin. The pancreatic cancer is one of the deadliest cancers worldwide. Its prevalence is predicted to rise further. Disappointingly, the treatments currently used are ineffective. There is an urgency to find new ways to counter this disease and one of the answers may lie in the ion channels belonging to the superfamily of TRP channels. In this review, we analyse the existing knowledge on the role of TRP channels in the development and progression of pancreatic ductal adenocarcinoma (PDAC). The functions of these channels in other cancers are also considered. This might be of interest for an extrapolation to the pancreatic cancer in an attempt to identify potential therapeutic interventions.
Collapse
Affiliation(s)
- Gonçalo Mesquita
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d’Ascq, France; (G.M.); (N.P.)
- PHYCELL—Laboratoire de Physiologie Cellulaire, INSERM U1003, University of Lille, 59655 Villeneuve d’Ascq, France
- Institute of Physiology II, University Münster, 48149 Münster, Germany;
| | - Natalia Prevarskaya
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d’Ascq, France; (G.M.); (N.P.)
- PHYCELL—Laboratoire de Physiologie Cellulaire, INSERM U1003, University of Lille, 59655 Villeneuve d’Ascq, France
| | - Albrecht Schwab
- Institute of Physiology II, University Münster, 48149 Münster, Germany;
| | - V’yacheslav Lehen’kyi
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d’Ascq, France; (G.M.); (N.P.)
- PHYCELL—Laboratoire de Physiologie Cellulaire, INSERM U1003, University of Lille, 59655 Villeneuve d’Ascq, France
- Correspondence: ; Tel.: +33-(0)-3-20-33-70-78; Fax: +33-(0)-3-20-43-40-66
| |
Collapse
|
8
|
Swellam M, Saad EA, Sabry S, Denewer A, Abdel Malak C, Abouzid A. Alterations of PTEN and SMAD4 methylation in diagnosis of breast cancer: implications of methyl II PCR assay. J Genet Eng Biotechnol 2021; 19:54. [PMID: 33825073 PMCID: PMC8024427 DOI: 10.1186/s43141-021-00154-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/26/2021] [Indexed: 12/22/2022]
Abstract
Background Diagnosis of breast cancer is more complicated due to lack of minimal invasive biomarker with sufficient precision. DNA methylation is a promising marker for cancer diagnosis. In this study, authors evaluated methylation patterns for PTEN and SMAD4 in blood samples using EpiTect Methyl II QPCR assay quantitative PCR technology. Results Methylation status for PTEN and SMAD4 were statistically significant as breast cancer patients reported hypermethylation compared to benign and control groups (77.1 ± 17.9 vs. 24.9 ± 4.5 and 15.1 ± 1.4 and 70.1 ± 14.4 vs. 28.2 ± 0.61 and 29.5 ± 3.6, respectively). ROC curve analysis revealed that both PTEN (AUC = 0.992) and SMAD4 (AUC = 0.853) had good discriminative power for differentiating BC from all non-cancer individuals (benign and healthy combined) compared to routine tumor markers CEA (AUC = 0.538) and CA15.3 (AUC = 0.686). High PTEN methylation degree was associated with late stages (84.2 ± 17.4), positive lymph node (84.2 ± 18.5), positive ER (81.3 ± 19.7), positive PgR (79.5 ± 19.1), and positive HER2 (80.7 ± 19.0) vs. 67.4 ± 13.8, 70.6 ± 14.8, 72.8 ± 14.9, 72.5 ± 14.7, and 70.2 ± 13.5 in early stages, negative lymph node, negative ER, negative PgR, and negative HER2, respectively. Similar results were obtained regarding SMAD4 methylation. Sensitivity, specificity, positive and negative predictive values, and accuracy for methylated PTEN were 100%, 95%, 99.1%, 100%, and 95%, respectively when differentiated BC from all-non cancer controls. Interestingly, PTEN could distinguish early BC stages with good sensitivity 84.4%, 51.4%, 69.1%, 72%, and 70%, respectively. Conclusion Methylation status of PTEN and SMAD4 is a promising blood marker for early detection of breast cancer. Future studies are needed for their role as prognostic markers.
Collapse
Affiliation(s)
- Menha Swellam
- Biochemistry Department, Genetic Engineering and Biotechnology Research Division, High Throughput Molecular and Genetic Laboratory, Center for Excellences for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt
| | - Entsar A Saad
- Chemistry Department, Faculty of Science, Damietta University, Damietta, 34517, Egypt
| | - Shimaa Sabry
- Chemistry Department, Faculty of Science, Damietta University, Damietta, 34517, Egypt.
| | - Adel Denewer
- Surgical Oncology Department, Mansoura Oncology Centre, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Camelia Abdel Malak
- Chemistry Department, Faculty of Science, Damietta University, Damietta, 34517, Egypt
| | - Amr Abouzid
- Surgical Oncology Department, Mansoura Oncology Centre, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
9
|
Shah K, Ahmed M, Kazi JU. The Aurora kinase/β-catenin axis contributes to dexamethasone resistance in leukemia. NPJ Precis Oncol 2021; 5:13. [PMID: 33597638 PMCID: PMC7889633 DOI: 10.1038/s41698-021-00148-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
Glucocorticoids, such as dexamethasone and prednisolone, are widely used in cancer treatment. Different hematological malignancies respond differently to this treatment which, as could be expected, correlates with treatment outcome. In this study, we have used a glucocorticoid-induced gene signature to develop a deep learning model that can predict dexamethasone sensitivity. By combining gene expression data from cell lines and patients with acute lymphoblastic leukemia, we observed that the model is useful for the classification of patients. Predicted samples have been used to detect deregulated pathways that lead to dexamethasone resistance. Gene set enrichment analysis, peptide substrate-based kinase profiling assay, and western blot analysis identified Aurora kinase, S6K, p38, and β-catenin as key signaling proteins involved in dexamethasone resistance. Deep learning-enabled drug synergy prediction followed by in vitro drug synergy analysis identified kinase inhibitors against Aurora kinase, JAK, S6K, and mTOR that displayed synergy with dexamethasone. Combining pathway enrichment, kinase regulation, and kinase inhibition data, we propose that Aurora kinase or its several direct or indirect downstream kinase effectors such as mTOR, S6K, p38, and JAK may be involved in β-catenin stabilization through phosphorylation-dependent inactivation of GSK-3β. Collectively, our data suggest that activation of the Aurora kinase/β-catenin axis during dexamethasone treatment may contribute to cell survival signaling which is possibly maintained in patients who are resistant to dexamethasone.
Collapse
Affiliation(s)
- Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Mehreen Ahmed
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
10
|
Adiga D, Radhakrishnan R, Chakrabarty S, Kumar P, Kabekkodu SP. The Role of Calcium Signaling in Regulation of Epithelial-Mesenchymal Transition. Cells Tissues Organs 2020; 211:134-156. [PMID: 33316804 DOI: 10.1159/000512277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/13/2020] [Indexed: 11/19/2022] Open
Abstract
Despite substantial advances in the field of cancer therapeutics, metastasis is a significant challenge for a favorable clinical outcome. Epithelial to mesenchymal transition (EMT) is a process of acquiring increased motility, invasiveness, and therapeutic resistance by cancer cells for their sustained growth and survival. A plethora of intrinsic mechanisms and extrinsic microenvironmental factors drive the process of cancer metastasis. Calcium (Ca2+) signaling plays a critical role in dictating the adaptive metastatic cell behavior comprising of cell migration, invasion, angiogenesis, and intravasation. By modulating EMT, Ca2+ signaling can regulate the complexity and dynamics of events leading to metastasis. This review summarizes the role of Ca2+ signal remodeling in the regulation of EMT and metastasis in cancer.
Collapse
Affiliation(s)
- Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.,Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, India
| | - Prashant Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India, .,Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, India,
| |
Collapse
|
11
|
Role of tight junctions in the epithelial-to-mesenchymal transition of cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183503. [PMID: 33189716 DOI: 10.1016/j.bbamem.2020.183503] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022]
Abstract
The epithelial-mesenchymal transition (EMT) is an essential step in cancer progression. Epithelial cells possess several types of cell-cell junctions, and tight junctions are known to play important roles in maintaining the epithelial program. EMT is characterized by a loss of epithelial markers, including E-cadherin and tight junction proteins. Somewhat surprisingly, the evidence is accumulating that upregulated expression of tight junction proteins plays an important role in the EMT of cancer cells. Tight junctions have distinct tissue-specific and cancer-specific regulatory mechanisms, enabling them to play different roles in EMT. Tight junctions and related signaling pathways are attractive targets for cancer treatments; signal transduction inhibitors and monoclonal antibodies for tight junction proteins may be used to suppress EMT, invasion, and metastasis. Here we review the role of bicellular and tricellular tight junction proteins during EMT. Further investigation of regulatory mechanisms of tight junctions during EMT in cancer cells will inform the development of biomarkers for predicting prognosis as well as novel therapies.
Collapse
|
12
|
Schnipper J, Dhennin-Duthille I, Ahidouch A, Ouadid-Ahidouch H. Ion Channel Signature in Healthy Pancreas and Pancreatic Ductal Adenocarcinoma. Front Pharmacol 2020; 11:568993. [PMID: 33178018 PMCID: PMC7596276 DOI: 10.3389/fphar.2020.568993] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth most common cause of cancer-related deaths in United States and Europe. It is predicted that PDAC will become the second leading cause of cancer-related deaths during the next decades. The development of PDAC is not well understood, however, studies have shown that dysregulated exocrine pancreatic fluid secretion can contribute to pathologies of exocrine pancreas, including PDAC. The major roles of healthy exocrine pancreatic tissue are secretion of enzymes and bicarbonate rich fluid, where ion channels participate to fine-tune these biological processes. It is well known that ion channels located in the plasma membrane regulate multiple cellular functions and are involved in the communication between extracellular events and intracellular signaling pathways and can function as signal transducers themselves. Hereby, they contribute to maintain resting membrane potential, electrical signaling in excitable cells, and ion homeostasis. Despite their contribution to basic cellular processes, ion channels are also involved in the malignant transformation from a normal to a malignant phenotype. Aberrant expression and activity of ion channels have an impact on essentially all hallmarks of cancer defined as; uncontrolled proliferation, evasion of apoptosis, sustained angiogenesis and promotion of invasion and migration. Research indicates that certain ion channels are involved in the aberrant tumor growth and metastatic processes of PDAC. The purpose of this review is to summarize the important expression, localization, and function of ion channels in normal exocrine pancreatic tissue and how they are involved in PDAC progression and development. As ion channels are suggested to be potential targets of treatment they are furthermore suggested to be biomarkers of different cancers. Therefore, we describe the importance of ion channels in PDAC as markers of diagnosis and clinical factors.
Collapse
Affiliation(s)
- Julie Schnipper
- Laboratory of Cellular and Molecular Physiology, UR-4667, University of Picardie Jules Verne, Amiens, France
| | - Isabelle Dhennin-Duthille
- Laboratory of Cellular and Molecular Physiology, UR-4667, University of Picardie Jules Verne, Amiens, France
| | - Ahmed Ahidouch
- Laboratory of Cellular and Molecular Physiology, UR-4667, University of Picardie Jules Verne, Amiens, France.,Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Halima Ouadid-Ahidouch
- Laboratory of Cellular and Molecular Physiology, UR-4667, University of Picardie Jules Verne, Amiens, France
| |
Collapse
|
13
|
Li K, Han H, Gu W, Cao C, Zheng P. Long non-coding RNA LINC01963 inhibits progression of pancreatic carcinoma by targeting miR-641/TMEFF2. Biomed Pharmacother 2020; 129:110346. [PMID: 32559621 DOI: 10.1016/j.biopha.2020.110346] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/23/2020] [Accepted: 05/30/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE The aim of this study was to research the molecular mechanism of lncRNA LINC01963 in pancreatic carcinoma progression. METHODS Total 67 pancreatic cancer patients diagnosed and undergoing pancreatic cancer surgery in our hospital from April 2018 to April 2019 were included in this study. Pancreatic cancer cell lines including PANC-1, CFPAC-1, BxPC-3, SW1990 and AsPC1 were used. Based on bioinformatics information, pIRES2-LINC01963 plasmid, siLINC01963, miRNA mimics, miRNA inhibitor or siTMEFF2 were transfected. qRT-PCR and western blot were used to detect the expression of LINC01963, miR-641 and TMEFF2. CCK8 and Colony formation assay were processed for proliferation. Flow Cytometry Assay was processed to detect cell cycle and apoptosis. Transwell experiment was undertaken for invasion and migration. Luciferase assay and RNA Immunoprecipitation assay were used to verify the binding site among LINC01963, miR-641 and TMEFF2. Tumorigenic experiment was processed to confirm the above mechanisms in vivo. RESULTS lncRNA LINC01963 was confirmed to be lower expressed in pancreatic carcinoma tissues and cell lines. By up-regulating the expression of lncRNA LINC01963 in pancreatic carcinoma cell lines, colony number, cell cycle, proliferation and invasion were inhibited, while apoptosis was improved. More importantly, shLINC01963 could improve development of tumor in vivo. Besides, lncRNA LINC01963 negatively regulated the expression of miR-641, while miR-641 negatively targeted TMEFF2. Both miR-641 mimic and siTMEFF2 could reverse the effects of lncRNA LINC01963 overexpression in vitro. CONCLUSIONS Long non-coding RNA LINC01963 inhibits progression of pancreatic carcinoma by targeting miR-641/TMEFF2.
Collapse
Affiliation(s)
- Kailiang Li
- Department of Hepatobiliary Pancreatic Surgery, Jilin Province People's Hospital, Changzhun, China
| | - Hongchao Han
- Department of General Surgery, Yanchen Third People's Hospital, Yancheng, China
| | - Wenjing Gu
- Department of Otolaryngology Head and Neck Surgery, The First Hospital of Jilin University, Changhun, China
| | - Chunyuan Cao
- Department of Hepatobiliary Pancreatic Surgery, Jilin Province People's Hospital, Changzhun, China
| | - Pengyuan Zheng
- Department of Ultrasound, Jinlin Province Cancer Hospital, Changchun, China.
| |
Collapse
|
14
|
Zhang Z, Ren L, Zhao Q, Lu G, Ren M, Lu X, Yin Y, He S, Zhu C. TRPC1 exacerbate metastasis in gastric cancer via ciRS-7/miR-135a-5p/TRPC1 axis. Biochem Biophys Res Commun 2020; 529:85-90. [PMID: 32560824 DOI: 10.1016/j.bbrc.2020.05.181] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022]
Abstract
Metastasis is frequently occurred in end-stage GC. Nevertheless, the initiation and progression of metastasis in GC remains unclear. The transient receptor potential canonical (TRPC) has been confirmed to be crucial for metastasis in many kinds of tumors, including GC. However, the molecular mechanisms regulating TRPC1 is unclear. Therefore, we investigated the role and mechanisms of TRPC1 in GC metastasis. We first evaluated the role of TRPC1 in GC by searching the public database, and tested the expression of TRPC1 in 50 paired GC tissues by qRT-PCR and IHC assays. Then, we generated BGC-823-shTRPC1 cells and MKN-45-TRPC1 cells to investigate the effects of TRPC1 on metastasis in vitro. For the mechanism study, we applied luciferase reporter assay, RNA pull-down assay, as well as RIP assay to validate the interation of ciRS-7, miR-135a-5p and TRPC1 in GC cells. This study, we showed that TRPC1 exacerbate EMT in gastric cancer via ciRS-7/miR-135a-5p/TRPC1 axis, and target TRPC1 could be beneficial for end-stage GC patients.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Li Ren
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Qian Zhao
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Guifang Lu
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Mudan Ren
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Xinlan Lu
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Yan Yin
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Shuixiang He
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China.
| | - Cailin Zhu
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China.
| |
Collapse
|
15
|
Elzamzamy OM, Penner R, Hazlehurst LA. The Role of TRPC1 in Modulating Cancer Progression. Cells 2020; 9:cells9020388. [PMID: 32046188 PMCID: PMC7072717 DOI: 10.3390/cells9020388] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 12/22/2022] Open
Abstract
Calcium ions (Ca2+) play an important role as second messengers in regulating a plethora of physiological and pathological processes, including the progression of cancer. Several selective and non-selective Ca2+-permeable ion channels are implicated in mediating Ca2+ signaling in cancer cells. In this review, we are focusing on TRPC1, a member of the TRP protein superfamily and a potential modulator of store-operated Ca2+ entry (SOCE) pathways. While TRPC1 is ubiquitously expressed in most tissues, its dysregulated activity may contribute to the hallmarks of various types of cancers, including breast cancer, pancreatic cancer, glioblastoma multiforme, lung cancer, hepatic cancer, multiple myeloma, and thyroid cancer. A range of pharmacological and genetic tools have been developed to address the functional role of TRPC1 in cancer. Interestingly, the unique role of TRPC1 has elevated this channel as a promising target for modulation both in terms of pharmacological inhibition leading to suppression of tumor growth and metastasis, as well as for agonistic strategies eliciting Ca2+ overload and cell death in aggressive metastatic tumor cells.
Collapse
Affiliation(s)
- Osama M Elzamzamy
- Clinical and Translational Sciences Institute, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Reinhold Penner
- The Queen’s Medical Center and University of Hawaii, Honolulu, HI 96813, USA;
| | - Lori A Hazlehurst
- Pharmaceutical Sciences, School of Pharmacy and WVU Cancer Institute, West Virginia University, Morganton, WV 26506, USA
- Correspondence: ; Tel.: +1-304-293-3398
| |
Collapse
|
16
|
Tedja R, Roberts CM, Alvero AB, Cardenas C, Yang-Hartwich Y, Spadinger S, Pitruzzello M, Yin G, Glackin CA, Mor G. Protein kinase Cα-mediated phosphorylation of Twist1 at Ser-144 prevents Twist1 ubiquitination and stabilizes it. J Biol Chem 2019; 294:5082-5093. [PMID: 30733340 DOI: 10.1074/jbc.ra118.005921] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/31/2019] [Indexed: 12/21/2022] Open
Abstract
Twist1 is a basic helix-loop-helix transcription factor that plays a key role in embryonic development, and its expression is down-regulated in adult cells. However, Twist1 is highly expressed during cancer development, conferring a proliferative, migratory, and invasive phenotype to malignant cells. Twist1 expression can be regulated post-translationally by phosphorylation or ubiquitination events. We report in this study a previously unknown and relevant Twist1 phosphorylation site that controls its stability. To identify candidate phosphorylation sites in Twist1, we first conducted an in silico analysis of the Twist1 protein, which yielded several potential sites. Because most of these sites were predicted to be phosphorylated by protein kinase C (PKC), we overexpressed PKCα in several cell lines and found that it phosphorylates Twist1 on Ser-144. Using a combination of immunoblotting, immunoprecipitation, protein overexpression, and CRISPR/Cas9-mediated PKCα knockout experiments, we observed that PKCα-mediated Twist1 phosphorylation at Ser-144 inhibits Twist1 ubiquitination and consequently stabilizes it. These results provide evidence for a direct association between PKCα and Twist1 and yield critical insights into the PKCα/Twist1 signaling axis that governs cancer aggressiveness.
Collapse
Affiliation(s)
- Roslyn Tedja
- From the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06511
| | - Cai M Roberts
- From the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06511
| | - Ayesha B Alvero
- From the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06511
| | - Carlos Cardenas
- From the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06511
| | - Yang Yang-Hartwich
- From the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06511
| | - Sydney Spadinger
- From the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06511
| | - Mary Pitruzzello
- From the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06511
| | - Gang Yin
- the Department of Pathology, Xiangya Hospital School of Basic Medical Sciences, Central South University, Changsa, Hunan Province 410083, China, and
| | - Carlotta A Glackin
- the Department of Stem Cell and Developmental Biology, City of Hope, Duarte, California 91010
| | - Gil Mor
- From the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06511,
| |
Collapse
|
17
|
Naderali E, Khaki AA, Rad JS, Ali-Hemmati A, Rahmati M, Charoudeh HN. Regulation and modulation of PTEN activity. Mol Biol Rep 2018; 45:2869-2881. [PMID: 30145641 DOI: 10.1007/s11033-018-4321-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/20/2018] [Indexed: 01/04/2023]
Abstract
PTEN (Phosphatase and tensin homolog deleted on chromosome ten) is a tumor suppressor that is frequently mutated in most human cancers. PTEN is a lipid and protein phosphatase that antagonizes PI3K/AKT pathway through lipid phosphatase activity at the plasma membrane. More recent studies showed that, in addition to the putative role of PTEN as a PI(3,4,5)P3 3-phosphatase, it is a PI(3,4)P2 3-phosphatase during stimulation of class I PI3K signaling pathway by growth factor. Although PTEN tumor suppressor function via it's lipid phosphatase activity occurs primarily in the plasma membrane, it can also be found in the nucleus, in cytoplasmic organelles and extracellular space. PTEN has also shown phosphatase independent functions in the nucleus. PTEN can exit from the cell through exosomal export or secretion and has a tumor suppressor function in adjacent cells. PTEN has a critical role in growth, the cell cycle, protein synthesis, survival, DNA repair and migration. Understanding the regulation of PTEN function, activity, stability, localization and its dysregulation outcomes and also the intracellular and extracellular role of PTEN and paracrine role of PTEN-L in tumor cells as an exogenous therapeutic agent can help to improve clinical conceptualization and treatment of cancer.
Collapse
Affiliation(s)
- Elahe Naderali
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Afshin Khaki
- Department of Anatomical sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani Rad
- Department of Anatomical sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ali-Hemmati
- Department of Anatomical sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Rahmati
- Department of Clinical Biochemistry Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hojjatollah Nozad Charoudeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Cell Therapy Research Laboratory, Drug Applied Research Center, Tabriz University of Medical Sciences, P.O. Box: 51656-65811, Tabriz, Iran.
| |
Collapse
|
18
|
Deregulation of Negative Controls on TGF-β1 Signaling in Tumor Progression. Cancers (Basel) 2018; 10:cancers10060159. [PMID: 29799477 PMCID: PMC6025439 DOI: 10.3390/cancers10060159] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 12/19/2022] Open
Abstract
The multi-functional cytokine transforming growth factor-β1 (TGF-β1) has growth inhibitory and anti-inflammatory roles during homeostasis and the early stages of cancer. Aberrant TGF-β activation in the late-stages of tumorigenesis, however, promotes development of aggressive growth characteristics and metastatic spread. Given the critical importance of this growth factor in fibrotic and neoplastic disorders, the TGF-β1 network is subject to extensive, multi-level negative controls that impact receptor function, mothers against decapentaplegic homolog 2/3 (SMAD2/3) activation, intracellular signal bifurcation into canonical and non-canonical pathways and target gene promotor engagement. Such negative regulators include phosphatase and tensin homologue (PTEN), protein phosphatase magnesium 1A (PPM1A), Klotho, bone morphogenic protein 7 (BMP7), SMAD7, Sloan-Kettering Institute proto-oncogene/ Ski related novel gene (Ski/SnoN), and bone morphogenetic protein and activin membrane-bound Inhibitor (BAMBI). The progression of certain cancers is accompanied by loss of expression, overexpression, mislocalization, mutation or deletion of several endogenous repressors of the TGF-β1 cascade, further modulating signal duration/intensity and phenotypic reprogramming. This review addresses how their aberrant regulation contributes to cellular plasticity, tumor progression/metastasis and reversal of cell cycle arrest and discusses the unexplored therapeutic value of restoring the expression and/or function of these factors as a novel approach to cancer treatment.
Collapse
|
19
|
GDF11 Modulates Ca 2+-Dependent Smad2/3 Signaling to Prevent Cardiomyocyte Hypertrophy. Int J Mol Sci 2018; 19:ijms19051508. [PMID: 29783655 PMCID: PMC5983757 DOI: 10.3390/ijms19051508] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022] Open
Abstract
Growth differentiation factor 11 (GDF11), a member of the transforming growth factor-β family, has been shown to act as a negative regulator in cardiac hypertrophy. Ca2+ signaling modulates cardiomyocyte growth; however, the role of Ca2+-dependent mechanisms in mediating the effects of GDF11 remains elusive. Here, we found that GDF11 induced intracellular Ca2+ increases in neonatal rat cardiomyocytes and that this response was blocked by chelating the intracellular Ca2+ with BAPTA-AM or by pretreatment with inhibitors of the inositol 1,4,5-trisphosphate (IP3) pathway. Moreover, GDF11 increased the phosphorylation levels and luciferase activity of Smad2/3 in a concentration-dependent manner, and the inhibition of IP3-dependent Ca2+ release abolished GDF11-induced Smad2/3 activity. To assess whether GDF11 exerted antihypertrophic effects by modulating Ca2+ signaling, cardiomyocytes were exposed to hypertrophic agents (100 nM testosterone or 50 μM phenylephrine) for 24 h. Both treatments increased cardiomyocyte size and [3H]-leucine incorporation, and these responses were significantly blunted by pretreatment with GDF11 over 24 h. Moreover, downregulation of Smad2 and Smad3 with siRNA was accompanied by inhibition of the antihypertrophic effects of GDF11. These results suggest that GDF11 modulates Ca2+ signaling and the Smad2/3 pathway to prevent cardiomyocyte hypertrophy.
Collapse
|
20
|
Kim DH, Suh J, Surh YJ, Na HK. Regulation of the tumor suppressor PTEN by natural anticancer compounds. Ann N Y Acad Sci 2017; 1401:136-149. [PMID: 28891094 DOI: 10.1111/nyas.13422] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/31/2017] [Accepted: 06/05/2017] [Indexed: 12/20/2022]
Abstract
The tumor suppressor phosphatase and tensin homologue (PTEN) has phosphatase activity, with phosphatidylinositol (3,4,5)-trisphosphate (PIP3), a product of phosphatidylinositol 3-kinase (PI3K), as one of the principal substrates. PTEN is a negative regulator of the Akt pathway, which plays a fundamental role in controlling cell growth, survival, and proliferation. Loss of PTEN function has been observed in many different types of cancer. Functional inactivation of PTEN as a consequence of germ-line mutations or promoter hypermethylation predisposes individuals to malignancies. PTEN undergoes posttranslational modifications, such as oxidation, acetylation, phosphorylation, SUMOylation, and ubiquitination, which influence its catalytic activity, interactions with other proteins, and subcellular localization. Cellular redox status is crucial for posttranslational modification of PTEN and its functional consequences. Oxidative stress and inflammation are major causes of loss of PTEN function. Pharmacologic or nutritional restoration of PTEN function is considered a reliable strategy in the management of PTEN-defective cancer. In this review, we highlight natural compounds, such as curcumin, indol-3 carbinol, and omega-3 fatty acids, that have the potential to restore or potentiate PTEN expression/activity, thereby suppressing cancer cell proliferation, survival, and resistance to chemotherapeutic agents.
Collapse
Affiliation(s)
- Do-Hee Kim
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jinyoung Suh
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science, Seoul National University, Seoul, South Korea.,Cancer Research Institute, Seoul National University, Seoul, South Korea
| | - Hye-Kyung Na
- Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul, South Korea
| |
Collapse
|
21
|
Ungefroren H, Witte D, Mihara K, Rauch BH, Henklein P, Jöhren O, Bonni S, Settmacher U, Lehnert H, Hollenberg MD, Kaufmann R, Gieseler F. Transforming Growth Factor-β1/Activin Receptor-like Kinase 5-Mediated Cell Migration is Dependent on the Protein Proteinase-Activated Receptor 2 but not on Proteinase-Activated Receptor 2-Stimulated Gq-Calcium Signaling. Mol Pharmacol 2017; 92:519-532. [DOI: 10.1124/mol.117.109017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/07/2017] [Indexed: 01/01/2023] Open
|
22
|
Fleming AK, Storz P. Protein kinase C isoforms in the normal pancreas and in pancreatic disease. Cell Signal 2017; 40:1-9. [PMID: 28826907 DOI: 10.1016/j.cellsig.2017.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/17/2017] [Indexed: 12/16/2022]
Abstract
Protein Kinase C isoforms have been implicated in regulating multiple processes within the healthy pancreas. Moreover, their dysregulation contributes to all aspects of pancreatic disease. In this review, with a focus on acinar, ductal, and islet cells, we highlight the roles and contributions of the different PKC isoforms to normal pancreas function. We also discuss the contribution of PKC enzymes to pancreatic diseases, including insulin resistance and diabetes mellitus, as well as pancreatitis and the development and progression of pancreatic cancer.
Collapse
Affiliation(s)
- Alicia K Fleming
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
23
|
Hertig V, Tardif K, Meus MA, Duquette N, Villeneuve L, Toussaint F, Ledoux J, Calderone A. Nestin expression is upregulated in the fibrotic rat heart and is localized in collagen-expressing mesenchymal cells and interstitial CD31(+)- cells. PLoS One 2017; 12:e0176147. [PMID: 28448522 PMCID: PMC5407835 DOI: 10.1371/journal.pone.0176147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/05/2017] [Indexed: 11/19/2022] Open
Abstract
Renal and lung fibrosis was characterized by the accumulation of collagen-immunoreactive mesenchymal cells expressing the intermediate filament protein nestin. The present study tested the hypothesis that nestin expression was increased in the hypertrophied/fibrotic left ventricle of suprarenal abdominal aorta constricted adult male Sprague-Dawley rats and induced in ventricular fibroblasts by pro-fibrotic peptide growth factors. Nestin protein levels were upregulated in the pressure-overloaded left ventricle and expression positively correlated with the rise of mean arterial pressure. In sham and pressure-overloaded hearts, nestin immunoreactivity was detected in collagen type I(+)-and CD31(+)-cells identified in the interstitium and perivascular region whereas staining was absent in smooth muscle α-actin(+)-cells. A significantly greater number of collagen type I(+)-cells co-expressing nestin was identified in the left ventricle of pressure-overloaded rats. Moreover, an accumulation of nestin(+)-cells lacking collagen, CD31 and smooth muscle α-actin staining was selectively observed at the adventitial region of predominantly large calibre blood vessels in the hypertrophied/fibrotic left ventricle. Angiotensin II and TGF-β1 stimulation of ventricular fibroblasts increased nestin protein levels via phosphatidylinositol 3-kinase- and protein kinase C/SMAD3-dependent pathways, respectively. CD31/eNOS(+)-rat cardiac microvascular endothelial cells synthesized/secreted collagen type I, expressed prolyl 4-hydroxylase and TGF-β1 induced nestin expression. The selective accumulation of adventitial nestin(+)-cells highlighted a novel feature of large vessel remodelling in the pressure-overloaded heart and increased appearance of collagen type I/nestin(+)-cells may reflect an activated phenotype of ventricular fibroblasts. CD31/collagen/nestin(+)-interstitial cells could represent displaced endothelial cells displaying an unmasked mesenchymal phenotype, albeit contribution to the reactive fibrotic response of the pressure-overloaded heart remains unknown.
Collapse
Affiliation(s)
- Vanessa Hertig
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Kim Tardif
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Marc Andre Meus
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Natacha Duquette
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Louis Villeneuve
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Fanny Toussaint
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
- Department of Pharmacology & Physiology, Université de Montréal, Québec, Montréal, Canada
| | - Jonathan Ledoux
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
- Department of Medicine, Université de Montréal, Québec, Montréal, Canada
| | - Angelino Calderone
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
- Department of Pharmacology & Physiology, Université de Montréal, Québec, Montréal, Canada
- * E-mail:
| |
Collapse
|
24
|
TGF-β induces phosphorylation of phosphatase and tensin homolog: implications for fibrosis of the trabecular meshwork tissue in glaucoma. Sci Rep 2017; 7:812. [PMID: 28400560 PMCID: PMC5429747 DOI: 10.1038/s41598-017-00845-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/16/2017] [Indexed: 01/06/2023] Open
Abstract
Fundamental cell signaling mechanisms that regulate dynamic remodeling of the extracellular matrix (ECM) in mechanically loaded tissues are not yet clearly understood. Trabecular meshwork (TM) tissue in the eye is under constant mechanical stress and continuous remodeling of ECM is crucial to maintain normal aqueous humor drainage and intraocular pressure (IOP). However, excessive ECM remodeling can cause fibrosis of the TM as in primary open-angle glaucoma (POAG) patients, and is characterized by increased resistance to aqueous humor drainage, elevated IOP, optic nerve degeneration and blindness. Increased levels of active transforming growth factor-β2 (TGF-β2) in the aqueous humor is the main cause of fibrosis of TM in POAG patients. Herein, we report a novel finding that, in TM cells, TGF-β-induced increase in collagen expression is associated with phosphorylation of phosphatase and tensin homolog (PTEN) at residues Ser380/Thr382/383. Exogenous overexpression of a mutated form of PTEN with enhanced phosphatase activity prevented the TGF-β-induced collagen expression by TM cells. We propose that rapid alteration of PTEN activity through changes in its phosphorylation status could uniquely regulate the continuous remodeling of ECM in the normal TM. Modulating PTEN activity may have high therapeutic potential to alleviating the fibrosis of TM in POAG patients.
Collapse
|
25
|
Di Marco M, Astolfi A, Grassi E, Vecchiarelli S, Macchini M, Indio V, Casadei R, Ricci C, D'Ambra M, Taffurelli G, Serra C, Ercolani G, Santini D, D'Errico A, Pinna AD, Minni F, Durante S, Martella LR, Biasco G. Characterization of pancreatic ductal adenocarcinoma using whole transcriptome sequencing and copy number analysis by single-nucleotide polymorphism array. Mol Med Rep 2015; 12:7479-84. [PMID: 26397140 DOI: 10.3892/mmr.2015.4344] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/27/2015] [Indexed: 11/06/2022] Open
Abstract
The aim of the current study was to implement whole transcriptome massively parallel sequencing (RNASeq) and copy number analysis to investigate the molecular biology of pancreatic ductal adenocarcinoma (PDAC). Samples from 16 patients with PDAC were collected by ultrasound‑guided biopsy or from surgical specimens for DNA and RNA extraction. All samples were analyzed by RNASeq performed at 75x2 base pairs on a HiScanSQ Illumina platform. Single‑nucleotide variants (SNVs) were detected with SNVMix and filtered on dbSNP, 1000 Genomes and Cosmic. Non‑synonymous SNVs were analyzed with SNPs&GO and PROVEAN. A total of 13 samples were analyzed by high resolution copy number analysis on an Affymetrix SNP array 6.0. RNAseq resulted in an average of 264 coding non‑synonymous novel SNVs (ranging from 146‑374) and 16 novel insertions or deletions (In/Dels) (ranging from 6‑24) for each sample, of which a mean of 11.2% were disease‑associated and somatic events, while 34.7% were frameshift somatic In/Dels. From this analysis, alterations in the known oncogenes associated with PDAC were observed, including Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations (93.7%) and inactivation of cyclin‑dependent kinase inhibitor 2A (CDKN2A) (50%), mothers against decapentaplegic homolog 4 (SMAD4) (50%), and tumor protein 53 (TP53) (56%). One case that was negative for KRAS exhibited a G13D neuroblastoma RAS viral oncogene homolog mutation. In addition, gene fusions were detected in 10 samples for a total of 23 different intra‑ or inter‑chromosomal rearrangements, however, a recurrent fusion transcript remains to be identified. SNP arrays identified macroscopic and cryptic cytogenetic alterations in 85% of patients. Gains were observed in the chromosome arms 6p, 12p, 18q and 19q which contain KRAS, GATA binding protein 6, protein kinase B and cyclin D3. Deletions were identified on chromosome arms 1p, 9p, 6p, 18q, 10q, 15q, 17p, 21q and 19q which involve TP53, CDKN2A/B, SMAD4, runt‑related transcription factor 2, AT‑rich interactive domain‑containing protein 1A, phosphatase and tensin homolog and serine/threonine kinase 11. In conclusion, genetic alterations in PDCA were observed to involve numerous pathways including cell migration, transforming growth factor‑β signaling, apoptosis, cell proliferation and DNA damage repair. However, signaling alterations were not observed in all tumors and key mutations appeared to differ between PDAC cases.
Collapse
Affiliation(s)
- Mariacristina Di Marco
- Department of Experimental, Diagnostic and Specialty Medicine, Sant'Orsola‑Malpighi Hospital, Bologna I‑40100, Italy
| | - Annalisa Astolfi
- Interdepartmental Center of Cancer Research, Sant'Orsola‑Malpighi Hospital, Bologna I‑40100, Italy
| | - Elisa Grassi
- Department of Experimental, Diagnostic and Specialty Medicine, Sant'Orsola‑Malpighi Hospital, Bologna I‑40100, Italy
| | - Silvia Vecchiarelli
- Department of Experimental, Diagnostic and Specialty Medicine, Sant'Orsola‑Malpighi Hospital, Bologna I‑40100, Italy
| | - Marina Macchini
- Department of Experimental, Diagnostic and Specialty Medicine, Sant'Orsola‑Malpighi Hospital, Bologna I‑40100, Italy
| | - Valentina Indio
- Interdepartmental Center of Cancer Research, Sant'Orsola‑Malpighi Hospital, Bologna I‑40100, Italy
| | - Riccardo Casadei
- Department of Medical and Surgical Sciences, Sant'Orsola‑Malpighi Hospital, Bologna I‑40100, Italy
| | - Claudio Ricci
- Department of Medical and Surgical Sciences, Sant'Orsola‑Malpighi Hospital, Bologna I‑40100, Italy
| | - Marielda D'Ambra
- Department of Medical and Surgical Sciences, Sant'Orsola‑Malpighi Hospital, Bologna I‑40100, Italy
| | - Giovanni Taffurelli
- Department of Medical and Surgical Sciences, Sant'Orsola‑Malpighi Hospital, Bologna I‑40100, Italy
| | - Carla Serra
- Department of Digestive Diseases and Internal Medicine, Sant'Orsola‑Malpighi Hospital, Bologna I‑40100, Italy
| | - Giorgio Ercolani
- Liver and Multiorgan Transplant Unit, Sant'Orsola‑Malpighi Hospital, Bologna I‑40100, Italy
| | - Donatella Santini
- Pathology Unit, Sant'Orsola‑Malpighi Hospital, Bologna I‑40100, Italy
| | - Antonia D'Errico
- Department of Experimental, Diagnostic and Specialty Medicine, Sant'Orsola‑Malpighi Hospital, Bologna I‑40100, Italy
| | - Antonio Daniele Pinna
- Department of Medical and Surgical Sciences, Sant'Orsola‑Malpighi Hospital, Bologna I‑40100, Italy
| | - Francesco Minni
- Department of Medical and Surgical Sciences, Sant'Orsola‑Malpighi Hospital, Bologna I‑40100, Italy
| | - Sandra Durante
- Interdepartmental Center of Cancer Research, Sant'Orsola‑Malpighi Hospital, Bologna I‑40100, Italy
| | - Laura Raffaella Martella
- Department of Experimental, Diagnostic and Specialty Medicine, Sant'Orsola‑Malpighi Hospital, Bologna I‑40100, Italy
| | - Guido Biasco
- Department of Experimental, Diagnostic and Specialty Medicine, Sant'Orsola‑Malpighi Hospital, Bologna I‑40100, Italy
| |
Collapse
|
26
|
Abstract
In preclinical studies, protein kinase C (PKC) enzymes have been implicated in regulating many aspects of pancreatic cancer development and progression. However, clinical Phase I or Phase II trials with compounds targeting classical PKC isoforms were not successful. Recent studies implicate that mainly atypical and novel PKC enzymes regulate oncogenic signaling pathways in pancreatic cancer. Members of these two subgroups converge signaling induced by mutant Kras, growth factors and inflammatory cytokines. Different approaches for the development of inhibitors for atypical PKC and novel PKC have been described; and new compounds include allosteric inhibitors and inhibitors that block ATP binding.
Collapse
Affiliation(s)
- Peter Storz
- Department of Cancer Biology, Mayo Clinic, Griffin Building, Room 306, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| |
Collapse
|
27
|
Li S, Miller CH, Giannopoulou E, Hu X, Ivashkiv LB, Zhao B. RBP-J imposes a requirement for ITAM-mediated costimulation of osteoclastogenesis. J Clin Invest 2014; 124:5057-73. [PMID: 25329696 PMCID: PMC4347236 DOI: 10.1172/jci71882] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/11/2014] [Indexed: 01/07/2023] Open
Abstract
Osteoclastogenesis requires activation of RANK signaling as well as costimulatory signals from immunoreceptor tyrosine-based activation motif-containing (ITAM-containing) receptors/adaptors, predominantly tyrosine kinase-binding proteins DAP12 and FcRγ, in osteoclast precursors. It is not well understood how costimulatory signals are regulated and integrated with RANK signaling. Here, we found that osteopetrotic bone phenotypes in mice lacking DAP12 or DAP12 and FcRγ are mediated by the transcription factor RBP-J, as deletion of Rbpj in these mice substantially rescued the defects of bone remodeling. Using a TNF-α-induced model of inflammatory bone resorption, we determined that RBP-J deficiency enables TNF-α to induce osteoclast formation and bone resorption in DAP12-deficient animals. Thus, RBP-J imposes a requirement for ITAM-mediated costimulation of RANKL or TNF-α-induced osteoclastogenesis. Mechanistically, RBP-J suppressed induction of key osteoclastogenic factors NFATc1, BLIMP1, and c-FOS by inhibiting ITAM-mediated expression and function of PLCγ2 and activation of downstream calcium-CaMKK/PYK2 signaling. Moreover, RBP-J suppressed Plcg2 expression and downstream calcium oscillations indirectly by a TGF-β/PLCγ2/calcium axis. Together, our findings indicate that RBP-J suppresses ITAM-mediated costimulation, thereby limiting crosstalk between ITAM and RANK/TNFR signaling and allowing fine tuning of osteoclastogenesis during bone homeostasis and under inflammatory conditions. Furthermore, these data suggest that environmental cues that regulate RBP-J expression/function potentially modulate the requirement for costimulatory signaling for osteoclast differentiation and bone remodeling.
Collapse
Affiliation(s)
- Susan Li
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA. Biological Sciences Department, New York City College of Technology, City University of New York, New York, New York, USA. Department of Medicine and Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Christine H. Miller
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA. Biological Sciences Department, New York City College of Technology, City University of New York, New York, New York, USA. Department of Medicine and Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Eugenia Giannopoulou
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA. Biological Sciences Department, New York City College of Technology, City University of New York, New York, New York, USA. Department of Medicine and Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Xiaoyu Hu
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA. Biological Sciences Department, New York City College of Technology, City University of New York, New York, New York, USA. Department of Medicine and Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Lionel B. Ivashkiv
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA. Biological Sciences Department, New York City College of Technology, City University of New York, New York, New York, USA. Department of Medicine and Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA. Biological Sciences Department, New York City College of Technology, City University of New York, New York, New York, USA. Department of Medicine and Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| |
Collapse
|
28
|
Kyuno D, Yamaguchi H, Ito T, Kono T, Kimura Y, Imamura M, Konno T, Hirata K, Sawada N, Kojima T. Targeting tight junctions during epithelial to mesenchymal transition in human pancreatic cancer. World J Gastroenterol 2014; 20:10813-10824. [PMID: 25152584 PMCID: PMC4138461 DOI: 10.3748/wjg.v20.i31.10813] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 05/05/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer continues to be a leading cause of cancer-related death worldwide and there is an urgent need to develop novel diagnostic and therapeutic strategies to reduce the mortality of patients with this disease. In pancreatic cancer, some tight junction proteins, including claudins, are abnormally regulated and therefore are promising molecular targets for diagnosis, prognosis and therapy. Claudin-4 and -18 are overexpressed in human pancreatic cancer and its precursor lesions. Claudin-4 is a high affinity receptor of Clostridium perfringens enterotoxin (CPE). The cytotoxic effects of CPE and monoclonal antibodies against claudin-4 are useful as novel therapeutic tools for pancreatic cancer. Claudin-18 could be a putative marker and therapeutic target with prognostic implications for patients with pancreatic cancer. Claudin-1, -7, tricellulin and marvelD3 are involved in epithelial to mesenchymal transition (EMT) of pancreatic cancer cells and thus might be useful as biomarkers during disease. Protein kinase C is closely related to EMT of pancreatic cancer and regulates tight junctions of normal human pancreatic duct epithelial cells and the cancer cells. This review focuses on the regulation of tight junctions via protein kinase C during EMT in human pancreatic cancer for the purpose of developing new diagnostic and therapeutic modalities for pancreatic cancer.
Collapse
|
29
|
Abstract
Protein kinase C (PKC) is a family of phospholipid-dependent serine/threonine kinases, which can be further classified into three PKC isozymes subfamilies: conventional or classic, novel or nonclassic, and atypical. PKC isozymes are known to be involved in cell proliferation, survival, invasion, migration, apoptosis, angiogenesis, and drug resistance. Because of their key roles in cell signaling, PKC isozymes also have the potential to be promising therapeutic targets for several diseases, such as cardiovascular diseases, immune and inflammatory diseases, neurological diseases, metabolic disorders, and multiple types of cancer. This review primarily focuses on the activation, mechanism, and function of PKC isozymes during cancer development and progression.
Collapse
|
30
|
Stebbing J, Lit LC, Zhang H, Darrington RS, Melaiu O, Rudraraju B, Giamas G. The regulatory roles of phosphatases in cancer. Oncogene 2014; 33:939-53. [PMID: 23503460 DOI: 10.1038/onc.2013.80] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/01/2013] [Indexed: 02/06/2023]
Abstract
The relevance of potentially reversible post-translational modifications required for controlling cellular processes in cancer is one of the most thriving arenas of cellular and molecular biology. Any alteration in the balanced equilibrium between kinases and phosphatases may result in development and progression of various diseases, including different types of cancer, though phosphatases are relatively under-studied. Loss of phosphatases such as PTEN (phosphatase and tensin homologue deleted on chromosome 10), a known tumour suppressor, across tumour types lends credence to the development of phosphatidylinositol 3-kinase inhibitors alongside the use of phosphatase expression as a biomarker, though phase 3 trial data are lacking. In this review, we give an updated report on phosphatase dysregulation linked to organ-specific malignancies.
Collapse
Affiliation(s)
- J Stebbing
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - L C Lit
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - H Zhang
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - R S Darrington
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - O Melaiu
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - B Rudraraju
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - G Giamas
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
31
|
Moniri MR, Dai LJ, Warnock GL. The challenge of pancreatic cancer therapy and novel treatment strategy using engineered mesenchymal stem cells. Cancer Gene Ther 2014; 21:12-23. [PMID: 24384772 DOI: 10.1038/cgt.2013.83] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 12/09/2013] [Indexed: 12/26/2022]
Abstract
Mesenchymal stem cells (MSCs) have attracted significant attention in cancer research as a result of their accessibility, tumor-oriented homing capacity, and the feasibility of auto-transplantation. This review provides a comprehensive overview of current challenges in pancreatic cancer therapy, and we propose a novel strategy for using MSCs as means of delivering anticancer genes to the site of pancreas. We aim to provide a practical platform for the development of MSC-based therapy for pancreatic cancer.
Collapse
Affiliation(s)
- M R Moniri
- Department of Surgery, University of British Columbia, Vancouver BC, Canada
| | - L-J Dai
- 1] Department of Surgery, University of British Columbia, Vancouver BC, Canada [2] Hubei Key Laboratory of Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - G L Warnock
- Department of Surgery, University of British Columbia, Vancouver BC, Canada
| |
Collapse
|
32
|
Kojima T, Yamaguchi H, Ito T, Kyuno D, Kono T, Konno T, Sawada N. Tight junctions in human pancreatic duct epithelial cells. Tissue Barriers 2013; 1:e24894. [PMID: 24665406 PMCID: PMC3805649 DOI: 10.4161/tisb.24894] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/28/2013] [Accepted: 05/01/2013] [Indexed: 12/13/2022] Open
Abstract
Tight junctions of the pancreatic duct are essential regulators of physiologic secretion of the pancreas and disruption of the pancreatic ductal barrier is known to contribute to the pathogenesis of pancreatitis and progression of pancreatic cancer. Various inflammatory mediators and carcinogens can trigger tight junction disassembly and disruption of the pancreatic barrier, however signaling events that mediates such barrier dysfunctions remain poorly understood. This review focuses on structure and regulation of tight junctions in normal pancreatic epithelial cells and mechanisms of junctional disruption during pancreatic inflammation and cancer. We will pay special attention to a novel model of human telomerase reverse transcriptase-transfected human pancreatic ductal epithelial cells and will describe the roles of major signaling molecules such as protein kinase C and c-Jun N-terminal kinase in formation and disassembly of the pancreatic ductal barrier.
Collapse
Affiliation(s)
- Takashi Kojima
- Department of Pathology; Sapporo Medical University School of Medicine; Sapporo, Japan ; Department of Cell Science; Research Institute of Frontier Medicine; Sapporo Medical University School of Medicine; Sapporo, Japan
| | - Hiroshi Yamaguchi
- Department of Surgery; Sapporo Medical University School of Medicine; Sapporo, Japan
| | - Tatsuya Ito
- Department of Surgery; Sapporo Medical University School of Medicine; Sapporo, Japan
| | - Daisuke Kyuno
- Department of Surgery; Sapporo Medical University School of Medicine; Sapporo, Japan
| | - Tsuyoshi Kono
- Department of Pathology; Sapporo Medical University School of Medicine; Sapporo, Japan ; Department of Surgery; Sapporo Medical University School of Medicine; Sapporo, Japan
| | - Takumi Konno
- Department of Pathology; Sapporo Medical University School of Medicine; Sapporo, Japan ; Department of Cell Science; Research Institute of Frontier Medicine; Sapporo Medical University School of Medicine; Sapporo, Japan
| | - Norimasa Sawada
- Department of Pathology; Sapporo Medical University School of Medicine; Sapporo, Japan
| |
Collapse
|
33
|
Abstract
Platelet endothelial aggregation receptor-1 (PEAR1) participates in platelet aggregation via sustaining αIIbβ3 activation. To investigate the role of PEAR1 in platelet formation, we monitored and manipulated PEAR1 expression in vitro in differentiating human CD34(+) hematopoietic stem cells and in vivo in zebrafish embryos. PEAR1 expression rose during CD34(+) cell differentiation up to megakaryocyte (MK) maturation. Two different lentiviral short hairpin knockdowns of PEAR1 did not affect erythropoiesis in CD34(+) cells, but increased colony-forming unit MK cell numbers twofold vs control in clonogenic assays, without substantially modifying MK maturation. The PEAR1 knockdown resulted in a twofold reduction of the phosphatase and TENsin homolog (PTEN) phosphatase expression and modulated gene expression of several phosphatidylinositol 3-kinase (PI3K)-Akt and Notch pathway genes. In zebrafish, Pear1 expression increased progressively during the first 3 days of embryo development. Both ATG and splice-blocking PEAR1 morpholinos enhanced thrombopoiesis, without affecting erythropoiesis. Western blots of 3-day-old Pear1 knockdown zebrafish revealed elevated Akt phosphorylation, coupled to transcriptional downregulation of the PTEN isoform Ptena. Neutralization by morpholinos of Ptena, but not of Ptenb, phenocopied the Pear1 zebrafish knockdown and triggered enhanced Akt phosphorylation and thrombocyte formation. In summary, this is the first demonstration that PEAR1 influences the PI3K/PTEN pathway, a critical determinant of Akt phosphorylation, itself controlling megakaryopoiesis and thrombopoiesis.
Collapse
|
34
|
Kovacevic Z, Chikhani S, Lui GYL, Sivagurunathan S, Richardson DR. The iron-regulated metastasis suppressor NDRG1 targets NEDD4L, PTEN, and SMAD4 and inhibits the PI3K and Ras signaling pathways. Antioxid Redox Signal 2013; 18:874-87. [PMID: 22462691 DOI: 10.1089/ars.2011.4273] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIMS The metastasis suppressor gene, N-myc downstream regulated gene-1 (NDRG1), is negatively correlated with tumor progression in multiple neoplasms, including pancreatic cancer. Moreover, NDRG1 is an iron-regulated gene that is markedly upregulated by cellular iron-depletion using novel antitumor agents such as the chelator, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), in pancreatic cancer cells. However, the exact function(s) of NDRG1 remain to be established and are important to elucidate. RESULTS In the current study, using gene-array analysis along with NDRG1 overexpression and silencing, we identified the molecular targets of NDRG1 in three pancreatic cancer cell lines. We demonstrate that NDRG1 upregulates neural precursor cell expressed developmentally downregulated 4-like (NEDD4L) and GLI-similar-3 (GLIS3). Further studies examining the downstream effects of NEDD4L led to the discovery that NDRG1 affects the transforming growth factor-β (TGF-β) pathway, leading to the upregulation of two key tumor suppressor proteins, namely phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and mothers against decapentaplegic homolog-4 (SMAD4). Moreover, NDRG1 inhibited the phosphatidylinositol 3-kinase (PI3K) and Ras oncogenic pathways. INNOVATION This study provides significant insights into the mechanisms underlying the antitumor activity of NDRG1. For the first time, a role for NDRG1 is established in regulating the key signaling pathways involved in oncogenesis (TGF-β, PI3K, and Ras pathways). CONCLUSION The identified target genes of NDRG1 and their effect on the TGF-β signaling pathway reveal its molecular function in pancreatic cancer and a novel therapeutic avenue.
Collapse
Affiliation(s)
- Zaklina Kovacevic
- Department of Pathology, University of Sydney, Sydney, New South Wales, Australia
| | | | | | | | | |
Collapse
|
35
|
Wang J, Wang Y, Wang Y, Ma Y, Lan Y, Yang X. Transforming growth factor β-regulated microRNA-29a promotes angiogenesis through targeting the phosphatase and tensin homolog in endothelium. J Biol Chem 2013; 288:10418-26. [PMID: 23426367 DOI: 10.1074/jbc.m112.444463] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The TGF-β pathway plays an important role in physiological and pathological angiogenesis. MicroRNAs (miRNAs) are a class of 18- to 25-nucleotide, small, noncoding RNAs that function by regulating gene expression. A number of miRNAs have been found to be regulated by the TGF-β pathway. However, the role of endothelial miRNAs in the TGF-β-mediated control of angiogenesis is still largely unknown. Here we investigated the regulation of endothelial microRNA-29a (miR-29a) by TGF-β signaling and the potential role of miR-29a in angiogenesis. MiR-29a was directly up-regulated by TGF-β/Smad4 signaling in human and mice endothelial cells. In a chick chorioallantoic membrane assay, miR-29a overexpression promoted the formation of new blood vessels, and miR-29a suppression completely blocked TGF-β1-stimulated angiogenesis. Consistently, miR-29a overexpression increased tube formation and migration in endothelial cultures. Mechanistically, miR-29a directly targeted the phosphatase and tensin homolog (PTEN) in endothelial cells, leading to activation of the AKT pathway. PTEN knockdown recapitulated the role of miR-29a in endothelial migration, whereas AKT inhibition completely attenuated the stimulating role of miR-29a in angiogenesis. Taken together, these results reveal a crucial role of a TGF-β-regulated miRNA in promoting angiogenesis by targeting PTEN to stimulate AKT activity.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory of Proteomics, Institute of Biotechnology, Beijing 100071, China
| | | | | | | | | | | |
Collapse
|
36
|
Alexandrescu S, Tatevian N, Czerniak BA, Covinsky MH, Burns NK, Brown RE. Morphoproteomics provides support for TGF-β pathway signaling in the osteoclastogenesis and immune dysregulation of osteolytic Langerhans cell histiocytosis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2012; 5:503-511. [PMID: 22949932 PMCID: PMC3430113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 06/25/2012] [Indexed: 06/01/2023]
Abstract
Langerhans cell histiocytosis (LCH) has a challenging and still unclear pathogenesis. A body of literature points to impaired maturation of the lesional dendritic cells, and to immune dysregulation in the form of increased FoxP3 cells. Various cytokine abnormalities such as expression of transforming growth factor (TGF)-β have been reported, as well as abnormalities in lipid content in LCH cells. Morphoproteomic techniques were applied to identify the signal transduction pathways that could influence histogenesis and immune regulation in osteolytic LCH. Five pediatric cases of osteolytic LCH were examined, using antibodies against CD1a, S100, CD68, CD8, FoxP3, phosphorylated (p)-STAT3 (Tyr705), protein kinase C (PKC)-α, phospholipase (PL)D1, fatty acid synthase (FASN), and zinc finger protein, Gli2. Positive and negative controls were performed. A FoxP3(+)/CD8(+) cell ratio was calculated by counting the FoxP3+ and CD8+ cells in 10 high power fields for each case. There is induction of sonic hedgehog (SHH) mediators consistent with TGF-β signaling pathway through Smad3-dependent activation of Gli2, findings supported by the plasmalemmal and cytoplasmic expression of PKC-α and PLD1, and nuclear expression of Gli2, in lesional cells. The FoxP3+/CD8+ cell ratio is increased, ranging from 1.7-7.94. There is moderate cytoplasmic expression of FASN in most of the Langerhans cells, a finding that supports previously published phospholipid abnormalities in LCH and is consistent with PKC-α/PLD1/TGF-β signaling. With our study, we strongly suggest that the TGF-β cell signaling pathway is a major player in the pathogenesis of LCH, leading to non-canonical induction of nuclear Gli2 expression, thereby contributing to osteoclastogenesis in LCH histiocytes. It could also cause a state of immune frustration in LCH, by inducing the transformation of CD4(+)CD25(-) cells into CD4(+)/FoxP3(+) cells. This coincides with the clinical evidence of a response to thalidomide in patients with osteolytic LCH, given its reported ability to reduce TGF-beta 1 and FoxP3 cells. Such TGF-β signaling in osteoclastogenesis and immune dysregulation, and the presence of FASN in the majority of cells, have additional therapeutic implications for osteolytic LCH.
Collapse
Affiliation(s)
- Sanda Alexandrescu
- Department of Pathology, University of Texas at Houston–Health Science CenterHouston, TX, USA
| | - Nina Tatevian
- Department of Pathology, University of Texas at Houston–Health Science CenterHouston, TX, USA
| | | | - Michael H Covinsky
- Department of Pathology, University of Texas at Houston–Health Science CenterHouston, TX, USA
| | - Nadja K Burns
- Department of Pathology, University of Texas at Houston–Health Science CenterHouston, TX, USA
| | - Robert E Brown
- Department of Pathology, University of Texas at Houston–Health Science CenterHouston, TX, USA
| |
Collapse
|
37
|
Guimarães EL, Best J, Dollé L, Najimi M, Sokal E, van Grunsven LA. Mitochondrial uncouplers inhibit hepatic stellate cell activation. BMC Gastroenterol 2012; 12:68. [PMID: 22686625 PMCID: PMC3439697 DOI: 10.1186/1471-230x-12-68] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 04/23/2012] [Indexed: 12/30/2022] Open
Abstract
Background Mitochondrial dysfunction participates in the progression of several pathologies. Although there is increasing evidence for a mitochondrial role in liver disease, little is known about its contribution to hepatic stellate cell (HSC) activation. In this study we investigated the role of mitochondrial activity through mild uncoupling during in vitro activation of HSCs. Methods Cultured primary human and mouse HSCs were treated with the chemical uncouplers FCCP and Valinomycin. ATP levels were measured by luciferase assay and production of reactive oxygen species was determined using the fluorescent probe DCFH-DA. Possible cytotoxicity by uncoupler treatment was evaluated by caspase 3/7 activity and cytoplasmic protease leakage. Activation of HSCs and their response to the pro-fibrogenic cytokine TGF-β was evaluated by gene expression of activation markers and signal mediators using RT-qPCR. Proliferation was measured by incorporation of EdU and protein expression of α-smooth muscle actin was analyzed by immunocytochemistry and western blot. Results FCCP and Valinomycin treatment mildly decreased ATP and reactive oxygen species levels. Both uncouplers increased the expression of mitochondrial genes such as Tfam and COXIV while inducing morphological features of quiescent mouse HSCs and abrogating TGF-β signal transduction. Mild uncoupling reduced HSC proliferation and expression of pro-fibrogenic markers of mouse and human HSCs. Conclusions Mild mitochondrial uncoupling inhibits culture-induced HSC activation and their response to pro-fibrogenic cytokines like TGF-β. These results therefore suggest mitochondrial uncoupling of HSCs as a strategy to reduce progression of liver fibrosis.
Collapse
Affiliation(s)
- Eduardo L Guimarães
- Department of Cell Biology, Liver Cell Biology Lab, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium
| | | | | | | | | | | |
Collapse
|
38
|
Zhang P, Chen JH, Guo XL. New insights into PTEN regulation mechanisms and its potential function in targeted therapies. Biomed Pharmacother 2012; 66:485-90. [PMID: 22902055 DOI: 10.1016/j.biopha.2012.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/15/2012] [Indexed: 12/12/2022] Open
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor gene of phosphatased activity. Its low or lacking expression closely relates with tumor progress and poor prognosis. The regulation and function ascribed to PTEN have become more diverse since its discovery as a putative phosphatase mutated in many human tumors. PTEN function is positively and negatively regulated at the transcriptional level, as well as post-translationally by phosphorylation, oxidation and acetylation. Deregulation of PTEN is implicated in other human diseases in addition to cancers, including diabetes and obesity, modulation of PTEN level has widespread therapeutic applications to those tumorigenesis and non-tumor diseases. This review will summarize the new points on the regulation of PTEN and briefly discuss the potential therapeutic role of PTEN in some diseases.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | | | | |
Collapse
|
39
|
Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines. PLoS One 2012; 7:e33788. [PMID: 22586443 PMCID: PMC3346739 DOI: 10.1371/journal.pone.0033788] [Citation(s) in RCA: 401] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 02/21/2012] [Indexed: 12/15/2022] Open
Abstract
Background To improve cancer therapy, it is critical to target metastasizing cells. Circulating tumor cells (CTCs) are rare cells found in the blood of patients with solid tumors and may play a key role in cancer dissemination. Uncovering CTC phenotypes offers a potential avenue to inform treatment. However, CTC transcriptional profiling is limited by leukocyte contamination; an approach to surmount this problem is single cell analysis. Here we demonstrate feasibility of performing high dimensional single CTC profiling, providing early insight into CTC heterogeneity and allowing comparisons to breast cancer cell lines widely used for drug discovery. Methodology/Principal Findings We purified CTCs using the MagSweeper, an immunomagnetic enrichment device that isolates live tumor cells from unfractionated blood. CTCs that met stringent criteria for further analysis were obtained from 70% (14/20) of primary and 70% (21/30) of metastatic breast cancer patients; none were captured from patients with non-epithelial cancer (n = 20) or healthy subjects (n = 25). Microfluidic-based single cell transcriptional profiling of 87 cancer-associated and reference genes showed heterogeneity among individual CTCs, separating them into two major subgroups, based on 31 highly expressed genes. In contrast, single cells from seven breast cancer cell lines were tightly clustered together by sample ID and ER status. CTC profiles were distinct from those of cancer cell lines, questioning the suitability of such lines for drug discovery efforts for late stage cancer therapy. Conclusions/Significance For the first time, we directly measured high dimensional gene expression in individual CTCs without the common practice of pooling such cells. Elevated transcript levels of genes associated with metastasis NPTN, S100A4, S100A9, and with epithelial mesenchymal transition: VIM, TGFß1, ZEB2, FOXC1, CXCR4, were striking compared to cell lines. Our findings demonstrate that profiling CTCs on a cell-by-cell basis is possible and may facilitate the application of ‘liquid biopsies’ to better model drug discovery.
Collapse
|
40
|
Qi Q, He K, Yoo MH, Chan CB, Liu X, Zhang Z, Olson JJ, Xiao G, Wang L, Mao H, Fu H, Tao H, Ramalingam SS, Sun SY, Mischel PS, Ye K. Acridine yellow G blocks glioblastoma growth via dual inhibition of epidermal growth factor receptor and protein kinase C kinases. J Biol Chem 2012; 287:6113-27. [PMID: 22215664 PMCID: PMC3307261 DOI: 10.1074/jbc.m111.293605] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 12/07/2011] [Indexed: 11/06/2022] Open
Abstract
Amplification of the epidermal growth factor receptor (EGFR), frequently expressed as a constitutively active deletion mutant (EGFRvIII), occurs commonly in glioblastoma multiformes (GBM). However, blockade of EGFR is therapeutically disappointing for gliomas with PTEN deletion. To search for small molecules treating this aggressive cancer, we have established a cell-based screening and successfully identified acridine yellow G that preferentially blocks cell proliferation of the most malignant U87MG/EGFRvIII cells over the less malignant U87MG/PTEN cells. Oral administration of this compound markedly diminishes the brain tumor volumes in both subcutaneous and intracranial models. It directly inhibits EGFR and PKCs with IC(50) values of ~7.5 and 5 μM, respectively. It dually inhibits EGFR and PKCs, resulting in a blockade of mammalian target of rapamycin signaling and cell cycle arrest in the G(1) phase, which leads to activation of apoptosis in the tumors. Hence, combinatorial inhibition of EGFR and PKCs might provide proof of concept in developing therapeutic agents for treating malignant glioma and other human cancers.
Collapse
Affiliation(s)
- Qi Qi
- From the Departments of Pathology and Laboratory Medicine
| | - Kunyan He
- From the Departments of Pathology and Laboratory Medicine
| | - Min-Heui Yoo
- From the Departments of Pathology and Laboratory Medicine
| | - Chi-Bun Chan
- From the Departments of Pathology and Laboratory Medicine
| | - Xia Liu
- From the Departments of Pathology and Laboratory Medicine
| | | | | | - Ge Xiao
- the Centers for Disease Control and Prevention, Atlanta, Georgia 30333, and
| | - Liya Wang
- Radiology, Center for Systems Imaging, and
| | - Hui Mao
- Radiology, Center for Systems Imaging, and
| | - Haian Fu
- the Departments of Pharmacology and
| | - Hui Tao
- Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Suresh S. Ramalingam
- Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Shi-Yong Sun
- Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Paul S. Mischel
- the Departments of Pathology and Laboratory Medicine and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California 90095
| | - Keqiang Ye
- From the Departments of Pathology and Laboratory Medicine
| |
Collapse
|
41
|
McGonnell IM, Grigoriadis AE, Lam EWF, Price JS, Sunters A. A specific role for phosphoinositide 3-kinase and AKT in osteoblasts? Front Endocrinol (Lausanne) 2012; 3:88. [PMID: 22833734 PMCID: PMC3400941 DOI: 10.3389/fendo.2012.00088] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 06/29/2012] [Indexed: 12/25/2022] Open
Abstract
The phosphoinositide 3-kinase and AKT (protein kinase B) signaling pathway (PI3K/AKT) plays a central role in the control of cell survival, growth, and proliferation throughout the body. With regard to bone, and particularly in osteoblasts, there is an increasing amount of evidence that the many signaling molecules exert some of their bone-specific effects in part via selectively activating some of the generic effects of the PI3K/AKT pathway in osteoblasts. There is further data demonstrating that PI3K/AKT has the capacity to specifically cross-talk with other signaling pathways and transcriptional networks controlling bone cells' development in order to fine-tune the osteoblast phenotype. There is also evidence that perturbations in the PI3K/AKT pathway may well be responsible for certain bone pathologies. In this review, we discuss some of these findings and suggest that the PI3K/AKT pathway is a central nexus in the extensive network of extracellular signaling pathways that control the osteoblast.
Collapse
Affiliation(s)
- Imelda M. McGonnell
- Department of Veterinary Basic Sciences, The Royal Veterinary College,London, UK
| | - Agamemnon E. Grigoriadis
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, Guy’s Hospital,London, UK
| | - Eric W.-F. Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital,London, UK
| | - Joanna S. Price
- School of Veterinary Sciences, University of Bristol,Bristol, UK
| | - Andrew Sunters
- Department of Veterinary Basic Sciences, The Royal Veterinary College,London, UK
- *Correspondence: Andrew Sunters, Department of Veterinary Basic Sciences, The Royal Veterinary College, Royal College Street, Camden, London NW1 0TU, UK. e-mail:
| |
Collapse
|
42
|
Feng C, Yao R, Huang F, Liu X, Nie W. High level of PTEN expression is associated with low-grade liver metastasis and satisfactory patient survival in pancreatic cancer. Arch Med Res 2011; 42:584-8. [PMID: 22036936 DOI: 10.1016/j.arcmed.2011.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 10/17/2011] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND AIMS We investigated PTEN expression in primary pancreatic cancer and pancreatic cancer liver metastasis in order to evaluate the interrelationship between PTEN expression and clinicopathological characteristics of pancreatic cancer patients with and without liver metastasis. METHODS Eighty five primary pancreatic cancer specimens without liver metastasis were analyzed as controls. Eighty seven pancreatic cancer specimens and homologous liver metastasis specimens were investigated immunohistochemically, and the correlation between immunohistochemical findings and clinicopathological factors was investigated. RESULTS A strong PTEN expression was observed in 52 (61.2%) specimens from patients without liver metastasis. In contrast, only 26 (29.9%) specimens were observed in patients with liver metastasis. A strong PTEN expression was apparently associated with low-grade lymph node metastasis (p <0.05) and TNM stage (p <0.05). PTEN expression in patients without liver metastasis was apparently stronger than that with liver metastasis. In addition, among patients with liver metastasis, the 5-year survival rate was markedly higher in patients with strong PTEN expression compared to those with weak PTEN expression. CONCLUSIONS Our results suggest that a high level of PTEN expression is associated with low-grade liver metastasis and satisfactory patient survival in pancreatic cancer. The diagnostic evaluation of PTEN expression may provide valuable prognostic information to aid treatment strategies for pancreatic cancer patients.
Collapse
Affiliation(s)
- Chao Feng
- Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, PR China
| | | | | | | | | |
Collapse
|
43
|
Walsh JE, Young MRI. TGF-beta regulation of focal adhesion proteins and motility of premalignant oral lesions via protein phosphatase 1. Anticancer Res 2011; 31:3159-3164. [PMID: 21965722 PMCID: PMC3622218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Premalignant oral lesions have a high incidence of recurrence and progression to malignant disease and, although studies have shown the contribution of transforming growth factor β (TGF-β) to cancer progression, none have been conducted with premalignant oral lesion cells to determine the impact of TGF-β in stimulating properties that are characteristic of more invasive cells. The present study focused on TGF-β-modulation of paxillin and the serine/threonine protein phosphatase PP-1, and the impact on cellular motility. These studies show that TGF-β stimulates premalignant lesion cell motility and up regulates expression of paxillin, as well as its co-localization with PP-1, while concurrently diminishing the level of paxillin serine phosphorylation. The TGF-β-mediated up regulation of paxillin and co-localization with actin, as well as the TGF-β-stimulated motility of premalignant lesion cells, were all blocked by inhibiting PP-1, indicating their dependence on PP-1 activity. These studies suggest interplay between TGF-β and PP-1 in promoting a more malignant phenotype in premalignant oral lesion cells.
Collapse
Affiliation(s)
- Jarrett E Walsh
- Research Service (151), Ralph H. Johnson VA Medical Center, Charleston, SC 29401, U.S.A
| | | |
Collapse
|
44
|
Alfred L, Beerman PR, Tahir Z, LaHousse SF, Russell P, Sadler GR. Increasing underrepresented scientists in cancer research: the UCSD CURE program. JOURNAL OF CANCER EDUCATION : THE OFFICIAL JOURNAL OF THE AMERICAN ASSOCIATION FOR CANCER EDUCATION 2011; 26:223-227. [PMID: 20458599 PMCID: PMC3098349 DOI: 10.1007/s13187-010-0131-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The Moores UCSD Cancer Center's Continuing Umbrella of Research Experiences program aims to increase the number of underrepresented students pursuing careers in cancer research, cancer care, and health disparities research. Participants receive 8 weeks of laboratory and classroom training during the summer followed by participation in research mentors' laboratories. Of the 82 CURE students accrued (2002 and 2008), 91% persisted in science after 1 year. Of the 63 students eligible to graduate in 2009, 7 had dropped out of college; 56 graduated. Of the graduates, 98% were science majors and 61% (34) had already matriculated to graduate or health professional schools for cancer research and clinical care careers.
Collapse
Affiliation(s)
- Lawrence Alfred
- Moores UCSD Cancer Center, 0850, 3855 Health Sciences Drive, La Jolla, CA 92093-0850 USA
| | - Paula R. Beerman
- Moores UCSD Cancer Center, 0850, 3855 Health Sciences Drive, La Jolla, CA 92093-0850 USA
| | - Zunera Tahir
- Moores UCSD Cancer Center, 0850, 3855 Health Sciences Drive, La Jolla, CA 92093-0850 USA
| | - Sheila F. LaHousse
- Moores UCSD Cancer Center, 0850, 3855 Health Sciences Drive, La Jolla, CA 92093-0850 USA
| | - Percy Russell
- Moores UCSD Cancer Center, 0850, 3855 Health Sciences Drive, La Jolla, CA 92093-0850 USA
- UCSD Department of Chemistry, 9500 Gilman Drive, La Jolla, CA 92093 USA
| | - Georgia Robins Sadler
- Moores UCSD Cancer Center, 0850, 3855 Health Sciences Drive, La Jolla, CA 92093-0850 USA
- Department of Surgery, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093 USA
| |
Collapse
|
45
|
Chow JYC, Estrema C, Orneles T, Dong X, Barrett KE, Dong H. Calcium-sensing receptor modulates extracellular Ca(2+) entry via TRPC-encoded receptor-operated channels in human aortic smooth muscle cells. Am J Physiol Cell Physiol 2011; 301:C461-8. [PMID: 21562303 DOI: 10.1152/ajpcell.00389.2010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ca-sensing receptor (CaSR), a member of the G protein-coupled receptor family, regulates the synthesis of parathyroid hormone in response to changes in serum Ca(2+) concentrations. The functions of CaSR in human vascular smooth muscle cells are largely unknown. Here we sought to study CaSR activation and the underlying molecular mechanisms in human aortic smooth muscle cells (HASMC). Extracellular Ca(2+) ([Ca(2+)](o)) dose-dependently increased free cytosolic Ca(2+) ([Ca(2+)](cyt)) in HASMC, with a half-maximal response (EC(50)) of 0.52 mM and a Hill coefficient of 5.50. CaSR was expressed in HASMC, and the [Ca(2+)](o)-induced [Ca(2+)](cyt) rise was abolished by dominant negative mutants of CaSR. The CaSR-mediated increase in [Ca(2+)](cyt) was also significantly inhibited by pertussis toxin, the phospholipase C inhibitor U-73122, or the general protein kinase C (PKC) inhibitor chelerythrine, but not by the conventional PKC inhibitor, Gö6976. Depletion of membrane cholesterol by pretreatment with methyl-β-cyclodextrin markedly decreased CaSR-induced increase in [Ca(2+)](cyt). Blockade of TRPC channels with 2-aminoethoxydiphenyl borate, SKF-96365, or La(3) significantly inhibited [Ca(2+)](o) entry, whereas activation of TRPC6 channels with flufenamic acid potentiated [Ca(2+)](o) entry. Neither cyclopiazonic acid nor caffeine or ionomycin had any effect on [Ca(2+)](cyt) in [Ca(2+)](o)-free solutions. TRPC6 and PKCε mRNA and proteins were detected in HASMC, and [Ca(2+)](o) induced PKCε phosphorylation, which could be prevented by chelerythrine. Our data suggest that CaSR activation mediates [Ca(2+)](o) entry, likely through TRPC6-encoded receptor-operated channels that are regulated by a PLC/PKCε cascade. Our study therefore provides evidence not only for functional expression of CaSR, but also for a novel pathway whereby it regulates [Ca(2+)](o) entry in HASMC.
Collapse
Affiliation(s)
- Jimmy Y C Chow
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
46
|
Hering NA, Andres S, Fromm A, van Tol EA, Amasheh M, Mankertz J, Fromm M, Schulzke JD. Transforming growth factor-β, a whey protein component, strengthens the intestinal barrier by upregulating claudin-4 in HT-29/B6 cells. J Nutr 2011; 141:783-9. [PMID: 21430244 DOI: 10.3945/jn.110.137588] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
TGFβ (isoforms 1-3) has barrier-protective effects in the intestine. The mechanisms involved in regulating tight junction protein expression are poorly understood. The aim of this study was to elucidate TGFβ-dependent protective effects with special attention to promoter regulation of tight junction proteins using the HT-29/B6 cell model. In addition, the effects of whey protein concentrate 1 (WPC1), a natural source of TGFβ in human nutrition, were examined. For this purpose, the claudin-4 promoter was cloned and tested for its activity. It exhibited transactivation in response to TGFβ1, which was intensified when Smad-4 was cotransfected, indicating a Smad-4-dependent regulatory component. Shortening and mutation of the promoter altered and attenuated this effect. WPC1 induced an increase in the claudin-4 protein level and resistance of HT-29/B6 cell monolayers. Anti-TGFβ(1-3) antibodies blocked these whey protein effects, suggesting that a main part of this function was mediated through TGFβ. This effect was observed on intact monolayers as well as when barrier function was impaired by preexposure to IFNγ. In conclusion, TGFβ1 affects claudin-4 gene expression via Smad-4-dependent and -independent transcriptional regulation, resulting in barrier protection, a cytokine effect that is also found in whey protein concentrates used in enteral nutrition.
Collapse
Affiliation(s)
- Nina A Hering
- Department of Gastroenterology, Charité, Campus Benjamin Franklin, Berlin 12200, Germany
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Cao L, Graue-Hernandez EO, Tran V, Reid B, Pu J, Mannis MJ, Zhao M. Downregulation of PTEN at corneal wound sites accelerates wound healing through increased cell migration. Invest Ophthalmol Vis Sci 2011; 52:2272-8. [PMID: 21212174 DOI: 10.1167/iovs.10-5972] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
PURPOSE The PI3K/Akt pathway is required for cell polarization and migration, whereas the phosphatase and tensin homologue deleted on chromosome 10 (PTEN) has inhibitory effects on the PI3K/Akt pathway. The authors therefore hypothesized that wounding would downregulate PTEN and that this downregulation would enhance wound healing. METHODS In human corneal epithelial (HCE) cell monolayer and rat cornea scratch wound models, the authors investigated PTEN and Akt expression using Western blot and immunofluorescence analyses. The effects of PTEN and PI3K inhibitors dipotassium bisperoxo (picolinato) oxovanadate (bpv(pic)) and LY294002 on cell migration and wound closure were investigated using time-lapse imaging. Finally, the authors investigated the effect of PTEN inhibition on wound healing in whole rat eyes. RESULTS In HCE cell monolayer and rat cornea, PTEN was downregulated at the wound edges within 30 minutes of wounding. The downregulation of PTEN was causal in a simultaneous increase in Akt activation, which was responsible for a significant increase in individual cell migration rate from 8.8 μm/h to 17.3 μm/h. An increased migration rate was maintained for 20 hours. PTEN inhibition significantly enhanced the wound healing rate in the HCE cell monolayer from 10 minutes onward after treatment and reduced the healing time in eye organ culture from 30 to 20 hours. CONCLUSIONS Injury to the corneal epithelium downregulates the expression of PTEN at wound edges, allowing increased PI3K/Akt signaling, thereby contributing to a significant enhancement of cell migration and wound healing. These results suggest that PTEN inhibition may be an effective treatment for corneal injury.
Collapse
Affiliation(s)
- Lin Cao
- Department of Dermatology, School of Medicine, University of California, Davis, California 95817, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Dong X, Ko KH, Chow J, Tuo B, Barrett KE, Dong H. Expression of acid-sensing ion channels in intestinal epithelial cells and their role in the regulation of duodenal mucosal bicarbonate secretion. Acta Physiol (Oxf) 2011; 201:97-107. [PMID: 20969730 DOI: 10.1111/j.1748-1716.2010.02207.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AIMS As little is currently known about acid-sensing ion channels (ASICs) in intestinal epithelial cells, the aims of the present study were to investigate the expression and function of ASICs in intestinal epithelial cells, particularly their physiological role in the acid-stimulated duodenal mucosal bicarbonate secretion (DMBS). METHODS RT-PCR and digital Ca²(+) imaging were used to determine the expression and function of ASICs in HT29 cells and SCBN cells, intestinal epithelial crypt cell lines. The acid-stimulated DMBS was measured in C57 black mice in vivo to study the role of ASICs in this physiological process. RESULTS ASIC1a mRNA expression was detected in the duodenal mucosa stripped from mice and epithelial cell lines, in which cytoplasmic free Ca²(+) ([Ca²(+) ](cyt)) in response to extracellular acidosis was also increased. In Ca²(+) -containing solutions, acidosis (pH 6.0-5.0) raised [Ca²(+) ](cyt) in both HT29 cells and SCBN cells in a similar pH-dependent manner. Acidosis-induced increase in [Ca²(+) ](cyt) was markedly inhibited by amiloride (an ASICs blocker), SK&F96365 (a blocker for non-selective cation channels), or in Ca²(+) -free solutions; but was abolished by amiloride in Ca²(+) -free solutions. However, acidosis-induced increase in [Ca²(+) ](cyt) was slightly affected by U73122 (a PLC inhibitor), or nifedipine (a voltage-gated Ca²(+) channel blocker). After acidosis raised [Ca²(+) ](cyt) , stimulation of purinergic receptors with ATP further increased [Ca²(+) ](cyt) , but acidosis-induced increase in [Ca²(+) ](cyt) was not altered by suramin. Moreover, acid-stimulated murine DMBS was significantly attenuated by amiloride. CONCLUSION Therefore, ASICs are functionally expressed in intestinal epithelial cells, and may play a role in acid-stimulated DMBS through a Ca²(+) signalling pathway.
Collapse
Affiliation(s)
- X Dong
- Department of Medicine, University of California, San Diego, USA
| | | | | | | | | | | |
Collapse
|
49
|
Dong H, Shim KN, Li JMJ, Estrema C, Ornelas TA, Nguyen F, Liu S, Ramamoorthy SL, Ho S, Carethers JM, Chow JYC. Molecular mechanisms underlying Ca2+-mediated motility of human pancreatic duct cells. Am J Physiol Cell Physiol 2010; 299:C1493-503. [PMID: 20861471 DOI: 10.1152/ajpcell.00242.2010] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We recently reported that transforming growth factor-β (TGF-β) induces an increase in cytosolic Ca(2+) ([Ca(2+)](cyt)) in pancreatic cancer cells, but the mechanisms by which TGF-β mediates [Ca(2+)](cyt) homeostasis in these cells are currently unknown. Transient receptor potential (TRP) channels and Na(+)/Ca(2+) exchangers (NCX) are plasma membrane proteins that play prominent roles in controlling [Ca(2+)](cyt) homeostasis in normal mammalian cells, but little is known regarding their roles in the regulation of [Ca(2+)](cyt) in pancreatic cancer cells and pancreatic cancer development. Expression and function of NCX1 and TRPC1 proteins were characterized in BxPc3 pancreatic cancer cells. TGF-β induced both intracellular Ca(2+) release and extracellular Ca(2+) entry in these cells; however, 2-aminoethoxydiphenyl borate [2-APB; a blocker for both inositol 1,4,5-trisphosphate (IP(3)) receptor and TRPC], LaCl(3) (a selective TRPC blocker), or KB-R7943 (a selective inhibitor for the Ca(2+) entry mode of NCX) markedly inhibited the TGF-β-induced increase in [Ca(2+)](cyt). 2-APB or KB-R7943 treatment was able to dose-dependently reverse membrane translocation of PKCα induced by TGF-β. Transfection with small interfering RNA (siRNA) against NCX1 almost completely abolished NCX1 expression in BxPc3 cells and also inhibited PKCα serine phosphorylation induced by TGF-β. Knockdown of NCX1 or TRPC1 by specific siRNA transfection reversed TGF-β-induced pancreatic cancer cell motility. Therefore, TGF-β induces Ca(2+) entry likely via TRPC1 and NCX1 and raises [Ca(2+)](cyt) in pancreatic cancer cells, which is essential for PKCα activation and subsequent tumor cell invasion. Our data suggest that TRPC1 and NCX1 may be among the potential therapeutic targets for pancreatic cancer.
Collapse
Affiliation(s)
- Hui Dong
- Division of Gastroenterology, Department of Medicine, University of California, San Diego CA 92093-0063, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hill R, Calvopina JH, Kim C, Wang Y, Dawson DW, Donahue TR, Dry S, Wu H. PTEN loss accelerates KrasG12D-induced pancreatic cancer development. Cancer Res 2010; 70:7114-24. [PMID: 20807812 DOI: 10.1158/0008-5472.can-10-1649] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
KRAS mutations are found in ∼90% of human pancreatic ductal adenocarcinomas (PDAC). However, mice genetically engineered to express Kras(G12D) from its endogenous locus develop PDACs only after a prolonged latency, indicating that other genetic events or pathway alterations are necessary for PDAC progression. The PTEN-controlled phosphatidylinositol 3-kinase (PI3K)/AKT signaling axis is dysregulated in later stages of PDAC. To better elucidate the role of PTEN/PI3K/AKT signaling in Kras(G12D)-induced PDAC development, we crossed Pten conditional knockout mice (Pten(lox/lox)) to mice with conditional activation of Kras(G12D). The resulting compound heterozygous mutant mice showed significantly accelerated development of acinar-to-ductal metaplasia (ADM), malignant pancreatic intraepithelial neoplasia (mPanIN), and PDAC within a year. Moreover, all mice with Kras(G12D) activation and Pten homozygous deletion succumbed to cancer by 3 weeks of age. Our data support a dosage-dependent role for PTEN, and the resulting dysregulation of the PI3K/AKT signaling axis, in both PDAC initiation and progression, and shed additional light on the signaling mechanisms that lead to the development of ADM and subsequent mPanIN and pancreatic cancer.
Collapse
Affiliation(s)
- Reginald Hill
- Department of Molecular and Medical Pharmacology, University of California Los Angeles School of Medicine, CHS 23-214, 650 CE Young Drive South, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|